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Abstract

Pharmaceutical drug discovery is expensive, time consuming and scientifically chal-
lenging. In order to increase efficiency of the pre-clinical drug discovery pathway,
computational drug discovery methods and most recently, machine learning-based
methods are increasingly used as powerful tools to aid early stage drug discovery.

In this thesis, I present three complementary computer-aided drug discovery meth-
ods, with a focus on aiding hit discovery and hit-to-lead optimization. In addition,
this thesis particularly focuses on exploring different molecular representations used
to featurise machine learning models, in order explore how best to capture valuable
information about protein, ligands and 3D protein-ligand complexes to build more
robust, more interpretable and more accurate machine learning models.

First, I developed ligand-based models using a Gaussian Process (GP) as an easy-
to-implement tool to guide exploration of chemical space for the optimization of
protein-ligand binding affinity. I explored different topological fingerprint and au-
toencoder representations for Bayesian optimisation (BO) and showed that BO is
a powerful tool to help medicinal chemists to prioritise which new compounds to
make for single-target as well as multi-target optimisation. The algorithm achieved
high enrichment of top compounds for both single target and multiobjective optimi-
sation when tested on a well known benchmark dataset of the drug target matrix
metalloproteinase-12 and a real, ongoing drug optimisation dataset targeting four
bacterial metallo-/3-lactamases.

Next, I present the development of a knowledge-based approach to drug design,
combining new protein-ligand interaction fingerprints with a fragment-based drug dis-
covery approach to understand SARS-CoV-2 MP™-substrate specificity and to design
novel small molecule inhibitors in silico. In combination with a fragment-based drug
discovery approach, I show how this knowledge-based interaction fingerprint-driven
approach can reveal fruitful fragment-growth design strategies.

Lastly, I expand on the knowledge-based contact fingerprints to create a ligand-
shaped molecular graph representation (Protein Ligand Interaction Graphs, PLIGs)
to develop novel graph-based deep learning protein-ligand binding affinity scoring
functions. PLIGs encode all intermolecular interactions in a protein-ligand complex
within the node features of the graph and are therefore simple and fully interpretable.
I explore a variety of Graph Neural Network architectures in combination with PLIGs
and found Graph Attention Networks to perform slightly better than other GNN ar-
chitectures, performing amongst the best known protein-ligand binding affinity scor-
ing functions.
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Chapter 1

Introduction

1.1 Drug Discovery

Drug discovery is the interdisciplinary scientific process involving the identification,
optimization and formulation of new pharmaceutical products. Modern drug dis-
covery can typically be divided into six distinct steps, each with their own scientific
challenges: 1) target discovery; 2) hit discovery; 3) hit-to-lead; 4) lead optimization;
5) in wvivo activity, absorption, distribution, metabolism, and excretion (ADME) &
toxicology optimization in animal models; and 6) human clinical trials (Figure [1.1]).

During a typical target discovery project, new biological targets that could be
used to treat a specific disease are identified. Often, understanding the role of the
drug target in the underlying biological process of the disease is a key step in target
discovery and validation. Once a suitable target has been identified, a hit compound
needs to be identified to modulate the activity of the desired target. With the emer-
gence of the field of biologics, therapies based on antibodies, enzyme therapies, and
other proteins are increasing the scope of what constitutes a drug. However, for the
purpose of this thesis, when discussing drugs and the drug discovery process more
broadly, I am referring to small molecule drugs specifically.

The identification of a small-molecule hit compound is traditionally done through

a high-throughput screen (HTS), where hundreds of thousands of small molecules
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Figure 1.1: The steps of drug discovery: 1) target discovery, 2) hit discovery, 3) hit-to-
lead, 4) lead optimization, 5) in vivo efficacy & ADME-toxicology studies, 6) human clinical
trials, divided into 3 clinical trial phases. Steps 1-5 are considered “pre-clinical”. This thesis
focuses on the development of methods targeting steps 2-4.

are screened against the protein target with the goal of identifying compounds that

modulate the activity of the target [Martis et al.| [2011]. After identifying the initial

hit compounds, their physical properties and biological activity needs to be optimised
in a process called lead optimization, or Structure-Activity Relationship (SAR) op-
timization. As the last step in the pre-clinical process, lead compounds are further
optimised for favourable absorption, distribution, metabolism, and excretion (ADME)
properties as well as their toxicology profile in vitro and then later on, in vivo. This
optimization is often done in parallel to the SAR optimization before lead compounds
are able to be tested in clinical trials.

Each stage in this process is scientifically challenging, time consuming and expen-
sive. Historically, pharmaceutical R&D costs for each drug brought to market have
been increasing rapidly from around $100M in 1975 to $1.3B in 2005 [Roy, and
even further in recent years to the current estimates of $1.3B - $2.8B [DiMasi et al,



2016; Wouters et al., [2020]. Two of the main drivers for increased costs are the rising
complexity of Phase III clinical trials, and the increased failure rate of new drug trials
[Royl, [2012; |Cook et al., 2014]. The high failure rate has been mainly attributed to
the failure of drugs to show sufficient efficacy in the clinic, as well as failing safety
and toxicity thresholds |[Cook et al., 2014].

The increased cost and burden of proof required by regulators for clinical trials
[Roy, 2012] in combination with the rising failure rate [Cook et al., 2014] underlines
the necessity that only the best possible drug candidates should be taken forward
into clinical trials. Traditionally, the hit identification, the hit-to-lead, and the lead
optimization stages have been dominated by subjective decision making driven by
the leading individual medicinal chemists’ synthetic intuition and their biases. While
medicinal chemists often agree on a high level about which features are desirable in
lead compounds, the relative weighting and preferences placed on each feature varies
between chemists, and some disagree completely on which properties are considered
desirable [Kutchukian et al. 2012]. This leads to compounds reaching clinical trials
that would be considered promising by one group of medicinal chemists, while being
regarded as problematic by others. Standardising this subjective process through
the introduction of computational and objective scoring functions is therefore crucial
for the advancement of drug discovery. For this reason, the work described in this
thesis focuses on the development of computational methods for the hit discovery
and SAR optimization stages to improve efficiency and introduce novel computational
approaches to aid medicinal chemists in making better, more objective decisions when

choosing hit compounds and optimising them.



1.1.1 Hit Discovery & Hit-to-Lead

The objective during the hit discovery process is often the identification of small
molecule inhibitors for the desired drug target from a large library of compounds
(typically a corporate compound collection) in the shortest time possible. A widely-
used method for this purpose is high-throughput screening (HTS). This single-target
approach yields potential inhibitors that show activity either in an automated physical
assay or more recently, by using high-throughput virtual screening (VS) methods
such as protein-ligand docking [Rester, 2008] which at present are able to screen
compounds in silico with greater speed, but lower accuracy than lab-based HTS
methods. Furthremore, most recent ultra-large library screening methods can even
enable the virtual screening of billions of compounds [Sadybekov et al.| 2022;|Gorgulla
et al., 2020]. Additionally, thanks to the introduction of robots into biochemistry
laboratories, tens to potentially even hundreds of thousands of compounds can be
assayed in a single day, drastically increasing the number of compounds that can be
physically screened in a single campaign [Martis et al., 2011]. An alternative approach
to HTS is fragment-based drug discovery (FBDD), which is discussed in Section m

While HTS suffers from both type 1 (false positives) and type 2 (false negatives)
errors, the major challenge for HTS and VS experiments is the separation of false
positives from true positives [Martis et al., 2011]. Due to the extremely large li-
braries employed, screening campaigns usually suffer from an overabundance of hit
compounds, where the elimination of type 2 errors would not add much value in
comparison to the identification of type 1 errors. One method for the reduction of
errors is the identification of compounds that are potential Pan Assay Interference
Compounds (PAINS) through a substructure search algorithm [Baell and Holloway,
2010). Compounds are usually subjected to PAINS filters before they enter a HTS

database or before they are taken forward to the next stage of development. The



process of filtering from the initial hits of the screening campaign down to the true
positives is referred to as the “hit-to-lead” process. A sense of the relative scale in

terms of compound throughput of each step in the process is shown in Figure[1.2
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Figure 1.2: General overview of the number of compounds employed at each step of a typi-
cal modern drug discovery process. From the entire chemical space of drug-like compounds,
huge virtual libraries are created and filtered to create libraries of hundreds of thousands
of compounds during high-throughput screening, from which promising compounds are se-
lected and derivatised to create hundreds of compounds. Tens of lead compounds are then
selected from which one is chosen for clinical trials.

