39 research outputs found

    Machine Learning Approaches for Improving Prediction Performance of Structure-Activity Relationship Models

    Get PDF
    In silico bioactivity prediction studies are designed to complement in vivo and in vitro efforts to assess the activity and properties of small molecules. In silico methods such as Quantitative Structure-Activity/Property Relationship (QSAR) are used to correlate the structure of a molecule to its biological property in drug design and toxicological studies. In this body of work, I started with two in-depth reviews into the application of machine learning based approaches and feature reduction methods to QSAR, and then investigated solutions to three common challenges faced in machine learning based QSAR studies. First, to improve the prediction accuracy of learning from imbalanced data, Synthetic Minority Over-sampling Technique (SMOTE) and Edited Nearest Neighbor (ENN) algorithms combined with bagging as an ensemble strategy was evaluated. The Friedman’s aligned ranks test and the subsequent Bergmann-Hommel post hoc test showed that this method significantly outperformed other conventional methods. SMOTEENN with bagging became less effective when IR exceeded a certain threshold (e.g., \u3e40). The ability to separate the few active compounds from the vast amounts of inactive ones is of great importance in computational toxicology. Deep neural networks (DNN) and random forest (RF), representing deep and shallow learning algorithms, respectively, were chosen to carry out structure-activity relationship-based chemical toxicity prediction. Results suggest that DNN significantly outperformed RF (p \u3c 0.001, ANOVA) by 22-27% for four metrics (precision, recall, F-measure, and AUPRC) and by 11% for another (AUROC). Lastly, current features used for QSAR based machine learning are often very sparse and limited by the logic and mathematical processes used to compute them. Transformer embedding features (TEF) were developed as new continuous vector descriptors/features using the latent space embedding from a multi-head self-attention. The significance of TEF as new descriptors was evaluated by applying them to tasks such as predictive modeling, clustering, and similarity search. An accuracy of 84% on the Ames mutagenicity test indicates that these new features has a correlation to biological activity. Overall, the findings in this study can be applied to improve the performance of machine learning based Quantitative Structure-Activity/Property Relationship (QSAR) efforts for enhanced drug discovery and toxicology assessments

    Design of approximate overclocked datapath

    Get PDF
    Embedded applications can often demand stringent latency requirements. While high degrees of parallelism within custom FPGA-based accelerators may help to some extent, it may also be necessary to limit the precision used in the datapath to boost the operating frequency of the implementation. However, by reducing the precision, the engineer introduces quantisation error into the design. In this thesis, we describe an alternative circuit design methodology when considering trade-offs between accuracy, performance and silicon area. We compare two different approaches that could trade accuracy for performance. One is the traditional approach where the precision used in the datapath is limited to meet a target latency. The other is a proposed new approach which simply allows the datapath to operate without timing closure. We demonstrate analytically and experimentally that for many applications it would be preferable to simply overclock the design and accept that timing violations may arise. Since the errors introduced by timing violations occur rarely, they will cause less noise than quantisation errors. Furthermore, we show that conventional forms of computer arithmetic do not fail gracefully when pushed beyond the deterministic clocking region. In this thesis we take a fresh look at Online Arithmetic, originally proposed for digit serial operation, and synthesize unrolled digit parallel online arithmetic operators to allow for graceful degradation. We quantify the impact of timing violations on key arithmetic primitives, and show that substantial performance benefits can be obtained in comparison to binary arithmetic. Since timing errors are caused by long carry chains, these result in errors in least significant digits with online arithmetic, causing less impact than conventional implementations.Open Acces

    Machine learning approaches for computer aided drug discovery

    Get PDF
    Pharmaceutical drug discovery is expensive, time consuming and scientifically challenging. In order to increase efficiency of the pre-clinical drug discovery pathway, computational drug discovery methods and most recently, machine learning-based methods are increasingly used as powerful tools to aid early stage drug discovery. In this thesis, I present three complementary computer-aided drug discovery methods, with a focus on aiding hit discovery and hit-to-lead optimization. In addition, this thesis particularly focuses on exploring different molecular representations used to featurise machine learning models, in order explore how best to capture valuable information about protein, ligands and 3D protein-ligand complexes to build more robust, more interpretable and more accurate machine learning models. First, I developed ligand-based models using a Gaussian Process (GP) as an easy-to-implement tool to guide exploration of chemical space for the optimization of protein-ligand binding affinity. I explored different topological fingerprint and autoencoder representations for Bayesian optimisation (BO) and showed that BO is a powerful tool to help medicinal chemists to prioritise which new compounds to make for single-target as well as multi-target optimisation. The algorithm achieved high enrichment of top compounds for both single target and multiobjective optimisation when tested on a well known benchmark dataset of the drug target matrix metalloproteinase-12 and a real, ongoing drug optimisation dataset targeting four bacterial metallo-β-lactamases. Next, I present the development of a knowledge-based approach to drug design, combining new protein-ligand interaction fingerprints with a fragment-based drug discovery approach to understand SARS-CoV-2 Mpro-substrate specificity and to design novel small molecule inhibitors in silico. In combination with a fragment-based drug discovery approach, I show how this knowledge-based interaction fingerprint-driven approach can reveal fruitful fragment-growth design strategies. Lastly, I expand on the knowledge-based contact fingerprints to create a ligand-shaped molecular graph representation (Protein Ligand Interaction Graphs, PLIGs) to develop novel graph-based deep learning protein-ligand binding affinity scoring functions. PLIGs encode all intermolecular interactions in a protein-ligand complex within the node features of the graph and are therefore simple and fully interpretable. I explore a variety of Graph Neural Network architectures in combination with PLIGs and found Graph Attention Networks to perform slightly better than other GNN architectures, performing amongst the best known protein-ligand binding affinity scoring functions

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    The landscape of combination therapies against glioblastoma:From promises to challenges

    Get PDF
    We demonstrate in this thesis how new targets can be identified and highlight the challenges that lie in front of us when trying to translate these steps toward the clinic. We conclude that the blood-brain barrier, PD/PK of drugs, and therapy resistance are still major challenges and explain the limited improvement in treatment options for patients with GBM. First, GBM is a diffuse glioma located in the brain where the blood-brain barrier prevents the crossing of drugs and thereby limits the efficacy of treatment. Second, inter- and intratumoral heterogeneity have been observed in GBM leading to different cellular subpopulations with distinctive genetic profiles. Hence, treating these subpopulations with targeted drugs allows until now still survival of certain subpopulations that are not sensitive to this treatment. Lastly, therapy resistance is often seen in GBM patients and is probably related to intratumoral heterogeneity, but the intrinsic molecular mechanism is still not fully understood. Together they lead to the inevitable recurrence of the tumor

    NASA Tech Briefs, May 1996

    Get PDF
    Topics include: Video and Imaging;Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Report

    Cumulative index to NASA Tech Briefs, 1970-1975

    Get PDF
    Tech briefs of technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Abstracts and indexes of subject, personal author, originating center, and tech brief number for the 1970-1975 tech briefs are presented

    Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems

    Full text link
    Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity
    corecore