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role model, for being ambitious and for showing how much can be achieved with hard

work and dedication. Thank you to my grandparents, Bernhard, Marianne and Elke.

I cannot remember a time when you have not been supportive. Without you, I would

not have been able to pursue my goals without worry. Thank you all, I’m extremely

lucky to have you in my life.

4



Abstract
Pharmaceutical drug discovery is expensive, time consuming and scientifically chal-

lenging. In order to increase efficiency of the pre-clinical drug discovery pathway,

computational drug discovery methods and most recently, machine learning-based

methods are increasingly used as powerful tools to aid early stage drug discovery.

In this thesis, I present three complementary computer-aided drug discovery meth-

ods, with a focus on aiding hit discovery and hit-to-lead optimization. In addition,

this thesis particularly focuses on exploring different molecular representations used

to featurise machine learning models, in order explore how best to capture valuable

information about protein, ligands and 3D protein-ligand complexes to build more

robust, more interpretable and more accurate machine learning models.

First, I developed ligand-based models using a Gaussian Process (GP) as an easy-

to-implement tool to guide exploration of chemical space for the optimization of

protein-ligand binding affinity. I explored different topological fingerprint and au-

toencoder representations for Bayesian optimisation (BO) and showed that BO is

a powerful tool to help medicinal chemists to prioritise which new compounds to

make for single-target as well as multi-target optimisation. The algorithm achieved

high enrichment of top compounds for both single target and multiobjective optimi-

sation when tested on a well known benchmark dataset of the drug target matrix

metalloproteinase-12 and a real, ongoing drug optimisation dataset targeting four

bacterial metallo-β-lactamases.

Next, I present the development of a knowledge-based approach to drug design,

combining new protein-ligand interaction fingerprints with a fragment-based drug dis-

covery approach to understand SARS-CoV-2 Mpro-substrate specificity and to design

novel small molecule inhibitors in silico. In combination with a fragment-based drug

discovery approach, I show how this knowledge-based interaction fingerprint-driven

approach can reveal fruitful fragment-growth design strategies.

Lastly, I expand on the knowledge-based contact fingerprints to create a ligand-

shaped molecular graph representation (Protein Ligand Interaction Graphs, PLIGs)

to develop novel graph-based deep learning protein-ligand binding affinity scoring

functions. PLIGs encode all intermolecular interactions in a protein-ligand complex

within the node features of the graph and are therefore simple and fully interpretable.

I explore a variety of Graph Neural Network architectures in combination with PLIGs

and found Graph Attention Networks to perform slightly better than other GNN ar-

chitectures, performing amongst the best known protein-ligand binding affinity scor-

ing functions.
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Chapter 1

Introduction

1.1 Drug Discovery

Drug discovery is the interdisciplinary scientific process involving the identification,

optimization and formulation of new pharmaceutical products. Modern drug dis-

covery can typically be divided into six distinct steps, each with their own scientific

challenges: 1) target discovery; 2) hit discovery; 3) hit-to-lead; 4) lead optimization;

5) in vivo activity, absorption, distribution, metabolism, and excretion (ADME) &

toxicology optimization in animal models; and 6) human clinical trials (Figure 1.1).

During a typical target discovery project, new biological targets that could be

used to treat a specific disease are identified. Often, understanding the role of the

drug target in the underlying biological process of the disease is a key step in target

discovery and validation. Once a suitable target has been identified, a hit compound

needs to be identified to modulate the activity of the desired target. With the emer-

gence of the field of biologics, therapies based on antibodies, enzyme therapies, and

other proteins are increasing the scope of what constitutes a drug. However, for the

purpose of this thesis, when discussing drugs and the drug discovery process more

broadly, I am referring to small molecule drugs specifically.

The identification of a small-molecule hit compound is traditionally done through

a high-throughput screen (HTS), where hundreds of thousands of small molecules
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Figure 1.1: The steps of drug discovery: 1) target discovery, 2) hit discovery, 3) hit-to-
lead, 4) lead optimization, 5) in vivo efficacy & ADME-toxicology studies, 6) human clinical
trials, divided into 3 clinical trial phases. Steps 1-5 are considered “pre-clinical”. This thesis
focuses on the development of methods targeting steps 2-4.

are screened against the protein target with the goal of identifying compounds that

modulate the activity of the target [Martis et al., 2011]. After identifying the initial

hit compounds, their physical properties and biological activity needs to be optimised

in a process called lead optimization, or Structure-Activity Relationship (SAR) op-

timization. As the last step in the pre-clinical process, lead compounds are further

optimised for favourable absorption, distribution, metabolism, and excretion (ADME)

properties as well as their toxicology profile in vitro and then later on, in vivo. This

optimization is often done in parallel to the SAR optimization before lead compounds

are able to be tested in clinical trials.

Each stage in this process is scientifically challenging, time consuming and expen-

sive. Historically, pharmaceutical R&D costs for each drug brought to market have

been increasing rapidly from around $100M in 1975 to $1.3B in 2005 [Roy, 2012] and

even further in recent years to the current estimates of $1.3B - $2.8B [DiMasi et al.,
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2016; Wouters et al., 2020]. Two of the main drivers for increased costs are the rising

complexity of Phase III clinical trials, and the increased failure rate of new drug trials

[Roy, 2012; Cook et al., 2014]. The high failure rate has been mainly attributed to

the failure of drugs to show sufficient efficacy in the clinic, as well as failing safety

and toxicity thresholds [Cook et al., 2014].

The increased cost and burden of proof required by regulators for clinical trials

[Roy, 2012] in combination with the rising failure rate [Cook et al., 2014] underlines

the necessity that only the best possible drug candidates should be taken forward

into clinical trials. Traditionally, the hit identification, the hit-to-lead, and the lead

optimization stages have been dominated by subjective decision making driven by

the leading individual medicinal chemists’ synthetic intuition and their biases. While

medicinal chemists often agree on a high level about which features are desirable in

lead compounds, the relative weighting and preferences placed on each feature varies

between chemists, and some disagree completely on which properties are considered

desirable [Kutchukian et al., 2012]. This leads to compounds reaching clinical trials

that would be considered promising by one group of medicinal chemists, while being

regarded as problematic by others. Standardising this subjective process through

the introduction of computational and objective scoring functions is therefore crucial

for the advancement of drug discovery. For this reason, the work described in this

thesis focuses on the development of computational methods for the hit discovery

and SAR optimization stages to improve efficiency and introduce novel computational

approaches to aid medicinal chemists in making better, more objective decisions when

choosing hit compounds and optimising them.
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1.1.1 Hit Discovery & Hit-to-Lead

The objective during the hit discovery process is often the identification of small

molecule inhibitors for the desired drug target from a large library of compounds

(typically a corporate compound collection) in the shortest time possible. A widely-

used method for this purpose is high-throughput screening (HTS). This single-target

approach yields potential inhibitors that show activity either in an automated physical

assay or more recently, by using high-throughput virtual screening (VS) methods

such as protein-ligand docking [Rester, 2008] which at present are able to screen

compounds in silico with greater speed, but lower accuracy than lab-based HTS

methods. Furthremore, most recent ultra-large library screening methods can even

enable the virtual screening of billions of compounds [Sadybekov et al., 2022; Gorgulla

et al., 2020]. Additionally, thanks to the introduction of robots into biochemistry

laboratories, tens to potentially even hundreds of thousands of compounds can be

assayed in a single day, drastically increasing the number of compounds that can be

physically screened in a single campaign [Martis et al., 2011]. An alternative approach

to HTS is fragment-based drug discovery (FBDD), which is discussed in Section 1.1.4.

While HTS suffers from both type 1 (false positives) and type 2 (false negatives)

errors, the major challenge for HTS and VS experiments is the separation of false

positives from true positives [Martis et al., 2011]. Due to the extremely large li-

braries employed, screening campaigns usually suffer from an overabundance of hit

compounds, where the elimination of type 2 errors would not add much value in

comparison to the identification of type 1 errors. One method for the reduction of

errors is the identification of compounds that are potential Pan Assay Interference

Compounds (PAINS) through a substructure search algorithm [Baell and Holloway,

2010]. Compounds are usually subjected to PAINS filters before they enter a HTS

database or before they are taken forward to the next stage of development. The
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process of filtering from the initial hits of the screening campaign down to the true

positives is referred to as the “hit-to-lead” process. A sense of the relative scale in

terms of compound throughput of each step in the process is shown in Figure 1.2.

Figure 1.2: General overview of the number of compounds employed at each step of a typi-
cal modern drug discovery process. From the entire chemical space of drug-like compounds,
huge virtual libraries are created and filtered to create libraries of hundreds of thousands
of compounds during high-throughput screening, from which promising compounds are se-
lected and derivatised to create hundreds of compounds. Tens of lead compounds are then
selected from which one is chosen for clinical trials.

During the hit-to-lead process, medicinal chemists typically choose from the set

of verified hits obtained from HTS to build a portfolio of lead compounds. At this

stage, potential lead compounds are evaluated using a series of metrics such as their

“drug-likeness”, a loosely defined set of properties to compare how similar potential

lead compounds are to existing drugs based on the assumption that higher similarity

increases the likelihood of potential lead compounds to become approved drugs them-

selves. In addition, other factors such as toxicity, cell permeability and sometimes

even performance during early in vivo mouse studies are also considered.
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One well known set of properties to evaluate drug likeness of a molecule is the

“Lipinski Rule of Five” [Lipinski et al., 2001], which states that orally active drugs

should not violate any of the following rules: 1) no more than 5 hydrogen bond donors;

2) no more than 10 hydrogen bond acceptors; 3) a molecular mass of less than 500

Daltons and 4) a base 10-logarithm of the octanol-water partition coefficient below

5. However, studies have shown that many drugs do not follow the Lipinski Rule of

Five and other metrics such as ligand efficiency might be more helpful in prioritising

early leads [Hopkins et al., 2014]. Overall, this process suffers from a high reliance on

the subjective biases of individual medicinal chemists and a lack of objective, widely

applicable metrics.

1.1.2 Lead Optimization

Once a set of lead compounds has been identified in the hit-to-lead process, lead opti-

mization begins. A lead compound needs to be optimised for several pharmacological

properties including potency, solubility, stability, cost-effectiveness, ADME, and lack

of toxicity. Lead optimization is therefore a complex multi-objective optimization

problem, which is traditionally solved through highly iterative design-test-design cy-

cles (a.k.a. the “design, make, test and analyse” framework or DMTA [Plowright

et al., 2012] as seen in Figure 1.3).

For example, based on the lead compound(s), new derivatives may be designed to

bind to the drug target more tightly, and a hypothesis about its effect is formulated.

The chosen derivatives are then synthesised, purified and tested in the laboratory

and the results inform future design decisions. Traditionally, this structure-activity

relationship study is highly empirical and the compound is designed based on the

experience (and subjective bias) of the lead medicinal chemist. Typically, a scaffold

is identified as the core of the lead compound, and peripheral “R-groups” varied to
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Figure 1.3: Overview of the design, make, test, analyse (DMTA) cycle. Drugs are designed
based on a working hypothesis to improve its properties. It is then synthesized and tested
in the lab. After analysis, the design hypothesis is adjusted based on the new information
and the next generation of compounds designed accordingly.

explore an optimal combination. Even if optimization towards one of the desired

properties, such as highly potent binding affinity, is straightforward, the balancing of

the multi-objective optimization problem is much more challenging. For example, a

protein binding pocket might be highly hydrophobic, requiring a more hydrophobic

ligand which might result in less favourable solubility and ADME properties.

1.1.3 Selectivity versus Polypharmacology

Drug selectivity refers to the ability of a drug compound to bind primarily to the drug

target of interest without significant binding affinity to other, undesired off-targets.

One of the primary reasons for the optimization of protein-ligand binding affinity

against a drug target is to reduce the dose of the drug required for biological activity,

making the drug easier to take for the patient while also helping to avoid toxicity and

unwanted side-effects.

Traditionally, in 20th century drug discovery, phenotypic screening approaches
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were used to identify promising drug candidates [Moffat et al., 2017], such as for

example the discovery of Penicillin in 1928 by Alexander Fleming, who identified

that certain compounds present in mold stop bacteria from growing, without knowing

what the mechanism of action might be. However, phenotypic screening suffers from

major challenges in hit validation and especially in target deconvolution. As a result,

modern drug discovery approaches favor the single-target approach, which has now

been widely adopted. However, as recent studies have shown, many drugs that were

previously considered to be specific single-target drugs have subsequently been shown

to derive their activity from polypharmacology, i.e. activity against more than one

drug target by the same drug molecule [Paolini et al., 2006; Boran and Iyengar, 2010].

Figure 1.4: Overview of the relative promiscuity rates of small molecule drug compounds
along the drug discovery pathway. Figure adapted from its original publication by Hu et al.
[2014] under the open access CC BY 3.0 license.

As a result, the lead optimization process that has previously focused on selectivity

and single-target activity has to be adapted to a new paradigm. One characteristic

that has historically been considered to be a negative trait in lead compounds is

binding promiscuity, which is reflected in the reduction of promiscuity of drugs at

8



the lead optimization stage (Figure 1.4, as published by Hu et al. [2014]). However,

approved drugs were found to be more promiscuous, indicating that single-target

approaches might not be as successful in the clinic as polypharmacology. Nonetheless,

the addition of another dimension to the lead optimization problem increases the

difficulty and the need for more objective evaluation methods that can simultaneously

optimise desired properties as well as polypharmacological patterns.

1.1.4 Fragment-Based Drug Discovery

As an alternative to the classical small molecule drug discovery approach, where full

sized drug-like molecules are identified as hits and derivatives designed to optimise

their properties, fragment-based drug discovery (FBDD) has now become a main-

stream method, with over 30 fragment-derived drug candidates in clinical trials and

two fragment-derived drug approvals [Erlanson et al., 2016]. Instead of relying on

huge HTS libraries with millions of drug-like compounds to generate hits, FBDD

starts with significantly smaller libraries of several thousand drug fragments (typi-

cally compounds with fewer than 20 heavy atoms) that have been carefully chosen

[Erlanson et al., 2016]. Just like in HTS campaigns, library design is very important

for a successful FBDD campaign. One disadvantage of HTS libraries is that HTS

is limited by its small coverage of chemical space. Although HTS libraries contain-

ing millions, or even hundreds of millions, of compounds might seem significant, the

number of possible drug-like molecules has been estimated to be around 1063 [Er-

lanson et al., 2016], rendering even a large 10 million compound library insignificant

by comparison. Since this explosion in complexity is driven by the number of atoms

in a molecule, fragment libraries that contain molecules only half the size of drug

molecules are able to cover a much greater percentage of chemical space with much

smaller libraries. For example, according to [Ruddigkeit et al., 2012], the chemi-
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cal space of fragment-sized molecules of around 17 heavy atoms encompasses only

about 166 billion possible molecules, allowing a fragment library with thousands of

compounds to cover a higher fraction of chemical space than the huge HTS libraries.

The hit-to-lead process in FBDD also differs from a traditional campaign. Instead

of a typical SAR optimization where small changes are made to drug-like molecules,

fragments alone are too small and their protein-ligand binding affinity often too weak

(and too promiscuous) to be promising lead compounds by themselves [Erlanson et al.,

2016]. Instead, two or more fragments with distinct binding modes in the protein

binding pocket might be combined to form a full-sized inhibitor. Alternatively, the

fragment might be grown considerably through synthetic addition of new functional

groups. Both approaches require a detailed understanding of the 3D binding mode

of the fragments in the binding pocket of the protein. FBDD has therefore profited

tremendously from the recent advances in structural biology such as the development

of cryo-EM pioneered by Jacques Dubochet, Joachim Frank and Richard Henderson

(Nobel Prize 2017) and the development of high-throughput X-ray crystallography.

For example, the high-throughput fragment-based screening campaign by the XChem

facility at the Diamond Light Source in Oxfordshire was able to screen around 1500

fragments crystallographically in the span of just three weeks to identify fragment

hits against SARS-CoV-2 Main Protease, a promising drug target against COVID-19

[Chodera et al., 2020]. In addition, structure-based computational methods such as

protein-ligand binding affinity scoring functions and molecular docking (see Section

1.2.2) as well as other machine learning-based methods such as de novo fragment-

growth methods [Imrie et al., 2021] have been instrumental in advancing the field of

fragment-based drug discovery.
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1.2 Computer-Aided Drug Design

In order to tackle the issue of subjective bias in drug design as discussed in Section 1.1,

many different computer-aided drug design (CADD) methods have been developed

and are now widely used throughout all stages of the drug discovery pathway [Yu and

MacKerell Jr, 2017]. Broadly, CADD can be divided into structure-based drug design

(SBDD) and ligand-based drug design (LBDD). SBDD methods include the analysis

of 3D structural information such as X-ray or cryo-EM crystal structures of proteins

and protein-ligand complexes to identify potential binding sites and to optimise the

binding affinity of the ligand to the protein. LBDD focuses on the structure-activity

relationship of the ligand itself, analysing which atoms in the ligand are more or less

useful for binding and to fine-tune physical properties as well as pharmacokinetics.

However, both approaches can be used in tandem, for example in modern machine

learning models that use features derived from both active ligands and 3D structural

data about the target.

1.2.1 Quantitative Structure-Activity Relationship (QSAR)
Modeling

Today, Quantitative Structure-Activity Relationship (QSAR) models are firmly estab-

lished as powerful predictive tools in pharmaceutical drug discovery. Many consider

the founding of the field to be the publication of the SAR study of plant-growth

regulators by Hansch et al. [1962]. Since then, QSAR models have significantly in-

creased in complexity and are applied to a broader range of modeling tasks. The

ultimate goal of QSAR models is to build a scoring function that can accurately pre-

dict the properties or biological activity of a molecule given its structure. While the

first QSAR models have been limited to modeling linear relationships, for example

between the base 10-logarithm of the water-octanol partition coefficient (log P) and
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biological activity [Fujita et al., 1964], modern QSAR models employ sophisticated

machine learning models using topological fingerprints [Rogers and Hahn, 2010] or

even a combination of ligand and protein-derived descriptors for example in the field

of Proteochemometrics (PCM) modeling [Cortés-Ciriano et al., 2015].

One major development in the field of QSAR modeling is the introduction of chem-

ical descriptors as input features for QSAR models [Cherkasov et al., 2014]. Chemical

descriptors can range from 1D descriptors (such as counts of different atom types),

to the most popular 2D representation (the topological representation of molecules)

to full 3D (molecular conformations) models [Cherkasov et al., 2014] and alignment-

based comparative models such as Comparative Molecular Field Analysis (CoMFA)

[Cramer et al., 1988].

The topological (2D) representation of molecules for QSAR models is the most

commonly used chemical descriptor, since 1D descriptors often do not carry enough

information to be useful, and 3D descriptors are limited by the accuracy of conformer

generation software and choice of conformation. Descriptors derived from the topo-

logical representation of molecules can vary from molecular graph representations

used in QSAR as early as 2000 [Ivanciuc, 2000] to lists of descriptors derived from

the ligand structure such as the number of hydrogen bond donors and acceptors, the

molecular weight or the topological polar surface area (TPSA) which are implemented

for ease of use in QSAR models in popular cheminformatics toolkits such as RDKit

[Landrum et al., 2006] which was used extensively in the work described in this thesis.

While the first, simple QSAR models were designed to accelerate drug discov-

ery through automated compound evaluation, more recent advances have moved on

beyond simple QSAR models. Classical QSAR models face a series of limitations

[Cherkasov et al., 2014] such as the poor generalisability often driven by overfitting

on the training data; the use of confounded descriptors in QSAR models, especially in
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2D models where collinearity of descriptors is common; and finally the use of uninter-

pretable descriptors. There are thousands of different chemical descriptors that can

be calculated with popular cheminformatics tools such as RDKit allowing easy access

to hundreds of descriptors within a single module [Landrum et al., 2006], including

descriptors that are unintuitive and where no clear physical-chemical interpretation

available.

Alternatives to QSAR modeling exist, including three other major computational

techniques that aim to resolve the limitations of classical QSAR models through

different, complementary approaches: molecular docking, molecular dynamics (MD)

simulations and modern machine learning-based scoring functions. While molecular

docking software such as AutoDock 4 [Morris et al., 2009] employs semiempirical scor-

ing functions to score large numbers of 3D protein-ligand complexes rapidly, molecular

dynamics relies on more accurate but computationally expensive molecular force fields

such as the modern AMBER force field [Weiner et al., 1984] to investigate molecular

flexibility and stability of protein-ligand complexes. The most recent advances have

been made in the field of machine learning scoring functions, where structure-based

machine learning models are built with the goal of capturing non-linearity that linear

classical scoring functions described above cannot. Ultimately, recent advances in

ML-based scoring function design (Section 1.3) has focused on the development of

generalisable models that can learn from the biophysics of interactions in protein-

ligand complexes. For that purpose, a large number of different representations are

being explored, ranging from 3D 3D protein-ligand interaction-derived fingerprints

[Wójcikowski et al., 2018] to voxelised representations of the protein-ligand com-

plex for convolutional neural networks (CNNs) [Jiménez et al., 2018] and molecular

graph-based neural networks (GNNs) [Lim et al., 2019]. In all cases, 3D structural in-

formation of the protein-ligand complex is used to create the best performing models.
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All three of these approaches (docking, MD and machine learning scoring functions)

are featured extensively throughout this thesis (with novel methods being developed

in each chapter) and each is described in more detail in Sections 1.2.2, 1.2.3 and 1.3,

respectively.

1.2.2 Docking & Scoring

With advances in structural biology and the increased number of protein crystal

structures available, the field of 3D protein-ligand docking emerged in the 1980s pi-

oneered by Kuntz et al. [1982]. Instead of using the traditional 2D descriptor-based

QSAR models as described above (Section 1.2.1), docking programs have been cre-

ated to rapidly explore different geometrically feasible alignments between the ligand

and protein in 3D and subsequently score the docked pose. Since the 1980s, major

advances in protein-ligand docking have been made and a large range of different

docking software is available today, ranging from commercial software such as GOLD

[Jones et al., 1997] or Glide [Friesner et al., 2004] to the widely adopted open source

docking tools of the AutoDock suite with the most recent versions of AutoDock 4

[Morris et al., 2009] and AutoDock Vina [Trott and Olson, 2010].

In general, modern docking software is composed of two major component: one

or more search methods, and one or more scoring functions [Kitchen et al., 2004].

Since the AutoDock suite is currently one of the most popular software suite used

for docking, a more detailed description of docking will be given using the example

of AutoDock 4. The search method explores the translational, orientational, and

conformational space of the protein-ligand complex, placing the ligand in different

poses into the binding site of the target protein, and evaluating their score. For

example, modern docking software such as AutoDock 4 use a Lamarckian Genetic

Algorithm [Morris et al., 1998] to guide pose exploration (with the option to explore
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protein sidechain slexibility as well).

The docking scoring function is used to approximate the free energy of binding,

∆G, of a given pose in complex with the receptor. Scoring function development in

itself is a large field, including development of semiempirical, physics-based scoring

functions [Kitchen et al., 2004] as well as more recent approaches exploring machine

learning scoring functions such as GNINA [McNutt et al., 2021].

Currently, these novel machine learning scoring functions have not been incor-

porated into mainstream docking tools. The scoring function used by AutoDock4

[Huey et al., 2007] is a semiemprirical force field that includes a pairwise evaluation

of intramolecular interactions of the ligand (V L-L) and the protein (V P-P), intermolec-

ular interactions between the protein and the ligand (VP-L) and an estimation of the

conformational entropy lost upon binding (∆S conf). The equation is shown below:

∆G = (V L-L
bound − V L-L

unbound) + (V P-P
bound − V P-P

unbound) + (V P−L
bound − V P-L

unbound) + ∆Sconf (1.1)

It is assumed that protein and ligand are sufficiently far apart in the unbound state

that V P-L
unbound is zero. All pairwise atomic terms (V ) are calculated as follows:

V = W vdw

∑
i,j

(
Aij

r12ij
− Bij

r6ij

)
+ WHb

∑
i,j

(
Cij

r12ij
− Dij

r10ij

)
+ Wel

∑
i,j

qiqj
ϵ(rij)rij

+ Wsol

∑
i,j

(SiVj + SjVi)e
(−r2ij/2σ

2)
(1.2)

Each term is calculated as the sum over all pairs of ligand atoms, i, and protein

atoms, j. The equation overall includes four terms covering dispersion/repulsion,

hydrogen bonding, electrostatics and desolvation, respectively. The first term is a

typical 12-6 Lennard-Jones potential with parameters Aij and Bij from the AMBER
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force field [Weiner et al., 1984]. The second term covers directional hydrogen bonding-

based on a 12-10 potential [Goodford, 1985] with parameters Cij and Dij as well

as directionality of the hydrogen bond inspired by the work of Wade et al. [1993]

Electrostatic interactions are covered in the third term through a Coulombic potential

between partial atomic charges qi and qj, and features a sigmoidal distance-dependent

dielectric function ϵ(rij) described by Mehler and Solmajer [Mehler and Solmajer,

1991]. AutoGrid4 uses the Coulombic potential to calculate electrostatic-interaction

energy grid maps necessary for docking. Lastly, the desolvation potential is calculated

in the fourth term using atomic fragmental volume (V ) and solvation parameters (S ),

distance (rij) and a weighting factor σ.

Despite the advancements made in molecular docking and its widespread use

throughout drug discovery, there are a series of outstanding challenges [Wang and

Zhu, 2016]. Importantly, current docking protocols suffer from inaccurate scoring

functions and the extremely large search space that arises when considering protein

flexibility. Docking scoring functions are evaluated on the basis of four metrics [Li

et al., 2018; Su et al., 2019]: (i) scoring power (accuracy in predicting the negative

base-10 logarithm of the dissociation constant Kd (or inhibition constant Ki) of a

protein-ligand complex); (ii) ranking power (accuracy in ranking known ligands for

a single protein from best to worst binder); (iii) docking power (accuracy of finding

the native ligand binding pose of a given protein-ligand complex); and (iv) screening

power (ability to find true binders for a single protein target amongst a dataset of

random molecules).

Docking scoring functions have been shown to struggle in the scoring power test

(the Pearson correlation coefficient between the predicted and true binding affinity

in the range of 0.21–0.63 for all docking software tested in CASF 2016 [Su et al.,

2019]) and ranking power test. Conversely, the performance in predicting the native

16



binding pose (docking power) as well as in their screening power when tested against

the CASF-2016 benchmark [Su et al., 2019] is high. The inaccuracy in predicting the

absolute binding constant leads to downstream effects, weakening the other perfor-

mance metrics. Since poses are ranked based on their predicted binding constant,

inaccurate scoring functions could lead to inaccurate ranking. In addition, when

evaluating screening power, poses have to be classified as binder vs non-binder based

on an arbitrary threshold, often defined empirically for each protein target, rather

than an absolute threshold. As a result, ongoing research into the development of

more accurate scoring functions is crucial for the advancement of the field of molec-

ular docking, with most recent advances in the field of machine learning, where deep

learning-based scoring functions have been integrated into molecular docking directly

[McNutt et al., 2021] and novel approaches for docking rescoring have been reported

[Zhong et al., 2010].

An additional challenge is the modeling of water molecules that might be involved

in ligand binding during the docking process. While the position of crystallographic

water molecules is modelled by crystallographers and provided in protein-ligand co-

crystal structures, the inclusion of water molecules into docking is challenging and

most standard docking procedures remove water (and all other solvent molecules)

before docking. In order to accurately score hydrated protein-ligand complexes, spe-

cialised force-fields such as the one developed by Forli and Olson [2012] are neces-

sary that specifically take the entropic and enthalpic contributions of discrete water

molecules to the overall binding energy of the complex into account.

Finally, a last major challenge is the treatment, or lack thereof, of protein confor-

mational flexibility in docking methods. While there are methods that model flexible

protein side chains during docking (such as in AutoDock 4 [Morris et al., 2009]),

generally, high-throughput virtual screening experiments only allow conformational

17



flexibility on the ligand side, while considering the protein receptor to be rigid during

docking [Wang and Zhu, 2016]. This reduces the search space of possible combina-

tions of ligand-receptor conformations and allows docking to rapidly screen hundreds

of thousands-, or in the case of recent GPU accelerated tools such as AutoDock GPU

developed by the Forli group [Santos-Martins et al., 2021], millions of compounds.

While throughput is increased, accuracy is decreased in comparison to detailed (and

often knowledge-based), flexible docking-based approaches, presenting a challenging

problem when considering the accuracy vs simplicity trade off. In addition, for novel

systems, it is often unknown which amino acids in the binding site should be consid-

ered to be flexible, and allowing every residue to be flexible would not be feasible as

it increases the possible search space explosively.

As one approach to restrict conformational degrees of freedom, modern docking

tools such as AutoDock 4 [Morris et al., 2009], AutoDock Vina [Trott and Olson,

2010], GOLD [Jones et al., 1997] and Glide [Friesner et al., 2004] allow the user to

constrain certain parts of the ligand, for example through covalent docking, which

reduces the conformational degrees of freedom as well as eliminates the translational

and orientational degrees of freedom of the ligand through covalent attachment to a

protein residue, leading to more accurate poses. However, more complex constrained

docking where the position of entire substructures of a ligand are constrained have

only been directly implemented in commerical docking tools such as GOLD [Jones

et al., 1997] and Glide [Friesner et al., 2004]. As a result, to increase availability and

thus progress the field, there is a big need for the implementation of more sophisti-

cated constrained docking protocols for the most popular open-source docking tools

AutoDock 4 [Morris et al., 2009] and AutoDock Vina [Trott and Olson, 2010].

In Chapter 3 of this thesis, I present the development of a fragment-based active-

guided covalent docking protocol implemented using AutoDock 4, with the goal of
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utilising as much previous knowledge about the ligand and protein target as pos-

sible during docking, such as the induced-fit conformation of known protein-ligand

complexes and covalent constraints to reduce docking inaccuracy without having to

consider receptor flexibility explicitly. While this method currently does not include

substructure-based constraints, it is a first step towards the implementation of a com-

prehensive open-source constrained docking methodology and future work on this

project should include the expansion of the current covalent docking constraints to

substructure-based constraints for the use in fragment-based drug discovery.

1.2.3 Molecular Dynamics

As an additional tool that is increasingly used in computational drug discovery, molec-

ular dynamics (MD) is at the other end of the spectrum compared to QSAR modeling

when it comes to the accuracy vs speed trade off. While classical QSAR models, and

to some extent high-throughput virtual screening campaigns using docking, try to

maximise throughput while sacrificing accuracy, MD is using computationally expen-

sive and highly parameterized force fields to calculate the forces between atoms to

calculate the overall energy of the system [De Vivo et al., 2016].

Instead of screening hundreds of thousands of compounds, MD simulations are

carried out for tens of compounds at a later stage of lead optimization to give detailed

information about the binding pose, energy contributions of each atom and potential

induced fit effects to guide structure-based drug design [De Vivo et al., 2016]. This

high accuracy approach is computationally expensive, processing a single protein-

ligand complex in hours or days instead of minutes or even seconds for protein-ligand

docking tools (depending on the computational resources available).

One example of the usefulness of MD in computational drug discovery are all-

atom simulations that can be used to obtain more accurate estimates of the absolute
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free energy of binding for drug molecules, outperforming classical scoring functions

such as described above (Section 1.2.2) during docking when it comes to accuracy

[Aldeghi et al., 2016]. In addition, MD can also be a powerful tool for evaluating the

dynamic aspect of ligand binding, to allow detailed contact analysis for drug design

[Chan et al., 2021a]. I describe one such application in Chapter 3 where MD was used

to study substrate specificity and to create high quality substrate models to guide in

silico design of SARS-CoV-2 Main protease inhibitors.

1.3 Machine Learning in Drug Discovery

The emergence of ML methods and data-science approaches throughout all scientific

disciplines over the last decades has transformed the chemical and biological sciences

and the drug discovery process specifically, with ML methods used throughout the

entire drug discovery pipeline [Greener et al., 2022]. The work described in this thesis

focuses on the development of ML methods targeting the improvement of pre-clinical

small molecular drug discovery, with a particular focus on hit discovery and hit-to-

lead optimisation. For these applications, ML methods focus primarily on generative

methods for ML-guided de novo design [Popova et al., 2018; Gómez-Bombarelli et al.,

2018] and the creation of scoring functions that are able to predict a range of dif-

ferent properties, such as protein-ligand binding affinity or absorption, distribution,

metabolism, elimination and toxicology (ADMET) properties [Wenzel et al., 2019;

Jiang et al., 2020a], as well as physical properties such as solubility [Boobier et al.,

2020].

In this Section, I outline different machine learning approaches used for the de-

velopment of such models and discuss the molecular representations currently used

to featurise ligand-based as well as structure-based scoring models.
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1.3.1 Molecular Representations

Many different molecular representations have been developed for use in machine

learning scoring functions. While there is no single representation that is gener-

ally suitable for every task, different representations are created to tackle specific

tasks. For example, molecular descriptors derived from ligand structures (see Sec-

tion 1.2.1) are useful when building single-target protein-ligand affinity prediction

models. Beyond classical QSAR descriptor-based models, current high-performing

representations can be divided into four subcategories: (i) fingerprints; (ii) voxelised

image representation; (iii) molecular graphs; and (iv) learned representations (such

as autoencoders).

Fingerprints can come in many different shapes and sizes and can encode purely

topological information about ligand structure such as Extended Connectivity Fin-

gerprints (ECFP) [Rogers and Hahn, 2010] or include 3D protein-ligand contact

information such as the Protein-Ligand Extended Connectivity fingerprint (PLEC)

[Wójcikowski et al., 2018] and the Extended Connectivity Interaction Features (ECIF)

[Sánchez-Cruz et al., 2020]. Generally, such fingerprints are developed to be used in

protein-ligand affinity scoring functions based on random forests (RF) or gradient

boosted decision tree models [Wójcikowski et al., 2018; Sánchez-Cruz et al., 2020;

Boyles et al., 2019] but can also be used effectively in deep learning models such as

a simple feed-forward neural network as I have shown in Chapter 4 [Moesser et al.,

2022]. Fingerprint-based models, especially those used with RFs, are very popular

due to their simplicity. For example, due to the straightforward implementation of

RF models in data science packages such as scikit-learn [Pedregosa et al., 2011], a RF

fingerprint model can be build in a day, the model trained on thousands of data points

in minutes and a detailed relative feature importance analysis performed immediately

using a single scikit-learn function (feature importance ) from the RandomForestRe-
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gressor module [Pedregosa et al., 2011]). Although fingerprint-based models have

traditionally encoded 2D information [Landrum et al., 2006; Rogers and Hahn, 2010],

modern 3D structure-based fingerprints have been shown to outperform 2D finger-

prints when predicting protein-ligand binding affinity [Gao et al., 2020]. However,

fingerprints are limited in how much information can be encoded in a given finger-

print size. By aiming to describe the biophysical interactions in 3D protein-ligand

complexes as accurately as possible, 3D fingerprint vectors can become excessively

long, creating models that use feature vectors with 10,000s or even 100,000s of fea-

tures for a training dataset in the thousands, raising concerns about overfitting and

generalisability [Wójcikowski et al., 2018; Boyles et al., 2019].

1.3.1.1 Convolutional Neural Networks

In order to address these concerns about how best to represent 3D protein-ligand

complexes, advances in the field of image recognition using convolutional neural net-

works (CNN) were adopted for protein-ligand affinity prediction. To adjust the image

recognition approach for protein-ligand complexes, the RBG (red, green, blue) chan-

nels that encode for the color values in a traditional CNN used for image recognition

were re-purposed (typically with separate ligand and protein channels) to encode for

different atomic properties such as hyrophobicity, aromaticity, hydrogen bond donor

or acceptor properties, ionizability, etc. instead, and a 3D voxel grid created for

the protein-ligand complex [Jiménez et al., 2018; McNutt et al., 2021; Ragoza et al.,

2017]. A schematic representation of a CNN for protein-ligand binding affinity scoring

function is shown in Figure 1.5.

Substantial progress has been made in the development of novel CNN-based scor-

ing functions with high performing models used in virtual screening [Ragoza et al.,

2017], protein-ligand binding affinity prediction [Jiménez et al., 2018] and even as a

scoring function in protein-ligand docking [McNutt et al., 2021]. One advantage of
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Figure 1.5: Schematic overview of the architecture of a 3D CNN model for protein-ligand
binding affinity prediction (for example as reported by Ragoza et al. [2017]). A 3D voxelised
grid is taken as input and N different convolutions are applied to create N convolutional
maps, followed by a second convolutional layer and finally the fully connected layers to
generate the prediction.

using convolutional layers in neural networks is the ability of CNNs to extract higher

order features from the training set, given enough data and layer depth. Just like

CNNs for image recognition have been shown to recognise and extract higher order

features within images such as recognising a dog or a cat from an image of wildlife

[Sermanet et al., 2014], CNN’s have been applied to protein-binding affinity with the

intent to extract meaningful interactions in the protein-ligand complex. However,

while voxelised representations for CNNs are generally able to encode 3D informa-

tion efficiently, in order for the model to extract chemically relevant features, a large

training dataset is required. The need for substantially larger datasets than what

is currently available for protein-ligand binding affinity data is therefore a limiting

factor. This becomes evident when comparing one of the most popular databases

that include 3D structural data and protein-ligand binding affinity data, the PDB-

Bind dataset [Liu et al., 2015, 2017] (23496 entries) with the datasets used to train

the image recognition algorithms such as AlexNet and GoogleNet which were trained

on datasets with more than a million data points [Alzubaidi et al., 2021; Krizhevsky

et al., 2012; Szegedy et al., 2015].
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1.3.1.2 Graph Neural Networks

Alternatively, as one of the most recently emerging fields of research into molecular

representation in deep learning, molecular graph-based models to solve these issues

by respectively encoding for chemically-relevant bonds and atoms directly as edges

and nodes in a mathematical graph. Many different GNN architectures are currently

used such as Graph Isomorphism Networks (GIN, [Xu et al., 2019]), Graph SAGE

[Hamilton et al., 2017], Graph Attention Networks (GATNet, [Veličković et al., 2018]),

and Graph Convolutional Networks (GCN, [Kipf and Welling, 2017]). For example,

GCNs use the same approach to convolution as CNN models, however, instead of

applying a filter function over the voxelised grid representation of a 2D image, GCNs

apply the filter function over the sub-graphs in the graph (Figure 1.6).

Figure 1.6: Schematic overview of the generation of a ligand-based graph and setup of
a Graph Convolutional Network (GCN) for protein-ligand binding affinity prediction. The
2D structure of the ligand is encoded as a graph, with the one-hot encoded atomic features
as the node features of the graph (example here shows 5 popular atomic features, but others
are possible too depending on the setup). The GCN model applies the filter function over
the nodes of the graph, generating N convolutional layers, depending on the setup. The
convolutional layers connect into the fully connected layers to generate the prediction.