During the hit-to-lead process, medicinal chemists typically choose from the set
of verified hits obtained from HTS to build a portfolio of lead compounds. At this
stage, potential lead compounds are evaluated using a series of metrics such as their
“drug-likeness”, a loosely defined set of properties to compare how similar potential
lead compounds are to existing drugs based on the assumption that higher similarity
increases the likelihood of potential lead compounds to become approved drugs them-
selves. In addition, other factors such as toxicity, cell permeability and sometimes

even performance during early in vivo mouse studies are also considered.



One well known set of properties to evaluate drug likeness of a molecule is the
“Lipinski Rule of Five” |Lipinski et al., 2001], which states that orally active drugs
should not violate any of the following rules: 1) no more than 5 hydrogen bond donors;
2) no more than 10 hydrogen bond acceptors; 3) a molecular mass of less than 500
Daltons and 4) a base 10-logarithm of the octanol-water partition coefficient below
5. However, studies have shown that many drugs do not follow the Lipinski Rule of
Five and other metrics such as ligand efficiency might be more helpful in prioritising
early leads [Hopkins et al.;2014]. Overall, this process suffers from a high reliance on
the subjective biases of individual medicinal chemists and a lack of objective, widely

applicable metrics.

1.1.2 Lead Optimization

Once a set of lead compounds has been identified in the hit-to-lead process, lead opti-
mization begins. A lead compound needs to be optimised for several pharmacological
properties including potency, solubility, stability, cost-effectiveness, ADME, and lack
of toxicity. Lead optimization is therefore a complex multi-objective optimization
problem, which is traditionally solved through highly iterative design-test-design cy-
cles (a.k.a. the “design, make, test and analyse” framework or DMTA [Plowright
et al] 2012] as seen in Figure [1.3).

For example, based on the lead compound(s), new derivatives may be designed to
bind to the drug target more tightly, and a hypothesis about its effect is formulated.
The chosen derivatives are then synthesised, purified and tested in the laboratory
and the results inform future design decisions. Traditionally, this structure-activity
relationship study is highly empirical and the compound is designed based on the
experience (and subjective bias) of the lead medicinal chemist. Typically, a scaffold

is identified as the core of the lead compound, and peripheral “R-groups” varied to



Figure 1.3: Overview of the design, make, test, analyse (DMTA) cycle. Drugs are designed
based on a working hypothesis to improve its properties. It is then synthesized and tested
in the lab. After analysis, the design hypothesis is adjusted based on the new information
and the next generation of compounds designed accordingly.

explore an optimal combination. FEven if optimization towards one of the desired
properties, such as highly potent binding affinity, is straightforward, the balancing of
the multi-objective optimization problem is much more challenging. For example, a
protein binding pocket might be highly hydrophobic, requiring a more hydrophobic

ligand which might result in less favourable solubility and ADME properties.

1.1.3 Selectivity versus Polypharmacology

Drug selectivity refers to the ability of a drug compound to bind primarily to the drug
target of interest without significant binding affinity to other, undesired off-targets.
One of the primary reasons for the optimization of protein-ligand binding affinity
against a drug target is to reduce the dose of the drug required for biological activity,
making the drug easier to take for the patient while also helping to avoid toxicity and
unwanted side-effects.

Traditionally, in 20" century drug discovery, phenotypic screening approaches



were used to identify promising drug candidates |[Moffat et al. 2017], such as for
example the discovery of Penicillin in 1928 by Alexander Fleming, who identified
that certain compounds present in mold stop bacteria from growing, without knowing
what the mechanism of action might be. However, phenotypic screening suffers from
major challenges in hit validation and especially in target deconvolution. As a result,
modern drug discovery approaches favor the single-target approach, which has now
been widely adopted. However, as recent studies have shown, many drugs that were
previously considered to be specific single-target drugs have subsequently been shown
to derive their activity from polypharmacology, i.e. activity against more than one

drug target by the same drug molecule [Paolini et al., 2006; [Boran and Iyengar, [2010].
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Figure 1.4: Overview of the relative promiscuity rates of small molecule drug compounds
along the drug discovery pathway. Figure adapted from its original publication by [Hu et al.
[2014] under the open access CC BY 3.0 license.

As a result, the lead optimization process that has previously focused on selectivity
and single-target activity has to be adapted to a new paradigm. One characteristic
that has historically been considered to be a negative trait in lead compounds is

binding promiscuity, which is reflected in the reduction of promiscuity of drugs at



the lead optimization stage (Figure as published by [Hu et al.|[2014]). However,
approved drugs were found to be more promiscuous, indicating that single-target
approaches might not be as successful in the clinic as polypharmacology. Nonetheless,
the addition of another dimension to the lead optimization problem increases the
difficulty and the need for more objective evaluation methods that can simultaneously

optimise desired properties as well as polypharmacological patterns.

1.1.4 Fragment-Based Drug Discovery

As an alternative to the classical small molecule drug discovery approach, where full
sized drug-like molecules are identified as hits and derivatives designed to optimise
their properties, fragment-based drug discovery (FBDD) has now become a main-
stream method, with over 30 fragment-derived drug candidates in clinical trials and
two fragment-derived drug approvals [Erlanson et al. |2016]. Instead of relying on
huge HTS libraries with millions of drug-like compounds to generate hits, FBDD
starts with significantly smaller libraries of several thousand drug fragments (typi-
cally compounds with fewer than 20 heavy atoms) that have been carefully chosen
[Erlanson et al. 2016]. Just like in HTS campaigns, library design is very important
for a successful FBDD campaign. One disadvantage of HTS libraries is that HTS
is limited by its small coverage of chemical space. Although HTS libraries contain-
ing millions, or even hundreds of millions, of compounds might seem significant, the
number of possible drug-like molecules has been estimated to be around 109 [Er-
lanson et al., 2016], rendering even a large 10 million compound library insignificant
by comparison. Since this explosion in complexity is driven by the number of atoms
in a molecule, fragment libraries that contain molecules only half the size of drug
molecules are able to cover a much greater percentage of chemical space with much

smaller libraries. For example, according to |[Ruddigkeit et al., 2012], the chemi-



cal space of fragment-sized molecules of around 17 heavy atoms encompasses only
about 166 billion possible molecules, allowing a fragment library with thousands of
compounds to cover a higher fraction of chemical space than the huge HTS libraries.