The first molecular GCNs only encoded ligand information, initialising a molecular

graph-based on the connectivity of the ligand atoms, and by including ligand-based

node features to describe each atom such as its element, connectivity, and valence

[Wu et al., 2018]. However, over the last few years, different ways of including protein
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information were developed such as the GraphDTA models [Nguyen et al., 2020] that

encode the protein sequence in a separate 1D CNN. Most recently, new structure-

based GCN models were developed that add protein atoms in proximity to the ligand

into the molecular graph [Lim et al., 2019; Li et al., 2021] or by training 2 separate

graphs for the ligand and protein, respectively in parallel [Jiang et al., 2020b]. Cur-

rently, GNN models are among the best performing models for protein-ligand binding

affinity prediction together with CNN and fingerprint-based models [Sánchez-Cruz

et al., 2020; Jiménez et al., 2018; Li et al., 2021; Lim et al., 2019]. However, no

molecular representation and model architecture has been found to be superior, and

the top performing models all perform very similarly (Pearson correlation coefficients

between 0.82-0.87 [Sánchez-Cruz et al., 2020; Jiménez et al., 2018; Li et al., 2021; Lim

et al., 2019; Zheng et al., 2019; Moesser et al., 2022]).

1.3.1.3 Molecular Autoencoders

As an alternative to the molecular representations described above that are primarily

designed to be used as input for machine learning scoring functions, molecular au-

toencoders were developed to allow a continuous space representation of molecules.

Autoencoders are unsupervised machine learning models where two networks are

trained in tandem: an encoder that translates the input representation of a com-

pound into (usually lower dimensional) latent space, and a decoder that reverses the

translation to re-create the original compound representation from latent space (Fig-

ure 1.7). Autoencoders are trained to minimise the translation loss between encoder

and decoder.

There are two major approaches to molecular representation in autoencoders:

graph-based and SMILES-based methods. In graph-based autoencoders, molecules

are first converted into a graph as described above for GNN methods, and the autoen-

coder tasked to encode and decode between graph and latens space. In SMILES-based
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methods, the SMILES [Weininger, 1988] representation of a molecule is used instead.

SMILES-based autoencoders take inspiration from language-based autoencoders such

as word2vec [Mikolov et al., 2013] which was adapted into the popular molecular au-

toencoder mol2vec [Jaeger et al., 2018] as well as other SMILES-based autoencoders

used widely for compound generation [Gómez-Bombarelli et al., 2018; Kadurin et al.,

2017; Blaschke et al., 2018]. SMILES-based autoencoders are limited by the fact that

SMILES strings of two extremely similar compounds can differ drastically, which

would result in a significantly different location in latent space [Jin et al., 2018]. Ad-

ditionally, the same compound can be written in different SMILES strings, therefore

posing a challenge from a 1-to-1 translation perspective when training molecular au-

toencoders. However, this can be overcome through the usage of randomized SMILES

during training [Arús-Pous et al., 2019]. Nonetheless, SMILES-based autoencoders

have increasingly popular and are more widely used than their graph-based counter-

parts. A schematic example of a SMILES-based autonecoder setup is shown in Figure

1.7.

Figure 1.7: Schematic overview of the encoder and decoder setup of a generic SMILES-
based autoencoder. A deep neural network is trained to encode the SMILES representation
into latent space in tandem with the encoder, which takes the latent space representation
and decodes it back into SMILES.

While there are autoencoders such as mol2vec [Jaeger et al., 2018] that were devel-

oped as an alternative to ECFP and other ligand-based descriptors, the most recent
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application of molecular autoencoders is in the field of de novo compound genera-

tion. In order to generate a new compound from latent space, a random position in

latent space or a specific location (for example close to a known molecule of interest)

may be sampled and decoded into a new molecule. This process for example has been

used in combination with Bayesian optimisation to generate molecules with increasing

propensity to exhibit a specific property (such as hydrophobicity, structural features

such as number of rings etc.) [Gómez-Bombarelli et al., 2018].

Currently, a large variety of different molecular representations and correspond-

ing model architectures are used for protein-ligand binding affinity scoring functions.

Nonetheless, no single representation has been found to be superior so far. All ar-

chitectures and representations have at least some models among the top performing

scoring functions [Sánchez-Cruz et al., 2020; Boyles et al., 2019; Jiménez et al., 2018;

Moon et al., 2022; Moesser et al., 2022]. However, models can differ drastically when

it comes to secondary considerations such as interpretability, with deep learning mod-

els being notoriously difficult to interpret, and are often referred to as “black-box”

models. Especially for the emerging field of molecular graph-based neural networks, it

is important that future graph-based representations are created with interpretability

and generalisability in mind.

1.3.2 Ligand-Based Models

As discussed in Section 1.2.1 & 1.3.1, ligand-based approaches have been widely used

in single-target QSAR models. However, recent studies have shown that ligand-based

machine learning models also perform well on mutli-target datasets such as the widely-

used Comparative Assessment of Scoring Functions (CASF) 2016 benchmark [Boyles

et al., 2019, 2021]. The CASF-2016 dataset which is a commonly used benchmark

consisting of 285 protein-ligand complexes and their corresponding experimentally
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determined binding affinity chosen to evaluate protein-ligand binding affinity scoring

functions [Su et al., 2018] (see Section 1.3.3 for a more detailed discussion of CASF-

2016). While some correlation is to be expected when evaluating the binding-affinity

of a given ligand against any protein simply based on ligand information alone (since

there are generally favourable properties a ligand can have to be considered a good

drug), a truly generalisable model that is able to distinguish between different proteins

should not be possible with only ligand-based features. The high performance of

ligand-based models on multi-protein datasets therefore suggests a strong ligand bias

in the training and test sets used throughout the field and has been highlighted

as an area of concern [Boyles et al., 2019]. As a result, as described by Boyles

et al. [2019] and highlighted in the work described in Chapter 4 of this thesis, future

studies into the development of structure-based, generalisable models should focus on

interpretable models in order to analyse if models are truly learning the biophysics of

protein-ligand interactions and molecular recognition, or are just regurgitating ligand

biases while neglecting structure-based features [Boyles et al., 2019, 2021; Moesser

et al., 2022].

1.3.3 Structure-Based Scoring Functions

Structure-based models have been developed to overcome the limitations of ligand-

based models and to build a generalisable model that is able to score the binding

affinity of any given protein-ligand complex accurately. As previously mentioned

(see Section 1.3.1), common examples of structure-based machine learning methods

include CNN [Jiménez et al., 2018; Zheng et al., 2019; McNutt et al., 2021], GNN [Li

et al., 2021; Lim et al., 2019; Moesser et al., 2022], 3D fingerprint [Sánchez-Cruz et al.,

2020; Wójcikowski et al., 2018] and 3D descriptor-based [Durrant and McCammon,

2011; Ballester and Mitchell, 2010] machine learning models and appear to outperform
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classical semiempirical scoring functions used in molecular docking (see Section 1.2.2)

[Morris et al., 2009; Trott and Olson, 2010; Friesner et al., 2004; Jones et al., 1997].

Although the highest performing structure-based scoring functions achieve high

Pearson correlation coefficients (between 0.82-0.87 depending on the model, [Jiménez

et al., 2018; Zheng et al., 2019; Sánchez-Cruz et al., 2020; Wójcikowski et al., 2018;

Boyles et al., 2019; Moesser et al., 2022; Li et al., 2021]) when trained on the PDB-

bind database and tested on the popular CASF-2016 benchmark [Su et al., 2018],

consideration of generalisability has only recently emerged. The Comparative As-

sessment of Scoring Functions (CASF) benchmark is a dataset of 285 protein-ligand

complexes sourced from the PDBbind 2016 refined set [Liu et al., 2015, 2017] which

is a collection of high quality crystal structure obtained from the Protein Data Bank

(PDB) [Berman et al., 2000]. The CASF-2016 benchmark has been commonly ac-

cepted as one of the primary scoring power benchmarks that almost every scoring

function described in this thesis has been tested against. However, as Boyles [2020]

points out, since the CASF-2016 dataset is chosen to only include protein-ligand pairs

of proteins that are already present in the PDBbind training set, the CASF-2016 set

is not a suitable benchmark to assess model generalisability. This has now been rec-

ognized more broadly, and more recently reported scoring functions are including an

additional generalisability test, such as the elimination of protein-ligand complexes

from the training set if that protein is within a certain sequence identity threshold to

any protein in the CASF-2016 test set [Boyles et al., 2019; Moon et al., 2022; Moesser

et al., 2022]. In all cases [Boyles et al., 2019; Moon et al., 2022; Moesser et al., 2022],

model performance drops strongly when controlling for training and test set similar-

ity, highlighting that the creation of truly generalisable protein-ligand binding affinity

scoring functions is still an open problem.
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1.3.4 Bayesian Optimisation in Drug Discovery

Chemical space is vast and the experimental exploration of it is expensive, time con-

suming, and often prone to subjective biases in compound prioritisation (see Section

1.1). As a data-driven alternative to the optimisation approaches used in traditional

medicinal chemistry, active search methods such as Bayesian optimisation (BO) have

recently been applied to drug discovery to parse chemical space more efficiently and

optimise molecular properties [Pyzer-Knapp, 2018; Gómez-Bombarelli et al., 2018;

Griffiths and Hernández-Lobato, 2020].

Bayesian optimisation is an optimisation strategy that was originally pioneered

by Jonas Mockus in the 1980s to optimise expensive-to-evaluate functions [Mockus,

1989]. The goal of Bayesian optimisation is to find the optimal value of an objective

function in the minimum number of steps. Since the objective function is unknown

to start with, BO uses a surrogate function, often a Gaussian Process (GP), to model

both the objective function and assign a measure of uncertainty to each point in the

function. To choose a new data point most likely to improve the optimisation, an

acquisition function is used that evaluates each point in the GP surrogate function

and chooses the next point to sample based on an exploration vs exploitation trade-off

(Figure 1.8).

Exploration describes the process of evaluating the gain in information about the

surrogate function that could be achieved by sampling data points that the GP assigns

a high uncertainty to, and that could therefore alter the surrogate function drasti-

cally. Most often, high uncertainty is associated to parts of the function where little

information is currently available. Alternatively, exploitation describes the process

of sampling data points close to the current optimum value to find a new optimum.

This search strategy does not increase the information in the system as much, but

might yield incremental improvements to find the global optimum. Different acqui-
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sition functions assign different weights to the exploration vs exploitation trade-off

and it is therefore possible to adjust the acquisition function based on the goal of the

optimisation.

Figure 1.8: Overview of a simple Bayesian optimisation process using a GP surrogate
function and the Expected Improvement (EI) acquisition function to find the minimum of
the objective function. The acquisition function is shown in red, with the next data point
to be sampled (the maximum of the acquisition function) indicated by the red vertical line.
The uncertainty of the GP model is shown by blue shading. a) The objective function. b)
The initial model of the function based on three random data points. c) The first point
is sampled and the GP adjusts its estimation. At each step the acquisition function is
updated. d) The next point is sampled. e) Another point is sampled, and the Bayesian
optimization algorithm has identified the minimum of the objective function.
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This sequential evaluation of the exploration vs exploitation trade-off closely re-

sembles the traditional design, make, test, analyse (DMTA, [Plowright et al., 2012])

cycle in drug discovery (Figure 1.3), where medicinal chemists re-evaluate which com-

pounds to make next every cycle based on the information gained in the previous cycle.

BO is therefore highly suitable as a tool to guide the decision making for medicinal

chemists during hit-to-lead and lead optimisation.

While most studies that have focused on the application of Bayesian optimisa-

tion for drug discovery have used continuous BO using a latent space representation

(see Section 1.3.1) prospectively to find and generate new compounds that excel

in a specific property such as solubility [Gómez-Bombarelli et al., 2018; Griffiths and

Hernández-Lobato, 2020], Pyzer-Knapp described a retrospective multi-armed bandit

approach using a discrete ECFP representation of compounds [Pyzer-Knapp, 2018] to

find the best inhibitor in a large dataset of compounds with known binding affinities.

This multi-armed bandit approach has not been widely explored in the context of

drug discovery, and open questions about the optimal compound representation and

the usefulness in a real drug discovery project still remain.

1.4 Project Aims

As outlined in this Chapter, the costs, both in time and money, of pharmaceutical

drug discovery has been steadily increasing over many years. Drug targets consid-

ered as “low hanging fruits” are slowly running out, forcing scientists to target more

challenging diseases. In combination with the increasing strictness of regulatory au-

thorities when evaluating drug approvals, this has lead to an increase in failure rate

in the clinic. Improvement in efficiency as well as in the quality of drug candidates is

therefore crucial for the sustainability of pharmaceutical drug discovery in the future.

In this thesis, I present three complementary computer-aided drug discovery methods
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with the aim of increasing efficiency in the pre-clinical drug discovery pipeline, with

a particular focus on hit discovery and hit-to-lead optimization.

The overarching theme of this thesis focuses on exploration of different repre-

sentations of molecular structure, intermolecular interactions and 3D protein-ligand

complexes. In Chapter 2, I present the development of ligand-based models using a

Gaussian Process (GP) as an easy-to-implement tool to guide exploration of chemical

space for the optimization of binding affinity against one or more protein targets. I

explore different topological fingerprint and autoencoder representations for Bayesian

optimisation (BO) and show that BO is a powerful tool to help medicinal chemists

prioritise new compounds to make for single-target as well as multi-target optimisa-

tion.

In Chapter 3, I present the development of a knowledge-based approach to drug

design, combining quantitative contact fingerprint-based similarity calculations with a

fragment-based drug discovery approach to understand SARS-CoV-2 Mpro-substrate

specificity and to design novel small molecule inhibitors in silico. I show that the

Mpro protein-ligand interaction fingerprints can be powerful tools for knowledge-based

design, allowing the identification of protein-ligand interactions at several levels of

detail and its direct use in drug design. In addition, by filtering virtual screening

(VS) results for contacts of high interest, the identification of high quality VS hits was

enabled. In combination with a fragment-based drug discovery approach, I showcase

how this knowledge-based interaction fingerprint-driven approach can reveal fruitful

fragment-growth design strategies. The work in this chapter has been published in

Chemical Science [Chan et al., 2021a].

Finally, in Chapter 4, I expand on the knowledge-based contact fingerprints in

Chapter 3 to create a ligand-shaped molecular graph representation (Protein Ligand

Interaction Graphs, PLIGs) for graph-based deep learning that are able to encode
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all intermolecular interactions in a protein-ligand complex within the node features

of the graph. I explore a variety of Graph Neural Network (GNN) architectures

in combination with PLIGs to create several high-performing protein-ligand affinity

prediction models with comparable performance, highlighting that careful design of

molecular representations outweighs small gains that can be made by optimizing deep

learning architectures. However, overall I found Graph Attention Networks (GAT-

Net, Veličković et al. [2018]) to perform slightly better than other GNN architectures.

PLIGs were designed with the goal of advancing the field of scoring function develop-

ment to find generalisable models that are able to encode the biophysics of molecular

recognition while retaining simplicity and most importantly, full interpretability. The

work in this chapter is published on biorxiv [Moesser et al., 2022] and will be send

for peer review in an appropriate journal.
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Chapter 2

Exploration of Bayesian
Optimization for
Structure-Activity Relationship
Modeling

2.1 Introduction

As one of the more recently emerging fields in cheminformatics, active learning strate-

gies coupled with de-novo design have proven to be promising tools for the generation

and optimization of molecules towards a certain objective. Examples include the use

of recurrent neural networks (RNNs) [Ar´us-Pous et al., 2019; Popova et al., 2018],

autoencoders [Gómez-Bombarelli et al., 2018], generative adversarial neural networks

(GAN) [Méndez-Lucio et al., 2020], and synthesis-based methods [Hartenfeller et al.,

2012; Vinkers et al., 2003]. However, the fine tuning of these generative methods

towards the design of compounds that have desired drug-like properties remains chal-

lenging. First steps towards tackling this challenge include methods that employ

reinforcement learning (RL), where a predictive model takes the previously generated

compound as input and evaluates its performance against a certain property (e.g. hy-

drophilicity or number of H-bond donors). Subsequently, the generator is rewarded

for proposing molecules with the desired property (or properties, in multi-objective
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optimization) and over many cycles learns to generate new molecules optimised in

that desired regime [Popova et al., 2018]. However, the usefulness of RL methods as

well as autoencoders for the generation of new molecules with the desired properties is

limited by the accuracy of predictive models, especially for binding affinity prediction.

Previous approaches have chosen easily calculated physicochemical properties such as

the water-octanol partition coefficient, or structural features such as the number of

aromatic rings [Popova et al., 2018; Gómez-Bombarelli et al., 2018]. Nonetheless, for

protein families where more accurate models for the binding affinity prediction exist,

RL-based methods have been applied to generate new molecules that are predicted

to be high affinity binders [Popova et al., 2018; Olivecrona et al., 2017].

This highlights a big problem in the cheminformatics field: the need for more

diverse datasets with high quality data that cover proteins and ligands beyond the

commonly observed protein families such as kinases, proteases, transferases or G-

protein coupled receptors (GPCRs) that collectively cover over 32% of all protein

targets represented in the ChEMBL database [Davies et al., 2015; Mendez et al., 2019].

In order to address these issues, this project aimed to test the performance of active

learning strategies for the optimization of protein-ligand binding affinity on novel,

real-world data of an ongoing drug discovery project. I used high quality experimental

binding data from two sources: i) the matrix metalloproteinase-12 (MMP-12) dataset

[Pickett et al., 2011] as a validation dataset since it had been previously used as a

benchmark in similar studies [Pyzer-Knapp, 2018]; and ii) a novel metallo-β-lactamase

(MBL) inhibition dataset obtained from the Schofield group at the University of

Oxford.

MBLs were chosen as targets in part with the aim of contributing to the global

challenge of antibiotic resistance. Today, the most important class of antibiotics are

β-lactam derivatives which correspond to over half of the global antibacterial market
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[Elander, 2003]. One of the largest ongoing global health threats is growing antibi-

otic resistance, which renders antibacterial agents useless through the evolution of

defense mechanisms within bacteria. β-Lactam resistance poses a significant threat,

since it puts the viability of the most widely used class of antibacterial agents at risk.

β-Lactam antibiotics target penicillin-binding proteins (PBPs), which are transpep-

tidases involved in peptidoglycan synthesis, an essential step in bacterial cell wall

construction. The β-lactam ring of the inhibitors is cleaved by PBPs and the in-

hibitor becomes covalently attached to the active site, rendering the PBP inactive

and ultimately resulting in bacterial cell lysis [Yocum et al., 1980]. Evolutionary ad-

justment of bacteria to this threat has lead to the emergence of bacterial β-lactamases

as a defense mechanism. Resistance is obtained by cleavage of the active β-lactam ring

of the compound by β-lactamases. As an enzyme class, β-lactamases are divided into

two subclasses, the serine-β-lactamases (SBL) and the metallo-β-lactamases (MBL).

Although SBL inhibitors such as Sulbactam and Tazobactam (Figure 2.1) are widely

used drugs (in combination with a β-lactam antibiotic), no MBL inhibitors have yet

been brought to market. One major challenge in the development of MBL inhibitors

Figure 2.1: Structures of Sulbactam (left) and Tazobactam (right).

is their required polypharmacological profile. In order to be clinically viable against

a broad range of bacterial infections, MBL inhibitors should be active against as

many of the four most clinically important bacterial MBL enzymes as possible: the

Verona integron-encoded metallo-β-lactamases (VIM-1 and VIM-2), the Imipenemase
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(IMP-1) and the New Delhi metallo-β-lactamase (NDM-1) [Walsh et al., 2005]. Un-

fortunately, the development of multi-target MBL inhibitors without sacrificing other

desired properties such as solubility or cell-penetration has not yet been achieved.

Figure 2.2: Views from a crystal structure of VIM-1 is shown as published by Salimraj
et al. [2019] (CC BY 4.0 license). (a) The VIM-1 tertiary structure showing the overall fold
and active site residues, color coded from blue (N terminus) to red (C terminus). Zinc ions
are shown as grey spheres and the side chains of important active site residues shown in
green. (b) The VIM-1 active site, with they key active site amino acids labelled, and water
oxygens shown as red spheres.

The MBL family is thus an excellent model system to use for the prospective

validation of new computational methods for the design of selective/promiscuous

compounds. MBLs have been extensively researched in the Schofield lab at the Uni-

versity of Oxford as part of the global European Gram Negative Antibacterial Engine

(ENABLE) project, where a series of indole-2-carboxylate-based small molecule in-

hibitors have been identified as broad spectrum MBL inhibitors. These compounds

are non-covalent inhibitors that bind in the active site of the MBLs and coordinate to

the zinc ions (Figure 2.2). The structures of the four major MBL targets are known

and their active site motifs are conserved between them [Salimraj et al., 2019]. As an

example, the structure of VIM-1 and a close-up of its active site is shown in Figure
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2.2. The drug discovery efforts of the ENABLE project gave rise to a confidential

MBL dataset containing 558 compounds with biological activity data against the four

MBL targets VIM-1, VIM-2, IMP-1, and NDM-1. The limited information available

as well as the fact that optimization work is still ongoing therefore poses a more real-

istic challenge than the retrospective analyses of well studied families such as kinases,

and the development of new multi-target MBL inhibitors directly serves an unmet

need for the development of new antibacterial agents.

The work by Pyzer-Knapp [2018] has shown that active learning techniques such

as multi-armed bandit Bayesian Optimization (BO) can be used to optimize “black-

box” functions such as experimental protein-ligand binding affinity, potentially speed-

ing up the discovery process by helping medicinal chemists prioritize compounds for

synthesis and testing more efficiently. BO is a black-box optimization technique that

is particularly suitable for expensive objective functions. For protein-ligand binding

affinity prediction, the objective function is the relationship between the structure

and properties of the protein and ligand. Evaluation of this function means expen-

sive and time-consuming lab experiments would have to be conducted to synthesize

and then test the compounds in order to gain the affinity of a given compound. Since

the values of the objective function is unknown for all compounds at the start of

the optimization (such as at the start of an inhibitor optimization project where less

than 10 high quality hits might have been found in a high-throughput screen), the

Bayesian strategy is to create a surrogate function to model the relationship between

the inhibitor’s structure and its binding affinity.

In this project, I used a Gaussian Process as implemented in the open-source

toolkit GPyOpt [Consortium, 2020b] as the surrogate function. The GP uses the

data it has seen so far to estimate the binding affinity as well as the associated

predicted uncertainty for all remaining compounds in the dataset. The goal of this
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method is to use the BO to help chemists choose which compound to make next

from a set of possible compounds based on the likelihood it will improve the existing

“best compound” (exploitation) or the likelihood that it will open up new chemical

space by sampling compounds with high uncertainty (exploration). A more detailed

overview of Bayesian Optimization in general can be found in Chapter 1, Section

1.3.4. This active-learning strategy could enable chemists to apply resources more

efficiently than in traditional structure-activity relationship optimization campaigns,

reducing the amount of compounds synthesized and tested and ultimately increasing

speed and improving the cost-efficiency of drug discovery. A detailed description of

the implemented BO algorithm can be found in Section 2.2.3.

The work by Gómez-Bombarelli et al. [2018] has been foundational to the field of

VAE-based molecular generation coupled with BO, showing that variational autoen-

coders (VAEs) are capable of encoding compounds in a continuous space based on

their chemical structure as well as their corresponding physical properties such as the

base-10 logarithm of their water-octanol partition coefficient. They also showed VAEs

could be used in combination with Gaussian Processes to sample from the encoded la-

tent space and optimize for a combination of drug likeness and synthetic accessibility.

As a result, their method was able to output new compound designs. As discussed

in Chapter 1, Section 1.3.1, the representation of compounds in latent space is one of

many currently employed representation techniques. Overall, the search for the most

optimal molecular representation to tackle protein-ligand binding affinity prediction

is still an active area of research and composes one of the overarching themes in this

thesis, with each chapter approaching the problem from a different angle and with

different methods.

Ligand-based models, particularly in QSAR modeling, have used classical topo-

logical fingerprints such as ECFP [Rogers and Hahn, 2010] or computed molec-
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ular descriptors such as counts of functional groups and physical properties, ex-

emplified by the Descriptor module in RDKit [Landrum et al., 2006]. More re-

cent models, especially deep learning models have utilized more creative represen-

tations such as text-based autoencoders [Gómez-Bombarelli et al., 2018], molecular

graphs [Nguyen et al., 2020] or 3D voxels for convolutional neural networks [Jiménez

et al., 2018; McNutt et al., 2021]. In the work published by Pyzer-Knapp [Pyzer-

Knapp, 2018], only extended connectivity fingerprints (ECFP) [Rogers and Hahn,

2010] were used as input features for a single objective optimization. In order to

expand upon the technique outlined by Pyzer-Knapp and to optimize its poten-

tial, I focused first on determining the most optimal compound representation for

BO. Herein, I describe my investigations into Bayesian multi-objective optimization,

along with the exploration of three different compound representations and their ef-

fect on BO performance: extended connectivity fingerprints (ECFP) [Rogers and

Hahn, 2010], connected subgraph fingerprints (CSFP) [Bellmann et al., 2019] and

the autoencoder Mol2vec [Jaeger et al., 2018]. In this work, I show that ECFP

perform best overall. In addition, I implement a multi-objective optimization ap-

proach that combines simultaneous optimization against two MBL targets. My op-

timization approach outperforms previously described methods on the same bench-

mark (MMP-12 dataset) [Pyzer-Knapp, 2018] and was further validated on an in-

dependent, real-life lead-optimization dataset (MBL dataset) as well as in a multi-

objective optimization scenario. This chapter is fully my own work. My imple-

mentation of the Bayesian optimisation algorithm can be found on Github https:

//github.com/MarcMoesser/Bayesian-Optimization-For-Drug-Discovery.
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2.2 Materials & Methods

2.2.1 Data Sets

2.2.1.1 Matrix Metalloproteinase-12 Dataset

The dataset used to benchmark the performance of my BO methods against the results

obtained by Pyzer-Knapp [Pyzer-Knapp, 2018] was the matrix metalloproteinase-12

(MMP-12) dataset [Pickett et al., 2011]. MMP-12 is a metalloprotease primarily

expressed by macrophages and has been linked to several pathological conditions

such as rheumatoid arthritis and the formation of aneurysms [Dean et al., 2008]. The

dataset was originally published by Pickett et al. [2011] as an attempt to synthesize

and test a complete 50 × 50 matrix of different R1 and R2 group combinations while

keeping a constant biaryl sulfonamide core (Figure 2.3).

Figure 2.3: (a) The biaryl sulfonamide core present in all compounds in the MMP-12
dataset. (b) Heatmap of the 50×50 biaryl sulfonamide array. Reprinted (adapted) with per-
mission from [Pickett et al., 2011] Copyright 2011 American Chemical Society. A SortMax
corresponds to modifications in R1 and B SortMax to R2. Values in black are marked as
“Null” and correspond to compounds where the compound was not synthesized or the assay
failed. Values in grey were found to be inactive in the assay.

The dataset contains pIC50 data for 1880 out of the 2500 possible compounds. The
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absent compounds were either not made, not assayed, or failed the assay. I manually

prepared the dataset, setting the pIC50 values of compounds labelled “inactive” to 0

and discarding the compounds labelled “assay failed”,“not assayed” and “not made”.

This dataset was used as a control to compare directly to the original results obtained

by the BO method developed by Pyzer-Knapp [Pyzer-Knapp, 2018] on the same

dataset.

2.2.1.2 Metallo-β-Lactamase Dataset

The metallo-β-lactamase (MBL) dataset was obtained from an ongoing pre-clinical

drug discovery project in the Schofield group at the University of Oxford. The dataset

is currently confidential and has not yet been published. However, once more signif-

icant progress on the discovery project is made, the data will be publically released.

It currently consists of a total of 558 compounds that have been tested against four

different MBL targets: VIM-1, VIM-2, NDM-1 and IMP-1. Not all compounds have

been tested against every protein target. The dataset includes the compound’s chem-

ical structure and the experimentally measured IC50 value for each compound-protein

combination. IC50 values against each MBL were determined using a fluorogenic as-

say as described by van Berkel et al. [2013]. All compounds in the dataset originate

from the same strucure-activity relationship study and all share a common indole-2-

carboxylate core shown in Figure 2.4 with two substituent groups (R1 and R2) that

are varied. However, the dataset does not follow a matrix search approach where

all possible combinations of the R1 and R2 groups were tested, but rather follows a

more typical approach adopted by medicinal chemists, where a broader spectrum of

R groups were explored and only certain, high performing ones kept constant.

The dataset was split for the BO method into separate subsets for each target:

VIM-1, VIM-2, IMP1, and NDM1; with 495, 527, 533, and 550 compounds, respec-

tively. In addition, one dataset for every protein-protein pair was also created for
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Figure 2.4: Common indole-2-carboxylate core present in every molecule of the MBL
dataset. The substituent groups R1 and R2 are modified throughout the dataset to explore
the SAR.

multi-objective optimization. For the combined datasets, all compounds with IC50

values measured against each target pair were selected, the geometric mean of their

respective IC50 values against both targets calculated, and then combined into a new

dataset. This resulted in the following six datasets: IMP-1+VIM-1, IMP-1+VIM-2,

NDM-1+IMP-1, NDM-1+VIM-1, NDM-1+VIM-2 and VIM-2+VIM-1; with 494, 525,

540, 502, 533, and 494 compounds respectively.

2.2.2 Implementation of Compound Representations

The performance of the BO method was evaluated using three different compound rep-

resentations: Extended-Connectivity Fingerprints [Rogers and Hahn, 2010] (ECFP),

Connected Subgraph Fingerprints [Bellmann et al., 2019] (CSFP) and mol2vec [Jaeger

et al., 2018].

ECFPs are well established topological fingerprints specifically designed for molec-

ular similarity calculations and structure-activity modeling [Rogers and Hahn, 2010].

ECFPs are generated by giving each atom an initial identifier and generating a bit

string of predefined length that contains the chemical features of the atom and its

neighboring atoms up to a defined radius (or a number of bonds). This process is

repeated a specified number of times and duplicate identifiers removed. Afterwards,

the updated identifier of each atom is hashed to determine which bits should be set

in the output fingerprint. The remaining unique set of atom identifiers after hashing

constitutes the ECFP.
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CSFPs have been developed more recently and are a modified version of the ECFP

procedure where unique identifiers are placed on substructures instead of atoms. Each

possible substructure of specified size (minimum and maximum number of atoms per

substructure) is identified and the chemical environment of the substructure such as

atom type and bond type is recorded as a numeric identifier for each atom. A depth-

first search algorithm is applied to each substructure which combines atom identifiers

and bond identifiers in the order that they are seen by the algorithm into a single

identifier. Lastly, duplicates are identified and summarized and the final fingerprint

compressed into a bit vector of predetermined length.

By contrast, mol2vec is an autoencoder inspired by the unsupervised machine-

learning algorithm word2vec [Mikolov et al., 2013]. Like ECFP and CSFP, which

define a molecule as a sum of its substructures, mol2vec adopts the natural language

processing approach of word2vec which embeds all the words in a corpus (perhaps the

250,000 words of the English language) in a much lower dimensional space, typically

around 200. First, all substructures of radius 0 and 1 are generated the same way

as described above for ECFPs. All resulting identifiers are ordered into a “molecular

sentence” using the respective canonical SMILES atom order. The network has been

trained by Jaeger et al. [2018] on 19.9 million compounds to create a 300-dimensional

vector representation for each compound. Just like word2vec, which encodes words

with similar meaning to be close together in latent space, mol2vec aims to create

a latent space representation where similar molecules are close together. Although,

since SMILES strings can differ drastically between two molecules with only small

structural differences it is not known how this representation would compare to the

topological fingerprints such as CSFP and ECFP which are a more direct represen-

tation and can encode chemical similarity extremely well.

All fingerprints were generated as follows. The implemented RDKit function Get-

45



MorganFingerprintAsBitVect of RDKit [Landrum et al., 2006] (v2019.09.1.0) was

used to generate ECFPs with a radius of 2 and either 1024 bits or 512 bits vector.

CSFPs were generated using the CSFPy script version 0.9.0 [Bellmann et al., 2019]

with a lower bound of 2 and an upper bound of 4 and a 1024 bit vector. Mol2vec

representations were generated using the pre-trained model supplied by Jaeger et al.

[2018] to output a 300-dimensional vector for each compound.

2.2.3 Bayesian Optimization

The Bayesian optimization (BO) algorithm used for this work uses a Gaussian Pro-

cess (GP) to model the Bayesian response surface. GPs are a stochastic process where

every finite linear combination of random variables sampled from the process is nor-

mally distributed. This allows GP methods, in contrast to classical machine-learning

point predictions, to predict a normal distribution with a defined standard deviation

and mean. As a result, the prediction also incorporates a measure of uncertainty.

Bayesian optimization leverages this fact by defining the predited improvement Z :

Z =
µ(x) − f(x+)

σ(x)
(2.1)

Here, f(x+) is defined as the best target value found so far, µ(x) is the predicted

mean, x its location in the search space, and σ(x) the corresponding standard devia-

tion. Next, an acquisition function is defined that provides agency to the BO method

and determines which point in the search space to sample next. There are several

different acquisition functions that try to balance exploitation (searching close to the

current best value) and exploration (searching at a point of highest uncertainty). In

this work, the Expected Improvement (EI) acquisition function was employed, which

is defined as follows:
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EI(x) = (µ(x) − f(x+))Φ(Z) + σ(x)ϕ(Z) (2.2)

Here, Φ(Z) and ϕ(Z) are the cumulative distribution function and the probability

density function, respectively. Equation (2.2) is made up of two terms, with the

first term responsible for the exploitation, controlled by the predicted mean; and the

second term relating to exploration, which is controlled by the predicted standard

deviation. With each iteration, the method then seeks to maximise the value of EI(x).

In the context of chemical space, a further distinction between between optimization

of continuous versus discrete data has to be made.

Since bioactivity data is often made up of individual data points of compounds

tested in the lab, it is discrete by nature. Although efforts have been made to describe

chemical space in a continuous matter, for example through the use of variational

autoencoders [Gómez-Bombarelli et al., 2018], in this work the search space will be

considered to be discrete. As a result, it is more accurate to describe the efforts of the

BO method as a prioritization problem, rather than an optimization of a continuous

function. This method is known as the “Multiarmed Bandit Problem” and rephrases

the objective to: “Out of this set of compounds, in what order should they be syn-

thesized and tested so as to discover the best candidates in the fewest iterations”.

This question directly mimics the traditional medicinal chemistry approach to lead

optimization where chemists design a set of compounds based on their prior knowl-

edge of chemistry and the system, then prioritise and test the compounds. For this

work, the Bayesian optimization algorithm was implemented using GPyOpt [Consor-

tium, 2020b], an open source Python library based on GPy [Consortium, 2020a], a

framework for GP modeling.
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Another important consideration in the design of the BO model is the kernel

function. The kernel determines the smoothness of the model since it is expected

that two points close to each other in the search space, x, also have similar observed

values, f(x). In this work, the Radial Basis Function (RBF) kernel is used, which is

one of the most commonly used kernels, and is defined as follows:

RBF (p, p∗) = a0e
−|p− p∗|2

2l2
(2.3)

where a0 and l are the variance and length scale respectively and p and p∗ are

two points in search space. The GPy.kern.RBF function of GPyOpt was used for

all compound representations with a lengthscale of 5 and a variance of 1. My imple-

mentation of the Bayesian optimisation algorithm can be found on Github https:

//github.com/MarcMoesser/Bayesian-Optimization-For-Drug-Discovery.

2.2.3.1 Performance Evaluation of Bayesian Optimization

Performance of the Bayesian optimization algorithm was evaluated through two differ-

ent metrics. First, the performance of the optimization task is evaluated by counting

the number of compounds explored before the algorithm found the best possible com-

pound in the dataset. As a control, a random sampling algorithm was used, which

samples a random compound at each iteration from the dataset. The second evalua-

tion method is to determine the number of compounds found at each iteration that

fall within the top 10% of pIC50 values in the dataset. Through this approach, it is

possible to gauge the enrichment of actives in the dataset, which is a technique used

in real-world virtual screening campaigns and structure-activity relationship studies

where medicinal chemists are not only interested in the compound with the highest

potency, but instead are looking for several compounds with high potency but differ-
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ent chemical and physical properties. All Bayesian Optimization and random search

experiments were repeated 10 times each with different random number generator

seeds.

2.2.4 Tanimoto Similarity and Activity Cliffs

For the evaluation of compound similarity, 1024 bit radius 2 ECFP fingerprints were

generated and the RDKit (v2019.09.1.0) TanimotoSimilarity function used to calcu-

late a similarity score between 0 (dissimilar) and 1 (identical). Activity cliffs were

calculated using Structure-Activity Similarity (SAS) maps as described by Shanmu-

gasundaram and Maggiora [2001]; Guha [2012]. The activity similarity score SimAct

for two molecules, A and B, is calculated as follows:

SimAct(A,B) = 1 − |Act(A) − Act(B)|
|Actmax − Actmin|

(2.4)

The resulting activity similarity is plotted against the corresponding Tanimoto

similarity to create SAS maps such as Figure 2.5.

2.3 Results and Discussion

2.3.1 Analysis of the MBL Dataset

Each MBL subset containing compounds and pIC50 values against a single MBL

protein were prepared as described in Section 2.2.1. The distribution of pIC50 values

is shown in Appendix A, Figure A.1. The VIM-2 (Appendix A, Figure A.1 b) and

NDM-1 (Appendix A, Figure A.1 d) datasets are visibly skewed towards the higher

end of the pIC50 spectrum with more high potency ligands than the VIM-1 and IMP-1

datasets, indicating a more challenging SAR for VIM-1 and IMP-1.

Next, the compound similarity in each dataset was analyzed and the set tested

for activity cliffs. The Tanimoto similarity between all compound combinations in
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each MBL dataset was calculated. The distribution of similarity scores follows ap-

proximately a normal distribution in all four datasets (Appendix A, Figure A.2). In

order to identity activity cliffs, Structure-Activity-Similarity (SAS) maps [Shanmuga-

sundaram and Maggiora, 2001] were created. SAS maps divide the structure-activity

landscape into four distinct zones, as shown in Figure 2.5. The four zones are defined

by Shanmugasundaram and Maggiora [2001] as: (I) rough regions (activity cliffs),

(II) nondescript regions, (III) scaffold hops and (IV) smooth region. The SAS maps

depict each pair of compounds in the dataset, its corresponding SAS score, and their

Similarity score. Most of the dataset is distributed between quadrants II, III and IV

with the majority of compounds in the “scaffold hops” quadrant (III, i.e. dissimilar

compounds but similar activity). The number of compound pairs in zone I (activity

cliffs) for VIM-1, VIM-2, IMP-1 and NDM-1 are 115 (0.0009%), 126 (0.0010%), 530

(0.0043%) and 322 (0.0026%), respectively. Thus, none of the datasets show a sig-

nificant number of activity cliffs. The GP that the Bayesian optimization algorithm

is built on can only be used if the underlying function that the GP is simulating is

reasonably smooth and does not contain major discontinuities or “spikes”. In the case

of biological activity of chemical compounds, this would correspond to large changes

in biological activity when there are small changes in the structure of the compound.