The hit-to-lead process in FBDD also differs from a traditional campaign. Instead
of a typical SAR optimization where small changes are made to drug-like molecules,
fragments alone are too small and their protein-ligand binding affinity often too weak
(and too promiscuous) to be promising lead compounds by themselves |Erlanson et al.,
2016]. Instead, two or more fragments with distinct binding modes in the protein
binding pocket might be combined to form a full-sized inhibitor. Alternatively, the
fragment might be grown considerably through synthetic addition of new functional
groups. Both approaches require a detailed understanding of the 3D binding mode
of the fragments in the binding pocket of the protein. FBDD has therefore profited
tremendously from the recent advances in structural biology such as the development
of cryo-EM pioneered by Jacques Dubochet, Joachim Frank and Richard Henderson
(Nobel Prize 2017) and the development of high-throughput X-ray crystallography.
For example, the high-throughput fragment-based screening campaign by the XChem
facility at the Diamond Light Source in Oxfordshire was able to screen around 1500
fragments crystallographically in the span of just three weeks to identify fragment
hits against SARS-CoV-2 Main Protease, a promising drug target against COVID-19
|[Chodera et al., 2020]. In addition, structure-based computational methods such as
protein-ligand binding affinity scoring functions and molecular docking (see Section
as well as other machine learning-based methods such as de novo fragment-
growth methods [Imrie et al. 2021] have been instrumental in advancing the field of

fragment-based drug discovery.
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1.2 Computer-Aided Drug Design

In order to tackle the issue of subjective bias in drug design as discussed in Section[I.1]
many different computer-aided drug design (CADD) methods have been developed
and are now widely used throughout all stages of the drug discovery pathway [Yu and
MacKerell Jr,|2017]. Broadly, CADD can be divided into structure-based drug design
(SBDD) and ligand-based drug design (LBDD). SBDD methods include the analysis
of 3D structural information such as X-ray or cryo-EM crystal structures of proteins
and protein-ligand complexes to identify potential binding sites and to optimise the
binding affinity of the ligand to the protein. LBDD focuses on the structure-activity
relationship of the ligand itself, analysing which atoms in the ligand are more or less
useful for binding and to fine-tune physical properties as well as pharmacokinetics.
However, both approaches can be used in tandem, for example in modern machine
learning models that use features derived from both active ligands and 3D structural

data about the target.

1.2.1 Quantitative Structure-Activity Relationship (QSAR)
Modeling
Today, Quantitative Structure-Activity Relationship (QSAR) models are firmly estab-
lished as powerful predictive tools in pharmaceutical drug discovery. Many consider
the founding of the field to be the publication of the SAR study of plant-growth
regulators by [Hansch et al. [1962]. Since then, QSAR models have significantly in-
creased in complexity and are applied to a broader range of modeling tasks. The
ultimate goal of QSAR models is to build a scoring function that can accurately pre-
dict the properties or biological activity of a molecule given its structure. While the
first QSAR models have been limited to modeling linear relationships, for example

between the base 10-logarithm of the water-octanol partition coefficient (log P) and
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biological activity [Fujita et al., |[1964], modern QSAR models employ sophisticated
machine learning models using topological fingerprints [Rogers and Hahn, 2010] or
even a combination of ligand and protein-derived descriptors for example in the field
of Proteochemometrics (PCM) modeling [Cortés-Ciriano et al., 2015].

One major development in the field of QSAR modeling is the introduction of chem-
ical descriptors as input features for QSAR models [Cherkasov et al} 2014]. Chemical
descriptors can range from 1D descriptors (such as counts of different atom types),
to the most popular 2D representation (the topological representation of molecules)
to full 3D (molecular conformations) models [Cherkasov et al., 2014] and alignment-
based comparative models such as Comparative Molecular Field Analysis (CoMFA)
|[Cramer et al., [198g].

The topological (2D) representation of molecules for QSAR models is the most
commonly used chemical descriptor, since 1D descriptors often do not carry enough
information to be useful, and 3D descriptors are limited by the accuracy of conformer
generation software and choice of conformation. Descriptors derived from the topo-
logical representation of molecules can vary from molecular graph representations
used in QSAR as early as 2000 [Ivanciucl [2000] to lists of descriptors derived from
the ligand structure such as the number of hydrogen bond donors and acceptors, the
molecular weight or the topological polar surface area (TPSA) which are implemented
for ease of use in QSAR models in popular cheminformatics toolkits such as RDKit
[Landrum et al., [2006] which was used extensively in the work described in this thesis.

While the first, simple QSAR models were designed to accelerate drug discov-
ery through automated compound evaluation, more recent advances have moved on
beyond simple QSAR models. Classical QSAR models face a series of limitations
[Cherkasov et al [2014] such as the poor generalisability often driven by overfitting

on the training data; the use of confounded descriptors in QSAR models, especially in
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2D models where collinearity of descriptors is common; and finally the use of uninter-
pretable descriptors. There are thousands of different chemical descriptors that can
be calculated with popular cheminformatics tools such as RDKit allowing easy access
to hundreds of descriptors within a single module [Landrum et al., [2006], including
descriptors that are unintuitive and where no clear physical-chemical interpretation
available.

Alternatives to QSAR modeling exist, including three other major computational
techniques that aim to resolve the limitations of classical QSAR models through
different, complementary approaches: molecular docking, molecular dynamics (MD)
simulations and modern machine learning-based scoring functions. While molecular
docking software such as AutoDock 4 [Morris et al., [2009] employs semiempirical scor-
ing functions to score large numbers of 3D protein-ligand complexes rapidly, molecular
dynamics relies on more accurate but computationally expensive molecular force fields
such as the modern AMBER force field [Weiner et al., [1984] to investigate molecular
flexibility and stability of protein-ligand complexes. The most recent advances have
been made in the field of machine learning scoring functions, where structure-based
machine learning models are built with the goal of capturing non-linearity that linear
classical scoring functions described above cannot. Ultimately, recent advances in
ML-based scoring function design (Section has focused on the development of
generalisable models that can learn from the biophysics of interactions in protein-
ligand complexes. For that purpose, a large number of different representations are
being explored, ranging from 3D 3D protein-ligand interaction-derived fingerprints
[Wéjcikowski et al., 2018] to voxelised representations of the protein-ligand com-
plex for convolutional neural networks (CNNs) [Jiménez et al., [2018] and molecular
graph-based neural networks (GNNs) [Lim et al., [2019]. In all cases, 3D structural in-

formation of the protein-ligand complex is used to create the best performing models.
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All three of these approaches (docking, MD and machine learning scoring functions)
are featured extensively throughout this thesis (with novel methods being developed
in each chapter) and each is described in more detail in Sections [1.2.2] and [1.3]

respectively.

1.2.2 Docking & Scoring

With advances in structural biology and the increased number of protein crystal
structures available, the field of 3D protein-ligand docking emerged in the 1980s pi-
oneered by Kuntz et al. [1982]. Instead of using the traditional 2D descriptor-based
QSAR models as described above (Section , docking programs have been cre-
ated to rapidly explore different geometrically feasible alignments between the ligand
and protein in 3D and subsequently score the docked pose. Since the 1980s, major
advances in protein-ligand docking have been made and a large range of different
docking software is available today, ranging from commercial software such as GOLD
[Jones et al., [1997] or Glide |Friesner et al.; [2004] to the widely adopted open source
docking tools of the AutoDock suite with the most recent versions of AutoDock 4
[Morris et al., [2009] and AutoDock Vina [Trott and Olson, 2010].

In general, modern docking software is composed of two major component: one
or more search methods, and one or more scoring functions [Kitchen et al., 2004].
Since the AutoDock suite is currently one of the most popular software suite used
for docking, a more detailed description of docking will be given using the example
of AutoDock 4. The search method explores the translational, orientational, and
conformational space of the protein-ligand complex, placing the ligand in different
poses into the binding site of the target protein, and evaluating their score. For
example, modern docking software such as AutoDock 4 use a Lamarckian Genetic

Algorithm [Morris et al [1998] to guide pose exploration (with the option to explore
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protein sidechain slexibility as well).