The activity cliff analysis shows that the BO algorithm is appropriate for the MBL

dataset as it does not contain a large number of activity cliffs that could disrupt the

GP.
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Figure 2.5: SAS maps of each MBL inhibition dataset using logarithmic scaling on the
bin density, with darker bins corresponding to more compound pairs. The quadrants I,
II, III and IV correspond to activity cliffs, non-descript region, scaffold hops and smooth
regions, respectively (as defined by Shanmugasundaram and Maggiora [2001]). The number
of compound pairs in the activity cliff zone I for VIM-1, VIM-2, IMP-1 and NDM-1 are (a)
115 (0.09% of total 122265 combinations), (b) 126 (0.09% of total 138601 combinations), (c)
530 (0.37% of total 141778 combinations) and (d) 322 (0.21% of total 150975 combinations),
respectively.
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2.3.2 Bayesian Optimization Model Performance

In order to analyse the performance of Bayesian optimization (BO), two plots were

generated for each experiment to show the raw optimization power (number of it-

erations required to find the best compound in the dataset by pIC50, Figure 2.6 a)

and the ability of the algorithm to identify the most potent compounds (number of

compounds that fall into the top 10% of pIC50 values that had been found at each

iteration, Figure 2.6 b). The results are plotted as follows: the results for the first

200 iterations are shown and plots are labelled to identify the protein target, feature,

kernel and acquisition function. The RBF kernel and EI acquisition function were

used for all experiments. All experiments were repeated 10 times, the mean plotted

in bold and the 95% confidence intervals as shaded regions. The different molecular

representations are color coded: ECFP 1024 bits radius 2: blue; ECFP 512 bits radius

2: dark green; CSFP: orange; mol2vec: light green; and random sampling: red.

First, in order to validate my BO implementation and to compare it to previous

results on the MMP-12 dataset obtained by Pyzer-Knapp [Pyzer-Knapp, 2018], the

BO method was run on the same dataset. As shown in Figure 2.6, the BO algorithm is

able to discover the best molecule in the dataset after fewer than 200 iterations using

ECFP 1024 bits, which significantly outperforms Pyzer-Knapp’s method, where the

best molecule was found after over 800 iterations [Pyzer-Knapp, 2018] despite Pyzer-

Knapp using the EI acquisition function, RBF kernel and ECFP 512 bit radius 2.

However, it is not clear from the paper how exactly the method was implemented

and no code was supplied. In comparison, the mol2vec representation seems to be

the best performing method in this scenario, although not by a large margin.

Since Pyzer-Knapp only used ECFP 512 bits representations, the effect of varying

the fingerprint bit vector length of ECFPs was investigated. However, no significant

difference between larger 1024 bit radius 2 ECFP fingerprints and smaller 512 bit
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radius 2 fingerprints were observed when comparing the general performance of the

method, although 1024 bit radius 2 ECFPs slightly outperformed the shorter variant

when discovering top compounds from the dataset (Appendix A, Figures A.3 - A.6).

For all future experiments, 1024 bit radius 2 ECFPs were used in the method and

labelled just as “ECFP”.

2.3.3 Bayesian Optimization against MBL Targets

2.3.3.1 Performance Against a Single Protein Target

After establishing the performance of my implementation of the BO algorithm against

past benchmarks in the MMP-12 dataset, the method was applied to the MBL dataset.

All variations of the Bayesian optimization method are able to find the best compound

in fewer than 175 iterations, with no large difference between the various compound

representations when looking at the general performance, although ECFPs are able

to identify the best compound fastest in all cases (Figures 2.7-2.10 a). A substantial

gap in performance between molecular representations is revealed when looking at

the second performance indicator: the number of “good” compounds obtained at

each iteration (Figures 2.7-2.10 b). While optimization against VIM-1 and NDM-1

(Figure 2.7 b and Figure 2.10 b) show no significant difference, optimization of VIM-

2, and especially, IMP-1 activity is significantly more efficient using 1024 bit ECFPs.

Interestingly, while mol2vec and CSFP perform almost identically for 3 of the 4 MBL

targets, performance of CSFP drops significantly after the initial 60 iterations in

comparison to ECFP and mol2vec when optimizing against NDM-1 (Figure 2.10). In

all cases, Bayesian optimization outperforms random sampling, which is not able to

find the best compound in the dataset within 200 iterations. A larger difference in

performance between Bayesian optimization and random sampling can be seen when

looking at the enrichment of top compounds, where the ECFP method, for example,
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is able to find around double the number of “good” compounds after 200 iterations

(Figures 2.7-2.10 b).

2.3.3.2 Simultaneous Optimization Against Two Protein Targets

After testing Bayesian optimization against single MBL targets, multi-task optimiza-

tion was explored by calculating the geometric mean of the corresponding pIC50 values

of each compound between two MBL targets and using new datasets for each pair-

wise combination of proteins (6 total: IMP-1+VIM-1, IMP-1+VIM-2, NDM-1+IMP-

1, NDM-1+VIM-1, NDM-1+VIM-2, VIM-2+VIM-1). In comparison to the results

for the single target optimization, a larger difference in general optimization perfor-

mance between the compound representations can be observed in the multi-objective

approach (Figures 2.11 - 2.16). Overall, ECFPs perform best, especially for the IMP-

1+VIM-2 combination (Figure 2.12) where the ECFP method reaches the maximum

in fewer than 50 iterations, as opposed to over 100 for the other methods. The overall

performance of BO against the multi-objective datasets is increased in comparison

to the single target optimizations, with all multi-objective experiments reaching the

maximum in fewer iterations than single target optimization. For the enrichment of

“good” compounds in the case of the multi-objective optimization, the same trend

in performance can be seen with ECFPs performing best, followed by mol2vec and

CSFPs performing similarly.

In summary, the investigation of the impact of different compound representations

on the performance of Bayesian optimization shows that although the performance

of all three representations are very similar, 1024 bit radius 2 ECFPs outperform the

other two representations. In general, Bayesian optimization is able to find the best

compound in the dataset quickly, and most importantly, to greatly enrich the number

of “good” compounds in comparison to random exploration.
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Figure 2.6: Performance of Bayesian optimization with the MMP-12 dataset using the
ECFP, CSFP and mol2vec representations, versus random sampling. The dashed red line
indicates the maximum possible value for both: the maximum pIC50 and the maximum
count of top compounds; bold lines indicate the mean of 10 experiments and the shaded
area is the 95% confidence interval (CI). a) General performance plot showing the best
current mean pIC50 found over 200 iterations of BO or random sampling. b) Enrichment
plot showing the total count of top compounds found so far at each iteration. The best
performing methods are the ECFP and mol2vec implementation.
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Figure 2.7: Performance of Bayesian optimization using the VIM-1 dataset. The dashed
red line indicates the maximum possible value for both: the maximum pIC50 and the
maximum count of top compounds; bold lines indicate the mean of 10 experiments and
shaded area the 95% CI. a) General performance plot showing the best current mean pIC50

found over 200 iterations of BO or random sampling. b) Enrichment plot showing the total
count of top compounds found so far at each iteration. The ECFP implementation performs
best, but all BO methods perform significantly better than random search.
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Figure 2.8: Performance of Bayesian optimization using the VIM-2 dataset. The dashed
red line indicates the maximum possible value for both: the maximum pIC50 and the
maximum count of top compounds; bold lines indicate the mean of 10 experiments and
shaded area the 95% CI. a) General performance plot showing the best current mean pIC50

found over 200 iterations of BO or random sampling. b) Enrichment plot showing the total
count of top compounds found so far at each iteration. The ECFP implementation performs
best, but all BO methods perform significantly better than random search.
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Figure 2.9: Performance of Bayesian optimization using the IMP-1 dataset. The dashed
red line indicates the maximum possible value for both: the maximum pIC50 and the
maximum count of top compounds; bold lines indicate the mean of 10 experiments and
shaded area the 95% CI. a) General performance plot showing the best current mean pIC50

found over 200 iterations of BO or random sampling. b) Enrichment plot showing the total
count of top compounds found so far at each iteration. The ECFP implementation performs
best, but all BO methods perform significantly better than random search.
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Figure 2.10: Performance of Bayesian optimization using the NDM-1 dataset. The dashed
red line indicates the maximum possible value for both: the maximum pIC50 and the
maximum count of top compounds; bold lines indicate the mean of 10 experiments and
shaded area the 95% CI. a) General performance plot showing the best current mean pIC50

found over 200 iterations of BO or random sampling. b) Enrichment plot showing the total
count of top compounds found so far at each iteration. The ECFP implementation performs
best, but all BO methods perform significantly better than random search.
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Figure 2.11: Multi-objective optimization performance of Bayesian optimization using the
combined IMP-1 + VIM-1 dataset. The dashed red line indicates the maximum possible
value for both: the maximum pIC50 and the maximum count of top compounds; bold lines
indicate the mean of 10 experiments and shaded area the 95% CI. a) General performance
plot showing the best current mean pIC50 found over 200 iterations of BO or random
sampling. b) Enrichment plot showing the total count of top compounds found so far at
each iteration. The ECFP implementation performs best, but all BO methods perform
significantly better than random search.
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Figure 2.12: Multi-objective optimization performance of Bayesian optimization using the
combined IMP-1 + VIM-2 dataset. The dashed red line indicates the maximum possible
value for both: the maximum pIC50 and the maximum count of top compounds; bold lines
indicate the mean of 10 experiments and shaded area the 95% CI. a) General performance
plot showing the best current mean pIC50 found over 200 iterations of BO or random
sampling. b) Enrichment plot showing the total count of top compounds found so far at
each iteration. The ECFP implementation performs best, but all BO methods perform
significantly better than random search.
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Figure 2.13: Multi-objective optimization performance of Bayesian optimization using the
combined NDM-1 + IMP-1 dataset. The dashed red line indicates the maximum possible
value for both: the maximum pIC50 and the maximum count of top compounds; bold lines
indicate the mean of 10 experiments and shaded area the 95% CI. a) General performance
plot showing the best current mean pIC50 found over 200 iterations of BO or random
sampling. b) Enrichment plot showing the total count of top compounds found so far at
each iteration. The ECFP implementation performs best, but all BO methods perform
significantly better than random search.
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Figure 2.14: Multi-objective optimization performance of Bayesian optimization using the
combined NDM-1 + VIM-1 dataset. The dashed red line indicates the maximum possible
value for both: the maximum pIC50 and the maximum count of top compounds; bold lines
indicate the mean of 10 experiments and shaded area the 95% CI. a) General performance
plot showing the best current mean pIC50 found over 200 iterations of BO or random
sampling. b) Enrichment plot showing the total count of top compounds found so far at
each iteration. The ECFP implementation performs best, but all BO methods perform
significantly better than random search.
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Figure 2.15: Multi-objective optimization performance of Bayesian optimization using the
combined NDM-1 + VIM-2 dataset. The dashed red line indicates the maximum possible
value for both: the maximum pIC50 and the maximum count of top compounds; bold lines
indicate the mean of 10 experiments and shaded area the 95% CI. a) General performance
plot showing the best current mean pIC50 found over 200 iterations of BO or random
sampling. b) Enrichment plot showing the total count of top compounds found so far at
each iteration. The ECFP implementation performs best, but all BO methods perform
significantly better than random search.
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Figure 2.16: Multi-objective optimization performance of Bayesian optimization using the
combined VIM-2 + VIM-1 dataset. The dashed red line indicates the maximum possible
value for both: the maximum pIC50 and the maximum count of top compounds; bold lines
indicate the mean of 10 experiments and shaded area the 95% CI. a) General performance
plot showing the best current mean pIC50 found over 200 iterations of BO or random
sampling. b) Enrichment plot showing the total count of top compounds found so far at
each iteration. The ECFP implementation performs best, but all BO methods perform
significantly better than random search.
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2.4 Discussion

The primary goal of the experiments was first to validate the BO method against

a known dataset (MMP-12); second, to apply the method to a novel, real-life drug

optimisation dataset, the MBL dataset obtained from the Schofield lab at the Uni-

versity of Oxford which is the result of an ongoing effort to discover new antibiotics;

and third, to investigate the impact of different molecular representations of chemical

space on the performance of BO. The BO method was analyzed using two different

performance metrics: the general power of the optimization algorithm as measured

by the number of iterations needed to find the most potent compound (i.e. maximum

pIC50) in the dataset; and second, the enrichment of potent compounds, as measured

by the total number of potent compounds (top 10% of pIC50 values in the dataset)

found at each iteration.

In general, the difference between random sampling and BO in all cases was found

to be larger when looking at the second performance metric (the identification of

“good” compounds) than the first metric (raw optimization to find the best compound

in the dataset). This second metric is also arguably more important in an early stage

lead discovery or lead optimization project, where the discovery of a single high affinity

compound is less important than the discovery of a series of compounds, all with good

activity, which opens up a more diverse base to optimize desirable properties such as

ADME properties, solubility, toxicology, and cell permeability.

However, on a methodological level, the current version of the BO model has the

limitation that it chooses only one molecule per iteration, which is less applicable in a

traditional lab setting. Normally, compounds are synthesized and assayed in batches

for efficiency. In order to make the BO method as realistic as possible, future work

should include the improvement of the algorithm to enable batches of molecules to

be chosen at each iteration.
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Since the BO surrogate function is able to update fewer times and is therefore

forced to choose new compounds with less information when choosing molecules in

batches, the resulting loss of information might lead to decreased performance when

compared to single molecule iterations. Nonetheless there are several ways to imple-

ment the batch sampling process beyond just variation in batch sizes. For example,

exploration could be prioritized early in the optimization process to collect as much

information as possible before prioritizing exploitation to find the best compound.

However, the performance of the current version of BO is still a good indication of its

ability to create a realistic surrogate function to model the correlation between multi

dimensional fingerprints and biological activity.

The MMP-12 dataset was primarily used in this work to serve as a benchmark for

the BO algorithm and to compare it to previously described results by Pyzer-Knapp

[Pyzer-Knapp, 2018]. The results obtained from the BO method on the MMP-12

dataset is interesting (Figure 2.6, given that Pyzer-Knapp reported a very similar

method with significantly worse performance. [Pyzer-Knapp, 2018] However, since

Pyzer-Knapp has not made the details of the implementation of his BO method pub-

lic, it is unknown what could have caused the difference in performance. One aspect

I found to greatly influence the performance of the BO algorithm while building the

GPyOpt implementation is the RBF kernel function. I found the length-scale restric-

tion could drastically diminish sampling performance to levels worse than random

sampling. In summary, I have shown that my method has passed the benchmark and

surpasses Pyzer-Knapp’s method. [Pyzer-Knapp, 2018]

Next, the BO method was applied to the MBL dataset which was split into four

single target datasets (VIM-1, VIM-2, IMP-1, NDM-1) and 6 dual-objective datasets

(IMP-1+VIM-1, IMP-1+VIM-2, NDM-1+IMP-1, NDM-1+VIM-1, NDM-1+VIM-2
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and VIM-2+VIM-1). An interesting feature of the single target datasets is the un-

derlying distribution of pIC50 values in each set (Appendix A, Figure A.1). The

distribution of VIM-2 and NDM-1 is shifted towards more potent pIC50 values in

comparison to VIM-1 and IMP-1 (Figure A.1. One reason for the shift could be a

more challenging SAR for VIM-1 and IMP-1 (medicinal chemists on the project were

able to discover less high affinity ligands), which highlights the need for additional

tools to support medicinal chemists in the design of new high affinity ligands against

challenging targets. The shift in the pIC50 distribution could also directly affect the

performance evaluation of the BO method, since the second performance metric relies

on classifying good compounds as the top 10% of pIC50 values in each dataset (i.e.

for VIM-1: pIC50 > 7.7, for IMP-1: pIC50 > 8.0, for VIM-2: pIC50 > 8.5 and for

NDM-1: pIC50 > 8.7). Since the top 10% threshold is applied locally on each dataset

rather than globally across all MBL datasets, this leads to a higher threshold in the

case of the VIM-2 and NDM-1 datasets due to the greater number of high affinity

ligands in the dataset. A dynamic adjustment of the performance metric through

local thresholds as described above is advantageous for the purpose of benchmarking,

since it sets a higher bar to datasets where it is statistically more likely to find high

affinity compounds. Without the dynamic top 10% metric, a comparison between the

performance of BO against two datasets with a different pIC50 distribution would be

heavily biased. The BO algorithm would be more likely (purely statistically) to find

high affinity ligands in a dataset with a shifted pIC5050 distribution towards the top

end of pIC50 scores, making direct comparisons between datasets convoluted.

The performance of the BO algorithm was similar between all four single target

datasets (Figure 2.7-2.10) as well as the six multi-objective approaches (Figure 2.11-

2.16) showing that the BO algorithm is applicable to different proteins and dataset

distributions.
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Since the method is purely ligand based and no information of the protein target is

included except the corresponding pIC50 values, it might be expected that the method

will perform equally well against all four targets or combinations thereof, since the

compounds included in each subset are identical and no large activity cliffs were found

in any of the sets. However, while this is observed in most MBl datasets (and combi-

nations thereof), as was discussed above, differences in SAR for some protein targets

might produce biases in the underlying dataset, resulting in different performance

on different datasets. One such exception was observed when optimizing against the

protein pair IMP-1+VIM-2, where the ECFP-based method was able to identify the

best compounds in under 50 iterations (Figure 2.12 a), significantly faster than any

other method or dataset. However, the difference in performance disappears when

looking at the more important second metric (Figure 2.12 b) where not only the other

compound representations perform comparably, but also no significant performance

difference can be observed when compared to the other dual protein datasets. This

observation highlights the importance of analyzing the optimization results from a

different angle than purely greedy optimization. In general, the 1024 bit radius 2

ECFPs did substantially better in the second performance metric in almost all single

and multi-objective datasets than the CSFP and Mol2vec representation. Although

in isolated instances, such as in the case of NDM-1, (Figure 2.10) and VIM-2+VIM-1,

(Figure 2.16) the Mol2vec and ECFP representations perform comparably and stay

within the 95% confidence intervals of each other. The more similar performance of

ECFP and Mol2vec could stem from the fact that Mol2vec used ECFPs as molecular

“words” to train the Mol2vec model. The poorer performance of CSFPs could po-

tentially be due to information loss inherent to the CSFP creation process, when the

extremely high dimensional fingerprint is compressed into 1024 bit vectors. While

this is true for ECFPs as well, the way CSFPs are designed increases the severity
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of the effect. The main feature of CSFPs is the ability to exhaustively enumerate

every possible subgraph of a given size within a molecule, instead of just each atom

and its surrounding area as is done with ECFPs. A 1024 bit vector might not be

sufficient to capture the increased information density as compared to ECFPs. Even

for ECFPs, a slight increase in performance was observed when comparing 512 bit

and 1024 ECFPs (Appendix A, Figures A.3 - A.6).

A potential avenue for further exploration of these results would be to increase the

bit size for CSFPs, although a larger fingerprint would also increase the computational

power required for the BO algorithm, so the trade-off would need to be considered

carefully. In addition, the subgraph size of the CSFPs is a hyperparameter that has to

be fine tuned since, it was originally reported that CSFP subgraph size does have an

impact on machine learning model performance when using CSFP [Bellmann et al.,

2019]. For this work, a subgraph with a lower bound of 2 and an upper bound of

4 was used to capture subgraphs with between 2 and 4 atoms. Although this is the

recommended range, fine tuning could be done to optimize the these values. Overall,

my results whow that BO is able to be used with different ligand-based representations

including fingerprints as well as molecular autoencoders with ECFP performing best.

There are two high-level areas for future improvement. First, a variational autoen-

coder similar to the VAE published by Gómez-Bombarelli et al. [2018] that captures

both the chemical structure of a molecule and its properties in a continuous latent

space representation would enable the algorithm to generate novel compounds by

adding Gaussian noise to the latent space representation of an identified top com-

pound, or by interpolating between two potent compounds. A similar vector in the

latent space could be decoded by the autoencoder to create a new molecule that

is similar to the original compound and potentially close in activity as well, in ac-
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cordance with the molecular similarity principle [Duran-Frigola et al., 2020]. This

process could be used to generate a diverse set of active ligands based on the current

best known compound. Since I have demonstrated that the mol2vec autoencoder is a

viable molecular representation for BO, using latent space compound representations

in a continuous BO instead of the multi-armed bandit described herein should be

feasible.

A second area of improvement would be to continue the exploration of different

compound representations. For example, an autoencoder could be trained to create

a vector representation that is specifically designed to optimize the performance of

the Bayesian optimization algorithm by using a modified outcome of the optimiza-

tion as the loss function for training. Additionally, it is possible to replace the GP

as the surrogate function for the BO algorithm. Since the current implementation

uses a simple ligand-based scoring function for binding affinity based on a GP alone,

replacing the surrogate function with a more accurate Bayesian neural network, or a

modified neural network that is able to output point predictions as well as the asso-

ciated uncertainty could increase the performance of the overall optimization. First

steps have been made in this direction by Dominik Klein, who conducted research

for his Master thesis under my supervision on the implementation of final-layer GP

models into graph-based neural networks for affinity prediction.

As the work described here was coming to a conclusion, a global pandemic was

declared by the World Health Organization. With the agreement of my supervisors, it

was decided to change focus to a new target and sub-project: the SARS-COV-2 main

protease Mpro and the discovery of novel peptide inhibitors as well as the development

of a active guided docking method described in Chapter 3.
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Chapter 3

In silico Design and Validation of
SARS-CoV-2 Mpro Inhibitors from
Modelling Substrate and Ligand
Binding

3.1 Preamble

Emerging at the end of 2019, and hence colloquially referred to as “COVID-19”, the

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) outbreak was de-

clared to be a global pandemic in March 2020 by the World Health Organization.

Very quickly, the scientific community rallied to tackle COVID-19 and to improve the

understanding of SARS-CoV-2 structure and function in an effort to develop vaccines

and drugs more quickly than ever before. Among the first major contributions, a

crystal structure of the SARS-CoV-2 main cysteine protease, Mpro, in complex with a

peptidomimetic inhibitor, N3, was solved and published by Jin et al. [2020]. Quickly

thereafter, a wealth of fragment-bound co-crystal structures of Mpro was released by

the XChem facility at UK’s Diamond Light Source which screened over 600 frag-

ments against Mpro, revealing an initial 80 fragment hits (later additions add up to

91 fragment hits total) [Douangamath et al., 2020]. This spawned the COVID Moon-

shot Project led by PostEra.ai and the XChem facility at Oxford [Chodera et al.,
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2020; Achdout et al., 2020]. The project crowd-sourced the design of inhibitors of

SARS-CoV-2 Mpro inspired by the original fragments and quickly created a database

of known actives (fragments and crowd-sourced fragment elaborations) with exper-

imentally determined inhibitory activity (IC50) with the goal of developing a small

molecule drug against COVID-19. The assayed bioactivity data of fragments and

designed compounds was made publicly available on the COVID Moonshot Project

Github [COVID-19 Moonshot project, 2020] and the PostEra.ai website [PostEra.Ai,

2020], and the crystal structures were hosted on the Fragalysis website provided by

the Diamond Light Source [Diamond, 2020].

Based on the rapid response of structural biologists to the pandemic, structure-

based computer aided drug design methods were now possible to be used effectively

to aid the global effort against COVID-19. In March of 2020, under the leadership of

Prof. Garrett Morris, a large collaboration of 28 computational and laboratory-based

scientists from Europe and Japan formed around the question: “How does SARS-

CoV2 Mpro bind and cleave its substrates and how can we use that information to

design inhibitors?”. This work resulted in a large collaborative publication that I

co-first authored in the journal of Chemical Science as an Edge Article [Chan et al.,

2021a].

My contribution to the collaboration was the in-depth intermolecular interaction

analysis of the 11 substrate models obtained from molecular dynamics simulations

carried out by my collaborator Henry Chan, followed by a characterization of the

binding sub-sites of Mpro and the extrapolation of the observed binding details to

guide future small molecule ligand design. In addition, I developed a 3D interaction

fingerprint for SARS-CoV-2 Mpro hat is able to characterize ligands by their bind-

ing pose. I also developed a constrained small molecule alignment method for the

implementation of a covalent protein-ligand docking workflow named Active-Guided
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Covalent Docking (AGCD). This work ties into the previous project surrounding the

Bayesian optimization of binding affinity (Chapter 2) in two ways. First, as one of the

overarching goals of the work described in this thesis is the development of methods

to help medicinal chemists make better decisions and increase efficiency during hit

discovery and hit-to-lead optimization, the development of the AGCD methodology

adds an additional method to the computational toolkit of a medicinal chemists. Fur-

thermore, AGCD could be used in tandem with the other methods described in this

thesis and is therefore a synergistic addition. Second, the theme of exploring diverse

molecular representations to find novel ways of representing molecules in medicinal

chemistry challenges is continued here. In this project, I create a 3D interaction

fingerprint that represents all interactions between protein and ligand (or peptide

substrate) on a residue or atom level. The fingerprint is able to distinguish between

different interaction types (e.g. hydrogen bonds vs, hydrophobic interactions) and

was used in this project to determine favourable interactions in different parts of the

Mpro binding site to guide inhibitor design.

The work of our collaboration has been published in Chemical Science [Chan et al.,

2021a]; due to my major contributions I was named as a co-first author. As a result

of the tightly interlinked nature of the work of each co-first author and in order to

present the story of the overall project clearly, I include some figures and paragraphs

as published in the original paper, which was published under an open source CC BY

3.0 license [Chan et al., 2021a]. I have indicated in each section, result and for each

method, which part of the work was performed by my collaborators. In addition, the

Appendix features a list of the methods used by my collaborators (and marked as

such) for the results shown in this thesis that were not directly created by myself. I

have included the relevant methodology for clarity and to understand the results my

collaborators contributed which I have built upon in this work.
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3.2 Introduction

The family of coronaviruses has long been known to infect humans and other animals.

When they jump from one species to another (zoonosis) they can lead to well docu-

mented and devastating outbreaks. This occurred twice before, with the outbreaks

of severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory

syndrome (MERS) in 2012 [De Wit et al., 2016]. In both these cases, the outbreak

was halted (although there are still occasional cases of MERS today), but the more

recent outbreak in late 2019 of COVID-19, which is caused by the severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2) was not contained, and has resulted

in a global pandemic that remains with us today [Zhu et al., 2020]. It prompted a

rapid response of the academic, non-profit, and commercial biomedical community to

find targeted treatments for COVID-19. In April 2020, [Jin et al., 2020] reported a

crystal structure of the SARS-CoV-2 main cysteine protease, Mpro, in complex with

a peptidomimetic inhibitor, N3, as well as an approach to identify potential antiviral

agents against the virus.

The main protease (Mpro), also known as 3-chymotrypsin-like protease, or 3CLpro,

has been previously identified as a key enzyme in mediating viral maturation in

SARS-CoV. [Anand et al., 2002; Yang et al., 2003] More specifically, the SARS-CoV-

2 genome encodes for two essential polyproteins: pp1a and pp1ab, which are required

for viral replication and transcription. [Zhou et al., 2020; Wu et al., 2020] In order to

release the functional proteins from the polyproteins, extensive proteolytic processing

by Mpro (and another protease, papain-like protease, or PLpro) is vital (Figure 3.1

c). As a result, Mpro is crucial for the correct processing or pp1a and pp2b after

translation and is directly responsible for the release of many key proteins (including

itself) from pp1a and pp2b (Figure 3.1 c).
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Mpro exists predominantly as a homodimer and fulfills its proteolytic function in

a similar way to classic cysteine proteases, through its catalytic cysteine (Cys-145),

which ultimately cleaves the peptide bond between key sites in the polypeptides. The

location of the catalytic dyad [Jin et al., 2020] in the active site of Mpro consisting

of Cys-145 and His-41 is located close to the dimer interface. Dimerisation has been

proposed to be required for Mpro catalytic activity, most likely since the active site

is located so close to the dimer interface and amino acids from one monomer make

up part of the active site of the other [Zhang et al., 2020]. In addition, monomeric

SARS-CoV-2 Mpro has been found to be inactive by itself [Xia and Kang, 2011], and

experiments using non-denaturing mass spectrometry (MS)-based assays suggest that

the monomeric form binds truncated versions (11-mer) of the natural substrates with

significantly lower affinity [El-Baba et al., 2020].

The substrate specificity of SARS-CoV-2 Mpro is fairly narrow, recognizing all 11

natural substrates with the following motif: [P4:Small] [P3:X] [P2:Leu/Phe/Val/Met]

[P1:Gln] ↓ [P1′:Gly/Ala/Ser/Asn], with the scissile amide indicated by the “↓” sym-

bol [Rut et al., 2021; Zhu et al., 2011]. In this case, the following amino acids are

classified as “Small”: Ala, Val, Pro or Thr. In addition, position “X” does not have

a specific motif and can stand for any amino acid. Throughout this work, the Berger

& Schechter notation is used to refer to protein and peptide residues in relation to

the scissile amide [Schechter and Berger, 1967]. The truncated 11-mer sequences of

the 11 natural substrates are shown in Figure 3.1. A visualization of the catalytic

cleavage of substrate s01, with the unique amino acid positions highlighted, is shown

in Figure 3.2. Overall, the importance of Mpro for viral replication in SARS-CoV-2,

its unique sequence specificity as well as its established importance in the broader

coronavirus family and classical cysteine protease activity profile indicate that Mpro

is an attractive antiviral drug target.
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Figure 3.1: Figure a) and b) are adapted from the original publication of this work
[Chan et al., 2021a]. a) Sequences of the 11 SARS-CoV-2 Mpro cleavage sites as 11-residue
peptides (s01-s11). Positively and negatively charged amino acids are colored blue and
red respectively. Polar amino acids are colored green, cysteine yellow and histidine purple.
b) Analysis of the relative abundance of residues at each position generated by WebLogo
[Crooks et al., 2004]. Glutamine is conserved at P1 and the residue at P2 always has a
hydrophobic side chain. c) Figure reprinted (adapted) with permission from John Wiley and
Sons (Copyright 2021 John Wiley and Sons) as published in [Lubin et al., 2022]. Overview
of the SARS-CoV-2 genome and proteome. The viral proteome is derived from the non-
structural polyproteins pp1a and pp1ab (shades of blue), the virion structural proteins
(pink/purple) and the open reading frame proteins (Orfs, shades of green). The pp1a and
pp1ab cleavage sites are indicated by inverted triangles (black for PLpro, blue/bold for Mpro).
Substrates s01-s11 (shown in a) are the sequences at the Mpro cleavage sites separating the
Nsps in order of appearance.
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Figure 3.2: Substrate cleavage reaction catalysed by the Mpro catalytic dyad on the
truncated 11-mer sequence of the natural substrate s01. Figure adapted from the original
publication of this work [Chan et al., 2021a]. The cleavage site is indicated as red scissors
and the following positions necessary for substrate recognition marked in color: orange (P4,
“Small”), grey (P2, Leu/Phe/Val/Met), green (P1, Glu), yellow (P1′, Gly/Ala/Ser/Asn).

Previous studies on the closely related SARS-CoV had also identified Mpro as a

viable drug target for SARS [Pillaiyar et al., 2016]. Furthermore, Mpro’s substrate

specificity described above is unlike any known human protease, therefore indicating

a potentially favourable side-effect profile since specific SARS-CoV-2 Mpro inhibitors

that mimic the natural substrate binding mode would not be expected to be recog-
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nised by human proteases [Zhang et al., 2020].

When this work was performed, no clinically approved drugs targeting Mpro were

available. However, several peptidomimetics as well as small molecule inhibitors

were known to target SARS-CoV Mpro and through the quick response of medici-

nal chemists around the world, also against SARS-CoV-2 Mpro [Pillaiyar et al., 2016;

Mengist et al., 2021; Chodera et al., 2020]. Indeed, during the course of my work,

the covalent Mpro inhibitor PF-07321332 developed by Pfizer had just entered clinical

trials with limited information available to the public and to our collaboration [Owen,

2021; Halford, 2021]. As is now known, PF-07321332 (now known as “Nirmatrelvir”

[Owen et al., 2021]) was approved by the FDA on the 22nd of December 2021 as an oral

Mpro inhibitor for the treatment of SARS-CoV-2 in combination with the protease

inhibitor “Ritonavir” under the brand name “Paxlovid” [Tantibanchachai, 2021]. In

addition, as one of the largest academic SARS-CoV-2 drug discovery projects, the

COVID Moonshot Project [Chodera et al., 2020; Achdout et al., 2020] was created

with the goal of discovering a novel drug against SARS-CoV-2 Mpro. The COVID

Moonshot Project brought together many researchers from around the globe with con-

tributors from University of Oxford, University of Cambridge, Diamond Light Source,

Weizmann Institute of Science in Rehovot, Temple University, Memorial Sloan Ketter-

ing Cancer Center, PostEra, University of Johannesburg, and the Drugs for Neglected

Diseases initiative (DNDi) in Switzerland. Soon after the collaboration started, the

Diamond Light Source conducted a high-throughput X-ray crystallographic screen

of over 600 fragments against Mpro that resulted in initial 81 fragment hits (later

additions add up to 91 fragment hits total) [Douangamath et al., 2020]. Figure 3.3

shows an example of one of these fragment co-crystal structures of the SARS-CoV-2

Mpro homo dimer covalently bound to the ligand “x0830” obtained from Fragalysis

[Diamond, 2020].
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Figure 3.3: Crystal structure of the Mpro homo-dimer co-crystallized with the fragment
x0830. [Chodera et al., 2020] The two subunits of the dimer are shown in blue and lilac,
and the ligands’ carbon, nitrogen, oxygen and hydrogen atoms shown in green, blue, red
and white, respectively. The fragment x0830 is covalently bound to the active site cysteine-
145 shown in magenta and with sulfur in yellow. The structure was obtained from the
COVID Moonshot Project as part of a large scale crystallographic fragment screen. This
structure and all other structures created by the COVID Moonshot Project can be found
on Fragalysis [Diamond, 2020].

The COVID Moonshot Project followed a unique approach to drug design by

crowd sourcing the design process. Based on the initial fragment screen, the COVID

Moonshot Project urged scientists from around the globe to submit designed fragment

elaborations that use one or more of the original fragments as inspiration. All submis-

sions are available online on the PostEra website and the COVID Moonshot Project

Github [PostEra.Ai, 2020; COVID-19 Moonshot project, 2020]. In this work, I use

the COVID Moonshot Project submission database as the source of potential covalent

inhibitors for the AGCD methodology and will henceforth refer to the crowd-sourced

compounds as “designs” and the original fragment they are based on as “inspiration

fragment”.
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In addition to the drug discovery projects mentioned above, multiple studies utiliz-

ing crystallographic and computational modelling techniques were conducted focused

on elucidating the catalytic mechanism [Świderek and Moliner, 2020; Arafet et al.,

2021; Ramos-Guzmán et al., 2020; Mondal and Warshel, 2020] and mechanism of in-

hibition [Acharya et al., 2020; Chodera et al., 2020; Loschwitz et al., 2021; Abel et al.,

2020; Ghahremanpour et al., 2020; Zhang et al., 2021] of SARS-CoV-2 Mpro, many of

which were deposited in the public COVID-19 Open Research Dataset (CORD-19),

set up by a consortium of researchers and the United States White House to col-

lect and organise research output about SARS-CoV-2 and other coronaviruses [Wang

et al., 2020]. These studies proposed that the Cys-145 thiol is deprotonated by His-41

during catalysis, increasing its nucleophilicity thus allowing the thiol to react with the

carbonyl of the scissile amide, forming the acyl-enzyme intermediate. A network of

hydrogen bonds between the enzyme and the peptide then stabilises the intermediate,

with important hydrogen bonds forming between the scissile amide carbonyl and the

“oxyanion hole” which is comprised of a series of backbone amide nitrogens (Gly-143,

Ser-144, Cys-145) at the active site. Regeneration of the active Mpro catalytic thiol

via hydrolysis of the acyl-enzyme intermediate releases the N-terminal product and

completes the catalytic cycle, enabling Mpro to cleave the next peptide.

While the current understanding of Mpro catalysis has been greatly advanced,

important questions still remain regarding the details of substrate binding and recog-

nition, the influence of induced fit on active site conformation, the role of water, and

catalysis as well as how insights of substrate binding can be used for inhibitor design.

In order to answer these questions, a collaboration was formed in April 2020

that united 28 experts in a variety of computational and laboratory-based methods

such as molecular mechanics (MM) and quantum mechanical (QM) techniques, non-

covalent and covalent automated docking, molecular dynamics (MD) simulations,
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density functional theory (DFT), combined quantum mechanics/molecular mechanics

(QM/MM) modelling, and interactive MD in virtual reality (iMD-VR). The result of

this collaboration was the publication titled “Discovery of SARS-CoV-2 Mpro Peptide

Inhibitors from Modelling Substrate and Ligand Binding” published in Chemical

Science in September 2021 [Chan et al., 2021a] of which I was a co-first author.

In this work, my co-authors and I provide detailed, atomic-level insights into the

interactions between SARS-CoV-2 Mpro (henceforth just referred to as Mpro) and the

11-residue substrate models of the 11 natural cleavage sites (named “s01” to “s11”,

in order of appearance in the sequence of the viral polyproteins pp1a and pp1ab)

and utilize this information to design and test peptide inhibitors in vitro as well as

conduct an in silico design approach for small molecule Mpro inhibitors. An overview

of the methods used and results obtained is shown in Figure 3.4.

Figure 3.4: Figure adapted from the original publication summarising the methods, topics
and insights gained into how SARS-CoV-2 Mpro recognises its substrates and how peptide
and small molecule inhibitor design can be improved [Chan et al., 2021a].

A detailed summary of which part of the project was undertaken by myself can be

found in the Preamble to this thesis above (Section 3.1). In this chapter, I describe
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primarily my contribution to this large collaborative project, focusing on the detailed

interaction analysis of substrates and peptide inhibitors with Mpro as well as the

small molecule screening and design campaign. However, for a full description of the

entire work performed by the collaboration, please refer to the original publication

[Chan et al., 2021a]. In addition, all results are freely available via GitHub (https:

//github.com/gmm/SARS-CoV-2-Modelling).

3.3 Materials & Methods

All of the following methods are my own work except otherwise stated. Some figures

and paragraphs have been directly adapted from the original publication with minor

adjustments as covered by the CC BY 3.0 license [Chan et al., 2021a]. Methods for

results generated by my collaborators that are mentioned (and labelled as such) are

described in the Appendix B, Section B.1.

3.3.1 Experimental Studies on Mpro Activity and Inhibition

Experimental studies were performed by Tika R. Malla, Tobias John, Eidarus Salah,

Petra Lukacik, Claire Strain-Damerell, C. David Owen, Martin A. Walsh and Victor

Mikhailov. Details about peptide synthesis, substrate and peptide inhibitor turnover

assay, substrate binding assay, dose response curve analysis and LCMS analysis are

given in the Appendix B, Section B.1.

3.3.2 Molecular Dynamics Simulations

Details about the methodology performed by H.T. Henry Chan are given in the

Appendix B, Section B.1.
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3.3.3 In silico Design of SARS-CoV-2 Mpro Peptide In-
hibitors

Details about the methodology performed by Debbie K. Shoemark are given in the

Appendix B, Section B.3.

3.3.4 Active-Guided Covalent Docking

The idea behind Active-Guided Covalent Docking (AGCD) is to match each com-

pound design proposed by a crowd-sourced medicinal chemist to the corresponding

covalent origin fragment for which we have an X-ray crystal structure and use the

binding pose information of the fragment for the docking process. The justification

for this approach is inspired by fragment-based drug discovery and in particular the

findings of [Malhotra and Karanicolas, 2017] who found that for elaborated ligands, in

86% of the 297 paired ligands, the larger elaborated ligand did not change its binding

mode relative to the smaller ligand.

In the COVID Moonshot Project, the inspiration fragment was cited by the crowd-

sourced designer of the compound [Chodera et al., 2020; Achdout et al., 2020]. I

matched each of the designed compounds to their corresponding inspiration frag-

ments, and calculated the maximum common substructure (MCS) between them.

Next, an initial conformation of the design was aligned to the fragment before dock-

ing. A full overview of the AGCD workflow is described in Section 3.4.4 and Figure

3.18. Since the alignment method in RDKit [Landrum et al., 2006] (v2020.03.1) was

insufficiently constrained, I created a new, stricter constrained alignment method

(named MCS-align, see Section 3.4.4.1) that uses the maximum common substruc-

ture between two molecules as the basis for the alignment. The method uses atom

constraints to force the corresponding atom positions of the MCS into the same

conformation, followed by a constrained energy minimisation, thus keeping the con-
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formation of the MCS constant. Docking was performed using AutoDock4 (AD4),

which by default treats ring conformations to be rigid when sampling ligand confor-

mations before docking [Morris et al., 2009]. Although it is possible to use specialised

docking methods such as the implementation of “glue dummy atoms” developed by

Forli and Botta [2007] to overcome this issue and create flexible ring docking, this

limitation is useful for AGCD where the goal is to incorporate as much information

of known actives into the docking process as possible. As a result of the alignment

process, all rings present in the MCS for the designed compounds are aligned to the

crystallographically observed binding pose of the rings in the inspiration fragment.

Each design was then docked to the corresponding Mpro crystal structure of the ori-

gin fragment, after generation of the homodimer, and the protonation and charge

optimization using Protonate3D in MOE [Chemical Computing Group ULC., 2019].

The FlexRes method in AD4 for covalent docking [Morris et al., 2009] was used.

It was assumed that each design with a cysteine-targeting covalent warhead would

react with the Cys-145 of Mpro. The covalent adduct of the COVID Moonshot design

after reacting with the active site Cys-145 was selected as a flexible residue and a

water molecule was included as the “dummy” ligand. Docking and grid parameter

files were generated for each Cys-145-inhibitor adduct individually with the rest of

the corresponding co-crystallised dimeric Mpro structure treated as the rigid receptor

molecule. The PDBQT files for docking were generated using the prepare receptor4.py

and prepare ligand4.py scripts implemented in MGLTools v1.5.7 [Morris et al., 2009]

for the protein and ligand, respectively. Docking with AD4 (v4.2.6) [Morris et al.,

2009] was performed using the Lamarckian Genetic Algorithm (LGA) and the follow-

ing AD4 hyperparameters: population size 300; maximum number of energy evalua-

tions 250,000; maximum number of generations 27,000; number of dockings 100. The

remaining parameters were kept at default levels.
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The scoring function used by AD4 includes pairwise evaluation of intermolecu-

lar interactions of the ligand and the protein, intramolecular interactions within the

ligand and between residues of the protein and the covalent adduct, and an estima-

tion of the conformational entropy lost upon binding (for details about the scoring

function see Chapter 1 Section 1.2.2). For the evaluation of the covalent docking pro-

cedure, only the intramolecular terms of the covalent adduct are relevant, since they

correspond to the changes in the energy of the ligand bonded to the covalently-bound

Cys-145 residue. Since AD4 automatically clusters docking results by the total esti-

mated free energy of binding, covalent docking results must be re-clustered using the

“Final Total Internal Energy” instead (as reported in the DLG docking log file output

by AD4). For clustering the docked poses of the covalent adducts, I implemented a

hierarchical clustering procedure (similar to the one used in the native AD4 method).

A new cluster was seeded with the lowest energy pose, and all remaining poses within

a threshold (< 2 Å RMSD) are added to that cluster. The procedure was repeated

for the next lowest energy pose, until all docked poses have been assigned to a cluster.

RMSD values between poses were calculated using the Open Drug Discovery Toolkit

(ODDT [Wójcikowski et al., 2015a]), to account for symmetry, such as rotations of

equivalent methyls in tertiary butyl groups.

Docked poses were compared to the original inspiration fragment crystal structure

using SuCOS [Leung et al., 2019]. SuCOS produces scores to a value between 0

and 1, where 1 indicates perfect overlap and identical molecules. SuCOS computes

the shape and pharmacophoric feature overlaps between two molecules, and both

scores are weighted equally in the final SuCOS score. Based on work by Leung et al.

[2019], a SuCOS score of 0.55 between two molecules was found to be equivalent to

a conformational RMSD of 2 Å. The original default parameters for SuCOS do not

produce normalized scores which might result in SuCOS scores of larger than 1 for

86



some molecules. As a result, I created a new, normalized version of SuCOS, which

is freely available for use on GitHub (github.com/MarcMoesser/SuCOS [Moesser,

2021]). This adapted and normalized SuCOS method was used for this work.

Finally, covalent docking for Nirmatrelvir was performed identically to that for

the other covalent Moonshot designs with the exception that no pre-alignment of

the ligand was performed prior to docking. Instead, a random conformation of the

ligand was used to seed the docking process. The azanide nitrogen resulting from the

covalent attachment of the nitrile warhead to Cys-145 was assigned a negative charge

prior to docking (Structure and docked pose of Nirmatrelvir is shown in Section 3.4.5

Figure 3.20.

3.3.5 Analysis of SARS-CoV-2 Mpro Active Site Interactions

Snapshots from MD models (see Appendix B, Section B.1) as well as the XChem

derived crystal structures and covalent docking poses were analysed using the inter-

action analysis tool Arpeggio [Jubb et al., 2017]. Arpeggio was developed to identify

and classify interactions within and between proteins and protein, DNA, or small-

molecule ligands. Arpeggio uses a radial distance cutoff of 5 Å between interacting

atoms and the expanded definition of interaction types implemented in Interaction

Fingerprints (IFPs) published by Marcou and Rognan [Marcou and Rognan, 2007]

which were based on previous interaction type definitions used in Structural Inter-

action Fingerprints (SIFt, [Singh et al., 2006]). This approach combines matching

complementary atom types (e.g. hydrogen bond donor and acceptor) with geometric

rules (e.g. a donor-acceptor distance of less than 3.5 Å and an angle constraint on

the D-H-A angle for hydrogen bonds) to identify interactions. Beyond interactions

present in the original SIFt, Arpeggio is able to identify van der Waals’, ionic, car-

bonyl, metal, hydrophobic, halogen bond, hydrogen bonds and specific atom–aromatic
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ring (cation–π, donor–π, halogen–π, and carbon–π) and aromatic ring–aromatic ring

(π–π) interactions.

For Arpeggio analysis of the MD snapshots of the substrate and designed pep-

tides (Section 3.4.1.1 & Section 3.4.2), a representative snapshot for each complex

was chosen by selecting the snapshot within the highest populated cluster that had

the lowest RMSD compared to all other snapshots in that cluster. From the docked

covalent Moonshot submission compounds, the lowest energy pose of the highest

populated cluster obtained from AD4 dockgin (see Section 3.3.4) was chosen. Anal-

ysis of the XChem fragments and Moonshot designs was done using the reported

crystallographically observed conformations obtained from Fragalysis where available

[Diamond, 2020; Chodera et al., 2020; Achdout et al., 2020; Douangamath et al.,

2020]. Before Arpeggio analysis, the ligand-Mpro complex was processed by cleaning

the PDB file using PDBtools and running Arpeggio on all ligand-Mpro interactions

as described by Jubb [2020]; Jubb et al. [2017]. Then, Arpeggio was used to identify

all intermolecular atom-atom interactions in a given protein-ligand or protein-peptide

complex and to classify them as “Clash”, “Covalent”, “VdW Clash”, “VdW”, “Prox-

imal”, “Hydrogen Bond”, “Weak Hydrogen Bond”, “Halogen Bond”, “Ionic”, “Metal

Complex”, “Aromatic”, “Hydrophobic”, “Carbonyl”, “Polar” or “Weak Polar” [Jubb

et al., 2017]. Based on this atom-level description of the environment of the peptide

or ligand in the active site, three levels of analysis were conducted, describing the

interaction in different levels of detail (see Figure 3.5).

First, inspired by previous approaches to interaction fingerprints such as IFPs

[Marcou and Rognan, 2007] and SIFts [Singh et al., 2006] a custom interaction fin-

gerprint was created that denotes the presence or absence of a general “interaction”

(1) vs “no interaction” (0) in the fingerprint bit-vector for each active-site residue in

the protein-ligand or protein-peptide complex (Figure 3.5 left branch).
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Figure 3.5: Arpeggio-derived intermolecular interactions between Mpro and the ligand or
peptide are analyzed at three levels of detail. High level fingerprints are created (left branch)
based on the existence of any interactions between ligand and protein residues. Residue level
interaction analysis (middle branch) was performed to obtain active-site subsites and the
common type of interaction observed at each site. Atom-level analysis (right branch) reveals
specific interactions such as hydrogen bonds and hydrophobic pockets to guide inhibitor
design.
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An “interaction” was classified as any of the following Arpeggio interaction types:

“VdW”, “Hydrogen Bond”, “Weak Hydrogen Bond”, “Ionic”, “Halogen Bond”, “Aro-

matic”, “Hydrophobic”, “Carbonyl”, “Polar” or “Weak Polar”.

As has been shown by Rácz et al. [2018], binary interaction fingerprints such as

IFPs can be compared using the Tanimoto distance. I applied the same principle to

the Arpeggio-derived interaction fingerprints, calculating the Jaccard distance [Jac-

card, 1912] between different fingerprint bit vectors. In addition, to identify and

analyse similar ligands, I created a clustering algorithm to cluster the ligands by

their calculated Jaccard distance using two different thresholds of 0.5 and 0.7. I used

a hierarchical clustering approach (same as described above for clustering of docked

poses) that identifies all molecules with pairwise similarities below the threshold, cre-

ates a cluster for them and then moves on to the rest of the ligands not currently

part of a cluster to repeat the process.

The residue level interaction matrix of the substrates and peptide inhibitors (Fig-

ure 3.5 middle branch) was created by identifying the residues in each binding subsite

in the protein active site by their interaction with the peptide substrate residues.

Highly conserved residues between all peptide substrates were noted on a residue and

protein-atom level to guide inhibitor design.

Finally, on an atomic interaction level (Figure 3.5 right branch), the pairwise

atomic interactions between the ligand and Mpro atoms in the fragment crystal struc-

tures, as well as between the atoms of the peptide substrates and Mpro, were used as

a baseline to guide potential fragment elaboration. To determine if the docked poses

of the COVID Moonshot designs exhibit the same binding profile as one of the iden-

tified fragment clusters, a standardised cluster profile was created for each fragment

cluster which records the presence of a residue-level interaction if it was classified by

Arpeggio as one of the following “major” interactions: Aromatic, Hydrophobic, Halo-
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gen Bond, Polar, Hydrogen Bond, Ionic, Carbonyl. If more than 70% of all recorded

major protein atom interactions (e.g. a strong polar interaction with an aspartic acid

carboxylic oxygen) of a particular cluster are occupied for an individual ligand, the

ligand was classified as a member of that cluster.

3.3.6 Hydrophilicity Maps

To calculate whether a given Mpro subsite corresponded to a hydrophilic or hydropho-

bic pocket, I developed an interaction-based hydrophilicity score. All identified ( using

Arpeggio) intermolecular atom-atom interactions with a given residue in the sub-

strate were classified as either hydrophobic (hydrophobic, aromatic or halogen bond

Arpeggio interaction types) or hydrophilic (hydrogen bond, weak hydrogen bond,

ionic, carbonyl, or polar Arpeggio interaction types). I excluded the “VdW” and

“Weak Polar” interaction types since they were deemed less informative and in some

cases even redundant as individual atom-atom interactions. The hydrophilicity score,

Zhydro, of a given subsite over all pairwise atom-atom interactions was then calculated

as follows:

Zhydro =
∑
i,j

Ci,j
hydrophilic −

∑
k,l

Ck,l
hydrophobic (3.1)

The first term is calculated over the sum of all pairs of ligand atoms, i, and protein

atoms, j that form hydrophilic interactions and the second term is calculated over the

sum of all pairs of ligand atoms, k, and protein atoms, l that form hydrophobic interac-

tions. The sum of all hydrophobic atom-atom interactions,
∑

k,l C
k,l
hydrophobic, was then

subtracted from the sum of all hydrophilic atom-atom interactions,
∑

i,j C
i,j
hydrophilic,

to create the hydrophilicity score, Zhydro for each subsite. A higher hydrophilicity

score correlates with more hydrophilic interactions and vice versa.
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3.3.7 Plasticity Analysis

I analysed the effect of ligand binding on the conformational plasticity of Mpro by

calculating the per-residue heavy atom root-mean square deviation (RMSD) between

all pairs of 333 different Mpro co-crystal structures obtained from Fragalysis [Diamond,

2020] using MDAnalysis v. 1.1.1 [Richard J. Gowers et al., 2016; Michaud-Agrawal

et al., 2011].

3.4 Results and Discussion

3.4.1 SARS-CoV-2 Mpro-Substrate Interaction Analysis

3.4.1.1 Models of SARS-CoV-2 Mpro-Substrate Peptide Complexes

The initial comparative modeling and MD simulation was performed by Garrett M.

Morris, with subsequent MD calculations being carried out by H.T. Henry Chan.

In order to obtain high-quality 3D models of the protein-substrate complex, an 11-

mer peptide was created as a surrogate for each of the 11 natural cleavage sites ranging

from position P6 to P5′ (Figure 3.1) [Wu et al., 2020]. These 11-mer peptides are

referred to as “substrates” since all of them have been experimentally confirmed to be

cleaved by Mpro, though with different efficiencies (by Tika R. Malla, see Appendix B,

Section B.2). Following the comparative modelling procedure outlined in Appendix

B, Section B.1.1, the substrates were modelled into the active site of chain A of

the Mpro dimer obtained from the crystal structure 6yb7 (high resolution structure

with unliganded active site, deposited by Owen et al. [2020]) and subjected to three

independent explicit-solvent MD simulations of 200 ns each. In the following sections,

all Mpro residue numbers and residue names unless otherwise stated, refer to chain A

of the dimer.

During explicit-solvent MD, all substrates remained tightly bound in the active

site and substrate backbone stability was maintained. However, some local sidechain
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fluctuations were observed for individual models, specifically around P3. Overall,

C-terminal P′ residues were observed to be more conformationally flexible than N-

terimal P-side residues.

3.4.1.2 Hydrogen Bond Interaction Network

In order to alayse the role ff hydrogen bonding in Mpro substrate recognition and

binding, the persistence of individual hydrogen bonds (HBs) was monitored during

MD simulations (performed by H.T. Henry Chan), while I analysed the MD-derived

snapshots using the bioinformatics tool Arpeggio [Jubb et al., 2017], as outlined in

Section 3.3.5.

During MD and Arpeggio analysis, 12 HBs were consistently identified (Figure

3.6). Backbone-backbone HBs at Glu-166 (position P3, HB 2 & 3) and Thr-26 (po-

sition P2′, HB 10 & 11) were the most persistent during MD (Figure 3.6). Hydrogen

bonds 5-9 are all formed between the highly conserved Gln residue at P1 and the

protein, divided between side chain (HBs 6 and 7) and backbone (HBs 5,8 and 9).

Despite the presence of a Gln in all 11 substrates at position P1, the hydrogen bonds

formed by Gln at P1 are not as constant as the stabilizing backbone hydrogens at P3

and P2′. However, HBs 6 and 8 are significantly more stable than the other HBs at P1

and correspond to the oxyanion hole (which has been reported to play an important

role in the stabilisation of the acyl-enzyme intermediate as described above). It is

comprised of the backbone HBs between the carbonyl oxygen at P1 and the backbone

N-H on residue Cys-145 and Gly-143.

A visualization of the binding pose of substrate s01 in the active site of Mpro

with hydrogen bonds HB1-3 and HB5-12 is shown in Figure 3.7. Hydrogen bond 4

between the backbone nitrogen of P2 and residue Gln-189 in the Mpro active site was

not observed in this snapshot.
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Figure 3.6: Figure created by H.T. Henry Chan and adapted from the original publication
of this work [Chan et al., 2021a]. a) Overview of the 12 major identified hydrogen bonds
exemplified by substrate s01. The scissile amide is indicated by a red pair of scissors. b)
The observed percentage prevalence of hydrogen bonds 1-12 for each substrate. Snapshots
were taken every nanosecond from 600 ns of explicit-solvent MD per substrate. HBs 2-3
and 10-11 are observed in nearly 100% of snapshots, strongly stabilizing the pose of the
substrate. HBs 6-9 form the Gln recognition motif.
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Figure 3.7: a) Overview of the binding pose of substrate s01 in the active site of Mpro.
The most representative conformation obtained from MD used for interaction analysis as
described in Section 3.3.5 is shown. Key Mpro amino acids involved in binding are labelled
and the hydrogen bonds 1-4 and 6-12 that are involved in s01 recognition (see Section
3.4.1.2) are indicated by yellow dotted lines and their distance labelled. Subsite S2-S2′ are
colored in yellow, purple, light blue and turquoise for S2, S1, S1′ and S2′, respectively. b)
Rotated close-up of the binding site at the scissile amide bond showing the deeply buried
Gln residue at S1. The hydrophobic S2 pocket accomodating the s01 Leu residue at P2
buries the Leu side chain deeply into the pocket, where it interacts primarily with Met-49
and Met-165.

However, the key hydrogen bonds for stability (backbone HBs 2 & 3 and 10 &

95



11 and the Gln recognition motif at the oxyanion hole and the Gln side chain HBs

6 & 7 are clearly visible. This interaction pattern is present in all 11 substrates. In

addition, Gln at P1 is clearly deeply buried in the active site pocket, fixed in place

by several hydrogen bonds as well as the lack of space confined in the pocket itself.

3.4.1.3 Non-Covalent Interaction Analysis

In order to identify all key interactions (beyond just HBs as described above) between

the modelled substrates and Mpro as well as to classify the binding sub-pockets, I

conducted a full interaction analysis covering all types of non-covalent interactions

using the bioinformatics tool Arpeggio [Jubb et al., 2017] on snapshots extracted from

the explicit-solvent MD simulations as described in Section 3.3.5 [Jubb et al., 2017].

A residue level analysis was conducted that summarized all interactions between the

substrates and Mpro in order to identify the sub-pockets that each residue on the

substrate binds to (Figure 3.8 and Figure 3.7). At position P1, six of the eight most

common interactions with Mpro residues are present in most (i.e., ≥ 9/11) substrates.

This indicates a rigid binding mode at position P1 driven by the specific recognition

of the conserved Gln residue present in every substrate at P1. Specifically, Mpro

residues Gly-143, Ser-144, Cys-145, His-163 and Glu-166 interact with at least 10 of

the 11 substrates. Interactions at P2 (His-41, Met-49, His-164 and Met-165) are also

conserved between substrates, although to a lesser extent than at P1. Overall, residue-

level interactions appear to be less conserved with increasing distance to the scissile

amide bond between P1 and P1′, indicating a higher degree of movement during MD

and therefore weaker binding. Nonetheless, some Mpro-substrate interactions further

away from the scissile amide bond, such as with Mpro residue Thr-24, Thr-26 and Glu-

166 at P3′, P2′ and P3, respectively, are highly conserved. In addition, interactions

on the P′ side are overall less conserved and less frequent than interactions on the
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P-side, indicating a tighter, more well defined binding groove for substrates on the

P-side.

Figure 3.8: Map of non-covalent interactions between the 11 substrates and Mpro derived
from interactions identified by Arpeggio [Jubb et al., 2017]. The most representative pose
for each substrate was obtained from explicit-solvent MD as described in Section 3.3.5.
Yellow indicates that no substrate forms this interaction at a given subsite, while dark
blue indicates the interaction is formed by most/all substrates as labelled. The P1 subsite
has highly conserved interactions between all 11 substrates, mostly interacting with the
same amino acids in the protein, indicating a conserved, highly specific binding mode for
recognition of the Gln residue at P1.

3.4.1.4 Hydrophilicity Analysis

After identifying key residue-level contacts between Mpro and the substrate, I ana-

lyzed the degree to which Mpro subsites can be characterized as either hydrophilic or

hydrophobic pockets. For that purpose, I created an Arpeggio-derived hydrophilicity

score as described in Section 3.3.6. To analyze hydrophilicity on a subsite-level, I

identified every interaction between the protein and substrate at every subsite and

calculated the corresponding hydrophilicity score. The hydrophilicity analysis re-

vealed that the S1 subsite is the most hydrophilic site of all the 11 subsites in the

substrate–Mpro complexes, while the S2 site was consistently identified as a hydropho-
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bic pocket (Figure 3.9). In addition, with increasing distance from the cleavage site

on both the prime and non-prime sites, the hydrophilicty score varies more strongly

between substrates and tends to be amphiphilic. This analysis is in agreement with

the MD-based results described above where no consistent HBs were identified to-

wards the N- and C-termini of the substrate 11-mers and higher degrees of movement

during MD was observed. Nonetheless, subsites S3 and S2′ are slightly biased towards

hydrophilic interactions.

Figure 3.9: Figure showing the hydrophilicity or hydrophobicity of each Mpro subsite. The
hydrophilicty score was calculated for each substrate as described in the Methods Section
3.3.6 using Arpeggio to identify interactions [Jubb et al., 2017]. A higher score correlates
to a more hydrophilic pocket. Subsite P1 is shown to be highly hydrophilic, recognizing
the conserved Gln residue mainly through polar interactions. Pocket P2 was observed to
be a hydrophobic pocket. Other subsites did not show a major bias towards hydrophilic or
hyrophobic interactions.

3.4.1.5 Conformational plasticity in Mpro crystal structures

Previous studies have compared the dynamics of ligand binding sites across SARS-

CoV-2, SARS-CoV and MERS-CoV Mpro [Cho et al., 2021]. Here, I investigated
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the conformational plasticity of the SARS-CoV-2 Mpro active site upon binding by

comparing 333 Mpro-ligand co-crystal structures obtained from Fragalysis [Diamond,

2020] to a reference apo structure of Mpro, PDB entry 6yb7 [Owen et al., 2020] by

computing per-residue RMSD values (Figure 3.10 a). A high degree of plasticity was

observed at residues Gln-19, Thr-24, Thr-25, His-41, Thr-45, Ser-46, Met-49, Asn-

119, Asn-142, Met-165, Glu-166, Arg-188, Gln-189 and Ala-191. A visualization of

the plasticity as an overlay of all 333 structures is shown in Figure 3.10 b. The S1

subsite is particularly rigid, with almost no movement across all 333 crystal struc-

tures. Since S1 is primarily responsible for Gln recognition, which is a driving force of

substrate specificity, a high degree of rigidity is to be expected. However, high plas-

ticity was observed at the S2 site, changing drastically upon ligand binding, especially

at residues Thr-45, Ser-46 and Met-49 (Figure 3.10 b). In all 11 natural substrates,

the S2 site accommodates a hydrophobic amino acid. The high degree of plasticity

at S2 therefore suggests that larger hydrophobic groups could be accommodated in

the S2 pocket and should be considered when designing peptide and small molecule

ligands. It also has implications for structure-based virtual screening: to capture

the Mpro plasticity when using rigid-protein docking, multiple Mpro conformations

should be used, ideally based on ligand similarity between known structures and the

screening compounds. Potential ligands with high similarity to known binders (such

as fragment elaborations of known fragment binders) should be docked into the holo

Mpro structure of the highly similar known binder to take advantage of the induced-fit

conformation of Mpro around the active site.

3.4.1.6 Summary of Key Insights into Mpro-Substrate Binding

The following trends emerge from the above described study on SARS-CoV-2 Mpro

in complex with models of all 11 of its substrates: (i) binding stability is partly

conferred by a series of HBs from P4 to P4′, in particular between the backbones of
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Figure 3.10: a) Analysis of the active site plasticity of 333 Mpro co-crystal structures.
Active site residues (res. 19, 21, 23–27, 41, 45, 46, 49, 54, 67, 69, 119, 121, 140–145, 163–168,
172, 181, 187–192) were chosen based on the MD analysis of the 11 substrate–Mpro models
and correspond to all Mpro residues that interaction any substrate. The violin plots show
the distributions of per-residue heavy atom RMSD values between the 333 Mpro–ligand co-
crystal structures53 and a reference uncomplexed structure (PDB 6yb7 [Owen et al., 2020]).
Each Mpro subsite is colour-coded. b) Overlay of the lines representation of all 333 Mpro

co-crystal structures. The subsites S2, S1 and S1′ are labelled. Subsites S1′ and especially
S1 show low plasticity, barely moving between co-crystal structures. S2 however shows a
large degree of flexibility, especially at residues Ser-46 and Met-49 where large movements
of the side chain occur to alter the size of the S2 pocket.
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Mpro Glu-166 and Thr-26 at substrate positions P3 and P2′ respectively, as well as HBs

involving the conserved P1 Gln sidechain; (ii) substrate residues on the N-terminal

side of the cleavage site (P-side) form more, and more consistent, interactions with

Mpro compared to the P′ side, with interactions at Met-49, Gly-143, Ser-144, Cys-

145, His-163, His-164, Met-165 and Glu-166 being most conserved. This observation

is in accordance with results published by Shaqra et al. [2022], who were able to

obtain crystal structures for nine out of the 11 natural substrates in complex with

Mpro and report that the binding mode of non-prime residues is more conserved

between substrates, while the binding mode of prime-side residues is more varied and

even lack full electron density in many cases, particularly for residues beyond the

P3′ position. These results suggest that the S1 and S2 pockets are therefore prime

targets for active site substrate-competing inhibitor design due to their well-defined

and consistent character, large energy contributions to substrate binding, high degree

of flexibility in S2 and vital conserved hydrogen bonds in S1 to compete with substrate

recognition.

3.4.2 In silico Design and Experimental Validation of Pep-
tide Inhibitors

3.4.2.1 In silico Mutational Analysis of Substrate Peptides Enables In-
hibitor Design

As part of our collaboration, an in silico mutational analysis of our 11-mer substrate

models was performed by Dr. Deborah K. Shoemark at the University of Bristol,

with the aim of designing peptide inhibitors that would bind more tightly to Mpro,

out-competing the natural substrates without being turned over themselves. A more

detailed elaboration of the method provided by Deborah Shoemark is given in Ap-

pendix B, Section B.3.
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Substitution of residues at each position in the substrate via an in silico ala-

nine scanning experiment was conducted using the interactive web application BAlaS

which uses the BudeAlaScan [Wood et al., 2020] and the BUDE SM algorithm [Ses-

sions, 2021] for Predictive Saturation Variation Scanning (PreSaVs) [Hetherington

et al., 2021]. By “mutating” to the 19 other amino acids at each position, the al-

gorithm computes the ∆∆G value at each position between the original substrate

residue and the substituted residue to find the best possible 11-residue sequence that

would maximize the binding affinity at each subsite, resulting in five designed pep-

tides (Figure 3.11). Interestingly, all of the designed peptide inhibitors, with the

exception of p16, had a bulky, aromatic amino acid at position P2. This is in agree-

ment with our previous interaction and plasticity analysis of the natural substrates

(Section 3.4.1) that showed that the hydrophobic binding pocket at S2 has a high

degree of flexibility, potentially enabling Mpro to accommodate larger hydrophobic

side chains such as the Trp or Phe side chains of peptide p12-15.

To test if the designed peptides are indeed inhibitors of Mpro, the inhibitory ac-

tivity of peptides 12, 13, 15 and 16 was determined by dose-response analysis using a

mass spectrometry-based assay which monitors both substrate s01 depletion and cor-

responding N-terminally cleaved product formation with different peptide inhibitor

concentrations (this experiment was performed by Tika R. Malla). Details of the

experimental procedure and results can be found in the Appendix B, Section B.4. All

four tested peptides showed moderate inhibitory activity: p12 (IC50 = 5.36 ± 2.17

µM), p13 (IC50 = 3.11 ± 1.80 µM), p15 (IC50 = 5.31 ± 1.08 µM), and p16 (IC50 =

3.76 ± 1.19 µM) with p13 being the most potent inhibitor among the set (Appendix

B, Figure B.4).
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Figure 3.11: Sequences of designed peptides p12–p16. Positively charged amino acids are
colored blue. Polar amino acids are colored green.. No negatively charged amino acids were
part of the designed peptides. Strikingly, except for p15, the P2 position was occupied by
a bulky amino acid with a large aromatic side chain (Trp or Phe).

3.4.2.2 Understanding the Basis of SARS-CoV-2 Mpro Inhibition by the
Designed Peptides

Explicit-solvent molecular dynamics simulations of the designed peptides were per-

formed by H.T. Henry Chan (details about the method can be found in the Appendix

B, Section B.1.2). Using the conformation of the most representative pose (pose with

the lowest RMSD to all other poses in the highest populated cluster) obtained from

MD, I performed the Arpeggio-based interaction analysis to identify key interactions

and compared the insights gained to the original substrates.

The residue-level analysis of the peptide inhibitors revealed a similar pattern to

the substrates with highly conserved interactions between all inhibitors at S1, S2 and

the key stabilizing backbone HBs with Thr-26 and Glu-166 (Figure 3.12 a & Figure

3.13). All the peptide inhibitors were found to bind in the oxyanion hole, making

contact with Cys-145, Gly-143 as well as Ser-144 and His-163 in the S1 binding site

(Figure 3.12 a & Figure 3.13). Interestingly, peptide p14 does not contain a glutamine

residue at P1 (Figure 3.11) but was still found to form all the key interactions at P1

(Figure 3.12 a), indicating that nitrogen containing heterocycles could be a possible

alternative to the glutamine side chain when binding into the S1 pocket.

The main difference in substrate and peptide binding was observed at S2. BUDE

predicted that the substitution of Leu or Val present in 10 out of the 11 substrates

to a bulky amino acid with an aromatic side chain such as Trp or Phe would increase
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binding affinity significantly (see Appendix B, Section B.3).

Figure 3.12: a) Map of non-covalent interactions between the MD-derived peptide models
and Mpro identified by Arpeggio [Jubb et al., 2017]. The most representative pose for each
peptide was obtained from explicit-solvent MD as described in Section 3.3.5. Yellow color
indicates that no peptide forms this interaction at a given subsite, while dark blue hue
indicates the interaction is formed by most/all peptides as labelled. b) Hydrophilicity map
for both, the peptide inhibitors and the substrates for comparison. The hydrophilicty score
was calculated as previously described (Section 3.3.6). A higher score correlates to a more
hydrophilic pocket. Similar trends emerge as for the substrate analysis (Figure 3.8 & 3.9).
Subsite P1 is highly hydrophilic while the P2 pocket is highly hydrophobic. Other subsites
did not show a major bias towards hydrophilic or hyrophobic interactions. Strikingly, p12,
p13 and p14 form almost double the number of hydrophobic interactions in P2 than the
natural substrates, indicating that Trp and Phe might be able to bury more deeply into S2.
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Figure 3.13: Overview of the binding mode of the peptide inhibitor p13 modelled in the
active site of Mpro. Shown is the most representative pose obtained from MD used for
interaction analysis as described in Section 3.3.5. Key Mpro amino acids involved in binding
are labelled and the key hydrogen bonds and the π-π stacking with His-41 are highlighted as
red dotted lines. Subsites S2 and S1 are colored in yellow and purple, respectively. Peptide
inhibitor p13 occupies all key hydrogen bonds previously identified to be curcial for tight
binding (Thr-26, Glu-166) as well as glutamine recognition (oxyanion hole Cys-145, Gly-143
and HBs with Phe-140 and His-163. In addition, the Trp residue at P2 forms π-π stacking
interactions with His-41 blocking the catalytic dyad.

One reason for this high increase in predicted affinity could be the ability of the S2

pocket to encompass relatively large groups (as described in Section 3.4.1.5, allowing

for a larger hydrophobic surface area for interaction and therefore increasing the

binding affinity. Indeed, the hydrophilicity score analysis (Figure 3.12 b) of all non-

covalent interactions between the P2 residue in peptides p12, p13 and p14 and the

S2 site in Mpro revealed that they form more than double the number of hydrophobic

interactions than any of the substrates, indicating that the Trp and Phe residues

might be buried more deeply in the hydrophobic pocket. In addition, the Trp residue

at p13 was observed to form additional π-π stacking interactions with the His-41

residue of the catalytic dyad in the active site (Figure 3.13). The close contact to

His-41 might partially explain the inability of Mpro to catalyse the cleavage of the
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P2-Trp-containing peptide inhibitors, however, no fully conclusive evidence has been

found yet to explain why the peptide inhibitors are indeed inhibitors and not turned

over by Mpro (for turnover experiments see Appendix B, Section B.4).

3.4.3 Fragment-based In silico Design of Small Molecule In-
hibitors

Having elucidated how Mpro recognises its substrates and the designed peptide in-

hibitors, the next step was to transfer the lessons learned to the design of small

molecule inhibitors. Specifically, I explored whether ligands sharing the same in-

teractions as the natural substrates and peptide inhibitors could lead to better in-

hibitory activity. To answer this question, I started the analysis with the initial 91

X-ray structures of small molecule fragments in complex with Mpro obtained by high-

throughput crystallographic screening at Diamond’s XChem facility [Douangamath

et al., 2020], as well as the dataset of 798 designed inhibitors and 245 crystal struc-

tures obtained from the COVID Moonshot Project [Chodera et al., 2020; Achdout

et al., 2020; Douangamath et al., 2020] available at the time of this work (accessed

January 2021). In addition, I developed an Active-Guided Covalent Docking (AGCD)

procedure and selected promising candidates to inform inhibitor design and fragment

elaboration. A full overview of the small molecule analysis pipeline is shown in Figure

3.14.

Similarly to the natural substrate and peptide inhibitor interaction analysis de-

scribed above, I used the bioinformatics toolkit Arpeggio [Jubb et al., 2017] to identify

all protein-ligand interactions. Using all interactions, I created a protein-ligand inter-

action fingerprint, denoting the presence or absence of interactions to specific protein

residues in order to cluster and compare known binders to the high-quality substrate

models (for methods see Section 3.3.5). Finally, I created the AGCD method for the

alignment and covalent docking of 540 ligand designs obtained from the Moonshot
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project. Using the detailed interaction analysis and the protein-ligand fingerprint

approach, I identified promising candidates from the virtual screening campaign and

suggested future directions for fragment elaboration in order to cover key protein

interactions derived from my previous substrate analysis.

Figure 3.14: Analysis of fragment and designed compounds from the Moonshot project
and XChem fragment screen [Chodera et al., 2020; Achdout et al., 2020; Douangamath et al.,
2020] adapted from the original publication of this work [Chan et al., 2021a]. Workflow used
to identify promising fragments and guide novel designs. The COVID Moonshot Project
database was used to select the 44 covalent fragment co-crystal structures and all covalent
compound designs present at the time of the analysis (10,001 compounds). All covalent
designs based on specific covalent fragments were selected for AGCD and the resulting
docked poses filtered to select 132 compounds with high quality poses that adopt the original
fragment binding mode. The designs were then analysed in the context of known, key
interactions obtained from the 11 substrate models and 91 XChem fragment structures. All
91 XChem fragments were analysed using Arpeggio and an interaction fingerprint created
to cluster fragments by binding mode. The most important cluster (cluster 5) was found
to occupy key interactions responsible for substrate recognition and was used as a template
to identify known cluster 5 binders in the COVID Moonshot Project database and to guide
fragment elaboration.

3.4.3.1 Interaction Analysis of XChem Fragments

As part of the COVID Moonshot Project, the XChem facility at UK’s Diamond Light

Source released a set of 91 fragment-bound crystal structures of SARS-CoV-2 Mpro
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[Douangamath et al., 2020]. I separated the the XChem fragments found to bind

to Mpro into non-active-site binders (25 fragments) and active-site binding/likely-

substrate competing molecules (66 fragments; Figure 3.15). Since the goal was to

leverage the extensive interaction analysis of the substrates (Section 3.4.1.3) to un-

derstand how best to create substrate-competing, active-site binding inhibitors, only

the active-site binding fragments were considered in the analysis.

Figure 3.15: Overlay of all 91 XChem fragments bound to the Mpro dimer [Douangamath
et al., 2020]. All of the binding sites on chain A (white) are shown. As a representative
structure, the Mpro crystal structure of the x0830 co-crystal structure was used [Douanga-
math et al., 2020]. There are 66 fragments that bind into the active site (green fragments)
and 25 fragments binding in remote pockets (fragment 1101 binds in two different remote
sites). The non-active site binding fragments are broadly colored to distinguish different
binding sites.

Next, an interaction fingerprint bit-vector was constructed for every active-site
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binding fragment, with each bit denoting the presence or absence of any interaction

with any Mpro residues (as described in Section 3.3.5). This binary interaction fin-

gerprint was used to cluster fragments by their interaction fingerprint Tanimoto sim-

ilarity [Jaccard, 1912; Rácz et al., 2018], with 1 corresponding to identical interaction

fingerprints, and 0 to the absence of any shared interactions. Note that the Tanimoto

index was computed between Arpeggio-derived protein-ligand interaction fingerprints

rather than, for example, the widely used ligand-based extended-connectivity finger-

prints (ECFPs) [Rogers and Hahn, 2010]. A series of different Tanimoto similarity

thresholds for the clustering was employed in steps of 0.1 between 0.1 and 0.9 (see

Appendix B, Table B.2) using the hierarchical clustering approach described in Sec-

tion 3.3.5. For this analysis, two clustering thresholds were chosen: a broader (0.5)

and a tighter (0.7) threshold (for details about the choice of clustering thresholds

see Appendix B, Section B.6.1). While the tighter clustering threshold produced 29

clusters total, the number of clusters with more than one fragment remained the same

in both thresholds (nine clusters, see Appendix B, Table B.2), indicating that tighter

clustering above 0.5 does not lead to the addition of meaningful clusters. In addition,

despite the lower threshold, the broader (0.5) clustering method was able to create

distinct clusters (Top 5 most populated clusters for both thresholds are shown in

Appendix B, Figure B.7) and both thresholds identify a series of primarily covalent

fragments (binding to Cys-145) as the highest populated cluster (all interactions in

each cluster shown in Appendix B, Figure B.8). Nonetheless, cluster 5 of the broader

(0.5 threshold) clustering was found to be the most unique cluster with great poten-

tial for inhibitor design (Figure 3.16), as it was the only one that targets the key HBs

3 and 6 identified to be crucial for both stability and Mpro substrate recognition (see

Section 3.4.1.2). Subsequent mentions of cluster numbers therefore refer to clusters

obtained from the clustering threshold of 0.5.
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Figure 3.16: Molecular surface of the x0830-bound Mpro structure (white surface) and
the top 5 most populated fragment clusters using a clustering threshold of 0.5. a) Cluster
1 fragments (green); b) clusters 2 (cyan) and 3 (yellow); c) clusters 4 (lilac) and 5 (pink);
d) close-up of cluster 5. Green dotted lines indicate the two key HBs between the fragment
carbonyl oxygen and the backbone nitrogen of Glu-166 (HB 3, Figure 3.6), and between the
His-163 Nϵ and the heterocyclic nitrogen of the fragment (HB 6, Figure 3.6). e) Overlay
of the P4–P1′-truncated structure of p13 (grey) and cluster 5 binder x0678 (pink), with
the x0678 co-crystal Mpro structure (white surface). Cluster 5 inhibitors are well suited to
mimic Gln recognition at S1 as well to extend into the hydrophobic S2 pocket.
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All the fragments and ligands in clusters 1 and 2 (except x0397, x0978 and x0981)

are covalently bound to Cys-145. A highly conserved binding mode was observed

for the carbonyl-containing covalent warheads (e.g., chloroacetamides), where the

carbonyl oxygen binds into the oxyanion hole between residues Gly-143 and Cys-145,

mimicking substrate HBs 8 and 9 (Figure 3.16).

Cluster 5 stands out as the only major cluster with fragments that bind deeply in

the S1 pocket, one of the most conserved interactions identified in all Mpro substrates.