The docking scoring function is used to approximate the free energy of binding,
AG, of a given pose in complex with the receptor. Scoring function development in
itself is a large field, including development of semiempirical, physics-based scoring
functions [Kitchen et al., 2004] as well as more recent approaches exploring machine
learning scoring functions such as GNINA [McNutt et al. 2021].

Currently, these novel machine learning scoring functions have not been incor-
porated into mainstream docking tools. The scoring function used by AutoDock4
[Huey et al., |2007] is a semiemprirical force field that includes a pairwise evaluation
of intramolecular interactions of the ligand (V%) and the protein (V'), intermolec-
ular interactions between the protein and the ligand (V¥-L) and an estimation of the

conformational entropy lost upon binding (AScon). The equation is shown below:

AG (Vbound ‘/unbound> (Vbound V;anound) (‘/bound Vunbound) + ASCOHf (1 1)

It is assumed that protein and ligand are sufficiently far apart in the unbound state

that VL i zero. All pairwise atomic terms (V') are calculated as follows:
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Each term is calculated as the sum over all pairs of ligand atoms, 4, and protein
atoms, j. The equation overall includes four terms covering dispersion/repulsion,
hydrogen bonding, electrostatics and desolvation, respectively. The first term is a

typical 12-6 Lennard-Jones potential with parameters A;; and B;; from the AMBER
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force field [Weiner et al.,[1984]. The second term covers directional hydrogen bonding-
based on a 12-10 potential [Goodford, [1985] with parameters Cj; and D;; as well
as directionality of the hydrogen bond inspired by the work of |Wade et al. [1993]
Electrostatic interactions are covered in the third term through a Coulombic potential
between partial atomic charges ¢; and g;, and features a sigmoidal distance-dependent
dielectric function €(r;;) described by Mehler and Solmajer [Mehler and Solmajer,
1991]. AutoGrid4 uses the Coulombic potential to calculate electrostatic-interaction
energy grid maps necessary for docking. Lastly, the desolvation potential is calculated
in the fourth term using atomic fragmental volume (V') and solvation parameters (.9),
distance (r;;) and a weighting factor o.

Despite the advancements made in molecular docking and its widespread use
throughout drug discovery, there are a series of outstanding challenges [Wang and
Zhul, 2016]. Importantly, current docking protocols suffer from inaccurate scoring
functions and the extremely large search space that arises when considering protein
flexibility. Docking scoring functions are evaluated on the basis of four metrics |Li
et al., 2018; |Su et al. 2019]: (i) scoring power (accuracy in predicting the negative
base-10 logarithm of the dissociation constant K, (or inhibition constant K;) of a
protein-ligand complex); (ii) ranking power (accuracy in ranking known ligands for
a single protein from best to worst binder); (iii) docking power (accuracy of finding
the native ligand binding pose of a given protein-ligand complex); and (iv) screening
power (ability to find true binders for a single protein target amongst a dataset of
random molecules).

Docking scoring functions have been shown to struggle in the scoring power test
(the Pearson correlation coefficient between the predicted and true binding affinity
in the range of 0.21-0.63 for all docking software tested in CASF 2016 [Su et al.,

2019]) and ranking power test. Conversely, the performance in predicting the native
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binding pose (docking power) as well as in their screening power when tested against
the CASF-2016 benchmark [Su et al., [2019] is high. The inaccuracy in predicting the
absolute binding constant leads to downstream effects, weakening the other perfor-
mance metrics. Since poses are ranked based on their predicted binding constant,
inaccurate scoring functions could lead to inaccurate ranking. In addition, when
evaluating screening power, poses have to be classified as binder vs non-binder based
on an arbitrary threshold, often defined empirically for each protein target, rather
than an absolute threshold. As a result, ongoing research into the development of
more accurate scoring functions is crucial for the advancement of the field of molec-
ular docking, with most recent advances in the field of machine learning, where deep
learning-based scoring functions have been integrated into molecular docking directly
[McNutt et al., [2021] and novel approaches for docking rescoring have been reported
[Zhong et al., 2010].

An additional challenge is the modeling of water molecules that might be involved
in ligand binding during the docking process. While the position of crystallographic
water molecules is modelled by crystallographers and provided in protein-ligand co-
crystal structures, the inclusion of water molecules into docking is challenging and
most standard docking procedures remove water (and all other solvent molecules)
before docking. In order to accurately score hydrated protein-ligand complexes, spe-
cialised force-fields such as the one developed by [Forli and Olson [2012] are neces-
sary that specifically take the entropic and enthalpic contributions of discrete water
molecules to the overall binding energy of the complex into account.

Finally, a last major challenge is the treatment, or lack thereof, of protein confor-
mational flexibility in docking methods. While there are methods that model flexible
protein side chains during docking (such as in AutoDock 4 [Morris et al., 2009]),

generally, high-throughput virtual screening experiments only allow conformational
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flexibility on the ligand side, while considering the protein receptor to be rigid during
docking [Wang and Zhu| [2016]. This reduces the search space of possible combina-
tions of ligand-receptor conformations and allows docking to rapidly screen hundreds
of thousands-, or in the case of recent GPU accelerated tools such as AutoDock GPU
developed by the Forli group [Santos-Martins et al) 2021], millions of compounds.
While throughput is increased, accuracy is decreased in comparison to detailed (and
often knowledge-based), flexible docking-based approaches, presenting a challenging
problem when considering the accuracy vs simplicity trade off. In addition, for novel
systems, it is often unknown which amino acids in the binding site should be consid-
ered to be flexible, and allowing every residue to be flexible would not be feasible as
it increases the possible search space explosively.

As one approach to restrict conformational degrees of freedom, modern docking
tools such as AutoDock 4 [Morris et al., 2009], AutoDock Vina [Trott and Olson,
2010], GOLD [Jones et al., 1997] and Glide [Friesner et al., [2004] allow the user to
constrain certain parts of the ligand, for example through covalent docking, which
reduces the conformational degrees of freedom as well as eliminates the translational
and orientational degrees of freedom of the ligand through covalent attachment to a
protein residue, leading to more accurate poses. However, more complex constrained
docking where the position of entire substructures of a ligand are constrained have
only been directly implemented in commerical docking tools such as GOLD [Jones
et al., [1997] and Glide [Friesner et al., [2004]. As a result, to increase availability and
thus progress the field, there is a big need for the implementation of more sophisti-
cated constrained docking protocols for the most popular open-source docking tools
AutoDock 4 |Morris et al., 2009] and AutoDock Vina |Trott and Olson| 2010].

In Chapter 3 of this thesis, I present the development of a fragment-based active-

guided covalent docking protocol implemented using AutoDock 4, with the goal of
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utilising as much previous knowledge about the ligand and protein target as pos-
sible during docking, such as the induced-fit conformation of known protein-ligand
complexes and covalent constraints to reduce docking inaccuracy without having to
consider receptor flexibility explicitly. While this method currently does not include
substructure-based constraints, it is a first step towards the implementation of a com-
prehensive open-source constrained docking methodology and future work on this
project should include the expansion of the current covalent docking constraints to

substructure-based constraints for the use in fragment-based drug discovery.

1.2.3 Molecular Dynamics

As an additional tool that is increasingly used in computational drug discovery, molec-
ular dynamics (MD) is at the other end of the spectrum compared to QSAR modeling
when it comes to the accuracy vs speed trade off. While classical QSAR models, and
to some extent high-throughput virtual screening campaigns using docking, try to
maximise throughput while sacrificing accuracy, MD is using computationally expen-
sive and highly parameterized force fields to calculate the forces between atoms to
calculate the overall energy of the system [De Vivo et al., 2016].

Instead of screening hundreds of thousands of compounds, MD simulations are
carried out for tens of compounds at a later stage of lead optimization to give detailed
information about the binding pose, energy contributions of each atom and potential
induced fit effects to guide structure-based drug design [De Vivo et al [2016]. This
high accuracy approach is computationally expensive, processing a single protein-
ligand complex in hours or days instead of minutes or even seconds for protein-ligand
docking tools (depending on the computational resources available).

One example of the usefulness of MD in computational drug discovery are all-

atom simulations that can be used to obtain more accurate estimates of the absolute
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free energy of binding for drug molecules, outperforming classical scoring functions
such as described above (Section during docking when it comes to accuracy
[Aldeghi et al., [2016]. In addition, MD can also be a powerful tool for evaluating the
dynamic aspect of ligand binding, to allow detailed contact analysis for drug design
[Chan et al.; 2021a]. I describe one such application in Chapter 3 where MD was used
to study substrate specificity and to create high quality substrate models to guide in

silico design of SARS-CoV-2 Main protease inhibitors.

1.3 Machine Learning in Drug Discovery

The emergence of ML, methods and data-science approaches throughout all scientific
disciplines over the last decades has transformed the chemical and biological sciences
and the drug discovery process specifically, with ML methods used throughout the
entire drug discovery pipeline [Greener et al.| 2022]. The work described in this thesis
focuses on the development of ML methods targeting the improvement of pre-clinical
small molecular drug discovery, with a particular focus on hit discovery and hit-to-
lead optimisation. For these applications, ML methods focus primarily on generative
methods for ML-guided de novo design |Popova et al., 2018; |Gémez-Bombarelli et al.,
2018] and the creation of scoring functions that are able to predict a range of dif-
ferent properties, such as protein-ligand binding affinity or absorption, distribution,
metabolism, elimination and toxicology (ADMET) properties [Wenzel et al., 2019;
Jiang et al., 2020a], as well as physical properties such as solubility |[Boobier et al.,
2020].

In this Section, I outline different machine learning approaches used for the de-
velopment of such models and discuss the molecular representations currently used

to featurise ligand-based as well as structure-based scoring models.
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1.3.1 Molecular Representations

Many different molecular representations have been developed for use in machine
learning scoring functions. While there is no single representation that is gener-
ally suitable for every task, different representations are created to tackle specific
tasks. For example, molecular descriptors derived from ligand structures (see Sec-
tion are useful when building single-target protein-ligand affinity prediction
models. Beyond classical QSAR descriptor-based models, current high-performing
representations can be divided into four subcategories: (i) fingerprints; (ii) voxelised
image representation; (iii) molecular graphs; and (iv) learned representations (such
as autoencoders).

Fingerprints can come in many different shapes and sizes and can encode purely
topological information about ligand structure such as Extended Connectivity Fin-
gerprints (ECFP) [Rogers and Hahn| [2010] or include 3D protein-ligand contact
information such as the Protein-Ligand Extended Connectivity fingerprint (PLEC)
[Wéjcikowski et al., 2018] and the Extended Connectivity Interaction Features (ECIF)
[Sanchez-Cruz et al., 2020]. Generally, such fingerprints are developed to be used in
protein-ligand affinity scoring functions based on random forests (RF) or gradient
boosted decision tree models [Wojcikowski et al., [2018; [Sanchez-Cruz et al., 2020}
Boyles et al, [2019] but can also be used effectively in deep learning models such as
a simple feed-forward neural network as I have shown in Chapter 4 [Moesser et al.,
2022). Fingerprint-based models, especially those used with RF's, are very popular
due to their simplicity. For example, due to the straightforward implementation of
RF models in data science packages such as scikit-learn [Pedregosa et al., 2011, a RF
fingerprint model can be build in a day, the model trained on thousands of data points
in minutes and a detailed relative feature importance analysis performed immediately

using a single scikit-learn function (feature_importance_) from the RandomForestRe-
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gressor module [Pedregosa et al. 2011]). Although fingerprint-based models have
traditionally encoded 2D information [Landrum et al., 2006 |[Rogers and Hahn| 2010],
modern 3D structure-based fingerprints have been shown to outperform 2D finger-
prints when predicting protein-ligand binding affinity [Gao et al., [2020]. However,
fingerprints are limited in how much information can be encoded in a given finger-
print size. By aiming to describe the biophysical interactions in 3D protein-ligand
complexes as accurately as possible, 3D fingerprint vectors can become excessively
long, creating models that use feature vectors with 10,000s or even 100,000s of fea-
tures for a training dataset in the thousands, raising concerns about overfitting and

generalisability |Wdjcikowski et al., [2018; Boyles et al., 2019].

1.3.1.1 Convolutional Neural Networks

In order to address these concerns about how best to represent 3D protein-ligand
complexes, advances in the field of image recognition using convolutional neural net-
works (CNN) were adopted for protein-ligand affinity prediction. To adjust the image
recognition approach for protein-ligand complexes, the RBG (red, green, blue) chan-
nels that encode for the color values in a traditional CNN used for image recognition
were re-purposed (typically with separate ligand and protein channels) to encode for
different atomic properties such as hyrophobicity, aromaticity, hydrogen bond donor
or acceptor properties, ionizability, etc. instead, and a 3D voxel grid created for
the protein-ligand complex [Jiménez et al., 2018; McNutt et al., 2021; |[Ragoza et al.,
2017). A schematic representation of a CNN for protein-ligand binding affinity scoring
function is shown in Figure [1.5

Substantial progress has been made in the development of novel CNN-based scor-
ing functions with high performing models used in virtual screening |Ragoza et al.,
2017], protein-ligand binding affinity prediction [Jiménez et al., 2018] and even as a

scoring function in protein-ligand docking [McNutt et al.; 2021]. One advantage of
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Figure 1.5: Schematic overview of the architecture of a 3D CNN model for protein-ligand
binding affinity prediction (for example as reported by Ragoza et al. [2017]). A 3D voxelised
grid is taken as input and N different convolutions are applied to create N convolutional
maps, followed by a second convolutional layer and finally the fully connected layers to
generate the prediction.

using convolutional layers in neural networks is the ability of CNNs to extract higher
order features from the training set, given enough data and layer depth. Just like
CNNs for image recognition have been shown to recognise and extract higher order

features within images such as recognising a dog or a cat from an image of wildlife

[Sermanet et al. [2014], CNN’s have been applied to protein-binding affinity with the

intent to extract meaningful interactions in the protein-ligand complex. However,
while voxelised representations for CNNs are generally able to encode 3D informa-
tion efficiently, in order for the model to extract chemically relevant features, a large
training dataset is required. The need for substantially larger datasets than what
is currently available for protein-ligand binding affinity data is therefore a limiting
factor. This becomes evident when comparing one of the most popular databases

that include 3D structural data and protein-ligand binding affinity data, the PDB-

Bind dataset [Liu et al., 2015, [2017] (23496 entries) with the datasets used to train

the image recognition algorithms such as AlexNet and GoogleNet which were trained

on datasets with more than a million data points [Alzubaidi et al., [2021}; Krizhevsky|

et al., [2012; Szegedy et al., 2015].
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1.3.1.2 Graph Neural Networks

Alternatively, as one of the most recently emerging fields of research into molecular
representation in deep learning, molecular graph-based models to solve these issues
by respectively encoding for chemically-relevant bonds and atoms directly as edges
and nodes in a mathematical graph. Many different GNN architectures are currently
used such as Graph Isomorphism Networks (GIN, [Xu et al) 2019]), Graph SAGE
[Hamilton et al., 2017], Graph Attention Networks (GATNet, [Velickovié et al., 2018]),
and Graph Convolutional Networks (GCN, |[Kipf and Welling, 2017]). For example,
GCNs use the same approach to convolution as CNN models, however, instead of
applying a filter function over the voxelised grid representation of a 2D image, GCNs

apply the filter function over the sub-graphs in the graph (Figure [1.6)).
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Figure 1.6: Schematic overview of the generation of a ligand-based graph and setup of
a Graph Convolutional Network (GCN) for protein-ligand binding affinity prediction. The
2D structure of the ligand is encoded as a graph, with the one-hot encoded atomic features
as the node features of the graph (example here shows 5 popular atomic features, but others
are possible too depending on the setup). The GCN model applies the filter function over
the nodes of the graph, generating N convolutional layers, depending on the setup. The
convolutional layers connect into the fully connected layers to generate the prediction.