Cluster 5 shows a distinct binding motif primarily driven by: (i) hydrogen bonding

between a carbonyl oxygen on the fragment and the Glu-166 backbone NH-group (HB

3) ; and (ii) a HB/strong polar interaction between His-163 and the fragment (HB 6).

In addition, it appears that the protonation state of the imidazole of His-163 depends

on the fragment hydrogen bonding polarity. Based on the presence or absence of

either a HB donor or acceptor on the fragment, the protonation state of His-163

could be inferred. This suggests that for x0107, x0434, x0540, x0678 and x0967, the

His-163 ϵ-nitrogen is protonated, forming a hydrogen bond to the pyridine nitrogen

(x0107, x0434, x0540 and x0678) or phenol oxygen (x0967). For x1093, the δ-nitrogen

is protonated, leaving the ϵ-nitrogen free to form a hydrogen bond with the indole

-NH of x1093, reversing the hydrogen bond polarity compared to the other fragments

in the cluster. Nonetheless, the same binding geometry is observed in both cases and

the clustering algorithm correctly assigns the molecules into the same cluster.

Overall, the primary functionality that facilitates interaction with His-163 is the

nitrogen-containing heterocycle present in almost all ligands in cluster 5 (Figure 3.17);

the exception is x0967, which forms the His-163 HB via its phenol oxygen. Such het-

erocycles were found to be well suited to replace the substrate Gln sidechain at P1

by mimicking its HB donor/acceptor abilities while also containing potential confor-

mational entropic advantages. This trend was also observed during the BUDE SM
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PreSaVS analysis which predicted that Trp at P1 might be better suited to replace

Gln for peptide p14 (Figure 3.11 & Appendix B, Figure B.3).

Figure 3.17: Chemical structures of the cluster 5 XChem fragments. Note the prevalence
of nitrogen-containing heterocycles or in the case of x0967, the phenol containing tyrosine
derivative structure, responsible for the hydrogen bonding in the S1 pocket.

In addition, most cluster 5 binders also extend into the hydrophobic S2 pocket,

although there is no clear preference in functional group at S2. This agrees with our

plasticity analysis, which shows that S2 can accommodate a large variety of functional

groups (Figure 3.10). As seen in the overlap of peptide inhibitor p13 and cluster 5

representative x0678 (Figure 3.16 e), the binding modes of both inhibitors in the S1

and S2 subsites are very similar, with both forming HBs to His-163 (HB 6) and Glu-

166 (HBs 2 & 3) and binding deelpy in the S2 pocket. In addition, all cluster 5 ligands

(Figure 3.17) contain an amide or urea linker between the P1 and P2 binding groups,

making them interesting building blocks for the development of peptidomimetics.

The structure of all analysed XChem fragments, the clustering code

and the resulting clusters are available on Github (https://github.com/gmm/

SARS-CoV-2-Modelling/tree/main/Interaction_Clustering).
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3.4.4 Active-Guided Covalent Docking of COVID Moonshot
Designs

Next, I utilized the large amount of structural data provided by the COVID Moon-

shot Project in the form of “Moonshot designs” to guide inhibitor design. “Moonshot

designs” are structures of inhibitors submitted by crowd-sourced medicinal chemists

and members of the COVID Moonshot consortium that use the structures of one or

more of the previously described XChem fragments as inspriation [Chodera et al.,

2020; Achdout et al., 2020]. At the time of this analysis (January 2021), 10,001

Moonshot designs had been submitted and were publicly available on the COVID

Moonshot Project Github and the PostEra.ai website [COVID-19 Moonshot project,

2020; PostEra.Ai, 2020]. In order to use the existing structural information of the

XChem fragments, I created the Active-Guided Covalent Docking (AGCD) approach

based on AutoDock4 [Morris et al., 2009]. The docking workflow is shown in Figure

3.18. Since the majority of XChem fragments bound in the active site were covalent

inhibitors and with the goal of maximising the amount of information used during

docking, a covalent docking procedure was developed. Although AGCD uses con-

straints in the form of a covalent attachment point, it is not yet a constrained docking

protocol. While there are fully implemented methods to do constrained docking in

proprietary docking software such as Gold [Jones et al., 1997] or Glide [Friesner et al.,

2004], there is not yet a straightforward way to do constrained docking in the most

widely used open-source docking tools Autodock4 [Morris et al., 2009] and AutoDock

Vina [Trott and Olson, 2010]. The development of AGCD is the first step towards

the implementation of a dedicated constrained docking workflow for an open-source

docking tool.

To accommodate induced fit and create high-quality poses of covalent inhibitors

for future optimisation, I selected 540 compounds with covalent warheads from the
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Figure 3.18: Flowchart showing the steps and data used during active-guided covalent
docking.

10,001 Moonshot-designed compounds and docked them using the knowledge-based

AGCD method using AutoDock4 [Morris et al., 2009]. The structure and docked pose

for all 540 docked compounds is available on GitHub [Chan et al., 2021b]. Only com-

pounds with a matching covalent warhead to the inspiration fragment that also cite a

single covalent fragment as their inspiration were selected to form the dataset of 540

compounds. To take advantage of the many diverse induced-fit conformations of Mpro,
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each designed compound was docked into the Mpro structure of the corresponding co-

valent “inspiration fragment” (fragment referenced by chemist as the inspiration for

a design). Lastly, to leverage the wealth of structural information about Mpro crys-

tal structures, I developed an alignment algorithm named MCS-Align to expand on

the Constraint Embedding method in RDKit [Landrum et al., 2006] (v2020.03.1) to

pre-align each covalent Moonshot design to the corresponding inspiration fragment

before covalent docking.

3.4.4.1 Constrained Alignment using MCS-Align

With the goal of ultimately building a knowledge-based constrained docking proto-

col, I developed a pre-alignment workflow based on RDKit (v2020.03.1) to force the

conformation of two molecules to align, given a sufficiently large maximum common

substructure (MCS). The standard RDKit [Landrum et al., 2006] AlignMol func-

tion only roughly aligns atoms in a molecule, rather than fixing atom positions

exactly. I therefore created a stricter constrained alignment workflow using RD-

Kit called MCS-Align. It uses pairwise atom constraints for all pairs of atoms in

the maximum common substructure (MCS) between the designed molecule and the

crystallographic fragment to force the position of the atom based on the crystal-

lographic coordinates. This aligns the MCS between fragment and design exactly,

forcing the common substructure into the crystallographic binding mode. This is

followed by a constrained energy minimisation, while keeping the atomic coordinates

of the MCS constant. An implementation of the MCS-Align method can be found on

GitHub (https://github.com/MarcMoesser/SARS-CoV-2-Modelling/tree/main/

Covalent_Docking/ligand_alignment).

In the first step, the algorithm calculates the maximum common substructure be-

tween the target molecule and the template using the RDKit FindMCS function. In

115

https://github.com/MarcMoesser/SARS-CoV-2-Modelling/tree/main/Covalent_Docking/ligand_alignment
https://github.com/MarcMoesser/SARS-CoV-2-Modelling/tree/main/Covalent_Docking/ligand_alignment


the next step, the position of each atom in the MCS from the crystallographic frag-

ment is retrieved and the target atoms adjusted, using the RDKit functions GetAtom-

Position and SetAtomPosition, respectively. Finally, a random 3D conformer is ini-

tialized and a constrained energy minimization performed using the Universal Force

Field (UFF) [Rappe et al., 1992] implementation in RDKit with a strict distance con-

straint using the RDKit AddDistanceConstraint function and a relative force constant

setting of 100. The resulting alignment method is able to align substructures even

in extremely complex molecules that the native RDKit ConstrainedEmbed function

either is unable to align at all or only roughly aligns.

3.4.4.2 Active-Guided Covalent Docking Results

In order to evaluate the docked poses, I analysed to what extent the docking proce-

dure was able recapitulate the binding pose of the parent fragment when docking the

fragment-based Moonshot designs. As previously shown by Malhotra and Karanico-

las [2017], a fragment elaborated small molecule ligand and the original fragment it is

derived from are highly likely to have the same binding mode. I therefore compared

the shape and pharmacophoric overlap using SuCOS [Leung et al., 2019; Moesser,

2021] of the lowest energy pose of the highest populated cluster for each Moonshot

compound with the inspiration covalent XChem fragment referenced by the design-

ers (Appenidx Figure B.9). A SuCOS score of 0.55 or higher is generally considered

sufficient to consider the binding poses of the crystallographic fragment and docked

design as conserved [Leung et al., 2019], being equivalent to having an RMSD of less

than 2 Å. Likely in part due to the creative freedom in the design process, some of

the designed compounds do not overlap significantly with the inspiration fragments

and in some extreme cases only have the covalent warhead in common. When con-

trolling for the smallest maximum common substructure (MCS) that encompasses at
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least the covalent warhead and one additional atom in the compound, 379 docked de-

signs remain, from which 132 (34.8%) recovered the binding mode of the inspiration

fragment. Given the high similarity between the fragments and the docked designed

compounds, it is likely that these binding modes are more representative of the actual

binding mode of the ligand.

At the time of this analysis (January 2021), only 6 of the 540 docked covalent

compounds had been crystallised by the COVID Moonshot Consortium and deposited

in Fragalysis [Diamond, 2020]. These structures were used as a limited benchmark

for the docking method. For comparison between the binding modes of the docked

designs and crystal fragments, an overlay of the crystallographic conformation of the

Moonshot design, the lowest energy pose of the highest populated cluster of the design

from docking, and the corresponding crystallographic structure of the inspiration

XChem fragment is shown in Figure 3.19.

Fragment x10899 (Figure B.10) was excluded from further analysis since it binds

via a crystal interaction to a third symmetry-related Mpro molecule, rather than the

biologically relevant dimeric state. The binding modes of two compounds, x3077 and

x10306 (Figure 3.19 a & e) respectively), were reproduced almost identically, which

is reflected in their SuCOS score between inspiration fragment and docked pose (0.88

and 0.82 for x3077 and x10306, respectively). In the case of fragment x3324 (Figure

3.19 b) , docking places the aromatic sidechain correctly into the S2 pocket of Mpro but

varies on placement of the linker when compared to the crystal structure. However,

the provided inspiration fragment has minimal overlap with the designed compound

(SuCOS = 0.51). Since the induced fit AGCD approach aims to leverage protein and

ligand conformations of known actives to improve docking, in cases with low overlap

(x3324), it is to be expected that docking pose quality would be lower than for high

overlap cases (x3077 and x10306).
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Figure 3.19: Overlay of the lowest energy pose in the highest populated cluster of the
AD4 covalent docking procedure for the design (green) with the crystal structure of the
original inspiration fragment (pink) and the crystal structure of the design (salmon). For
every docking, the Mpro protein structure of the corresponding inspiration fragment co-
crystal structure was used. a) Moonshot design X3077 (salmon) with inspiration fragment
X0770 (pink) and the docked pose of X3077 (green). b) Moonshot designed compound
X3324 (salmon) with inspiration fragment X1380 (pink) and the docked pose of X3324
(green). c) Moonshot design X3325 (salmon) with inspiration fragment X1386 (pink) and
the docked pose of X3325 (green). d) Moonshot design X10172 (salmon) with inspiration
fragment X1382 (pink) and the docked pose of X10172 (green). e) Moonshot design X10306
(salmon) with inspiration fragment X0770 (pink) and the docked pose of X10306 (green). f)
Moonshot design X10899 (salmon) with inspiration fragment X1458 (pink) and the docked
pose of X10899 (green). Poses of the designs x3077 and x3324 almost perfectly resemble
the original crystal pose.
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Finally, for x3325 and x10172 (Figure 3.19 c) & d), respectively), the selected

lowest-energy pose of the highest populated cluster did not match the binding pose

of the crystal structure and the corresponding SuCOS between design and inspira-

tion fragment low in both cases (0.09 and 0.03 for x3325 and x10172, respectively).

Docking did not produce high quality poses in these cases.

The structure of all docked COVID Moonshot designs, all docked poses and the

selected, low energy pose for each compound is provided on Github (https://github.

com/gmm/SARS-CoV-2-Modelling/tree/main/Covalent_Docking).

3.4.4.3 Interaction Fingerprint Clustering of the Docked Poses

The lowest energy docked pose in the highest populated cluster of each docking of

the Moonshot designs was used to identify interactions using Arpeggio and generate

the interaction Tanimoto distance matrix. Tanimoto similarity thresholds of 0.5 and

0.7 was employed for pose clustering as described above for the XChem fragments.

The broader clustering threshold of 0.5 leads to a total of five clusters, with the first

cluster containing 477 of the 540 poses (88%) and no single-pose clusters; while the

stricter threshold of 0.7 results in 46 clusters with 12 single molecule clusters. As

expected, the diversity of the binding modes for these compounds is much lower than

in the original XChem fragment set, due to the limited number of fragments (44) and

the reduced structural diversity of the designs, all being covalent S1/S1′ binders. As a

result, I developed the following in silico design approach (Section 3.4.5) to filter the

docked Moonshot designs further in order to identify promising elaboration pathways

for known Mpro fragment-based inhibitors.

3.4.5 Implications for Future Inhibitor Design

Finally, an in silico design approach was developed to bring together different insights

gained throughout this project. For that purpose, I compared the interactions of
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the cluster 5 fragments with those in the substrates, peptide inhibitors, crystallised

Moonshot designs and docked Moonshot designs.

First, I filtered the known crystal structures of 245 Moonshot designs obtained

from Fragalysis [Diamond, 2020] by their overlap to the key interactions identified

by Arpeggio in the fragment cluster 5. A compound was considered a cluster 5-

type binder if at least 70 % of the cluster 5 interactions are present in the complex.

Interestingly, unlike the peptides, almost none of the identified Moonshot compounds

that exhibit cluster 5-like binding interact with the oxyanion hole of Mpro. The only

crystallised cluster 5 Moonshot compounds where this interaction is made are a series

of covalent inhibitors, none of which showed promising potency (Appendix B, Figure

B.11). An exhaustive search of resolved Moonshot crystal structures showed that at

the time of the analysis, no non-covalent inhibitor had been tested that includes both

the typical cluster 5 binding mode while also being able to interact with the oxyanion

hole, which presents a potential route for the elaboration of cluster 5 binders.

In order to identify compounds that could cover both, cluster 5 binding sites

and the oxyanion site, the covalently docked Moonshot designs were also analysed

for cluster 5 overlap. Out of all 540 docked designs, only 3 compounds were identi-

fied to cover key cluster 5 interactions: FOC-CAS-e3a94da8-1, MIH-UNI-e573136b-3

and NIR-THE-ed286faa-1. For further study, FOC-CAS-e3a94da8-1 and MIH-UNI-

e573136b-3 were selected based on their high normalized SuCOS overlap (0.73 and

0.63, respectively) with their inspiration fragments, strongly suggesting that their

docked binding modes reflect the actual poses [Malhotra and Karanicolas, 2017] as

opposed to NIR-THE-ed286faa-1 (SuCOS of 0.11). Both, FOC-CAS-e3a94da8-1 and

MIH-UNI-e573136b-3 were also found to bind into the oxyanion hole as well as into

S1 and S2, providing a clear opportunity for extension of the cluster 5 binders (Figure

3.20 a & Appendix B, Figure B.12).

120



Figure 3.20: Docking informs novel inhibitor design. HBs between Mpro residues (ma-
genta) and the ligands are shown as dotted yellow lines. a) Overlay of the docked pose
of FOC-CAS-e3a94da8-1 (green and greenish-yellow) with the crystal structure of x10789
(pink) on the Mpro surface (PDB entry 5RER; 1.88 Å resolution). Derivatisation of x10789
into the oxyanion hole could be achieved by attaching a methylene amide group present in
x0830 (highlighted greenish-yellow). b) Docked pose of Pfizer’s FDA approved drug com-
pound PF-07321332 (Nirmatrelvir), covalently docked into Mpro (6XHM; 1.41 Å resolution)
[Hoffman et al., 2020]. Nirmatrelvir (cyan) is covalently attached to Cys-145. The docked
Nirmatrelvir adopts the same major interactions as the “combination” of x10789 and x0830,
namely the double HB to the backbone of Glu-166, the HB to His-163 in the S1 subsite,
and a series of hydrophobic interactions in the S2 subsite. c) Structures of Moonshot de-
signed compound FOC-CAS-e3a94da8-1, crystallographic fragment x10789, and inhibitor
Nirmatrelvir. Overall, the expansion into the oxyanion hole for the Moonshot compound
series would enable binding to exactly the same key interactions as the approved drug Nir-
matrelvir.

For the XChem fragments, most cluster 5 binders place the aromatic heterocycle

into the S1 site and the carbonyl oxygen of the amide linker bonds to Glu-166 (Fig-

ure 3.16). In the case of FOC-CAS-e3a94da8-1, the position of this amide nitrogen

linker on x10789 overlays perfectly with the ring amine present in the docked com-

pound FOC-CAS-e3a94da8-1. Thus, extension of cluster 5 binders into the oxyanion

hole could be achieved by adding a substituent at the amide nitrogen. A promis-
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ing candidate for extension is x10789 (IC50 = 3.6 µM, determined by fluorescence

assay [Achdout et al., 2020; COVID-19 Moonshot project, 2020; PostEra.Ai, 2020]),

which makes a HB with the backbone oxygen of Glu-166 (Figure 3.20 a) and mim-

ics the non-prime side binding mode of peptide inhibitor p13 (Figure 3.16 e), even

binding into the S4 site via its β-lactam ring (Figure 3.20 a). Additional expan-

sion into the oxyanion hole and S1′ through the amide linker could yield a powerful

peptidomimetic inhibitor, combining protein interactions observed for the substrates,

peptide inhibitors and small molecule fragments.

At the time of analysis, no crystal structure of the then clinical drug candidate

PF-07321332 (Nirmatrelvir) was known. Therefore, in order to compare the fragment-

based inhibitor design approach with Nirmatrelvir, I covalently docked Nirmatrelvir

into the active site of Mpro structure of 6XHM [Hoffman et al., 2020], which is a

crystal structure in complex with ligand PF-00835231, a precursor in the design of

Nirmatrelvir [Hoffman et al., 2020; Owen et al., 2021]. Then, in November 2021, the

team at Pfizer deposited a high resolution crystal structure of Nirmatrelvir in complex

with Mpro in the PDB (7RFS, 1.91 Å) [Owen et al., 2021]. In order to quantify the

quality of the docked pose of Nirmatrelvir, I calculated the symmetry-aware RMSD

between the docked pose of Nirmatrelvir and the crystal pose (2.08 Å) as well as the

the SuCOS score (0.48), indicating that the docked pose almost resembles the crystal

pose. An overlay of the crystal and docked pose can be found in the Appendix B,

Figure B.13. While the docked pose closely resembles the crystal structure in the

S1 site and around the covalent attachment point to Cys-145, it deviates around

the S2 and S3 site (Appendix B, Figure B.13). This result is in accordance with

the plasticity analysis (Section 3.4.1.5), which indicates that the S2 and S3 sites are

highly plastic and can change strongly upon ligand binding, making rigid docking

in this pocket challenging. However, note that for docked Nirmatrelvir, AutoDock4
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was unable to place the negatively charged azanide nitrogen in the oxyanion hole,

which is the expected position given its similarity to related warheads previously

docked. In addition, while it was assumed before docking that covalent reaction of

Nirmatrelvir with Mpro would result in a negatively charged azanide, the authors of

6XHM chose to model a neutral, protonated nitrogen at that position [Owen et al.,

2021]. Nonetheless, the key interactions between Nirmatrelvir and Mpro were retained

between the crystal and docked pose, with key hydrogen bonds formed with Glu-166

and His-163, and hydrophobic interactions deep in the S2 pocket.

Finally, when comparing interactions exhibited by cluster 5 binders (Glu-166, His-

163) or covalent fragments (Gly-143, Cys-145) with the interactions present in the

docked structure of Nirmatrelvir (Figure 3.20), a nearly identical interaction pattern

to the cluster 5 binding motif is observed, validating the in silico design approach

outlined in this work.

3.5 Conclusions

The methods that I developed in this project and the results I generated were all part

of an ongoing international collaboration to understand better understand SARS-

CoV-2 on a molecular level in order to contribute to the ongoing drug discovery effort

to tackle the COVID-19 pandemic. Our collaboration was formed around under-

standing how SARS-CoV-2 Mpro binds to its 11 natural substrates on a molecular

level and how this detailed understanding of its substrate binding might be used for

the design of peptide- and small molecule inhibitors. This chapter details my con-

tribution to this collaboration, focusing on the detailed interaction analysis of the

Mpro substrates, peptide inhibitors, and all fragments and covalent inhibitors in the

COVID Moonshot Project database available at the time of this study (accessed Jan-

uary 2021) [Chodera et al., 2020; Achdout et al., 2020; Douangamath et al., 2020].
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However, this work would not have been possible without the effort of many collabo-

rators, especially my co-first authors on the original publication: H.T. Henry Chan,

Tika R. Malla and Rebecca K. Walter [Chan et al., 2021a]. Throughout this chapter

and the corresponding Appendix B, I have marked their contributions to this work as

appropriate. Together, this collaborative work combines insights from a large variety

of computational and laboratory-based drug discovery techniques, spanning explicit-

solvent molecular dynamics, protein-ligand docking, cheminformatics, as well as mass

spectrometry and peptide synthesis to create a comprehensive and exhaustive analysis

of the SARS-CoV-2 Mpro activity on a molecular level, creating a case study on how

in silico driven insights from enzymology can be used effectively in inhibitor design.

Understanding the structural and dynamic features responsible for catalysis and

substrate selectivity is challenging in the case of Mpro due to its dimeric nature and

multiple substrate sequences. While a detailed understanding of a protease on this

level might not be absolutely necessary for the discovery of potential drugs, the drug

quality and the efficiency with which they are developed may be improved. Indeed,

the peptide inhibitors created during this work were designed completely in silico with

a 100% hit-rate, as all synthesized and tested peptides were competitive inhibitors

(Appendix B, Figure B.4). In addition, due to the high propensity of SARS-CoV-2

to mutate, as has been observed since the outbreak in the formation of hundreds of

different lineages and several SARS-CoV-2 variances of concern such as most recently,

the Delta variant [Rambaut et al., 2020; O’Toole et al., 2021], concerns are high that

SARS-CoV-2 mutations might affect drug resistance (including resistance against

Mpro inhibition), similar to the global effort against the HIV pandemic. Having

identified the key interactions that drive substrate binding and selectivity/recognition,

inhibitors could be designed that specifically target those interactions, under the
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assumption that key amino acids driving the substrate selectivity of the key protease

in the viral life cycle are unlikely to mutate, therefore potentially creating a mutation

resistant drug.

The 11 natural substrate models that were developed using comparative mod-

elling followed by explicit solvent MD were used as a basis for the analysis of key

interactions involved in substrate binding and recognition. Using the structural bi-

ology tool Arpeggio [Jubb et al., 2017], I conduced a detailed interaction analysis

of the 11 substrate-Mppro complexes. This methodology expands upon the known

interaction fingerprint methods such as SIFt [Singh et al., 2006], IFP [Marcou and

Rognan, 2007] and pSIFt [Chuaqui et al., 2005] which have primarily been devel-

oped for virtual screening and to calculate the similarity of ligand poses. The usage

of the expanded interaction identification tool Arpeggio [Jubb et al., 2017] to cover

more significant interactions as well as a more in-depth analysis of the fingerprints

through clustering and key interaction identifications has enabled Arpeggio-derived

fingerprints to be useful beyond similarity calculations and initial hit-compound iden-

tification, enabling them to be directly used to guide inhibitor design and formulate

a detailed binding hypothesis of the peptide substrates of Mpro. In addition, I have

shown that Arpeggio-derived interaction fingerprints can be used on several levels of

detail beyond traditional interaction fingerprints, enabling a detailed, atomic level

analysis, a summarized, residue-level analysis and on the highest level a description

of the protein subsites and their character.

The analysis revealed a series of important trends. First, the P′ (C-terminal) side

of the substrates was found to bind much less tightly than the P (N-terminal) side

(Figure 3.8 & 3.6). Hydrogen bonds as well as other non-covalent interactions found

on the P-side showed remarkable consistency across all substrates (Figure 3.8). One

explanation of this binding behaviour might be the need for the P′ side of the substrate
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to leave after acyl-enzyme formation prior to hydrolysis. It is therefore possible that

P-side residues are more important for initial substrate recognition and suggest that

inhibitors targeting S-side binding sites could be more effective as substrate competing

inhibitors. Indeed, other known potent inhibitors such as the peptidometic inhibitor

N3 [Jin et al., 2020] and the Pfizer drug PF-07321332 (Nirmatrelvir) [Owen, 2021]

(Figure 3.20) both bind almost exclusively in the S subsites. However, the fragment-

based clustering analysis combined with molecular docking shows that there is con-

siderable scope for the growth of known S1-S3 binding inhibitors into the oxyanion

hole and towards the S1′ site and beyond (Figure 3.20). Although, more effort might

be required to optimize S′ binders towards high affinity.

Next, beyond the overall subsite analysis, I focused on the analysis of the P1 Gln

recognition motif present at S1 in Mpro and the critical role that the Gln residue

plays in productive substrate binding. The interaction analysis reveals that HBs 6 &

7 are directly involved in Gln recognition, binding to the amide carbonyl and amide

nitrogen, holding the Gln side chain deep within the S1 pocket (Figure 3.7 & 3.6). In

addition, strong hydrogen bonds are formed between the backbone nitrogens of Mpro

residues Glu-143 and Cys-145 (the oxyanion hole) to the backbone carbonyl oxygen

of Gln. While this interaction is not necessarily unique to Gln, in aggregate, the

P1 Gln residue forms a total of 4-5 HBs (HB 5 not always formed), the most out of

any substrate residue. As identified by computational alanine scanning mutagenesis in

peptide p14 (Appendix B, Figure B.3) and the XChem fragment clustering experiment

(Figure 3.16), a potential replacement for the Gln binding motif could be a nitrogen

containing heterocycle such as the indole ring on the P1 Trp in peptide p14, or

the pyridine rings present in cluster 5 binders (Figure 3.17). This case study is

an important example in how structural insight into substrate binding can directly

inform inhibitor design and functional group choice.
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While the P1 residue is completely conserved in all Mpro substrates, the residues

at P2 were found to be highly conserved in regards to their hydrophobic character

(Figure 3.9). In 9 out of the 11 substrates, Leu was present at P2, with Phe and Val

present at P2 in s02 and s03, respectively (Figure 3.1). Although no specific hydro-

gen bonds were formed, the interaction analysis indicates that the deep hydrophobic

pocket is nonetheless crucial for recognition and inhibition. Due to the high plasticity

at the S2 site (Figure 3.10), Mpro is able to accommodate a range of different hy-

drophobic residues, including significantly larger groups than the Leu residue present

in most substrates, although not always in a productive conformation. BAlaS-guided

design of peptide inhibitors predicts a large gain in binding affinity upon exchange

of the P2 residue to large aromatic amino acids in 4 out of 5 designed peptides (Trp:

p12, p13 and p15; Phe: p14, Appendix B, Figure B.3). As shown by the interaction

analysis of the MD-derived pose of peptide p13 (Figure 3.13) , the loss of Mpro ac-

tivity upon binding might be due to the π-π stacking of the Trp indole to His-41 in

the S2-site, hindering His-41 to adopt a productive conformation as part of the cat-

alytic dyad. Alternatively, studies with other nucleophilic proteases such as elastase

revealed that substitution of the scissile residue can by itself already cause inhibition

[Wright et al., 2001; Wilmouth et al., 1997]. However, computational and laboratory-

based examination into why the designed peptides are competitive inhibitors instead

of substrates has not been concluded yet, and the reason not fully known. In addi-

tion, further SAR exploration should be done to convert the peptide inhibitor to a

peptidomimetic inhibitor, possible starting at the derivatisation of Trp at P2 to max-

imize binding affinity or the cyclisation via insertion of a methylene group linking

position 2 at the indole ring to the backbone nitrogen of Trp [Castelli et al., 2015].

Furthermore, the flexibility of the S2 site can also be exploited by small molecule

inhibitors. Some cluster 5 inhibitors are able to connect from the S1 site into S2 with
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a variety of functional groups (Figure 3.16). Since the hydrophobic effect of binding

can be increased by increasing the hydrophobic surface area involved in binding, a

plastic hydrophobic pocket could be exploited by maximizing the ligand-Mpro contact

area at S2, increasing ligand binding affinity. Nonetheless, since even substrates with

the same residue at P2 (Leu) are turned over at different rates suggest that more

interactions beyond the P1 and P2 sites are important (Figure B.1). Therefore, in-

teractions beyond the immediate active site are likely to contribute significantly to

selectivity of both: substrate binding as well as modulating the rate of reaction of

the enzyme–substrate complex.

Beyond the substrates and peptide inhibitors, I conducted an exhaustive interac-

tion analysis of all existing fragments and Moonshot design in the COVID Moonshot

Project database [Chodera et al., 2020; Achdout et al., 2020; Douangamath et al.,

2020] (Figure 3.14). First, I analysed the binding mode and interactions between all

91 XChem fragments [Douangamath et al., 2020] obtained from Fragalysis [Diamond,

2020] and compared them to the previously identified substrate interactions. I created

a new Arpeggio-derived fingerprint specific towards Mpro-ligand binding that encodes

for the absence or presence of residue-level interactions for each ligand (Figure 3.5).

Using this fingerprint representation, I clustered all active site binding fragments,

identifying the promising binding cluster 5 (Figure 3.16). Fragments in this cluster

occupy several of the key interactions described above (Figure 3.16): i) a heterocyclic

moiety occupies S1 and forms a HB with His-163, blocking the key Gln recognition

HB 6; ii) the amide (or urea) linker between the heterocycle in S1 and the rest of

the fragment forms a HB with the backbone nitrogen of Glu-166, blocking the key

stabilising HB 3 which is observed in every substrates; iii) most cluster 5 binders fea-

ture a hydrophobic ring on the opposite end of the linker, occupying the hydrophobic

S2 pocket. Cluster 5 binders stretch from S1-S2, while occupying key interactions
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and binding motifs identified as crucial for substrate binding and recognition and are

therefore interesting starting points for fragment elaboration. In addition, a large

covalent cluster (cluster 1, Figure 3.16) was identified which overwhelmingly formed

HBs 8 and 9 with the oxyanion hole (Gly-143, Cys-145). This interaction was not

found in cluster 5 and could thus be used as a promising elaboration path.

Furthermore, by combining all the above mentioned insights with the covalent

docking campaign conducted on covalent COVID Moonshot designs, I identified a

direction for future inhibitor design (Figure 3.20). When combining a known small

fragment elaboration from Fragalysis (x10789 [Diamond, 2020]), that was found to

have a high Tanimoto similarity with cluster 5 binders, with the docked pose of in-

hibitor design FOC-CAS-e3a94da8-1, a path for elaboration of x10789 into the oxyan-

ion hole was discovered. At the time of the creation of this inhibitor design strategy,

the structure and existence of Pfizer drug PF-07321332 was not known. However, as is

known now, compound PF-07321332 exploits the same “privileged” interactions that

I designed future inhibitors to bind and the binding pose of PF-07321332 occupies the

same space in the binding pocket as the most promising moonshot compounds and

the elaboration designs identified through my interaction analysis approach (Figure

3.20).

Lastly, the development of AGCD represents the first step towards the implemen-

tation of a dedicated constrained docking workflow. The ultimate goal of the AGCD

method is to create a knowledge-based constrained docking approach for fragment-

based drug discovery where new compounds are docked by constraining their MCS

with a known fragment crystal structures during docking, while allowing flexibility

elsewhere on the ligand. This approach is inspired by the findings of [Malhotra and

Karanicolas, 2017] who found that for elaborated ligands, in 86% of the 297 paired

ligands, the larger elaborated ligand did not change its binding mode relative to
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the smaller ligand. While there are fully implemented methods to do constrained

docking in proprietary docking software such as Gold [Jones et al., 1997] or Glide

[Friesner et al., 2004], there is not yet a straightforward way to do constrained dock-

ing on this scale in the most widely used open-source docking tools Autodock4 [Morris

et al., 2009] and AutoDock Vina [Trott and Olson, 2010]. Future work should there-

fore focus on the implementation of the needed functionalities into either AD4 or

AutoDock Vina to create a dedicated open-source constrained docking method to

advance fragment-based drug discovery.

This chapter continues the overall topic of this thesis about finding the best

possible representation of a given drug discovery problem (in this case the ques-

tion of protein-ligand complex binding modes). I created a practical, easy to com-

pute and highly effective protein-ligand interaction fingerprint that was used as

a vector representation of the 3D interactions in Mpro-ligand complexes. During

this work on protein-ligand interaction fingerprints, I searched the literature for

other forms of protein-ligand interaction representations and found methods such

as the widely known machine learning-based protein-ligand affinity scoring function

PLEC[Wójcikowski et al., 2018] that encode interactions as Extended Connectivity

Fingerprints [Rogers and Hahn, 2010] between the protein and ligand atoms and a

new atom-atom interaction fingerprint called ECIF [Sánchez-Cruz et al., 2020]. ECIF

encode protein-ligand atom-atom interactions by pre-computing all possible combi-

nations of protein atoms and ligand atoms in a dataset and then counting the occur-

rence of each unique atom-atom interaction in 3D. Inspired by ECIF and my work

on Arpeggio-based interaction fingerprints, I wondered if there is a way to encode

interactions similar to ECIF without the need to pre-compute the feature space and

having to re-train the model every time a new, unknown data point is added. The

next chapter details by work on creating Protein-Ligand Interaction Graphs which
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follows on from my previous work on affinity prediction and combines it with the in-

teraction analysis done in this chapter to create a novel protein-ligand binding affinity

scoring function.
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Chapter 4

Protein-Ligand Interaction Graphs:
Learning from Ligand-Shaped 3D
Interaction Graphs to Improve
Binding Affinity Prediction

4.1 Preamble

As my work described in Chapter 3 on SARS-CoV-2 Mpro came to a conclusion with

the publication of our collaborative effort [Chan et al., 2021a], I continued working on

the idea of creating an interaction-based representation of protein-ligand complexes

that simultaneously account for 3D interactions and ligand structure. The Arpeggio-

based fingerprints described in Chapter 3 were useful in distinguishing between the

binding modes of ligands via clustering and in conducting direct contact-contact map-

ping, but they do not allow for a more detailed encoding of the biophysics of inter-

actions and give no further detail about the shape of the ligand. I therefore explored

the idea further, searching for a way to improve the detail with which the interaction

is encoded, such as classifying the interaction on an atom-atom level, rather than the

residue level used during clustering in Chapter 3, without compromising the simplic-

ity of the model. Overall, a variety of different protein-ligand interaction fingerprints

are know, although in all cases, the encoding of interactions was compressed into
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a feature vector to be used in machine learning models, most often random forests

or gradient boosted trees [Wójcikowski et al., 2018; Singh et al., 2006; Gao et al.,

2020; Sánchez-Cruz et al., 2020]. While working on this issue, Sánchez-Cruz et al.

[2020] published a new interaction fingerprint named Extended Connectivity Interac-

tion Features (ECIF), that uses similar concepts as my work on Arpeggio-fingerprints,

but classifies interactions as the combination of two unique atom types in proximity to

each other. Insprired by the work of Sánchez-Cruz et al. [2020], I combined the ECIF

approach to classification of protein-ligand interactions with the molecular graph rep-

resentation of the emerging field of molecular Graph Neural Networks (GNNs) that

has been increasingly used for protein-ligand affinity prediction [Nguyen et al., 2020;

Lim et al., 2019; Li et al., 2021] creating a novel molecular graph representation called

“Protein-Ligand Interaction Graphs” or PLIGs for short.

ECIF fingerprints need to re-define the dimensionality of the fingerprint every

time a new ECIF atom type is added (e.g. when screening a new compound) and

thus need to be re-trained from scratch. Most recent graph-based methods such as

SIGN [Li et al., 2021] or the work of Lim et al. [2019] encode 3D protein-ligand

complexes either into massive graphs (e.g by incorporating protein nodes into the

graph), reducing the advantage graphs have when representing the actual chemical

structure of the underlying ligand. PLIGs are able to overcome the limitations of both

ECIF fingerprints and current graph-based protein-ligand affinity scoring functions.

The following chapter details my work on the development and benchmarking of

PLIGs with different GNN architectures on the CASF-2016 benchmark set [Su et al.,

2018]. The work in this chapter was published (on March 7th, 2022) as a preprint

on BioRxiv (https://doi.org/10.1101/2022.03.04.483012, [Moesser et al., 2022])

where it has already gathered significant attention by the community, with over 906

full text views (PDF and HTML) and over 1484 abstract views.
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This project includes contributions from Dominik Klein who conducted his Master

thesis under my and Prof. Garrett Morris’ supervision. Dominik Klein contributed to

this project by first re-implementing the models originally published in the GraphDTA

method by Nguyen et al. [2020] to reproduce the results therein, and by conducting

the hyperparameter tuning of the models used in this work (see Appendix C, Section

C.1). Contributions by Dominik Klein are indicated when applicable, but all other

results and methods were produced by myself.

4.2 Introduction

In early stage pre-clinical drug discovery, one of the most important properties of a

small molecule drug is its binding affinity for the correct protein target. High binding

affinity is crucial for the overall efficacy of a drug while the careful design of multi-

target affinity profiles is crucial to avoid toxicity and side-effects. In addition, higher

binding affinity allows drugs to be administered at lower doses to generate the desired

efficacy, which reduces overall toxicity and increases practicality. Computer-aided

drug design (CADD) has been firmly established as a powerful technique in the drug

discovery pipeline, and increasingly machine-learning-based methods [Vamathevan

et al., 2019].

In particular, interest in applying machine learning (ML) to the development of

more accurate scoring functions that can predict protein-ligand binding affinity has

grown in the last decade. Classical scoring functions use physics-based methods (force

fields), linear combinations of (semi-)empirical terms, or knowledge-based potentials.

They are used in popular docking software such as AutoDock4 [Morris et al., 2009],

AutoDock Vina [Trott and Olson, 2010] or GOLD [Jones et al., 1997] to score 3D

ligand poses. While these classical scoring functions, and espcially the scoring func-

tions employed in docking software, perform well in docking and virtual screening
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tasks, they struggle with binding affinity prediction and ranking tasks [Li et al., 2018;

Su et al., 2019]. Especially during early stage drug discovery, namely the hit-to-lead

and lead optimization processes, it is highly desirable to be able to accurate predict

the protein-ligand binding affinity of potential ligands in order to prioritize promising

candidates and obtain highly potent ligands.

For this purpose, more recently, ML-based scoring functions that can outperform

classical scoring functions for binding affinity prediction have emerged. These models

employ a diverse set of ML architectures and features, from classical ML techniques

such as random forests and gradient boosted trees [Sánchez-Cruz et al., 2020; Boyles

et al., 2019; Durrant and McCammon, 2011] to deep learning (DL) models [Jiménez

et al., 2018; Li et al., 2021; Nguyen et al., 2020]. As the most accurate scoring

functions use many different ML architectures, it is not yet clear how protein-ligand

complexes should be featurised for model training. Older quantitative structure ac-

tivity relationship (QSAR) models, mostly used against a single protein target, use

ligand-based features such as ECFP fingerprints [Rogers and Hahn, 2010] or computed

molecular descriptors [Cherkasov et al., 2014]. Recent scoring functions that aim to

be able to generalise across multiple proteins incorporate additional 3D-structural

information with the main goal of creating models that can learn the biophysics of

protein-ligand interactions, rather than regurgitate biases in their training sets.