The first molecular GCNs only encoded ligand information, initialising a molecular
graph-based on the connectivity of the ligand atoms, and by including ligand-based

node features to describe each atom such as its element, connectivity, and valence

[Wu et al|, [2018]. However, over the last few years, different ways of including protein
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information were developed such as the GraphDTA models [Nguyen et al., 2020] that
encode the protein sequence in a separate 1D CNN. Most recently, new structure-
based GCN models were developed that add protein atoms in proximity to the ligand
into the molecular graph [Lim et al., |2019; [Li et al} 2021] or by training 2 separate
graphs for the ligand and protein, respectively in parallel [Jiang et al., 2020b]. Cur-
rently, GNN models are among the best performing models for protein-ligand binding
affinity prediction together with CNN and fingerprint-based models [Sanchez-Cruz
et al) 2020; Jiménez et al. 2018; |Li et al 2021; Lim et all 2019]. However, no
molecular representation and model architecture has been found to be superior, and
the top performing models all perform very similarly (Pearson correlation coefficients
between 0.82-0.87 [Sanchez-Cruz et al., 2020; Jiménez et al., [2018; Li et al., [2021; Lim

et al., [2019; Zheng et al 2019; Moesser et al., [2022]).

1.3.1.3 Molecular Autoencoders

As an alternative to the molecular representations described above that are primarily
designed to be used as input for machine learning scoring functions, molecular au-
toencoders were developed to allow a continuous space representation of molecules.
Autoencoders are unsupervised machine learning models where two networks are
trained in tandem: an encoder that translates the input representation of a com-
pound into (usually lower dimensional) latent space, and a decoder that reverses the
translation to re-create the original compound representation from latent space (Fig-
ure . Autoencoders are trained to minimise the translation loss between encoder
and decoder.

There are two major approaches to molecular representation in autoencoders:
graph-based and SMILES-based methods. In graph-based autoencoders, molecules
are first converted into a graph as described above for GNN methods, and the autoen-

coder tasked to encode and decode between graph and latens space. In SMILES-based
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methods, the SMILES |[Weininger, [1988| representation of a molecule is used instead.
SMILES-based autoencoders take inspiration from language-based autoencoders such
as word2vec [Mikolov et al., [2013] which was adapted into the popular molecular au-
toencoder mol2vec [Jaeger et all [2018] as well as other SMILES-based autoencoders
used widely for compound generation |Gémez-Bombarelli et al., 2018; Kadurin et al.,
2017; Blaschke et al., 2018]. SMILES-based autoencoders are limited by the fact that
SMILES strings of two extremely similar compounds can differ drastically, which
would result in a significantly different location in latent space [Jin et al., 2018]. Ad-
ditionally, the same compound can be written in different SMILES strings, therefore
posing a challenge from a 1-to-1 translation perspective when training molecular au-
toencoders. However, this can be overcome through the usage of randomized SMILES
during training |Arus-Pous et al. [2019]. Nonetheless, SMILES-based autoencoders
have increasingly popular and are more widely used than their graph-based counter-

parts. A schematic example of a SMILES-based autonecoder setup is shown in Figure
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Figure 1.7: Schematic overview of the encoder and decoder setup of a generic SMILES-
based autoencoder. A deep neural network is trained to encode the SMILES representation
into latent space in tandem with the encoder, which takes the latent space representation
and decodes it back into SMILES.

While there are autoencoders such as mol2vec [Jaeger et al} 2018] that were devel-

oped as an alternative to ECFP and other ligand-based descriptors, the most recent
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application of molecular autoencoders is in the field of de novo compound genera-
tion. In order to generate a new compound from latent space, a random position in
latent space or a specific location (for example close to a known molecule of interest)
may be sampled and decoded into a new molecule. This process for example has been
used in combination with Bayesian optimisation to generate molecules with increasing
propensity to exhibit a specific property (such as hydrophobicity, structural features
such as number of rings etc.) [Gomez-Bombarelli et al., 2018].

Currently, a large variety of different molecular representations and correspond-
ing model architectures are used for protein-ligand binding affinity scoring functions.
Nonetheless, no single representation has been found to be superior so far. All ar-
chitectures and representations have at least some models among the top performing
scoring functions [Sanchez-Cruz et al., 2020; [Boyles et al.; 2019; |Jiménez et al.| [2018;
Moon et al., [2022; Moesser et al., 2022]. However, models can differ drastically when
it comes to secondary considerations such as interpretability, with deep learning mod-
els being notoriously difficult to interpret, and are often referred to as “black-box”
models. Especially for the emerging field of molecular graph-based neural networks, it
is important that future graph-based representations are created with interpretability

and generalisability in mind.

1.3.2 Ligand-Based Models

As discussed in Section & [1.3.1], ligand-based approaches have been widely used
in single-target QSAR models. However, recent studies have shown that ligand-based
machine learning models also perform well on mutli-target datasets such as the widely-
used Comparative Assessment of Scoring Functions (CASF) 2016 benchmark [Boyles
et al., 2019, 2021]. The CASF-2016 dataset which is a commonly used benchmark

consisting of 285 protein-ligand complexes and their corresponding experimentally
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determined binding affinity chosen to evaluate protein-ligand binding affinity scoring
functions [Su et al., 2018] (see Section for a more detailed discussion of CASF-
2016). While some correlation is to be expected when evaluating the binding-affinity
of a given ligand against any protein simply based on ligand information alone (since
there are generally favourable properties a ligand can have to be considered a good
drug), a truly generalisable model that is able to distinguish between different proteins
should not be possible with only ligand-based features. The high performance of
ligand-based models on multi-protein datasets therefore suggests a strong ligand bias
in the training and test sets used throughout the field and has been highlighted
as an area of concern [Boyles et al. 2019]. As a result, as described by Boyles
et al.|[2019] and highlighted in the work described in Chapter 4 of this thesis, future
studies into the development of structure-based, generalisable models should focus on
interpretable models in order to analyse if models are truly learning the biophysics of
protein-ligand interactions and molecular recognition, or are just regurgitating ligand
biases while neglecting structure-based features [Boyles et al. 2019, 2021; Moesser

et al., 2022].