In general, since the binding pockets of proteins can differ dramatically between

protein families, the structure of a matching ligand will also be subtly different.

Models learning purely ligand-based features should therefore be unsuited to learn

how to evaluate ligands against two or more protein targets (unless they are very

similar) and should only be used in isolation when building single protein target

models. Existing models utilize different approaches to featurisation based on the

ML architecture employed. Models using classical ML models such as random forests
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use interaction based fingerprints (e.g. PLEC [Wójcikowski et al., 2018] and ECIF

[Sánchez-Cruz et al., 2020]) or include feature vectors based on 2D and 3D descriptors

[Boyles et al., 2019, 2021]. DL-based models such as 3D convolutional neural networks

(CNN) use voxelized representations of the protein-ligand complex [Jiménez et al.,

2018]. Another very successful approach in building scoring functions that can learn

from interactions is the use of Atomic Environment Vectors (AEV) as described by

Meli et al. [2021] which combines a deep learning approach with features derived from

atom-centred symmetry functions using the ANI neural-network potential [Smith

et al., 2017].

Graph-based neural networks (GNN) have recently emerged as a powerful method

for protein-ligand binding affinity prediction [Nguyen et al., 2020; Li et al., 2021;

Karlov et al., 2020]. While different methods usually use differently engineer graph

representations as well as different GNN architectures, the search for the optimal

architectures as well as the best graph representation for protein-ligand binding affin-

ity scoring functions is still ongoing. Although simple ligand-based graphs alone

are already useful for affinity prediction [Nguyen et al., 2020], higher performance

for affinity prediction and virtual screening tasks on multi-target datasets has been

achieved in graphs that can incorporate 3D-structural information [Li et al., 2021;

Lim et al., 2019].

In order to encode 3D information, previous studies have chosen to expand the

graph itself, by including nodes corresponding to protein atoms that are close to

the ligand [Li et al., 2021; Lim et al., 2019]. This expands the graph’s complexity

considerably while obfuscating the topology of the ligand, reducing the advantage

that GNNs might have when encoding molecular structures, especially when it comes

to full transparency and interpretability. In this work, I present Protein-Ligand In-

teraction Graphs (PLIGs) to solve this issue of structural data incorporation into
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GNNs and to create a fully interpretable graph representation. PLIGs can incorpo-

rate 3D protein-ligand interactions directly into the ligand atom nodes of molecular

graphs, encoding all intermolecular interactions made by each ligand atom (within

a pre-defined threshold) in the 3D protein-ligand complex. This enables graphs to

retain the shape of the ligand, by only altering node features. In addition, to explore

potential performance difference between different GNN architectures, I compared

a large variety of modern GNN architectures that are currently popular: (i) Graph

Convolutional Neural networks (GCN, [Kipf and Welling, 2017]); (ii) Graph Atten-

tion Networks (GATNet, [Veličković et al., 2018]); (iii) Graph Isomorphism Networks

(GIN, [Xu et al., 2019]); (iv) a combined GAT-GCN network [Nguyen et al., 2020];

(v) Graph SAGE [Hamilton et al., 2017]; and (vi) Simple Graph Convolutional Net-

works (SGC, [Wu et al., 2019]). When tested on the CASF-2016 benchmark and

featurised using PLIGS, most GNN architectures perform similarly, with GATNet +

PLIG performing best, outperforming other well known scoring functions tested on

CASF-2016, such as PLEC-based random forests [Wójcikowski et al., 2018], KDEEP

[Jiménez et al., 2018], graph-based SIGN [Li et al., 2021] and performs within range of

the currently best performing GNN model graphDelta [Karlov et al., 2020], however

no standard deviation, confidence interval, model error or robustness was reported

by graphDelta, making a direct comparison challenging.

4.3 Materials & Methods

4.3.1 Training and Test Sets

I investigated the ability of PLIGs with different graph-based neural networks (GNN)

to predict the protein-ligand binding affinity. For training and testing, I used the

PDBbind database [Liu et al., 2015, 2017], a curated set of 3D-structures of protein-

ligand complexes and their corresponding experimentally determined binding affinity,
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obtained from the Protein Data Bank (PDB, [Berman et al., 2000]). In order to utilize

the most up-to-date data, I used the PDBBind 2020 General Set and supplemented

it with data from the PDBBind 2016 Refined Set for a total of 19451 protein-ligand

complexes. Additionally, for evaluation against docked poses rather than crystal

poses, I subjected the combined dataset to the pre-processing and docking procedure

described in the Methods Section 4.3.2, resulting in 14981 valid, docked protein-

ligand complexes with the corresponding crystal poses. The dataset was randomly

split into training (14254 data points) and validation (455 data points) sets. I used

the PDBbind 2016 “Core Set”, also referred to as the “CASF-2016 set”, as our test

set since it was used as the “scoring power” benchmark in the CASF exercise in 2016

[Su et al., 2018]. Our test dataset excluded 13 protein-ligand complexes unable to go

through the docking procedure (for a breakdown of the processing see Methods Section

4.3.2), resulting in 272 valid data points (less than the full 285 normally present in

CASF-2016). The CASF-2016 test set has been widely used in the community as

a test set for evaluating scoring function performance [Boyles et al., 2019; Sánchez-

Cruz et al., 2020; Li et al., 2021; Karlov et al., 2020], and notwithstanding the small

exclusion of 13 data points, it serves as a good comparison of our models to previously

published scoring function benchmarks.

Each model was trained to predict the inhibition constant Ki, the dissociation

constant Kd, or the half-maximal inhibitory concentration IC50, depending on which

was provided by PDBBind for each complex. For the purpose of this study, these

values were considered as interchangeable and are henceforth referred to as “the

binding constant, K”. This practice of combining two or all three different affinity

values (IC50, Ki and Kd) has been previously used for similar studies [Boyles et al.,

2019; Sánchez-Cruz et al., 2020]. While the conversion between Kd or Ki and IC50 is

possible using the Cheng-Prusoff equation [Yung-Chi and Prusoff, 1973], it requires
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the substrate concentration which is not reported in PDBbind and often not known

for individual complexes in the dataset. For training and performance evaluation, the

negative base-10 logarithm of K, commonly denoted as “pK” was used:

pK = − log10K (4.1)

For every model, I evaluated its performance by computing the Pearson correlation

coefficient (ρ) as well as the root-mean-square error (RMSE in pK units) between the

predicted pK value and the corresponding, experimentally determined pK value for

every complex in the test set. Cross validation was performed using a 5-fold split

of the training set excluding the validation and test sets. Details about the cross

validation can be found in Appendix C, Section C.3. Performance on the CASF-2016

benchmark was evaluated for every model by training and testing 10 times using

different random seeds on the same dataset split. The ρ and RMSE were calculated

and reported as the average over 10 runs with the corresponding standard deviation.

Model runs were also combined into ensemble models, by averaging each protein-

ligand prediction between each of the 10 models in the test set and calculating the ρ

or RMSE between the average prediction and the true value.

4.3.2 Protein-Ligand Docking Methods

First, the ligand files provided by PDBbind were processed using the cheminformatics

toolkit RDKit [Landrum et al., 2006] (accessed October 2021, v2021.03.5). To avoid

the starting conformation of the ligand biasing the docking process, new conformers

were generated using the ETKDG method [Riniker and Landrum, 2015] followed by

energy minimization with the Merck Molecular Force Field (MMFF, [Halgren, 1999])

as implemented in RDKit. Out of the 19451 original ligand files, some could not be

processed by RDKit, and the remaining ligands were subjected to additional filtering

criteria (removal of metal containing ligands, removal of molecules with more than
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20 rotatable bonds and a molecular weight of more than 1000 Da) resulting in 15317

compounds. This step was performed to filter out non-drug-like ligands. The resulting

15317 ligands were processed into PDBQT-formatted files using Open Babel v3.1.0

[O’Boyle et al., 2011] and the corresponding protein PDB file processed into PDBQT-

formatted files using the prepare receptor4.py function as implemented in MGLTools

v1.5.7 [Morris et al., 2009], resulting in one PDBQT file which could not be generated

by the software (PDB code 4BPS). The ligand and protein PDBQT files were then

docked using Smina [Koes et al., 2013], a user friendly fork of AutoDock Vina [Trott

and Olson, 2010] using default parameters except for the following: exhaustiveness =

20; autobox add = 8; and num modes = 20. The grid box for each docking run was

determined using Smina’s “autobox ligand” feature by passing the original crystal

pose of the ligand into Smina and calculating the grid box from its location. For

each ligand, 20 diverse poses were generated and the best scoring pose was used for

featurization in our models. After docking, the resulting PDBQT ligand files (which

lack bond order information) were parsed by RDKit to assign the correct bond orders

to the docked pose using the original compound SMILES string. This resulted in the

exclusion of 336 ligands as they failed to be parsed or processed using RDKit, resulting

in a final set of 14981 valid docked protein-ligand complexes. In order to assess the

quality of the docked poses, I computed the root-mean-square deviation (RMSD)

between the coordinates of each atom in the docked pose and its corresponding atom

in the original crystal pose using the symmetry-aware RMSD method implemented

in the Open Drug Discovery Toolkit (ODDT, [Wójcikowski et al., 2015b]).

4.3.3 Architecture of Machine-Learning Models

I explored a wide variety of graph-based neural networks (GNNs) as well as a multi-

layer perceptron neural network (MLPNet) in a two-branch setup (Figure 4.1), with
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Protein Sequence

OR

Fingerprint vector Graph

Figure 4.1: General architecture of the models with the ligand branch (green) and the
sequence branch (yellow). The ligand is either embedded as a fingerprint vector in the
MLPNet branch (leftmost branch), or a molecular graph is created for the GNN branch
(middle branch). On the right branch, the protein embedding is shown, where a 1D-
convolutional layer is fed with the embedded protein amino acid sequence. The outputs
from the protein and ligand branches are concatenated and fed into the three fully-connected
readout layers and a single pK prediction is made.

either the GNN or MLPNet embedding the ligand with or without the protein struc-

ture in the first branch and a second branch encoding the protein sequence in a

1D convolutional neural network. Both branches combine into the readout layers,

consisting of three fully-connected layers. This two-branch architecture is adapted

from the GraphDTA architecture described by Nguyen et al. [2020]. All models

were implemented using PyTorch v1.9.0 [Paszke et al., 2019] and PyTorch Geomet-

ric v2.0.0 [Fey and Lenssen, 2019]. The implementation of the graph convolutional

neural network (GCN, [Kipf and Welling, 2017]), graph attention network (GATNet,

[Veličković et al., 2018]), graph isomorphism network (GIN, [Xu et al., 2019]), and the

combined GAT-GCN were directly adopted from [Nguyen et al., 2020] with the only

changes being the selection of optimal hyperparameters after hyperparameter tuning

(see Appendix C, Section C.1, implemented in collaboration with Dominik Klein). In
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addition, GraphSAGE [Hamilton et al., 2017] as well as Simple Graph Convolutional

Networks (SGC, [Wu et al., 2019]) were incorporated into the GraphDTA architecture

using the PyTorch Geometric SAGEConv and SGCConv implementation respectively

(in collaboration with Dominik Klein).

The differences in GNN design between the different GNNs used in this work are

often subtle and abstract and therefore well suited to answer the question: “how

much do design changes in attention, convolution, aggregation, or layer activation

approaches affect the final performance of GNN models”. A brief, high-level summary

of the differences between the GNN implementations is shown below.

GNNs in general, and GCNs in particular were already discussed in detail in

Chapter 1 Section 1.3.1. Briefly, GCNs [Kipf and Welling, 2017] (just like classical

convolutional neural networks) are comprised of layers of learned spectral filters which

are typically activated by a nonlinear activation function. At each layer, the filter is

applied to a node and its neighboring nodes that are one hop away to obtain a new

learned feature representation. Therefore, after k layers, a node now contains feature

information from all nodes that were k-hops away in the original graph, creating

higher order feature representations. SGCs [Wu et al., 2019] alter the GCN concept by

collapsing all GCN layers into a single layer and by removing the nonlinear activation

function, only keeping the softmax function.

GATNets [Veličković et al., 2018] are also based on GCNs and alter the archi-

tecture by changing the process of how feature information from neighboring nodes

is aggregated on a given node. Instead of calculating the normalized sum of node

features during a graph convolution, GATNets introduce an attention mechanism

between neighboring nodes, calculating an un-normalized attention score between

neighboring nodes which implicitly assigns higher weights to neighboring nodes of

higher importance during training. The combined GAT-GCN model incorporates
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both, GATNet and normal GCN layers into the model. The GraphSAGE [Hamilton

et al., 2017] architecture is very similar to the GATNet approach since it changes

the way feature aggregation works between neighboring nodes. While GCNs produce

the normalized sum over the node features of neighboring nodes, GraphSAGE simply

averages over neighboring node features instead. This also enables GraphSAGE to

be used inductively instead of transductively, for example on evolving graphs with

unseen nodes. However for the purpose of this work, all models are employed trans-

ductively. Finally GINs [Xu et al., 2019] are based on the Weisfeiler-Leman test (WL

test), which is able to tell if two graphs are anti-isomorphic (graphs with non identi-

cal structure). GIN replace the aggregator that is used to update the node features

with an aggregator inspired by the WL test to maximize the representational (or

discriminative) power of the GIN.

The MLPNet model follows a simple feed-forward neural network architecture

implemented using PyTorch with the dimension (width) of each layer and the num-

ber of fully-connected layers (depth) determined by hyperparameter optimization as

described in the Appendix C, Section C.1. The embedding and setup of the pro-

tein branch was adopted from GraphDTA [Nguyen et al., 2020], in collaboration

with Dominik Klein, with only a minor change: reducing the number of convolu-

tional layers from three layers to only a single layer, simplifying the model. The

convolutional kernel size and the number of filters are hyperparameters which were

tuned individually for every GNN/MLPNet and protein branch combination (see Ap-

pendix C, Section C.1). The implementation and code for all models can be found at

http://github.com/MarcMoesser/Protein-Ligand-Interaction-Graphs.
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4.3.4 Ligand-Based Graphs

Ligand-based graphs were generated based on the bonds and atoms in the small

molecule. Each atom (node) is represented as a one-hot encoded 40-dimensional fea-

ture vector, and each covalent bond (regardless of the bond type) as an edge in the

graph. The atom feature set used by GraphDTA [Nguyen et al., 2020] consisted of

the following one-hot encoded features: atomic symbol; number of adjacent heavy

atoms; number of adjacent hydrogens; implicit valence; and whether the atom is in

an aromatic ring. In order to accurately reflect the ligand and add relevant additional

ligand information, this was expanded by adding additional features: a boolean vari-

able describing whether the atom is in a ring; the one-hot encoded formal charge; and

the one-hot encoded hybridization type; and by changing the encoding of the implicit

valence to the explicit valence. Since PDBBind [Liu et al., 2015, 2017] carefully pre-

processes ligands and assigns physiologically relevant atom charges, the inclusion of

features such as the explicit valence and the formal charge gives a more complete de-

scription of the molecule. All features were calculated using RDKit [Landrum et al.,

2006] (v2021.03.5).

4.3.5 Small Molecule Fingerprints

The molecular fingerprints used for the MLPNet models were calculated using RD-

Kit (v2021.03.5) [Landrum et al., 2006]. I investigated the effect of using Morgan

fingerprints with the RDKit implementation of Extended-Connectivity Fingerprints

and Functional-Class Fingerprints (ECFP and FCFP respectively, [Rogers and Hahn,

2010]) with a radius of 2, and either 512 or 1024-bit vectors. They are referred to as

“ECFP512” or “ECFP1024” respectively.
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4.3.6 Protein-Ligand Interaction Graphs (PLIGs)

Protein-Ligand Interaction Graphs (or “PLIGs”) were inspired by the work of

[Sánchez-Cruz et al., 2020] who introduced Extended Connectivity Interaction Fea-

tures (ECIF) as high performing features for random forests and gradient boosted

tree networks for binding affinity prediction.

PLIGs combine ligand-based graphs with 3D protein-ligand interaction features

(Figure 4.2). Initially, a ligand-based graph is generated (see Section (4.3.4) with only

five RDKit-derived atom node features: number of adjacent heavy atoms; number of

adjacent hydrogens; explicit valence; aromaticity; and ring membership. Then, all

possible, unique protein atom types with the following criteria: atom symbol; explicit

valence; number of attached heavy atoms; number of attached hydrogens; aromaticity;

and ring membership, are identified. This resulted in 22 unique protein atom types

based on the 20 proteinogenic amino acids, excluding selenocysteine (for full list

see Appendix C, Section C.2). To identify the interaction features, the existence of

every protein atom in the proximity of a given ligand atom within a defined distance

threshold in the 3D-protein-ligand complex is recorded. A 22-dimensional integer

vector is created, with each element in the vector corresponding to the count of

the protein atoms of that unique protein atom type in the vicinity of the ligand

atom. Each position in the ligand atom node feature vector is therefore interpretable

as it (i) encodes for a specific, identifyable protein atom type (e.g. an aromatic

carbon in phenylalanine), and (ii) since it encodes for the number of interactions

made with this type for the given ligand atom. Previous work on ECIF [Sánchez-

Cruz et al., 2020] determined 6 Å to be the optimal proximity threshold, however

for this work, I investigated the performance of different thresholds (between 4-8 Å

in 1 Å-intervals). Finally, the 5-dimensional ligand-derived atom feature vector is

concatenated with the 22-dimensional ligand-protein interaction features, to generate
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the final 27-dimensional node feature vector (Figure 4.2). This procedure is repeated

for every atom in the ligand to generate the final PLIG.

Protein-Ligand 

Interaction Graph

+
3D contacts

2D structure

Ligand Atom 

Features (N=5)

Protein Interaction 

Features (N=22)

Figure 4.2: Stylised representation of the construction of a Protein-Ligand Interaction
Graph. On the left, the chemical structure of the ligand of 6ajv and 3D-structure of the
binding site are shown, with every intermolecular interaction in the radius of 4 Å around
each ligand atom marked in yellow. PLIGs are created by assigning an integer feature vector
to each node consisting of the RDKit-derived atom descriptors (number of adjacent heavy
atoms; number of adjacent hydrogens; explicit valence; aromaticity; and ring membership)
as well as the number of interactions made with each protein atom type (one for each of the
22 unique atom types) that are within a pre-defined distance threshold to create the final
27-dimensional feature vector for every atom node in the PLIG.

One major disadvantage of the ECIF fingerprints is that the dimensionality of

the vector depends on the dataset. Since the ECIF fingerprint is comprised of all

possible combinations of protein atom types and ligand atom types, if a novel ligand

is to be scored using an ECIF model, it cannot contain a new ligand atom type.

An ECIF-featurized model therefore needs to be retrained from scratch every time

the model is asked to evaluate a ligand with a new “ECIF atom type” that was not

represented in the original dataset. Given the diversity of chemical space and the

uniformity of known drug-like molecules, this is especially problematic when dealing
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with novel molecule design, especially for early stage drug discovery where a diverse

set of molecules might be screened or a set of novel scaffolds needs to be explored

for candidate optimization. PLIGs overcome this limitation by defining atom types

on the protein side, which limits the possible options to the 20 proteinogenic amino

acids (inclusion of more amino acids is also possible if needed), thus eliminating the

problems of unknown atom types. Therefore, any new protein-ligand complex can

be scored with a pre-trained PLIG model, regardless of the ligand structure. This

is especially useful for building prospective models on targets where little structural

information is known and docking is needed for generating ligand poses, and a diverse

set of new ligands needs to be screened. Additionally, the PLIG architecture is able

to represent 3D protein-ligand complexes in a ligand-based graph, without needing

additional edges and nodes, only changing the node feature vector.

4.4 Results and Discussion

4.4.1 Quality of Docked Poses

The quality of all 14981 docked poses was estimated by calculating the symmetry-

aware RMSD using ODDt [Wójcikowski et al., 2015b] between all heavy atoms of the

ligand’s original crystal pose and the highest scoring docked pose for each protein-

ligand complex. A docked pose is considered to be of high quality if the calculated

crystallographic RMSD is 2 Å or less. Overall, 39 % of the docked poses were high

quality. However, when splitting the dataset by the quality of the underlying crystal

structures into the Refined Set and General Set, a subtle difference in pose quality

was observed (42 % of docked poses from the Refined Set and 38 % of poses from the

General Set were high quality, Figure 4.3). This might be due to the lower resolution

of structures in the General Set where crystal structures have resolutions that worse

than the 2 Å cutoff used above for pose quality estimation. In order to simulate a
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more realistic docking campaign where lower quality poses can be expected, I used all

available docked poses as input for the scoring functions, regardless of pose accuracy.

Figure 4.3: Overview of the docking pose quality for the PDBbind dataset. The red line
marks the evaluation cutoff of 2 Å. All RMSD values were calculated as symmetry aware
using OODT [Wójcikowski et al., 2015b]. a) Distribution of RMSD values (reported in Å)
for the subset of the dataset that is part of the Refined Set 2020 and Refined Set 2016. b)
Distribution of RMSD values (reported in Å) for the complexes in the General Set 2020
without complexes that are part of Refined Set 2020 or Refined Set 2016. c) Distribution
of RMSD values (reported in Å) for the entire dataset (Refined Set 2016 and General Set
2020 including Refined Set 2020).
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4.4.2 Model Combinations

For this study, six different GNN and one MLPNet architecture were employed. The

GNN models were either featurized using ligand-based graphs or PLIGs. The MLPNet

model was featurized with structure-based fingerprints (ECIF [Sánchez-Cruz et al.,

2020]) or ligand-based fingerprints (ECFP512, ECFP1024, FCFP512, or FCFP1024).

All resulting models were trained and tested either in a two-branch architecture with

an additional protein sequence encoding branch (see Figure 4.1), or by themselves as

a standalone model. This resulted in the 34 models listed in Table 4.1. Each of the

models were trained and tested separately on crystallographic and docked poses.

In addition to the models listed in Table 4.1, six different multi-model ensembles

were created as described in Section 4.3.1. The list of created multi-model ensembles

is given in Table 4.2. The architecture of each model (e.g. number of layers and

other parameters) were determined during hyperparameter tuning an can be found

in Appendix C, Section C.1.

4.4.3 Model Stability and Ensemble Model Performance

Since the model predictions are stochastic between different training and test runs on

the same dataset split, model performance against the withheld test set (CASF-2016)

for all trained models was evaluated: (1) using the average and standard deviation

(SD) of the Pearson correlation coefficient (ρ) as well as the root-mean-square error

(RMSE in pK units) over 10 runs; and (2) as the ensemble model over all 10 models

by averaging the individual predictions for each protein-ligand complex in the test

set from all 10 models. Model stability between the 10 training runs was high for

all models, with a maximum ρ standard deviation of 0.023 for the model with high-

est variability (SGCNet-LB) and a maximum RMSE standard deviation of 0.08 pK

(SGCNet+PLIG model and the SGCNet+PLIG + PB model trained and tested on
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Model Architecture Features Sequence
GATNet + PLIG + PB 3D-based (PLIG) Yes
GATNet + PLIG 3D-based (PLIG) No
GATNet-LB + PB ligand-based Yes
GATNet-LB ligand-based No
GCNNet + PLIG + PB 3D-based (PLIG) Yes
GCNNet + PLIG 3D-based (PLIG) No
GCNNet-LB + PB ligand-based Yes
GCNNet-LB ligand-based No
GIN + PLIG + PB 3D-based (PLIG) Yes
GIN + PLIG 3D-based (PLIG) No
GIN-LB + PB ligand-based Yes
GIN-LB ligand-based No
GAT/GCN + PLIG + PB 3D-based (PLIG) Yes
GAT/GCN + PLIG 3D-based (PLIG) No
GAT/GCN-LB + PB ligand-based Yes
GAT/GCN-LB ligand-based No
SGCNet + PLIG + PB 3D-based (PLIG) Yes
SGCNet + PLIG 3D-based (PLIG) No
SGCNet-LB + PB ligand-based Yes
SGCNet-LB ligand-based No
SageNet + PLIG + PB 3D-based (PLIG) Yes
SageNet + PLIG 3D-based (PLIG) No
SageNet-LB + PB ligand-based Yes
SageNet-LB ligand-based No
MLPNet + ECIF + PB 3D-based (ECIF) Yes
MLPNet + ECIF 3D-based (ECIF) No
MLPNet + ECFP512 + PB ligand-based Yes
MLPNet + ECFP512 ligand-based No
MLPNet + ECFP1024 + PB ligand-based Yes
MLPNet + ECFP1024 ligand-based No
MLPNet + FCFP512 + PB ligand-based Yes
MLPNet + FCFP512 ligand-based No
MLPNet + FCFP1024 + PB ligand-based Yes
MLPNet + FCFP1024 ligand-based No

Table 4.1: All model architecture and feature combinations (34 total). All PLIGS were
generated using a proximity threshold of 6 Å. The presence or absence of the two-branch
architecture featuring the additional protein branch (PB) is denoted in the “Sequence”
column and the architecture name. Ligand-based GNN models have the “LB” label.

docked poses). For a detailed overview of model stability and standard deviations

between different runs, see Appendix C, Section C.4. Performance improved for all
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Ensemble Model Architectures Features Protein Branch?
All PLIG models 3D No
GATNet (PLIG)+MLPNet (ECIF) 3D No
GATNet (PLIG)+MLPNet (ECFP512) 3D & LB No
MLPNet (ECIF)+MLPNet (ECFP512) 3D & LB No

Table 4.2: All multi-model ensembles. All models were trained without the sequence
embedding. There are four multi-model ensembles total. All PLIGs were generated using
a proximity threshold of 6 Å.

models when using the ensemble predictions in comparison to the averaged ρ score

(Appendix C, Figure C.11 & C.12; Main text Figure 4.5) and therefore all further

results are reported for the ensemble models.

4.4.4 Model Performance on Crystal Poses

Model performance when trained and tested on crystal poses is shown in Figure

4.5, with the GATNet+PLIG model (no sequence; ρ=0.84, RMSE=1.22 pK) and

the MLPNet ECIF model (with sequence; ρ=0.84, RMSE=1.19 pK) performing

best overall, although differences in performance between GATNet+PLIG (ρ=0.84,

RMSE=1.22 pK) and GAT-GCN PLIG (ρ=0.82, RMSE=1.24 pK) were small, and all

other graph architectures only marginally worse (Figure 4.5). ECIF fingerprints were

previously only tested using random forest or gradient boosted tree models [Sánchez-

Cruz et al., 2020], showing that ECIF fingerprints can be used efficiently in a deep

learning framework as well as in classical machine learning models. In addition, al-

though performance is strong across all GNN architectures, the GATNet PLIG model

outperforms all other graphs (scatter plot of GATNet+PLIG trained and tested on

crystal poses is shown in Figure 4.4 a). Overall, I show that PLIGs are a high-

performing graph representation regardless of GNN architecture, and performance

difference between ligand-based and PLIG-based GNNs is larger than differences be-

tween GNN architectures, highlighting that good molecular representation design
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is more important than subtle differences in GNN architecture design. Furthermore,

while performance of PLIG-based GNN models slightly lacks behind the reported per-

formance of graphDelta (ρ=0.87 on CASF-2016, [Karlov et al., 2020]), no standard

deviation, confidence interval, model error or robustness was reported by graphDelta,

making a direct comparison challenging, especially since the standard deviation of

the Pearson correlation coefficient between individual runs of GATNet+PLIG for ex-

ample is 0.02, indicating that graphDelta might be almost in range. Nonetheless,

PLIG-based models are able to outperform some of the best and most widely used

protein-ligand binding affinity prediction methods such as random forest-based PLEC

(ρ=0.817, [Wójcikowski et al., 2018]), OnionNet (ρ=0.816, [Zheng et al., 2019]) and

KDEEP (ρ=0.82, [Jiménez et al., 2018]) as well as other recent GNN-based scoring

functions such as SIGN (ρ=0.797, [Li et al., 2021]) and PIGNet (ρ=0.761, [Moon

et al., 2022]).

Figure 4.4: Scatter plots of the average prediction versus the experimentally determined
pK value for each protein-ligand complex between the 10 model runs for: a) GATNet+PLIG,
no protein sequence embedding, trained and tested on crystal structures; b) PLIG, no
protein sequence embedding, trained and tested on docked structures.
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Figure 4.5: The reported Pearson correlation coefficient (ρ) and root-mean-square error
(RMSE) of the structure-based ensemble models. All PLIGs are generated using a proximity
threshold of 6 Å. For both, ρ and RMSE results, “Sequence” and “No Sequence” denote
the presence or absence of the protein sequence-encoding branch in the model architecture,
respectively. (a and c) Performance of the structure-based GNN and MLPNet models when
trained and tested on crystal structures. (b and d) Performance of the structure-based
GNN and MLPNet models when trained and tested on docked poses. The best performing
model is the GATNet+PLIG (ρ=0.84, RMSE=1.24 pK) model.
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4.4.5 Protein Sequence Embedding

For all PLIG models, the inclusion of the protein sequence branch in the model

decreases performance. Since PLIGs already implicitly encode the structure of the

protein (at least the part that interacts with the ligand), inclusion of 1D-protein

sequence information might be introducing confounding information or noise, hin-

dering PLIG model performance. In addition, all protein-branch containing models

are more unstable during cross validation, reaching maximum performance quickly,

after a small number of epochs, therefore raising concerns of overfitting (Appendix

C, Section C.3). As a result, I recommend using the single-branch GNN or MLPNet

implementations of any of the models implemented in this work without the protein

sequence branch in future studies and will be focused on those models in the discus-

sion of further results. In addition, caution is advised in general when dealing with

protein-ligand binding affinity scoring functions that utilize sequence information di-

rectly in 1D convolutional networks as described in this work because of potential

overfitting.

4.4.6 Model Performance on Docked Poses

Overall, the performance of all models decreased when trained and tested on docked

poses in comparison to training and testing on crystal poses (Figure 4.5). As with

models trained and tested on crystal poses, the performance difference between dif-

ferent GNN architectures in combination with PLIG was low (ρ=0.73-077 between

all GNN+PLIG models) when trained and tested on docked poses. As one of the

top performing graph-based PLIG models, the scatter plot for GATNet+PLIG when

trained and tested on docked poses is shown in Figure 4.4 (b).

The MLPNet+ECIF model performed better than any graph-based methods when

comparing the Pearson correlation coefficient (MLPNet+ECIF ρ=0.80), but drops in
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performance in comparison with the best GNN-based method when comparing RMSE

(GATNet+PLIG: RMSE=1.39 pK; MLPNet+ECIF: RMSE=1.43 pK, see Figure 4.5

d). However, all differences are fairly minimal in total. As mentioned in the previous

section, models that included the protein sequence embedding were less robust during

cross validation (Appendix C, Section C.3) and models without the sequence embed-

ding are preferred and more stable. The models were also trained on crystal structures

and tested on docked poses (Appendix C, Figure C.13) however no noteworthy differ-

ence to models trained and tested on docked poses was observed. Overall, the drop

in performance from training on crystal to docked poses for structure-based methods

is to be expected, as docked poses sometimes diverge from the original crystal struc-

tures, and the identified interactions might not reflect the actual interactions in the

crystal.

4.4.7 Model Performance with Ligand-Based Features

In contrast to the structure-based methods where incorporation of the sequence em-

bedding did not improve performance for PLIG GNN, ligand-based GNN models are

either improved (GAT-GCN, GCNNet, GIN, SGC) or are not negatively affected

(GATNet, SageNet), as can be seen in Figure 4.6. When using purely ligand-derived

graphs, no notable difference in performance between the different graph architectures

was observed. In addition, as described for the PLIG-based GNNs, inclusion of the

sequence branch is not recommended for robust model design. Overall, purely ligand-

based models do not perform as well as the structure-based models trained and tested

on crystal structures, but perform comparably to the structure-based models trained

and tested on docked poses (Figure 4.5 & 4.6), showing that any additional structural

noise introduced to the dataset by docking leads to 3D-based models performing as

well as ligand-based models that have no 3D data at all. This same trend was ob-
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served by Boyles et al. [2021] for random forest-based models. This also highlights

that the ligand-based models benefit from the inherent bias in the benchmark sets,

and are memorizing ligand information rather than interactions between the ligand

and the protein. Their ability to extrapolate to unseen ligands and generalize will

therefore be compromised.

Figure 4.6: (a) The reported Pearson correlation coefficient (ρ); and (b) root-mean-square
error (RMSE) of the ligand-based ensemble models. For both, ρ and RMSE results, “Se-
quence” and “No Sequence” denote the presence or absence of the protein sequence-encoding
branch in the model architecture, respectively. Outside of some outliers that performed es-
pecially poorly (ligand-based SGCNet and ligand-based MLPNet+FCFP512), no strong
difference in performance is observed between all ligand-based models, however, models
that include the protein sequence branch performed better than without, but made the
models prone to overfitting (see Section 4.4.5.
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4.4.8 Model Performance of Multi-Model Ensembles

Since intra-model ensembles performed better than individual models, I tested the

impact of multi-model ensembles. Overall, no notable improvement over the GAT-

Net+PLIG model was observed for any model combination (Figure 4.7) when trained

and tested on crystal poses. However, combining GATNet+PLIG models with

ligand-based ECFP512 fingerprint features yielded a synergistic improvement in

comparison to the individual models trained and tested on docked poses (ensem-

ble: ρ=0.81, RMSE=1.35 pK versus GATNet+PLIG: ρ=0.77, RMSE=1.43; and

ECFP512: ρ=0.75, RMSE=1.45 pK). However, ensembling ligand-based models with

MLPNet+ECIF models did not increase performance when trained and tested on

docked poses.

The addition of ligand-based features has been previously shown to recover most of

the lost performance when replacing crystal with docked poses (Random Forest mod-

els by Boyles et al. [2021]). I observed the same effect when using 3D structure-based

graph neural networks and ligand-based feed forward neural networks (MLPNet) in

an ensemble model framework, recovering lost performance between crystal structures

and docked poses. Being able to apply model ensembles has the advantage over the

work reported by Boyles et al. [2019] that models do not have to be retrained once

the decision has been made to include additional ligand features to rescue perfor-

mance. Rather, in the case of ensemble models, a single new ligand-based model can

be created and combined post-prediction with the structure-based models to rescue

performance. Overall, the GATNet+PLIG models perform best, outperforming all

other models on crystal poses and when combined with ligand-based models in a

multi-model ensemble regain top performance on docked poses.
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Figure 4.7: Performance of the multi-model ensembles as measured by ρ (a) and RMSE
(b) for docked and crystal poses. All PLIGs are generated using a proximity threshold
of 6 Å. The “All PLIGs” model is an ensemble of all PLIG GNN models. PLIG, ECIF
and ECFP models were used without the sequence embedding for all ensembles. The best
performing single model, the GATNet PLIG without protein sequence embedding (Figure
4.5 ρ=0.84, RMSE=1.24 pK), was not improved further through multi-model ensembles, but
performance of the GATNet+PLIG model (ρ=0.77, RMSE = 1.39 pK, see Figure 4.5) was
improved against docked poses by ensembling with the MLPNet ECFP512 model (ρ=0.81,
RMSE=1.35 pK).

4.4.9 Influence of Proximity Threshold on Performance

I further investigated the effect of varying the protein-ligand interaction proximity

thresholds during PLIG generation on the performance of the GATNet PLIG model.

I generated PLIGs using thresholds of 4-8 Å in 1 Å steps. These particular thresholds

were chosen since values smaller than 4 Å might exclude some intermolecular interac-

tions and therefore give an incomplete picture of the surrounding atom environment.

In addition, proximity values beyond 8 Å would include protein atoms too far away to

form meaningful interactions. The GATNet model without the sequence embedding

was chosen as the model architecture for this experiment and 5-fold cross validation as

well as training and testing on the CASF-2016 benchmark was performed as described

above (Methods Section 4.3.1).
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Model Architecture Dataset Ensemble ρ Ensemble RMSE [pK]

GATNet (PLIG) 4 Å Crystal 0.81 1.32
GATNet (PLIG) 5 Å Crystal 0.84 1.21
GATNet (PLIG) 6 Å Crystal 0.84 1.22
GATNet (PLIG) 7 Å Crystal 0.81 1.29
GATNet (PLIG) 8 Å Crystal 0.80 1.33

GATNet (PLIG) 4 Å Docked 0.76 1.46
GATNet (PLIG) 5 Å Docked 0.76 1.44
GATNet (PLIG) 6 Å Docked 0.77 1.43
GATNet (PLIG) 7 Å Docked 0.77 1.39
GATNet (PLIG) 8 Å Docked 0.76 1.43
All proximities ensemble Crystal 0.84 1.22
All proximities ensemble Docked 0.79 1.38

Table 4.3: Performance of the GATNet PLIG model on the CASF-2016 benchmark using
different proximity thresholds. Reported Pearson correlation coefficient (ρ) and Root mean
square error (RMSE) are calculated as the ensemble between 10 train and test model itera-
tions. The best performance on crystal structures was achieved with PLIGs using the 5 and
6 Å thresholds (marked bold, ρ=0.84 / 0.84 and RMSE=1.21 / 1.22 for 5 / 6 Å threshold
respectively) with no notable difference in performance between both. Multi-model ensem-
bles between all proximity thresholds does not lead to increased performance.

For a discussion of the performance during cross validation as well as the average

performance and standard deviation before ensembling see Appendix C, Section C.5.

The ensemble performance between 10 train and test model iterations is shown in

Table 4.3. The best performance when trained and tested on crystal structures was

observed for PLIGs with thresholds of 5 Å and 6 Å (ρ=0.84 / 0.84 and RMSE=1.21

/ 1.22 for the 5 / 6 Å thresholds, respectively) with no notable advantage of one over

the other. Furthermore, performance dropped for all thresholds when training and

testing on docked poses slightly, although varying proximity thresholds do not seem

to strongly affect performance in this instance (Table 4.3). This observation is in line

with our expectations since a majority of docked poses were found to have a RMSD

between the crystal and docked pose of larger than 2 Å (Section 4.4.1). Changing

the PLIG threshold within the docking error rate (more than 2 Å for many docked

poses) should therefore not alter results drastically.
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Finally, multi-model ensembles using all thresholds does not improve performance.

Overall, I found the 6 Å threshold to perform best between docked and crystal poses

and recommend usage of 6 Å PLIGs for further studies.

4.4.10 Model Generalizability

In order to assess the ability of the best performing GATNet PLIG model to general-

ize between different protein families, protein-ligand pairs in the training dataset were

eliminated based on their sequence identity to proteins represented in the CASF-2016

benchmark using five sequence identity threshold levels ranging between 50 % and

100 % identity. The GATNet+PLIG model was trained on the reduced dataset and

tested against the full CASF-2016 dataset a total of 10 times, and the ensemble model

obtained as described above (a description of the model stability is given in the Ap-

pendix C, Section C.6). As expected, performance decreases as increasingly dissimilar

proteins are eliminated with stricter identity thresholds (Figure 4.8), with the largest

drop in performance observed between the original full dataset and the elimination

of 100% identical proteins from the training set (meaning that only proteins in the

training set with identical sequence to proteins in the test set are removed). This ob-

servation is in line with similar experiments such as reported by Boyles et al. [2019],

where model performance decreased regardless of random forest model featurization

when eliminating test set-similar protein structures from the training set. However,

part of the decrease in performance could be due to the reduced dataset size when

eliminating data points in the training set (Table 4.4). In addition, a decrease in

performance with decreasing sequence similarity could also suggest that the model

might be susceptible to ligand-specific bias, as similar ligands are expected to bind

similar proteins. This has previously been observed for random forest-based models

as reported by Boyles et al. [2019].
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Nonetheless, as CASF-2016 is deliberately chosen to be representative of the pro-

teins present in the PDBbind refined set, eliminating this bias through techniques

such as the sequence identity elimination described herein, a fairer evaluation of gen-

eralizability would be achieved and should therefore be utilized in future evaluations

of other protein-ligand affinity scoring functions.