1.3.3 Structure-Based Scoring Functions

Structure-based models have been developed to overcome the limitations of ligand-
based models and to build a generalisable model that is able to score the binding
affinity of any given protein-ligand complex accurately. As previously mentioned
(see Section , common examples of structure-based machine learning methods
include CNN [Jiménez et al., [2018; |Zheng et al. [2019; [McNutt et al. [2021], GNN [Li
et al.,2021; Lim et al., 2019; [Moesser et al.,[2022], 3D fingerprint [Sanchez-Cruz et al.)
2020; W¢jcikowski et al., 2018] and 3D descriptor-based [Durrant and McCammon,

2011; Ballester and Mitchell, 2010] machine learning models and appear to outperform
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classical semiempirical scoring functions used in molecular docking (see Section |1.2.2))

[Morris et al., [2009; Trott and Olson| 2010; Friesner et al. [2004; |Jones et al., [1997].

Although the highest performing structure-based scoring functions achieve high
Pearson correlation coefficients (between 0.82-0.87 depending on the model,

et al., 2018; Zheng et al., 2019; Sanchez-Cruz et al., 2020; Wéjcikowski et al., 2018},

Boyles et all, 2019; Moesser et al., [2022} [Li et al., 2021]) when trained on the PDB-

bind database and tested on the popular CASF-2016 benchmark [Su et al. 201§],

consideration of generalisability has only recently emerged. The Comparative As-

sessment of Scoring Functions (CASF) benchmark is a dataset of 285 protein-ligand

complexes sourced from the PDBbind 2016 refined set [Liu et al.| [2015| [2017] which

is a collection of high quality crystal structure obtained from the Protein Data Bank

(PDB) [Berman et al 2000]. The CASF-2016 benchmark has been commonly ac-

cepted as one of the primary scoring power benchmarks that almost every scoring
function described in this thesis has been tested against. However, as
points out, since the CASF-2016 dataset is chosen to only include protein-ligand pairs
of proteins that are already present in the PDBbind training set, the CASF-2016 set
is not a suitable benchmark to assess model generalisability. This has now been rec-
ognized more broadly, and more recently reported scoring functions are including an
additional generalisability test, such as the elimination of protein-ligand complexes

from the training set if that protein is within a certain sequence identity threshold to

any protein in the CASF-2016 test set [Boyles et al., 2019; Moon et al., 2022; Moesser|

2022]. In all cases [Boyles et all 2019; [Moon et all 2022, [Moesser et al., [2022],

model performance drops strongly when controlling for training and test set similar-
ity, highlighting that the creation of truly generalisable protein-ligand binding affinity

scoring functions is still an open problem.
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1.3.4 Bayesian Optimisation in Drug Discovery

Chemical space is vast and the experimental exploration of it is expensive, time con-
suming, and often prone to subjective biases in compound prioritisation (see Section
. As a data-driven alternative to the optimisation approaches used in traditional
medicinal chemistry, active search methods such as Bayesian optimisation (BO) have
recently been applied to drug discovery to parse chemical space more efficiently and
optimise molecular properties [Pyzer-Knapp, [2018; |(Gémez-Bombarelli et al., 2018}
Griffiths and Hernandez-Lobatol, [2020].

Bayesian optimisation is an optimisation strategy that was originally pioneered
by Jonas Mockus in the 1980s to optimise expensive-to-evaluate functions [Mockus),
1989]. The goal of Bayesian optimisation is to find the optimal value of an objective
function in the minimum number of steps. Since the objective function is unknown
to start with, BO uses a surrogate function, often a Gaussian Process (GP), to model
both the objective function and assign a measure of uncertainty to each point in the
function. To choose a new data point most likely to improve the optimisation, an
acquisition function is used that evaluates each point in the GP surrogate function
and chooses the next point to sample based on an exploration vs exploitation trade-off
(Figure [1.8).

Exploration describes the process of evaluating the gain in information about the
surrogate function that could be achieved by sampling data points that the GP assigns
a high uncertainty to, and that could therefore alter the surrogate function drasti-
cally. Most often, high uncertainty is associated to parts of the function where little
information is currently available. Alternatively, exploitation describes the process
of sampling data points close to the current optimum value to find a new optimum.
This search strategy does not increase the information in the system as much, but

might yield incremental improvements to find the global optimum. Different acqui-
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sition functions assign different weights to the exploration vs exploitation trade-off
and it is therefore possible to adjust the acquisition function based on the goal of the

optimisation.
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Figure 1.8: Overview of a simple Bayesian optimisation process using a GP surrogate
function and the Expected Improvement (EI) acquisition function to find the minimum of
the objective function. The acquisition function is shown in red, with the next data point
to be sampled (the maximum of the acquisition function) indicated by the red vertical line.
The uncertainty of the GP model is shown by blue shading. a) The objective function. b)
The initial model of the function based on three random data points. ¢) The first point
is sampled and the GP adjusts its estimation. At each step the acquisition function is
updated. d) The next point is sampled. e) Another point is sampled, and the Bayesian
optimization algorithm has identified the minimum of the objective function.
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This sequential evaluation of the exploration vs exploitation trade-off closely re-
sembles the traditional design, make, test, analyse (DMTA, [Plowright et al., [2012])
cycle in drug discovery (Figure , where medicinal chemists re-evaluate which com-
pounds to make next every cycle based on the information gained in the previous cycle.
BO is therefore highly suitable as a tool to guide the decision making for medicinal
chemists during hit-to-lead and lead optimisation.

While most studies that have focused on the application of Bayesian optimisa-
tion for drug discovery have used continuous BO using a latent space representation
(see Section prospectively to find and generate new compounds that excel
in a specific property such as solubility [Gémez-Bombarelli et al., 2018; |Griffiths and
Herndndez-Lobato, |2020], Pyzer-Knapp described a retrospective multi-armed bandit
approach using a discrete ECFP representation of compounds [Pyzer-Knapp, |2018] to
find the best inhibitor in a large dataset of compounds with known binding affinities.
This multi-armed bandit approach has not been widely explored in the context of
drug discovery, and open questions about the optimal compound representation and

the usefulness in a real drug discovery project still remain.

1.4 Project Aims

As outlined in this Chapter, the costs, both in time and money, of pharmaceutical
drug discovery has been steadily increasing over many years. Drug targets consid-
ered as “low hanging fruits” are slowly running out, forcing scientists to target more
challenging diseases. In combination with the increasing strictness of regulatory au-
thorities when evaluating drug approvals, this has lead to an increase in failure rate
in the clinic. Improvement in efficiency as well as in the quality of drug candidates is
therefore crucial for the sustainability of pharmaceutical drug discovery in the future.

In this thesis, I present three complementary computer-aided drug discovery methods
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with the aim of increasing efficiency in the pre-clinical drug discovery pipeline, with
a particular focus on hit discovery and hit-to-lead optimization.

The overarching theme of this thesis focuses on exploration of different repre-
sentations of molecular structure, intermolecular interactions and 3D protein-ligand
complexes. In Chapter 2, I present the development of ligand-based models using a
Gaussian Process (GP) as an easy-to-implement tool to guide exploration of chemical
space for the optimization of binding affinity against one or more protein targets. I
explore different topological fingerprint and autoencoder representations for Bayesian
optimisation (BO) and show that BO is a powerful tool to help medicinal chemists
prioritise new compounds to make for single-target as well as multi-target optimisa-
tion.

In Chapter 3, I present the development of a knowledge-based approach to drug
design, combining quantitative contact fingerprint-based similarity calculations with a
fragment-based drug discovery approach to understand SARS-CoV-2 MP™-substrate
specificity and to design novel small molecule inhibitors in silico. 1 show that the
MPr® protein-ligand interaction fingerprints can be powerful tools for knowledge-based
design, allowing the identification of protein-ligand interactions at several levels of
detail and its direct use in drug design. In addition, by filtering virtual screening
(VS) results for contacts of high interest, the identification of high quality VS hits was
enabled. In combination with a fragment-based drug discovery approach, I showcase
how this knowledge-based interaction fingerprint-driven approach can reveal fruitful
fragment-growth design strategies. The work in this chapter has been published in
Chemical Science [Chan et al., [2021a].