Threshold Training Set Size
Full training set 14254
100 % threshold 11917
95 % threshold 11033
90 % threshold 10969
70 % threshold 10855
50 % threshold 10408

Table 4.4: Size of the training set based on the sequence identity threshold.

Figure 4.8: Pearson correlation coefficient (ρ) and Root mean square error in pK units
(RMSE) of the predicted versus the experimental binding affinity for the GATNet PLIG
model (no sequence, ensemble over 10 runs) when trained and tested on crystal poses.
Protein-ligand complexes in the training set with a sequence identity at or above the cut-off
value to proteins in the CASF-2016 test set were excluded, resulting in a smaller dataset at
every step.
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4.5 Discussion

The recent interest in GNN-based scoring functions for protein-ligand binding affin-

ity prediction has led to something of an arms race in complexity. New models that

try to incorporate structural features into GNNs add protein nodes to the graph [Li

et al., 2021; Lim et al., 2019] which changes the shape of the graph and introduces

unnecessary complexity of the model. In this study, I have introduced Protein-Ligand

Interaction Graphs (PLIGs), simple molecular graphs that retain the chemical topol-

ogy of the ligand but which also encode all of the 3D protein-ligand interactions made

by the ligand, by incorporating proximity-based interactions into each ligand atom’s

node features. Despite their simplicity, PLIGs perform among the top scoring func-

tions when tested against the CASF-2016 benchmark. Using the novel PLIG-based

featurization, I conducted a comprehensive analysis of six different GNN architectures

with PLIGS and found only small differences in performance between architectures

with Graph Attention Networks (GATNet) performing best for predicting binding

affinity, indicating that subtle differences in feature aggregation, attention mechanism

or activation function are less important than good molecular representation design.

In addition, simplicity in model design seems to be desirable for PLIG models specif-

ically, since the hybrid branch architecture that combines the protein sequence and

the GNN using PLIG performs worse than models with just PLIG-based GNNs.

Despite their simplicity, GATNet PLIGs (ρ=0.84, RMSE=1.22) perform compara-

bly to some of the best current scoring functions against the CASF-2016 benchmark,

approaching methods such as ECIF fingerprints (ρ=0.867, [Sánchez-Cruz et al., 2020])

and graphDelta (ρ=0.87, [Karlov et al., 2020]). In addition, PLIGs outperform other

well-established structure-based models such as random forest-based PLEC (ρ=0.817,

[Wójcikowski et al., 2018]), OnionNet (ρ=0.816, [Zheng et al., 2019]) and KDEEP
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(ρ=0.82, [Jiménez et al., 2018]) as well as other recent GNN-based scoring functions

such as SIGN (ρ=0.797, [Li et al., 2021]) and PIGNet (ρ=0.761, [Moon et al., 2022]).

Nonetheless, performance between different graph architectures are fairly similar,

and although GATNet performs best, other architectures such as GCN and GAT-

GCN models perform almost as well (Figure 4.5). If chosen by random, any herein

described GNN architecture in combination with PLIGs would have performed close

to, or among the best current scoring functions. This highlights the crucial im-

portance of choosing the right molecular representation rather than fine tuning or

developing new and complex deep neural network architectures. While the current

top performing graph-based protein-ligand binding affinity scoring functions aim to

create more complex architectures to increase performance [Li et al., 2021; Nguyen

et al., 2020; Jiang et al., 2020b; Lim et al., 2019], simplicity in architecture and careful

featurisation such as through PLIGS can yield similar or better performance while

retaining interpretability and easy customizability.

Next, I have shown that model ensembles can be a powerful tool in overcoming the

performance drop of binding affinity scoring functions when going from training on

crystal to training on docked poses. Rather than creating a hybrid model by adding

ligand-based features such as ECFP fingerprints directly into the feature space of a

structure-based model (as described by Boyles et al. [2019]), a simple ensemble of

a structure-based model and a separate ligand-based fingerprint model can increase

performance to levels higher than the individual models by themselves. However,

ensembling different structure-based methods does not seem to improve performance,

at least for the GNN PLIG and MLPNet ECIF models described here. Additional

investigation would be required to test if a more diverse set of model ensembles could

improve performance further.

This study shows that simply including proximity-based protein-ligand interac-
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tions into the atomic nodes of molecular graphs of the ligand boosts performance of

graph neural networks when predicting protein-ligand binding affinity. As a result, it

opens up a large space for exploration of which other node features might be included

in molecular graphs. Rather than increasing the size of the graph, adding nodes or

increasing the complexity, this method of incorporating 3D-structural information

into ligand graphs is simple, powerful and compatible with a large variety of GNN

architectures.

Furthermore, PLIGs are designed to be easily modified, opening up many possibili-

ties for further improvement of the graphs. The PLIG architecture can therefore serve

as an extensible framework to enable researchers to investigate which other kinds of

protein-ligand complex representations might be valuable in GNNs. Potential areas of

improvement could be to integrate more details about the intermolecular interactions

themselves for example through computed biophysical quantities of the interaction.

For example, docking-derived atomic scores such as Van der Waals, electrostatics,

or desolvation terms could be extracted by scoring the crystal poses of the ligands,

and directly incorporated into the atom nodes of PLIGs. Alternatively, as Meli et al.

[2021] have shown, atomic-environment vectors (AEVs) are powerful features for the

creation of protein-ligand scoring functions and could also be added into atom nodes

of PLIGs. Indeed, first steps into the implementation of PLIG/AEV crossover models

have already been started in collaboration with Rocco Meli. In theory, virtually any

molecular representation that extract features on a ligand atom level could be used

as potential node features in PLIGs, opening up many different paths for exploration

and potential improvement.

Finally, as the protein-ligand interaction features present in PLIGs are fully inter-

pretable since every dimension in the node feature vector of a PLIG corresponds to a

specific, known atom type present in the proteinogenic amino acids of every protein,
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further study into the feature importance and interpretability of PLIGs could provide

great insights. Understanding the importance that the model assigns to interactions

made with every unique atom type in a protein could not only lead to improved

models with better performance and generalizability, but could also enable a deeper

understanding of which ligand atoms and protein atoms drive high-affinity binding.

PLIGs might therefore not only be used as a tool to screen compounds during lead

optimisation to prioritise compounds for synthesis, but also as a tool to gain insight

into the details of ligand recognition on an atomic level. The first steps towards

the implementation of an interpretability analysis pipeline have already been made

by Samuel Homberg using GNNExplainer [Ying et al., 2019] under my and Prof.

Garrett Morris’ supervision, confirming that PLIGs are indeed interpretable on an

atom-atom interaction level and can be used to gain insights into interaction impor-

tance and might be used in the future to create comprehensive binding hypothesis

for binding pockets of protein targets.
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Chapter 5

Conclusions

As outlined in Chapter 1, pharmaceutical drug discovery is becoming more and more

time consuming and expensive. It is possible that many “low hanging fruits” have

already been found, forcing scientists to target more challenging diseases. In addi-

tion, the regulatory environment around drug approvals is become stricter, which, in

combination with the increased difficulty in targeting challenging diseases, is leading

to a higher failure rate in the clinic. The pharmaceutical industry therefore needs to

either increase efficiency in pre-clinical drug discovery in order to fail more quickly

(and more cheaply) or to otherwise improve the quality of lead compounds that enter

the clinical trials. In this thesis, I have outlined three distinct but complementary

computer aided drug discovery methods to increase efficiency for the pre-clinical drug

discovery pipeline, mainly focusing on hit discovery and hit-to-lead optimization.

One of the main themes of this thesis is the exploration of different representa-

tions of molecular structures and non-covalent interactions present in protein-ligand

complexes. Since computer-aided drug discovery borrows from the wide field of com-

puter science, CADD does not suffer from a shortage of different methods, models

or approaches. Given the variety of choices, the decision about which exact method

and representation one needs for a given method or a given task is therefore not

trivial. In this thesis, I described three different approaches to molecular representa-
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tion, highlighting that to answer slightly different questions within the drug discovery

pipeline, completely different molecular representations and machine learning models

can be necessary. In Chapter 2, I described the construction of ligand-based models

using a Gaussian Process and explore the effect of representing the search space with

different ligand-based fingerprints and a molecular autoencoder on the search power

of Bayesian optimisation. In Chapter 3, I employed a knowledge-based approach to

drug design, comparing protein-ligand interaction fingerprints derived from crystal

structures and high-quality models of protein-substrate complexes to docked poses

of potential inhibitors to inform fragment-based drug design. Finally, in Chapter 4,

I explored a wide range of Graph Neural Network Architectures for protein-ligand

binding affinity prediction and expanded upon the interaction fingerprints to create

a ligand-shaped graph representation (Protein Ligand Interaction Graph, PLIG) of

small molecule ligands that encodes for all protein-ligand interactions made by a given

ligand atom within the node features of the graph. GNN-based models using PLIGs

are high-performing protein-ligand affinity prediction models.

5.1 Bayesian Optimization for Drug Discovery

In Chapter 2, I focused on the search for the best molecular representation for

Bayesian optimisation (BO) used for the hit-to-lead optimisation of small molecule lig-

ands and on the development of a multi-objective optimisation method for the design

of compounds with polypharmacological profiles. I used a discrete multi-armed ban-

dit implementation of BO on two datasets, a previously described MMP-12 dataset

[Pickett et al., 2011] as well as a novel β-lactamase inhibitor dataset obtained from

the Schofield group at the University of Oxford. I showed that BO has the potential

to be a powerful tool to aid medicinal chemists in prioritising new molecules to test

during structure-activity-relationship (SAR) optimisation. In addition, I found that
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fingerprint-based as well as autoencoder-based representations are able to perform

well in Bayesian optimization, with ECFP performing best overall. Additionally, I

highlighted the current limitations of BO in inhibitor discovery, such as the fairly

simple GP surrogate function, and the inability to generate new compounds de novo

rather than choosing from a list of given compounds.

However, the first steps have already been taken to create follow-on projects to be

undertaken in the Oxford Protein Informatics Group to improve the BO implemen-

tation described herein and to solve these issues. For example, under the supervision

of myself and Prof. Garrett Morris, Dominik Klein worked on the implementation of

a Bayesian variant of the PLIG GATNet models described in Chapter 4 by replacing

the final layer of the GATNet model with a GP. This would allow the currently used

ligand-based fingerprint GP to be replaced with a Bayesian PLIG model, which is

a more generalisable surrogate function that encodes for protein-ligand interactions

in 3D. While this will most likely not increase performance against a single pro-

tein target, the ability to differentiate between the active sites of different targets,

e.g. in designing selectivity for metallo-β-lactamases, will be highly beneficial for the

creation of multi-objective, multi-target optimisation approaches where structural in-

formation is key to fine-tune selectivity vs promiscuity between proteins of the same

family. In order to tackle the issue of compound generation, the first steps towards the

implementation of a latent-space representation using variational autoencoders have

been made by myself and Ruoyang Feng. Using a latent space representation as the

search space would allow the BO to be used as a generative method, sampling from

the latent-space to propose new molecules rather than the current implementation,

which samples from a discrete set of pre-determined compounds. Implementation of

an autoencoder-based compound representation for the purpose of Bayesian optimi-

sation has already been reported and should therefore be a straightforward process
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[Gómez-Bombarelli et al., 2018; Griffiths and Hernández-Lobato, 2020].

Finally, additional lab-based validation of the BO method is needed to fully vali-

date its usefulness for medicinal chemists. For that, a batch selection version of the

optimisation would need to be implemented that enables the BO algorithm to choose a

batch of several molecules at once instead of the single molecule cycles currently used.

This would be necessary for practical reasons, as synthesizing and testing molecules

one by one would not be efficient. However, a drop in performance would be expected

for the BO algorithm when choosing molecules in batches since the model has to se-

lect several molecules with the same level of information, rather than being able to

update the surrogate function after every selection. Nonetheless, my in silico study

of BO indicates that BO is applicable and highly useful for early stage hit-to-lead

optimisation, especially when optimising compounds with a common scaffold.

5.2 Insights into SARS-CoV-2 Mpro Molecular

Recognition

In Chapter 3, I outlined my work on the detailed interaction analysis of SARS-CoV-

2 Mpro-substrate and peptide inhibitor complexes and its insights into the design

of novel fragment-based small molecule inhibitors. This work was part of a large

collaborative project to tackle the ongoing COVID-19 pandemic by answering the

question: “How does SARS-CoV-2-Mpro bind and cleave its substrates and how can

we use this information to design inhibitors?” and was published in Chemical Science

[Chan et al., 2021a].

Using the structural bioinformatics tool Arpeggio [Jubb et al., 2017], I identi-

fied all protein-ligand interactions in a large number of different substrate-, peptide

inhibitor-, and small molecule ligand-Mpro complexes and created a SARS-CoV-2 Mpro

intermolecular interaction fingerprint representation. This fingerprint was generated
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with varying levels of detail ranging from residue-level to atom-level interactions.

Using this fingerprint, I found that filtering known fragment binders for key interac-

tions made by the natural substrates revealed highly promising fragment elaboration

starting points. Using the Active-Guided Covalent Docking (AGCD) method, I was

able to identify potential growth opportunities for the fragments, culminating in the

in silico design of novel inhibitors. My design approach was validated indirectly by

the release of Nirmatrelvir, the Mpro inhibitor in the Pfizer COVID-19 drug Paxlovid,

which was designed independently and occupies the same key interactions in the Mpro

active site as the predicted pose of my designs.

There are several avenues for future work. First, to fully validate the small

molecule inhibitor design methodology, the designs need to be synthesized and vali-

dated experimentally. Second, the in silico design and interaction analysis of the pep-

tide inhibitors did not sufficiently answer why the peptide inhibitors are not turned

over as substrates. The current results suggest that the peptide inhibitors are able to

bind to His-41 (which is part of the catalytic dyad) in a way that forces His-41 into an

unproductive conformation, chiefly through π-π stacking interaction with the larger

aromatic groups present at the P2 position in many of the peptide inhibitors. However

this evidence is currently inconclusive and does not explain why the inhibitors that

do not have bulky group at P2 are not turned over as well. Further experiments and

computational study of the peptide-Mpro binding mode as well as a crystal structures

of the inhibitory peptide-Mpro complexes are needed to resolve this question.

In addition, I developed AGCD as the first step towards creating a dedicated

knowledge-based constrained docking workflow for fragment-based drug discovery.

Ultimately, the goal is to create an advanced docking method where new compounds

are docked by constraining their MCS with a known fragment crystal structures

during docking, while allowing flexibility elsewhere on the ligand. This approach
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takes inspiration from Malhotra and Karanicolas ([Malhotra and Karanicolas, 2017])

who identified that for elaborated ligands, in 86% of the 297 paired ligands, the

larger elaborated ligand did not change its binding mode relative to the smaller lig-

and. Although fully implemented methods to do constrained docking already exist

in proprietary docking software such as Gold [Jones et al., 1997] or Glide [Friesner

et al., 2004], no straightforward implementation to do constrained docking on this

scale exists in the most popular open-source docking tools Autodock4 ([Morris et al.,

2009]) and AutoDock Vina ([Trott and Olson, 2010]). Therefore, future work should

be focussed on the implementation of the needed functionalities into either AD4 or

AutoDock Vina to create a dedicated open-source constrained docking method to

advance fragment-based drug discovery.

Overall, in this chapter I have shown the effectiveness of classical structural bioin-

formatics and cheminformatics techniques for the efficient in silico design of inhibitors.

Using the knowledge-based protein-ligand interaction fingerprint approach in combi-

nation with a sophisticated molecular docking pipeline, I was able to identify and

design promising small molecule ligands to inhibit SARS-CoV-2 Mpro. Building on

this work, with the aim of using these interaction fingerprints for machine learning to

score protein-ligand complexes, I explored different ways of encoding interactions for

deep learning techniques. This ultimately resulted in the Protein Ligand Interaction

Graphs (PLIGs) described in Chapter 4.

5.3 Development of Protein Ligand Interaction

Graphs

Chapter 4 outlined my work on exploration of GNNs and the development of a novel

graph-based representation of protein-ligand complexes for protein-ligand affinity pre-

diction. Inspired by my previous work on interaction fingerprints for SARS-CoV-2
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Mpro described in Chapter 3, I explored how protein-ligand interactions could be best

encoded for use in machine learning models. In order to address both the limita-

tions of interaction-based fingerprints as well as known structure-based graph neural

networks, I created Protein Ligand Interaction Graphs (PLIGs). PLIGs retain the

topology of the ligand but also encode for all protein-ligand interactions made in

3D by incorporating counts of intermolecular atom-atom interactions into the node

features of the graph. PLIGs perform among the best known protein-ligand affinity

scoring functions when tested on the CASF-2016 benchmark, despite their simplic-

ity, especially in comparison to other high performing, but much more complicated

graph-based models.

First and foremost, I created PLIGs to be simple and easily adaptable, opening

up many possibilities for further improvement. For example, the first steps have been

made by my collaborator Rocco Meli, to explore which other atomic features could be

incorporated into PLIG node features to describe the interactions more accurately.

The overarching goal of this follow-up study is to find ways to represent protein-

ligand complexes to allow the model to learn the biophysics of molecular recognition

in order to build a generalisable model that is able to score complexes accurately,

based on their predicted or actual intermolecular interactions. The most straight-

forward choices for potential feature additions would be the intermolecular atomic

contributions of the docking score which can be extracted from docking software such

as AutoDock4 [Morris et al., 2009] or AutoDock Vina [Trott and Olson, 2010], or

features from other high performing scoring functions such as Atomic Environment

Vectors [Meli et al., 2021].

In addition to studies to improve the PLIG model itself, an investigation into the

interpretability of PLIGs has been started by Samuel Homberg under the supervision

of myself and Prof. Garrett Morris. PLIGs are designed to be fully interpretable,
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since every position in the node feature vectors of a given ligand directly corresponds

to a unique, identifiable protein atom in proximity to the ligand atom. Preliminary

results from Samuel Homberg indicate that it is indeed possible to gain an atom-

level insight into the importance of any protein atom within 6 Å which is involved

in binding, as well as the importance of the ligand atom-derived features in the node

feature vector. This could not only help in guiding further work to improve PLIGs,

for example by eliminating protein atom types from the representation that are less

important, but could enable the usage of PLIGs by medicinal chemists to guide SAR

optimisation directly. Once trained on a given dataset, PLIGs could be analysed to

reveal important sets of atoms in the binding site of the protein as well as in the

ligand itself. This could help guide medicinal chemists to prioritise interactions with

important protein atoms as well as reveal potential functional groups on the ligand

that are more suitable for a given protein target.

Overall, the high performance and simplicity of PLIGs are designed in light of

a current trend in the field: “Increased complexity of a model does not necessarily

correlate with more accurate predictions”. Improvement in predictive performance

(for example on the CASF-2016 benchmark) has been minimal between models, and

incremental at best, over the last few years as indicated by the list of models men-

tioned in Chapter 4. Model complexity however, especially for GNN-based models,

has increased significantly. PLIGs therefore highlight that instead of aiming for high

complexity and a small improvement in performance, better interpretability should

be a more desirable design goal when creating novel machine-learning based scoring

functions.
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5.4 Concluding Remarks

In this thesis I have focused on the development of practical, easy to implement, yet

powerful computer-aided drug discovery tools. In a world where computational re-

sources are increasingly abundant, and the choice of different, highly complex machine

learning algorithms seems almost endless, it is crucial for the future development of

computer-aided drug discovery tools to be focused on interpretability, generalisability

and practicality. Models need to be interpretable to convince medicinal chemists to

use them with confidence when designing new molecules. Additionally, good models

also need to be robust and generalisable to ensure that dataset biases like similar lig-

and structures or the overabundance of one protein family does not create machine-

driven optimisation pipelines where instead of exploring unknown chemical space,

models generate similar drug-like molecules, reinforcing previous biases. Finally, the

practicality of a model is important in regards to its usage in a real-life drug discovery

project. Before selecting a potential new tool to use, drug discovery researchers need

to answer: Does the model need to be retrained/adjusted for every new dataset? Can

it integrate into the existing tools in the pipeline? Is the implementation of the code

easy to setup and the model results reproducible? How easy is it to add new features?

How computationally expensive is the model?

Overall, this thesis presents three approaches to improve the efficiency of early

stage pre-clinical drug discovery. All implementations of my methods and models de-

veloped in each chapter are available on GitHub and easily adjustable and executable.

Finally, the projects described herein have already been fundamental for the creation

of a series of ongoing follow-on projects to improve and expand upon the discoveries

made in this thesis to drive forward the improvement of pre-clinical drug discovery.
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Appendix A

Exploration of Bayesian
Optimization for
Structure-Activity Relationship
Modeling

Figure A.1: Distribution of pIC50 values for all inhibitors against each target. VIM-1,
VIM-2, IMP-1, NDM-1 are shown in (a), (b), (c) and (d), respectively. The VIM-2 b) and
NDM-1 d) datasets are skewed towards more high affinity ligands in comparison to VIM-1
a) and IMP-1 c).
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Figure A.2: Distribution of Tanimoto similarity scores between all compounds in each
respective dataset. VIM-1, VIM-2, IMP-1, NDM-1 are shown in (a), (b), (c) and (d),
respectively. No large differences in ligand similarity between datasets since the compounds
in each dataset are mostly the same. Overall, the dataset is relatively diverse given that
every ligand has the same scaffold, with a mean Tanimoto similarity of around 0.4 for all
four datasets.
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Figure A.3: Performance of Bayesian optimization using the VIM-1 dataset and varying
ECFP bit length. The dashed red line indicates the maximum possible value for both:
maximum pIC50 and maximum count of top compounds; bold lines indicate the mean of
10 experiments and shaded area the 95% CI. a) General performance plot showing the best
current mean pIC50 found over 200 iterations of BO or random sampling. b) Enrichment
plot showing the total count of top compounds found so far at each iteration. Both repre-
sentations perform equally well on metric a), but ECFP1024 outperforms slightly on metric
b).
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Figure A.4: Performance of Bayesian optimization using the VIM-2 dataset and varying
ECFP bit length. The dashed red line indicates the maximum possible value for both:
maximum pIC50 and maximum count of top compounds; bold lines indicate the mean of
10 experiments and shaded area the 95% CI. a) General performance plot showing the best
current mean pIC50 found over 200 iterations of BO or random sampling. b) Enrichment
plot showing the total count of top compounds found so far at each iteration. Both repre-
sentations perform equally well on metric a), but ECFP1024 outperforms slightly on metric
b).

178



Figure A.5: Performance of Bayesian optimization using the IMP-1 dataset and varying
ECFP bit length. The dashed red line indicates the maximum possible value for both:
maximum pIC50 and maximum count of top compounds; bold lines indicate the mean of
10 experiments and shaded area the 95% CI. a) General performance plot showing the best
current mean pIC50 found over 200 iterations of BO or random sampling. b) Enrichment
plot showing the total count of top compounds found so far at each iteration. Both repre-
sentations perform equally well on metric a), but ECFP1024 outperforms slightly on metric
b).
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Figure A.6: Performance of Bayesian optimization using the NDM-1 dataset and varying
ECFP bit length. The dashed red line indicates the maximum possible value for both:
maximum pIC50 and maximum count of top compounds; bold lines indicate the mean of
10 experiments and shaded area the 95% CI. a) General performance plot showing the best
current mean pIC50 found over 200 iterations of BO or random sampling. b) Enrichment
plot showing the total count of top compounds found so far at each iteration. Both repre-
sentations perform equally well on metric a), but ECFP1024 outperforms slightly on metric
b).
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Appendix B

In silico Design and Validation of
SARS-CoV-2 Mpro Inhibitors from
Modelling Substrate and Ligand
Binding

B.1 Supplementary Methods Provided by Collab-

orators

The following methods were developed and performed by collaborators and are not

my own work. I have included the following procedures to allow convenient access

for the reader since results obtained from these methods were either directly used in

follow-on experiments conducted by myself or are directly relevant to insights gained

by my work. The descriptions of the results and methods from co-authors were

directly adapted from the original collaborative publication with minor adjustments

as covered by the CC BY 3.0 license [Chan et al., 2021a].

B.1.1 Comparative Modelling of the SARS-CoV-2 Mpro-
Peptide Complexes

This method was developed and carried out by Garrett M. Morris. I have included

this method description provided by Garrett M. Morris as published under the CC

BY 3.0 license [Chan et al., 2021a].
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“A crystal structure of the TSAVLQ↓SGFRK 11-mer peptide substrate bound to

the H41A mutant of dimeric SARS-CoV Mpro (PDB entry 2q6g [Xue et al., 2008])

was superimposed with one of unmodified dimeric SARS-CoV-2 Mpro (PDB entry

6yb7; 1.25 Å resolution [Owen et al., 2020]). The substrate was transferred over to

the chain A active site of the catalytically-competent SARS-CoV-2 Mpro structure.

The sequences of the 11 native cleavage sites processed by SARS-CoV-2 Mpro (s01-

s11) were identified by aligning the sequences of the ORF1ab polyproteins of both

SARS-CoV (GenBank accession code NC 004718.3 [He et al., 2004]) and SARS-CoV-

2 isolate Wuhan-Hu-1 (accession code MN908947.3 [Wu et al., 2020]) using MUSCLE

[Edgar, 2004]. For each of the 11 cleavage sites, atomic models of an 11-mer peptide

matching positions P6 to P5′ and charged N- and C-termini were constructed using

the mutagenesis tool of the open source version of PyMOL (v. 2.3.0) [Schrödinger

LLC., 2020]. For every sidechain from positions P6 to P5′, apart from Gly and Ala,

the highest-probability backbone-dependent conformer with the least steric clash and

the most chemical complementarity was selected [Dunbrack Jr. and Cohen, 1997].

Using CCG MOE version 2019.0104 [Chemical Computing Group ULC., 2019], each

of the resulting 11 models of the SARS-CoV-2 Mpro dimer complexed with each 11-mer

substrate in the A-chain active site underwent structure preparation protonation using

Protonate 3D. Each model was then solvated using 0.1 M NaCl and explicit water and

subjected to energy minimization using the AMBER10:EHT force field [Cornell et al.,

1995; Gerber and Müller, 1995] and periodic boundary conditions, until convergence

with an RMS of 0.4184 kcal mol−1 per iteration was reached.”

B.1.2 Explicit-Solvent Molecular Dynamics

This method was developed and carried out by H.T. Henry Chan. I have included

this method description provided by H.T. Henry Chan for clarity as published under
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the CC BY 3.0 license [Chan et al., 2021a].

“Pre-solvation models of the dimeric Mpro-peptide complexes constructed as de-

scribed above (Method Section B.1.1) were used as starting points for MD simula-

tions. All additives and crystallographic water molecules were removed from PDB

entry 6yb7, except HOH 644 which provides bridges between His-41, His-164 and

Asp-187. Protonation and rotameric states of histidines and other titratable residues

were assigned at pH 7.4 based on a combination of Reduce (MolProbity, Duke Uni-

versity [Williams et al., 2018]), H++ (Virginia Tech [Anandakrishnan et al., 2012]),

PROPKA3 (PDB2PQR [Olsson et al., 2011]), and visual inspection, with a final

Mpro monomeric charge of -4. His-41 (protonated on its δ-nitrogen) and Cys-145 were

assigned neutral.

MD simulations were performed using GROMACS (v. 2019.2 [Abraham et al.,

2015]) employing the AMBER99SB-ILDN force field [Lindorff-Larsen et al., 2010].

Each of the constructed complexes was solvated (TIP3P water model [Jorgensen

et al., 1983]) in a rhombic dodecahedral box (1.0 nm buffer), neutralised, and min-

imised using the steepest descent algorithm until the maximum force was below 1000

kJ mol−1 nm−1. For each peptide sequence, three independent simulations were ini-

tiated by random velocities at 298.15 K. In each case, the system was equilibrated

under NVT (200 ps; 1 fs timestep) and NPT (200 ps; 1 fs timestep) conditions, before

being subjected to 200 ns MD simulation (2 fs timestep) at 298.15 K and 1 bar, during

which protein-peptide interactions were monitored. All simulations were performed

with three-dimensional periodic boundary conditions. Long-range electrostatics was

calculated using the smooth particle mesh Ewald method [Essmann et al., 1995]. All

bond lengths involving hydrogen atoms were constrained with the LINCS algorithm

[Hess et al., 1997]. Hydrogen bonds between Mpro and the peptides were monitored

over the course of the simulations, defined using a combined criteria on the donor-
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acceptor distance (dD-A ≤ 3.5 Å) and the proton-donor-acceptor angle ((H-D-A) ≤

30°).

Models of the designed sequences complexed with SARS-CoV-2 Mpro (PDB entry

6yb7) were built using a comparative modelling approach similar to that described

above (Methods Section B.1.1), starting from the previously constructed model of the

Mpro-s02 complex. Each constructed complex was then solvated, minimised, equili-

brated, and subjected to 3 × 200 ns MD as described above, except the retention

of a backbone restraint during NPT equilibration to allow longer relaxation of the

non-native peptide side chains and the Mpro binding pockets.

To generate representative structures of Mpro-peptide complexes for interaction

analysis, frames extracted every ns from the concatenated 3 × 200 ns MD trajecto-

ries were fitted using the Mpro backbone, before performing clustering based on the

heavy-atom RMSD of the peptide, using the gromos algorithm as implemented in

GROMACS (v. 2019.2) [Daura et al., 1999]. A cut-off of 2.0 Å (for native substrates)

or 2.5 Å (for p12 and p13, due to heavier residues in their terminal regions) was

used.”

B.1.3 Protein Production and Purification

Recombinant Mpro protein for the in-vitro assays was obtained from Claire Strain-

Damerell, Eidarus Salah and Petra Lukacik and was produced and purified as previ-

ously reported [Malla et al., 2021].

B.1.4 Peptide Synthesis

This method was developed and carried out by Tika R. Malla and Tobias John. I have

included this method description provided by Tika R. Malla for clarity as published

under the CC BY 3.0 license [Chan et al., 2021a].
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“Peptide synthesis was performed as previsouly reported [Malla et al., 2021]. s01,

s01-LP2W , s01-QP1W, p12, p13, p13-WP2L, p15 and p16 were synthesised on a

0.1-0.25 mmol scale from C- to N-terminus on Rink amide-MBHA resin (100–200

mesh, 0.6–0.8 mmol g−1 loading, AGTC Bioproducts) using a muwave assisted Lib-

ertyBlue peptide synthesizer (CEM) and N-Fmoc protected α-amino acids (CS Bio,

Novabiochem, Sigma-Aldrich, TCI, Alfa Aesar, Merck or AGTC Bioproducts). N,N’-

diisopropylcarbodiimide (TCI Europe) and Oxyma Pure (Merck) in DMF and 20 %

(v/v) piperidine in DMF (peptide synthesis grade, AGTC Bioproducts) were used for

iterative cycles of coupling and deprotection respectively under the manufacturer’s

standard protocol. Following the terminal Fmoc-deprotection step, the resin was

washed with CH2Cl2, dried in air, then treated with 5-10 mL of a deprotection so-

lution (2.5:2.5:2.5:92.5 (v/v) 1,3-dimethoxybenzene, triisopropylsilane, MilliQ water

and trifluoroacetic acid) for 3 h at ambient temperature. The resulting mixture was

filtered and the filtrate was diluted with cooled Et2O (3 × 45 mL) to precipitate the

peptide. Et2O was decanted, peptide dried on air and lyophilised overnight.

Peptides apart from P1 mutant of s01 were dissolved in DMSO and quan-

tified by spiking the sample with 3 mmol g−1 of an internal standard 3-

(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt. The eleven substrate peptides

(s01-s11) were purchased from GLBioChem (Shanghai).”

B.1.5 Substrate Turnover Analysis Under Denaturing Con-
ditions

This method was developed and carried out by Tika R. Malla. I have included this

method description provided by Tika R. Malla for clarity as published under the CC

BY 3.0 license [Chan et al., 2021a].

“20 µM stock of all 11 native substrate peptide sequences were prepared in the

assay buffer (20 mM HEPES, pH 7.5, 50 mM NaCl). E1-ClipTip™ Bluetooth™ Elec-
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tronic multichannel pipette (ThermoFisher) was used to dispense 5 µL/well (x24)

of each peptide in a single row of a 384 well plate. The first column was treated

with a final concentration of 1 % (v/v) aqueous formic acid to obtain a 0 min time

point. Mpro was dispensed using Multidrop to obtain a final concentration of 0.15

µM Mpro with 2 µM peptides in all wells. Each column was sequentially quenched

(every minute) with 1 % (v/v) aqueous formic acid. Samples were analysed by solid-

phase extraction (SPE) coupled to mass spectrometry (MS) using a RapidFire Mass

Spectrometer. The operating parameters in the positive ion mode were: capillary

voltage (4000 V), nozzle voltage (1000 V), fragmentor voltage (365 V), drying gas

temperature (280 °C), gas flow (13 L min−1), sheath gas temperature (350 °C) and

sheath gas flow (12 L min−1). Samples were loaded onto a SPE C4-cartridge, which

was then washed with 0.1 % (v/v) aqueous formic acid to remove non-volatile buffer

salts (5.5 s, 1.5 mL min−1) followed by elution with aqueous 85 % (v/v) acetonitrile

in 0.1 % (v/v) formic acid (5.5 s, 1.25 mL min−1). The cartridge was equilibrated

with 0.1 % (v/v) aqueous formic acid (0.5 s, 1.25 mL min−1) prior to every sample

injection. Data were exported in a plate list mode and processed in Excel to calculate

percentage product turnover.”

B.1.6 Substrate Binding and Turnover Analysis Under Non-
Denaturing Conditions

This method was developed and carried out by Victor Mikhailov. I have included

this method description provided by Victor Mikhailov for clarity as published under

the CC BY 3.0 license [Chan et al., 2021a].

“Non-denaturing mass spectra were obtained using a Waters Synapt HDMS Q-

TOF mass spectrometer coupled with an automated chip-based nano-electrospray

ion source (TriVersa Nanomate, Advion). A larger concentration of Mpro than the

one used in the denaturing MS assays was used to provide sufficient sensitivity. 5
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µM of Mpro was mixed with 13-fold molar excess of a substrate (s01-s11) in 200 mM

of ammonium acetate (pH 6.9) at room temperature and electrosprayed (1.77 kV

spray voltage, 0.55 psi spray backing gas pressure and 4.3 mbar inlet pressure). The

sample and extractor cone voltages were maintained at 180 V and 1 V, respectively;

no in-source dissociation of Mpro dimers was observed at these voltages. Mass spectra

were recorded after 1, 3, 6, 9 and 12 min incubation. Measurements were taken in

duplicate for each substrate. Data collection and analysis were carried out using

Waters MassLynx software. Integrated peak areas of the substrate ions and cleavage

product ions were compared at different time points: the sum of substrate and product

ions intensities was set at 100 % for each measurement, and the level of depletion of

the substrate ions was used as a measure of the turnover efficiency.”

B.1.7 Dose Response Curve Analysis

This method was developed and carried out by Tika R. Malla. I have included this

method description provided by Tika R. Malla for clarity as published under the CC

BY 3.0 license [Chan et al., 2021a].

“Methods for SPE coupled RapidFire MS-based inhibition assay were as previ-

ously reported [Malla et al., 2021]. In brief, in a 384 polypropylene well plate, 100

µL of 2.5 mM stocks of the designed peptides were transferred. 11 point 3 fold serial

dilutions of the peptides were performed in 60 µL using E1-ClipTip™ Bluetooth™

Electronic multichannel pipette (ThermoFisher) in DMSO with 5 mix cycles of 30

muL volume for mixing. 10 µL was drawn from each well and 5 µL was transferred

to two wells of a new destination 384 well polypropylene plate. 5 µL of DMSO (posi-

tive turnover control) and 5 µL of 10 % (v/v) aqueous formic acid (negative turnover

control) were added to 16 wells each on every destination plate. 25 µL/well of x2

stock of enzyme in assay buffer (20 mM HEPES, pH 7.5, 50 mM NaCl) was dispensed
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using a Multidrop Combi machine; incubation for 15 minutes was followed by dis-

pensation of x2 stock of substrate in each well to obtain 0.15 µM Mpro and 2 µM s01

concentration. The reaction was allowed to progress for 10 min (∼50 % turnover in

DMSO control), then quenched with 5 µL of 10 % (v/v) aqueous formic acid. The

plates were centrifuged for ∼15 s after addition of each reagent at 2500 rpm (Star

lab) to ensure all dispensed solutions were pooled at the bottom of the plate. The

plates were analysed by SPE coupled MS under the conditions specified in Section

B.1.5. RapidFire integrator software was used to extract and integrate abundance

peaks of the +1 charge states of the substrate (1191.68 Da) and N-terminal cleaved

product (617.34 Da). Data was exported in a plate list mode and processed in Excel

to calculate percentage product turnover, normalisation of percentage activity fol-

lowed by deduction of percentage inhibition. Normalised percentage inhibition data

were exported to GraphPad Prism 8 and non-linear regression analysis was performed

to obtain IC50 values. Top and bottom constraints of 100 % and 0 % were applied

respectively for the analysis of reported IC50 values curves. Z’ of the assay was always

≤0.8.”

B.1.8 Dose Response Curve Analysis with Varying Substrate
Concentrations

This method was developed and carried out by Tika R. Malla. I have included this

method description provided by Tika R. Malla for clarity as published under the CC

BY 3.0 license [Chan et al., 2021a].

“The designed peptides were dispensed using an Echo 550 acoustic liquid handling

robot. Samples were prepared as described above (Section B.1.7) with final substrate

concentrations of 2 µM, 10 µM, 20 µM and 40 µM TSAVLQ/SGFRK-NH2 (s01) with

10, 10, 15 and 20 minutes of incubation with substrates, respectively.”
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B.1.9 Designed Peptide Turnover Analysis Under Denatur-
ing Conditions

This method was developed and carried out by Tika R. Malla. I have included this

method description provided by Tika R. Malla for clarity as published under the CC

BY 3.0 license [Chan et al., 2021a].

“100 µM stocks of p12, p13, p15, p16, p13-WP2L, s01-LP2W and s01-QP1W were

prepared. 0.15 µM of enzyme was dispensed and incubated with 2 µM peptide (see

Section B.1.5); the reaction was allowed to proceed overnight at 37°C, 300 rpm in a

thermomixer. Samples were analysed by SPE coupled MS. After integration using

RapidFire Integrator, the data was analysed in Excel and presented using GraphPad

Prism 8. For a summary of the m/z charge state see Table B.1.”