Finally, in Chapter 4, I expand on the knowledge-based contact fingerprints in
Chapter 3 to create a ligand-shaped molecular graph representation (Protein Ligand

Interaction Graphs, PLIGs) for graph-based deep learning that are able to encode
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all intermolecular interactions in a protein-ligand complex within the node features
of the graph. I explore a variety of Graph Neural Network (GNN) architectures
in combination with PLIGs to create several high-performing protein-ligand affinity
prediction models with comparable performance, highlighting that careful design of
molecular representations outweighs small gains that can be made by optimizing deep
learning architectures. However, overall I found Graph Attention Networks (GAT-
Net, |Velickovi¢ et al.| [2018]) to perform slightly better than other GNN architectures.
PLIGs were designed with the goal of advancing the field of scoring function develop-
ment to find generalisable models that are able to encode the biophysics of molecular
recognition while retaining simplicity and most importantly, full interpretability. The
work in this chapter is published on biorxiv [Moesser et al., 2022] and will be send

for peer review in an appropriate journal.
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Chapter 2

Exploration of Bayesian
Optimization for
Structure-Activity Relationship
Modeling

2.1 Introduction

As one of the more recently emerging fields in cheminformatics, active learning strate-
gies coupled with de-novo design have proven to be promising tools for the generation
and optimization of molecules towards a certain objective. Examples include the use
of recurrent neural networks (RNNs) [Ar “us-Pous et al., 2019; |[Popova et al., 2018],
autoencoders |Gomez-Bombarelli et al., 2018|, generative adversarial neural networks
(GAN) [Méndez-Lucio et al., 2020], and synthesis-based methods |[Hartenfeller et al.,
2012; [Vinkers et all, 2003]. However, the fine tuning of these generative methods
towards the design of compounds that have desired drug-like properties remains chal-
lenging. First steps towards tackling this challenge include methods that employ
reinforcement learning (RL), where a predictive model takes the previously generated
compound as input and evaluates its performance against a certain property (e.g. hy-
drophilicity or number of H-bond donors). Subsequently, the generator is rewarded

for proposing molecules with the desired property (or properties, in multi-objective
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optimization) and over many cycles learns to generate new molecules optimised in
that desired regime [Popova et al., 2018]. However, the usefulness of RL methods as
well as autoencoders for the generation of new molecules with the desired properties is
limited by the accuracy of predictive models, especially for binding affinity prediction.
Previous approaches have chosen easily calculated physicochemical properties such as
the water-octanol partition coefficient, or structural features such as the number of
aromatic rings |[Popova et al., 2018; |Gémez-Bombarelli et al., 2018|. Nonetheless, for
protein families where more accurate models for the binding affinity prediction exist,
RL-based methods have been applied to generate new molecules that are predicted
to be high affinity binders [Popova et al., 2018; |Olivecrona et al., [2017].

This highlights a big problem in the cheminformatics field: the need for more
diverse datasets with high quality data that cover proteins and ligands beyond the
commonly observed protein families such as kinases, proteases, transferases or G-
protein coupled receptors (GPCRs) that collectively cover over 32% of all protein
targets represented in the ChEMBL database [Davies et al.| 2015; Mendez et al., 2019].
In order to address these issues, this project aimed to test the performance of active
learning strategies for the optimization of protein-ligand binding affinity on novel,
real-world data of an ongoing drug discovery project. I used high quality experimental
binding data from two sources: i) the matrix metalloproteinase-12 (MMP-12) dataset
[Pickett et al., 2011] as a validation dataset since it had been previously used as a
benchmark in similar studies [Pyzer-Knapp), 2018]; and ii) a novel metallo-5-lactamase
(MBL) inhibition dataset obtained from the Schofield group at the University of
Oxford.

MBLs were chosen as targets in part with the aim of contributing to the global
challenge of antibiotic resistance. Today, the most important class of antibiotics are

[-lactam derivatives which correspond to over half of the global antibacterial market
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[Elander, 2003]. One of the largest ongoing global health threats is growing antibi-
otic resistance, which renders antibacterial agents useless through the evolution of
defense mechanisms within bacteria. [-Lactam resistance poses a significant threat,
since it puts the viability of the most widely used class of antibacterial agents at risk.
p-Lactam antibiotics target penicillin-binding proteins (PBPs), which are transpep-
tidases involved in peptidoglycan synthesis, an essential step in bacterial cell wall
construction. The S-lactam ring of the inhibitors is cleaved by PBPs and the in-
hibitor becomes covalently attached to the active site, rendering the PBP inactive
and ultimately resulting in bacterial cell lysis [Yocum et al. 1980]. Evolutionary ad-
justment of bacteria to this threat has lead to the emergence of bacterial g-lactamases
as a defense mechanism. Resistance is obtained by cleavage of the active S-lactam ring
of the compound by [S-lactamases. As an enzyme class, S-lactamases are divided into
two subclasses, the serine-/-lactamases (SBL) and the metallo-g-lactamases (MBL).
Although SBL inhibitors such as Sulbactam and Tazobactam (Figure are widely
used drugs (in combination with a S-lactam antibiotic), no MBL inhibitors have yet

been brought to market. One major challenge in the development of MBL inhibitors
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Figure 2.1: Structures of Sulbactam (left) and Tazobactam (right).

is their required polypharmacological profile. In order to be clinically viable against
a broad range of bacterial infections, MBL inhibitors should be active against as
many of the four most clinically important bacterial MBL enzymes as possible: the

Verona integron-encoded metallo-f-lactamases (VIM-1 and VIM-2), the Imipenemase
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(IMP-1) and the New Delhi metallo-S-lactamase (NDM-1) [Walsh et al. 2005]. Un-

fortunately, the development of multi-target MBL inhibitors without sacrificing other

desired properties such as solubility or cell-penetration has not yet been achieved.
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Figure 2.2: Views from a crystal structure of VIM-1 is shown as published by
(CC BY 4.0 license). (a) The VIM-1 tertiary structure showing the overall fold
and active site residues, color coded from blue (N terminus) to red (C terminus). Zinc ions
are shown as grey spheres and the side chains of important active site residues shown in
green. (b) The VIM-1 active site, with they key active site amino acids labelled, and water
oxygens shown as red spheres.

The MBL family is thus an excellent model system to use for the prospective
validation of new computational methods for the design of selective/promiscuous
compounds. MBLs have been extensively researched in the Schofield lab at the Uni-
versity of Oxford as part of the global European Gram Negative Antibacterial Engine
(ENABLE) project, where a series of indole-2-carboxylate-based small molecule in-
hibitors have been identified as broad spectrum MBL inhibitors. These compounds
are non-covalent inhibitors that bind in the active site of the MBLs and coordinate to

the zinc ions (Figure . The structures of the four major MBL targets are known

and their active site motifs are conserved between them [Salimraj et al.,|2019]. As an

example, the structure of VIM-1 and a close-up of its active site is shown in Figure
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2.2 The drug discovery efforts of the ENABLE project gave rise to a confidential
MBL dataset containing 558 compounds with biological activity data against the four
MBL targets VIM-1, VIM-2, IMP-1, and NDM-1. The limited information available
as well as the fact that optimization work is still ongoing therefore poses a more real-
istic challenge than the retrospective analyses of well studied families such as kinases,
and the development of new multi-target MBL inhibitors di