Peptides Sequence Substrate m/z (Da) Product m/z (Da)
s01 TSAVLQ↓SGFRK 1191.68 (+1) 617.34 (+1)
s02 SGVTFQ↓SAVKR 1177.65 (+1) 637.30 (+1)
s03 KVATVQ↓SKMSD 1191.62 (+1)
s04 NRATLQ↓AIASE 1171.55 (+1)
s05 SAVKLQ↓NNELS 1200.57 (+1) 644.37 (+1)
s06 ATVRLQ↓AGNAT 1099.53 (+1) 686.36 (+1)
s07 REPMLQ↓SADAQ 1243.51 (+1) 772.39 (+1)
s08 PHTVLQ↓AVGAC 2185.98 (+2)
s09 NVATLQ↓AENVT 1157.60 (+1) 644.35 (+1)
s10 TFTRLQ↓SLENV 1305.62 (+1) 764.37 (+1)
s11 FYPKLQ↓SSQAW 1352.59 (+1) 794.37 (+1)
p12 KYTFWQYSQFY 1558.75 (+1)
p13 KYLTWQNSQIN 1392.70 (+1)
p15 LTINWQKYFNT 1427.62 (+1)
p16 WFTLKQYWQTN 1514.70 (+1)

p13-WP2L KYLTLQNSQIN 1319.71 (+1)
s01-LP2W TSAVWQ↓SGFRK 1264.65 (+1) 690.33 (+1)
s01-QP1W TSAVLWSGFRK 1249.68 (+1)

Table B.1: Table adapted from the original publication of this work under the CC BY 3.0
license [Chan et al., 2021a]. Observed mass (Da) and (m/z) charge states of the peptides
that were extracted using RapidFire Integrator for peak integration.
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B.1.10 LCMS Analysis for Designed Peptides

This method was developed and carried out by Tika R. Malla and Victor Mikhailov.

I have included this method description provided by Tika R. Malla and Victor

Mikhailov for clarity as published under the CC BY 3.0 license [Chan et al., 2021a].

“LCMS experiments were performed using an Agilent Infinity Series II System

attached to QTOF 6650 using an Agilent Zorbax C-18 Extend column. Solvent A:

LCMS grade water with 0.1 % formic acid, and solvent B: 100 % acetonitrile in 0.1

% (v/v) formic acid was used at 0.2 mL min−1 flow rate to elute the peptides over a

gradient of 22-55 % of solvent B over 8 minutes. The operating parameters for the

LCMS were the same as above (Section B.1.5). In a 96 well plate, samples consisting

of 0.15 µM Mpro were prepared. p12, p13, p15, p16 and s01 were transferred from

source wells to destination wells with Mpro using the multi injector program and

samples injected immediately after mixing. 30 min, 3 h, 6 h, 1 day and 2 days time

points were obtained for peptides. Samples were covered with a polypropylene cover

to limit evaporation.”

B.1.11 Designed Peptide Binding and Turnover Analysis Un-
der Non-Denaturing Conditions

This method was developed and carried out by Victor Mikhailov. I have included

this method description provided by Victor Mikhailov for clarity as published under

the CC BY 3.0 license [Chan et al., 2021a].

“The binding of designed peptides p12, p13, p15 and p16 to Mpro dimers and their

effects on substrate turnover were investigated using non-denaturing mass spectrom-

etry (Section B.1.6). 5 µM of Mpro was mixed with designed peptides at different

levels of peptide excess in 200 mM of ammonium acetate (pH 6.9) at room tempera-

ture. Non-denaturing mass spectra were recorded for different protein-peptide molar
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concentration ratios (up to 16-fold excess of peptide relative to the protein). At the

final step, the native s01 substrate was added to the protein-peptide mixture at 4-fold

excess over the protein, and its turnover recorded after 3- and 6-min incubation.”

B.2 Supplementary Results - Monitoring of Sub-

strate Sequence Hydrolysis by Mass Spec-

trometry

The following description of the results was directly adapted from the original pub-

lication with minor adjustments as covered by the CC BY 3.0 license [Chan et al.,

2021a]. This work was done by Tika R. Malla and Victor Mikhailov.

“To rank the SARS-CoV-2 Mpro preferences for hydrolysis of the 11 cleavage sites,

we monitored turnover of 11-mer peptides under non-denaturing MS conditions using

ammonium acetate buffer (Figure B.1 a). Peptides s01, s06, s08, s10 and s11 evi-

denced fast turnover. The level of substrate ion depletion was > 70 % after 1 min

and > 90 % after 6 min incubation. Peptides s02, s04 and s09 showed substrate ion

depletion from 35 to 45 % after 1 min incubation, > 70 % depletion after 6 min, and

> 90 % depletion after 12 min. Peptides s03, s05 and s07 demonstrated slow turnover

that was below 50 % after 12 min incubation.

Under non-denaturing conditions (Figure B.1) turnover was: fast (s01, s11, s06,

s10, and s08), medium (s04, s02, and s09), and slow (s05, s03, and s07). Substrates

s01, s11 and s06 turned over fastest; while s07, s05 and s03 were slow as measured by

both methods.

The observed turnover of all 11 SARS-CoV-2 cleavage-site-derived peptides by

Mpro is consistent with our atomistic models (Main Section 3.4.1, where the pep-

tides remain bound in the active site during MD simulations and where the scissile

amide carbonyl remains well-positioned in the oxyanion hole for reaction initiation.
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Figure B.1: Figure adapted from the original publication of this work under the CC BY 3.0
license [Chan et al., 2021a]. Non-denaturing mass spectrometry of Mpro substrate turnover
as published in the original publication of this work [Chan et al., 2021a]. a) Substrate
turnover versus incubation time as measured by non-denaturing MS. Trend lines are given
for visual guidance only. b) Examples of mass spectra showing normalized intensity in
the m/z region around the 16+ charge state of Mpro dimer (asterisk, *): b1) pure Mpro

solution (5 µM); b2) Mpro and s01 solution after 1 min incubation, hashes (#) indicate the
mass peaks corresponding to the s01 cleaved fragments sequentially attached to the Mpro

dimer; note: the resolution is not sufficient to distinguish between the N- or C-terminal
fragments (mass shifts of 617 and 593 Da, respectively); b3) same solution as (b2) after 6
min incubation; (b4) Mpro and s10 solution after 1 min incubation, ‘N’ labels N-terminal
fragment(s) attached (765 Da), ‘C’ labels C-terminal fragment(s) attached (560 Da); (b5)
Mpro and s03 solution after 3 min incubation, ‘S’ labels intact substrate(s) attached, hashes
(#) label attached substrate fragments, but the N- and C-terminal fragments cannot be
distinguished (mass shift 644 and 566 Da, respectively); b6) same solution as b5) after 9
min incubation. All substrates are turned over during non-denaturing mass spectrometry,
validating the substrate models.

The stability of the Mpro–peptide interactions involving the S2 and S1 subsites, as

well as backbone–backbone HBs 2, 3, 10 and 11, could explain the observation using

non-denaturing MS of complexes of Mpro with products — because of slow product

dissociation. Nevertheless, we envisage that the order of substrate turnover rates

is likely determined by various factors, including peptide conformations, the influ-

ence of the P2 and P1′ residues on the catalytic dyad, entropic effects, and rates of

product dissociation, all of which prompt ongoing experimental and computational
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investigations.”

B.3 Supplementary Results - In silico Mutational

Analysis of Substrate Peptides Enables Pep-

tide Inhibitor Design

The following description of the results was adapted from the original publication

with minor adjustments as covered by the CC BY 3.0 license [Chan et al., 2021a].

This work was done by Debbie K. Shoemark.

“We used the interactive web application BAlaS to perform Computational

Alanine-Scanning mutagenesis (CAS) using BudeAlaScan [Wood et al., 2020] and

the BUDE SM algorithm [Sessions, 2021] for Predictive Saturation Variation Scan-

ning (PreSaVS) [Hetherington et al., 2021]. Both are built on the docking algorithm

BUDE, [McIntosh-Smith et al., 2015] which uses a semi-empirical free energy force-

field to calculate binding energies [McIntosh-Smith et al., 2012]. To identify key

binding interactions of the natural substrate peptides to Mpro, the 11 substrate:Mpro

complexes were first subjected to CAS using BAlaS. By sequentially substituting for

alanine, the energetic contribution of each substrate residue to the overall interaction

energy between the singly mutated peptide and Mpro is calculated using:

∆∆G = ∆GAla − ∆Gwt (B.1)

where ∆Gwt is the interaction energy between the peptide and Mpro, and ∆GAla

is the interaction energy for the peptide with a single alanine mutation at a given

position. The more positive the value for each residue, the greater the contribution

from that substrate residue to binding. This method was used later to evaluate

potential inhibitor peptides.
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Having identified residues contributing most to the binding energy of the nat-

ural Mpro substrates, each of the sequences was subjected to PreSaVS using the

BUDE SM algorithm. This sequentially substitutes each substrate residue with a

range of residues (D, E, F, H, I, K, L, M, N, Q, R, S, T, V, W and Y). BUDE SM

calculates the ∆∆G for the binding interaction of each, entire, singly mutated peptide

with Mpro. Substitutions predicted to improve binding over wildtype sequences have

a positive ∆∆G. Figure B.2 shows an example of the BUDE SM PreSaVS results for

all the P2 substitutions for the 11 substrate peptides (normally Leu, Phe, or Val in

the 11 substrates). The most positive results suggest that Phe, Trp and Tyr favour

increased predicted affinity at the P2 position (Figure B.2). However, although Tyr

generally increased the predicted binding affinity (∆∆Gsum = 68.8 kJ.mol−1, it was

not considered for substitution at P2 due to its negative effect at this position in s11

(scoring -18.9, Figure B.2). Candidate residues for each position, from P6 to P5′, were

shortlisted similarly based on those with the best total, and the fewest unfavourable,

scores.

Figure B.2: Figure adapted from the original publication of this work under the CC
BY 3.0 license [Chan et al., 2021a]. BUDE SM PreSaVS results for the P2 position as
published in the original publication of this work [Chan et al., 2021a]. a) Heat-map for
BUDE SM PreSaVS saturation mutagenesis at P2, showing the ∆∆G value calculated for
each substitution and each Mpro substrate. Mutations predicted to improve peptide binding
have a positive ∆∆G and are greener; those disfavouring binding are in red. b) The summed
∆∆G values for each residue type substituted at P2. The most positive results suggest that
Phe, Trp and Tyr favour increased predicted affinity at the P2 position.
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In addition to the computed ∆∆G values, we considered the propensity of each

residue to promote an extended conformation. All bound substrates are largely ex-

tended, so entropic penalties may be avoided if inherently extended conformations

could be favoured in the designed peptide. Thus, the best β-forming (and there-

fore least α-forming) residues from the first triage were selected (Figure B.3) [Pace

and Scholtz, 1998]. We also considered solubility. This was achieved by limiting the

number of hydrophobic residues in each designed peptide and ensuring a net positive

charge (except p14, which was neutral).

Employing the criteria described above, five new peptides, p12–p16, were designed

(Figure B.3 b). Comparison of the computed ∆∆G values for s01–s11 (Figure B.3

c) and p12–p16 (Figure B.3 d) reveals that substitutions at the P sites provide only

occasional, moderate improvements to binding energy over the corresponding sub-

strate P sites, with the notable exception of P2, which can accommodate Trp, Phe

or Lys. These results agree with the HB analysis, which predicts that the sidechains

of residues that are on the N-terminal side of the cleavage site (P sites) contribute

more to binding than C-terminal, P′ sites. The most striking difference between sub-

strates and designed peptides is in this P′ region, where the predicted binding energy

contributions for the designed peptides exceed those of the substrates, an advantage

that is distributed over most of the designed P′ positions.

The final step in design was to assess the relative binding affinities of the substrates

and designed peptides. Hence the summed ∆∆Gs (Figure B.3 e) provide a proxy for

the binding energies (BAlaS) [Ibarra et al., 2019] for the substrates and designed

peptides with Mpro.
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Figure B.3: Figure adapted from the original publication of this work under the CC BY
3.0 license [Chan et al., 2021a]. BAlaS-guided design of tight-binding peptides as published
in the original publication of this work [Chan et al., 2021a]. a) Propensity scale of each
amino acid to form an α-helical peptide conformation. b) Sequences of designed peptides
p12–p16. c,d) Scatter plots with predicted BAlaS ∆∆G values on substitution to alanine for
each residue of the 11 Mpro natural substrates and the designed peptides, respectively. The
more positive the value, the greater the contribution made by the sidechain to the overall
binding energy. e) The BAlaS ∆∆Gsum comparing values between complexes of Mpro with
substrate and designed peptides as a proxy for predicting relative binding affinity (larger
score = tighter binder). All designed peptides p12-16 were predicted to be tighter binders
to Mpro than the natural substrates.
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The substrate:Mpro complexes are stabilised by an average of 46.5 kJ.mol−1,

whereas the designed-peptide:Mpro complexes are predicted to have, in some

cases, double the interaction stability of the substrates, with an average of 96.0

kJ.mol−1. The full analysis can be found on the GitHub repository of this work

(https://github.com/gmm/SARS-CoV-2-Modelling file SI BAlaS BUDE SM 12-

04-2021.xlsx).”

B.4 Supplementary Results - Synthesis and Ex-

perimental Analysis of Designed Peptides

The following description of the results was directly adapted from the original pub-

lication with minor adjustments as covered by the CC BY 3.0 license [Chan et al.,

2021a]. This work was done by Tika R. Malla and Victor Mikhailov.

“To test the designed sequences, p12, p13, p15 and p16 were synthesised with a

carboxyl-amide C-terminus by solid phase synthesis. Their Mpro inhibitory activity

was determined by dose–response analysis using SPE MS, monitoring both substrate

s01 (1191.68 Da) depletion and N-terminally cleaved product (617 Da) formation.

Ebselen which reacts multiple times with Mpro was used as a standard (IC50 = 0.14 ±

0.04 µM; Fig. 10). All four designed pepetides manifested similar potentcy with IC50

values ranging from 3.11 µM to 5.36 µM (Figure B.4) with p13 as the most potent

inhibitor (IC50 = 3.11 ± 1.80 µM).

We probed the inhibition mode of the designed peptides by monitoring changes

in IC50 while varying the substrate concentration (2 µM, 10 µM, 20 µM and 40 µM

TSAVLQ↓SGFRK-NH2 s01; Km ≈ 14.4 µM) [Malla et al., 2021]. The results indi-

cated a linear dependency between substrate concentration and IC50 values (Figure

B.4 a–d). This was not observed with a control 15-mer peptide or ebselen (Figure

B.4 e and f).
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Figure B.4: Figure adapted from the original publication of this work under the CC BY
3.0 license [Chan et al., 2021a]. IC50 of designed peptide against Mpro with varied substrate
concentrations as published in the original publication of this work [Chan et al., 2021a].
IC50s for a) p12 (IC50 = 5.36 ± 2.17 µM), b) p13 (IC50 = 3.11 ± 1.80 µM), c) p15 (IC50 =
5.31 ± 1.08 µM), d) p16 (IC50 = 3.76 ± 1.19 µM), e) 15-mer control peptide and f) ebselen
(IC50 = 0.14 ± 0.04 µM); with 2 µM, 10 µM, 20 µM and 40 µM of substrate peptide s01.
IC50 values were calculated from technical duplicates. See Appendix Section B.1.5 for assay
details. Peptide p13 is the most potent inhibitor (IC50 = 3.11 ± 1.80 µM).

Analysis of the data by the procedure of [Wei et al., 2007] implies competitive

inhibition. By contrast, the same analysis for ebselen did not support competitive

inhibition, consistent with MS studies showing it has a complex mode of inhibition

[Malla et al., 2021].
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Figure B.5: Figure adapted from the original publication of this work under the CC BY
3.0 license [Chan et al., 2021a]. Non-denaturing MS analysis of designed peptides binding
to the Mpro dimer as published in the original publication of this work [Chan et al., 2021a].
Inhibitor binding from non-denaturing MS showing normalized intensity in the m/z region
around the 14+ and 15+ charge states of the Mpro dimer. (*) indicates unbound Mpro dimer.
(a) 5 µM Mpro solution; (b) 4-fold excess of p13 relative to the Mpro dimer; ‘P’ indicates
sequential binding of p13 peptides to Mpro in the 15+ charge state (red) and 14+ state
(blue); (c) 16-fold excess of p13; (d) 16-fold excess of p13 and 4-fold excess of s01; hash (#)
indicates sequential binding of s01-cleavage products (note: the resolution is not sufficient
to distinguish between the N- and C-terminal fragments; some non-specific binding of p13
is also observed in (c) and (d) due to the high concentration of the peptide).

We then used non-denaturing protein MS to study en-

zyme–substrate/product/inhibitor complexes simultaneously with turnover.

Complexes between Mpro dimer and p12 and p13 were observed, together with

the uncomplexed Mpro dimer in the protein region of the mass spectra. No binding

was observed for p15 and p16, due to relatively high noise in that m/z region. None

of the designed peptides were cleaved by Mpro, as recorded in the peptide region.

As a control, s01 was added to the protein/inhibitor mixtures; for all the inhibitors,

turnover of s01 was observed after 3 min incubation. Depletion of s01 was 95 %, 91
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%, 70 % and 78 % in the presence of p12, p13, p15 and p16, respectively, with an

8-fold excess of inhibitor over Mpro, versus > 98 % depletion for the Mpro/s01 mixture

without the inhibitor. In the protein region of the mass spectra, complexes between

Mpro dimers and the s01-cleavage products were observed in the presence of p13,

but the abundance of these complexes was lower than the abundance of Mpro/p13

complexes (Figure B.5). These results validate the above-described evidence that

the peptide inhibitors both bind and competitively inhibit Mpro.”

B.5 Supplementary Results - Substrate and Pep-

tide Inhibitor Contact Analysis

The following results are my own work and have been directly adapted from the

original publication with minor adjustments as covered by the CC BY 3.0 license

[Chan et al., 2021a].

Using the 3D contact identification tool Arpeggio [Jubb et al., 2017], all 11 natural

substrate models and the 5 peptide inhibitor models were analyzed as described in

Section 3.3.5. All atomic contacts identified to interact with each residue on the

substrates and peptides are shown in Figure B.6 a) and b) respectively. Trends

identified on an atomic level as described in Section 3.4.1.3 are visible on an atomic

level. Contacts at P1 and P2 are highly conserved between all substrates and to a

slightly lesser extent between peptide inhibitors (Figure B.6). However, key contacts

such as backbone HBs to Thr-26, Glu-166 or the oxyanion hole at Gly-143 and Cys-

145 are conserved on an atomic level.
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Figure B.6: Figure adapted from the original publication of this work under the CC BY
3.0 license [Chan et al., 2021a]. All contacts made by every residue in a) the 11 natural
substrates (s01-s11) and b) the 5 peptide inhibitors (p12-p16) on an atomic level. Even on
an atomic level, P1 and P2 are highly conserved.
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B.6 Supplementary Results - Fragment-based In

silico Design of Small Molecule Inhibitors

The following results are my own work and have been directly adapted from the

original publication with minor adjustments as covered by the CC BY 3.0 license

[Chan et al., 2021a].

B.6.1 Fragment Clustering by Interaction Fingerprints

After contact fingerprint creation using the 91 XChem fragments, the fragments were

clustered using different Tanimoto similarity thresholds in steps of 0.1 between 0.1-0.9.

The resulting cluster sizes are shown in table B.2.

Threshold Clusters Single molecule clusters Average cluster size
0.1 2 0 33.0
0.2 2 0 33.0
0.3 5 1 13.2
0.4 9 0 7.3
0.5 11 2 6.0
0.6 16 4 4.1
0.7 29 20 2.3
0.8 37 27 1.8
0.9 54 46 1.2

Table B.2: Table adapted from the original publication of this work under the CC BY 3.0
license [Chan et al., 2021a]. Relationship between Tanimoto similarity threshold and cluster
sizes for the XChem fragment crystal structures. Only active-site binders were considered.

For this analysis, two clustering thresholds were chosen: a broader (0.5) and a

tighter (0.7) threshold. Despite the tighter clustering method producing 29 clusters

total, the number of clusters with more than one fragment stays the same between

both methods (nine clusters, Table B.2), indicating that tighter clustering above 0.5

does not lead to the addition of meaningful clusters. In addition, despite the lower

threshold, the broader (0.5) clustering method is able to create distinct clusters (Top

5 most populated clusters for both thresholds are shown in Figure B.7) and both
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methods identify a series of primarily covalent fragments (binding to Cys-145) as the

highest populated cluster (all contacts in each cluster shown in Figure B.8).

Figure B.7: Figure adapted from the original publication of this work under the CC BY
3.0 license [Chan et al., 2021a]. Mpro crystal structure (x0830) in complex with the top 5
most populated clusters using a clustering threshold of 0.5: a) cluster 1 (green); b) clusters
2 (cyan) and 3 (yellow); c) clusters 4 (blue) and 5 (salmon). d) Close-up on the binding pose
of cluster 5. Shown in green are the two key HBs between the fragment carbonyl oxygen
and the backbone nitrogen of Glu-166 (HB 3 as identified in main text Section 3.4.1.2), and
between the His-163 Nϵ and the nitrogen heterocycle of the fragment (HB 6 as identified
in main text Section 3.4.1.2). Also shown are the top 5 most populated clusters using a
threshold of 0.7: e) clusters 1 (green) and 2 (cyan); f) clusters 3 (yellow), 4 (blue) and 5
(salmon). The clustering threshold of 0.5 produces more meaningful clusters.
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Figure B.8: Figure adapted from the original publication of this work under the CC BY
3.0 license [Chan et al., 2021a]. Contact matrix for the 66 active site XChem fragments
sorted by their assigned cluster for a) the broader clustering threshold 0.5 and b) the tighter
clustering threshold 0.7. Contacts are shown in purple and no contact in yellow. Clusters
with more than 1 molecule are marked by brackets (except x0354 and x1358).

Nonetheless, cluster 5 of the broader (0.5 threshold) clustering method was found
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to be the most unique cluster with great potential for inhibitor design, as it was the

only one that targets the key HBs 3 and 6 identified to be crucial for both, stability

and substrate recognition (see main text Section 3.4.1.2).

B.6.2 Active-Guided Covalent Docking Results

Active-guided covalent docking (AGCD) was performed as described in the main text

Section 3.3.4. I compared the shape and pharmacophoric (SuCOS) overlap of the

lowest energy pose of the highest populated cluster for each Moonshot compound

with the inspiration covalent XChem fragment referenced by the designers (Figure

B.9). A SuCOS score of 0.55 and higher is generally considered sufficient to consider

the binding poses of the crystallographic fragment and docked design as conserved

[Leung et al., 2019]. Due to creative freedom in the design process, some of the

designed compounds do not overlap significantly with the inspiration fragments and

in some extreme cases only have the covalent warhead in common. When control-

ling for the smallest maximum common substructure (MCS) that encompasses at

least the covalent warhead and one additional atom in the compound, 379 docked

designs remain, from which 132 (34.8 %) recovered the binding mode of the inspi-

ration fragment. Given the high similarity between the fragments and the docked

designed compounds, it is likely that these binding modes are more representative of

the actual binding mode of the ligand. Furthermore, by selecting docked compounds

that did not have significant modifications to the original fragment (less than 10

atoms difference to the MCS between fragment and docked compounds), the number

of compounds regaining the binding pose was 87 (54.7 %) of the 159 compounds.

Interestingly, the distribution of SuCOS over the data subsets resembles a bimodal

distribution in all cases, with one peak around a SuCOS of 0.25 and a second peak

between 0.7-0.8 depending on the subset (Figure B.9). This suggests that the AD4
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docking process performs generally well in identifying binding poses similar to the

original fragment (especially in cases where few modifications were made), but fails

completely in some cases, resulting in almost no overlap between the pose and the

fragment and an extremely low SuCOS (< 0.3). This observation is in line with the

expected changes in binding mode of a molecule when subjected to large changes in

structure and does not necessarily correspond to incorrect docked poses. As a result,

when filtering for compounds where only minor changes were made to the inspira-

tion fragment and the docking pose generated regained the same binding pose as the

fragment, the probability of gaining relevant poses is increased. However, thorough

validation of this hypothesis is yet to be done.

Figure B.9: Figure adapted from the original publication of this work under the CC BY 3.0
license [Chan et al., 2021a]. Distribution of SuCOS between the docked pose of the covalent
Moonshot design and the original covalent fragment used as a basis for design. a) SuCOS
scores of the 540 docked compounds; b) SuCOS scores of the 379 docked compounds with
significant MCS overlap (i.e. more than 8 atoms MCS match) to the fragment; c) SuCOS
scores of the 159 docked compounds with significant MCS overlap to the fragment and only
small changes to its structure (< 10 atoms difference between the compound and its MCS
with the inspiration fragment)
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B.6.3 Docking Pose of Moonshot Design x10899

The docked pose of Fragment x10899 found to bind via a crystal contact to a third

symmetry-related Mpro molecule, rather than the biologically relevant dimeric state

(Figure B.10).

Figure B.10: Figure adapted from the original publication of this work under the CC
BY 3.0 license [Chan et al., 2021a]. a) View from the crystal structure of x10899 (ligand
in green) from the perspective of the biologically relevant dimer. b) View of the crystal
structure of x10899 with one additional crystal packing symmetry mate. Chains A, B
(dimer) and C (crystal-contacting chain) are coloured white, blue and pink, respectively.
The small molecule X10899 is bound in the active site of chain A (white); but its terminal
aromatic sidechain interacts with the symmetry-related chain C (magenta), leading to what
would appear to be an unusual binding mode if only the dimer were considered (top).
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B.6.4 Implications for Future Inhibitor Design

B.6.4.1 Potency of Known Cluster 5 Moonshot Designs

Moonshot designs that are confirmed to bind into the oxyanion hole (Figure B.11.

Data collected from the COVID MOonshot Project GitHub, accessed January 2021

[COVID-19 Moonshot project, 2020].

Figure B.11: Figure adapted from the original publication of this work under the CC BY
3.0 license [Chan et al., 2021a]. Selection of all Moonshot compounds in cluster 5 that bind
in the Mpro oxyanion hole. All compounds are covalent inhibitors, reacting with Cys-145
via the acrylamide warhead. IC50 values are obtained from the postera.ai GitHub page
[COVID-19 Moonshot project, 2020]. Note: “nan” indicates that the compound has not
been assayed.
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B.6.4.2 Compound Elaboration for MIH-UNI-e573136b-3

Compound MIH-UNI-e573136b-3 could be grown into the oxyanion hole to increase

its potency (Figure B.12).

Figure B.12: Figure adapted from the original publication of this work under the CC
BY 3.0 license [Chan et al., 2021a]. Overlay of the docked pose of FOC-CAS-e3a94da8-1
(green), the docked pose of MIH-UNI-e573136b-3 (blue), and a crystallographically observed
binding mode of x10789 (salmon) with Mpro (PDB: 5RER) [Douangamath et al., 2020].
The proposed expansion of x10789 into the oxyanion hole is shown in yellow on compound
FOC-CAS-e3a94da8-1.

B.6.4.3 Docked and Crystal Pose of Nirmatrelvir

I covalently docked Nirmatrelvir into the active site of Mpro structure of 6XHM [Hoff-

man et al., 2020], which is a crystal structure in complex with ligand PF-00835231,

a precursor in the design of Nirmatrelvir [Hoffman et al., 2020; Owen et al., 2021].

The team at Pfizer deposited a high resolution crystal structure of Nirmatrelvir in

complex with Mpro in the PDB in November 2021 (7RFS, 1.91 Å) [Owen et al., 2021].

An overlay of the crystal and docked pose can be found in Figure B.13 b. Around the

S1 site and the covelent attachment point to Mpro Cys-145, the docked pose closely

resembles the crystal structure. However, it deviates around the S2 and S3 site (Fig-

ure B.13 b). The plasticity analysis performed on 333 Mpro holo structures (Section

3.4.1.5), supports this results, since it shows that the S2 and S3 sites are highly plastic
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and can change strongly upon ligand binding, making rigid docking in this pocket

challenging. Although the binding pose is slightly shifted, the key interactions be-

tween Nirmatrelvir and Mpro were retained between the crystal and docked pose (HB

with Glu-166 and His-163, and hydrophobic interactions in S2, Figure B.13 & Figure

3.20).

Figure B.13: a) Crystal pose of Nirmatrelvir (salmon), covalently attached to Mpro (7RFS;
1.91 Å resolution) [Owen et al., 2021]. Key Mpro residues are shown in purple and key
hydrogen bonds marked in yellow dotted lines with their distance labelled in Å. The crystal
structure of Nirmatrelvir adopts the same major interactions as previously identified in
cluster 5 (Figure 3.16) and for the natural substrate models (Section 3.4.1, namely the
double HB to the backbone of Glu-166, the HB to His-163 in the S1 subsite, and a series
of hydrophobic interactions in the S2 subsite. b) Overlay of the docked (cyan) and crystal
(salmon) pose of Nirmatrelvir on the surface of Mpro (7RFS) [Owen et al., 2021]. c) 2D
structure of Nirmatrelvir.

210



Appendix C

Protein-Ligand Interaction Graphs:
Learning from Ligand-Shaped 3D
Interaction Graphs to Improve
Binding Affinity Prediction

C.1 Model Hyperparameter Tuning

C.1.1 Hyperparameter Optimization Setup

The hyperparameters were optimized using Optuna 2.8.0 [Akiba et al., 2019]. Opti-

mization was performed on the PDBbind refined set 2016 [Liu et al., 2015, 2017], with

a random train/validation split resulting in a training dataset of 3229 and a validation

dataset of 359 compounds. The CASF-2016 test set that was used as a benchmark

set was removed from the PDBBind refined set 2016 prior to hyperparameter opti-

mization. Since each specific architecture has its own hyperparameters, some changes

had to be made between models for optimization. Some hyperparameters appear in

every model:

• The learning rate was optimized based on a loguniform prior on [1e− 4, 1e− 2].

• The activation function in the MLP/GNN layers was optimized with categorical

values

{ReLU,LeakyReLU, Sigmoid}.
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• The dropout rate for the MLP/GNN layers was optimized based on a uniform

prior on [0, 0.9].

• The dropout rate for the readout layers was optimized based on a uniform prior

on [0, 0.9].

• The number of MLP/GNN layers was optimized with possible values {1, ..., 10}.

The readout layers were set to a fixed size as they only serve to combine the

features extracted in previous layers. On the protein branch side (if included in the

model) the following parameters were optimized:

• The number of filters in the 1D-convolutional layer was optimized with possible

values {22, ..., 25}.

• The size of the filters in the 1D-convolutional layer was optimized with possible

values {22, ..., 25}.

The idea behind optimizing these hyperparameters is that the protein branch

should not be a bottleneck for the model performance and hence some flexibility

should be allowed. In the GNN/MLP branch hyperparameters which were optimized

are:

• The number of MLP/GNN layers (except for SGCs) was optimized with possible

values {1, ..., 10} for GNN models and {0, ..., 10} for MLP layers. As the N+1st

layer is a fully connected layer N = 0 is possible for fingerprint-based models.

• The dimension of each MLP (width of layer) / GNN layer (length of node

features) as a multiple of the input dimension was optimized with possible values

values {F (0) · 20, F (0) · 21, F (0) · 22} where F (0) is the input feature dimension,

e.g. F (0) = 40 for LBGs and F (0) = 512 for the ECFP-512 model.

SGCs are restricted to one GNN layer as their idea is to replace N GCN layers by

one SGC layer [Wu et al., 2019]. Model-specific hyperparameters which are optimized

are:
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• the power of the adjacency matrix K of SGCs with possible values {1, ..., 10},

• the N possibly different dimensions of the GAT heads for GATs with possible

values {1, ..., 10},

• the N possibly different dimensions of the GAT heads for GAT-GCNs with

possible values {1, ..., 10},

• the initial ϵ-value (uniform on [0, 2]) for GINs and the MLP activation function

of the MLP which is part of a GIN layer among {ReLU,LeakyReLU, Sigmoid}.

Each hyperparameter optimization comprised 1000 trials with values suggested by

the TPE (Tree-structured Parzen Estimator) algorithm which is based on Gaussian

Mixture Models [Bergstra et al., 2011]. The results for each model can be found

below.

C.1.2 Hyperparameter Optimization Results

PB included corresponds to the combined 2 branch setup where the protein sequence

branch is included. PB Excluded corresponds to the GNN or MLPNet model without

protein sequence embedding. The MLPNet ECIF models were not tuned indepen-

dently and instead utilized the MLPNet ECFP 1024 bit model parameters for the

MLPNet ECIF models. The MLPNet ECIF implementation was never intended to

get the best possible performance (as [Sánchez-Cruz et al., 2020] have already opti-

mized the performance using random forests) but rather serve as a quick comparison

to the new PLIG models as they use similar ECIF style atom representations.
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Hyperparameter PB Included PB Excluded
Learning rate 0.0010 0.0006
Activation function Leaky ReLU Leaky ReLU
Number of filters protein convolution 24 -

Kernel size of protein convolution 23 -

Dropout rate GNN layers 0.033 0.000
Dropout rate readout layers 0.028 0.065
Number of GNN layers 4 3
Dimension of GNN layer 1 40 · 22 40 · 22

Dimension of GNN layer 2 40 · 22 40 · 22

Dimension of GNN layer 3 40 · 22 40 · 22

Dimension of GNN layer 4 40 · 22 -

Pearson correlation on validation set 0.759 0.729

Table C.1: Results of hyperparameter tuning of GCN with ligand-based graphs.

Hyperparameter PB Included PB Excluded
Learning rate 0.0008 0.0006
Activation function Leaky ReLU ReLU
Number of filters protein convolution 24 -

Kernel size of protein convolution 23 -

Dropout rate GNN layers 0.021 0.110
Dropout rate readout layers 0.021 0.080
Dimension of GNN layer 1 40 · 20 40 · 22

K 10 10
Pearson correlation on validation set 0.755 0.735

Table C.2: Results of hyperparameter tuning of SGC with ligand-based graphs.
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Hyperparameter PB Included PB Excluded
Learning rate 0.0008 0.0007
Activation function Leaky ReLU Leaky ReLU
Number of filters protein convolution 24 -

Kernel size of protein convolution 24 -

Dropout rate GNN layers 0.016 0.029
Dropout rate readout layers 0.013 0.013
Number of GNN layers 2 3
Dimension of GNN layer 1 40 · 22 40 · 20

Dimension of GAT head 1 9 10
Dimension of GNN layer 2 40 · 21 40 · 22

Dimension of GAT head 2 1 5
Dimension of GNN layer 3 - 40 · 22

Dimension of GAT head 3 - 6
Pearson correlation on validation set 0.753 0.745

Table C.3: Results of hyperparameter tuning of GAT with ligand-based graphs.

Hyperparameter PB Included PB Excluded
Learning rate 0.0003 0.0009
Activation function Leaky ReLU ReLU
Number of filters protein convolution 24 -

Kernel size of protein convolution 25 -

Dropout rate GNN layers 0.000 0.000
Dropout rate readout layers 0.001 0.090
Number of GNN layers 2 1
Dimension of GNN layer 1 40 · 21 40 · 21

Dimension of GAT head 1 5 2
Dimension of GNN layer 1 40 · 21 -

Dimension of GAT head 1 10 -

Pearson correlation on validation set 0.761 0.732

Table C.4: Results of hyperparameter tuning of GAT-GCN with ligand-based graphs.
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Hyperparameter PB Included PB Excluded
Learning rate 0.0005 0.0003
Activation function ReLU ReLU
Number of filters protein convolution 24 -

Kernel size of protein convolution 23 -

Dropout rate GNN layers 0.001 0.017
Dropout rate readout layers 0.100 0.050
Number of GNN layers 2 3
Dimension of GNN layer 1 40 · 21 40 · 22

Dimension of GNN layer 2 40 · 22 40 · 21

Dimension of GNN layer 3 - 40 · 21

Initial ϵ 0.369 0.070
GIN MLP activation function Leaky ReLU Leaky ReLU
Pearson correlation on validation set 0.754 0.721

Table C.5: Results of hyperparameter tuning of GIN with ligand-based graphs.

Hyperparameter PB Included PB Excluded
Learning rate 0.0003 0.0010
Activation function Leaky ReLU Leaky ReLU
Number of filters protein convolution 25 -

Kernel size of protein convolution 25 -

Dropout rate GNN layers 0.000 0.019
Dropout rate readout layers 0.016 0.147
Number of GNN layers 6 2
Dimension of GNN layer 1 40 · 21 40 · 22

Dimension of GNN layer 2 40 · 20 40 · 20

Dimension of GNN layer 3 40 · 21 -

Dimension of GNN layer 4 40 · 20 -

Dimension of GNN layer 5 40 · 22 -

Dimension of GNN layer 6 40 · 22 -

Pearson correlation on validation set 0.755 0.734

Table C.6: Results of hyperparameter tuning of SAGE with ligand-based graphs.
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Hyperparameter PB Included PB Excluded
Learning rate 0.0003 0.0001
Activation function ReLU Leaky ReLU
Number of filters protein convolution 23 -

Kernel size of protein convolution 25 -

Dropout rate MLP layers 0.021 0.000
Dropout rate readout layers 0.106 0.169
Number of MLP layers 1 6
Dimension of MLP layer 1 512 · 21 512 · 22

Dimension of MLP layer 2 - 512 · 20

Dimension of MLP layer 3 - 512 · 21

Dimension of MLP layer 4 - 512 · 20

Dimension of MLP layer 5 - 512 · 22

Dimension of MLP layer 6 - 512 · 22

Pearson correlation on validation set 0.781 0.767

Table C.7: Results of hyperparameter tuning of MLP with ECFP-512 fingerprints.

Hyperparameter PB Included PB Excluded
Learning rate 0.0001 0.0002
Activation function Leaky ReLU ReLU
Number of filters protein convolution 25 -

Kernel size of protein convolution 25 -

Dropout rate MLP layers 0.019 0.099
Dropout rate readout layers 0.719 0.232
Number of MLP layers 8 4
Dimension of MLP layer 1 1024 · 21 1024 · 20

Dimension of MLP layer 2 1024 · 20 1024 · 20

Dimension of MLP layer 3 1024 · 21 1024 · 20

Dimension of MLP layer 4 1024 · 22 1024 · 21

Dimension of MLP layer 5 1024 · 21 -

Dimension of MLP layer 6 1024 · 21 -

Dimension of MLP layer 7 1024 · 21 -

Dimension of MLP layer 8 1024 · 22 -

Pearson correlation on validation set 0.787 0.767

Table C.8: Results of hyperparameter tuning of MLP with ECFP-1024 fingerprints.
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Hyperparameter PB Included PB Excluded
Learning rate 0.0002 0.0001
Activation function ReLU Leaky ReLU
Number of filters protein convolution 24 -

Kernel size of protein convolution 25 -

Dropout rate MLP layers 0.075 0.068
Dropout rate readout layers 0.726 0.458
Number of MLP layers 7 8
Dimension of MLP layer 1 512 · 20 512 · 20

Dimension of MLP layer 2 512 · 22 512 · 21

Dimension of MLP layer 3 512 · 21 512 · 22

Dimension of MLP layer 4 512 · 22 512 · 21

Dimension of MLP layer 5 512 · 20 512 · 20

Dimension of MLP layer 6 512 · 22 512 · 20

Dimension of MLP layer 7 512 · 21 512 · 21

Dimension of MLP layer 8 - 512 · 21

Pearson correlation on validation set 0.775 0.761

Table C.9: Results of hyperparameter tuning of MLP with FCFP-512 fingerprints.

Hyperparameter PB Included PB Excluded
Learning rate 0.0001 0.0001
Activation function Leaky ReLU ReLU
Number of filters protein convolution 25 -

Kernel size of protein convolution 24 -

Dropout rate MLP layers 0.134 0.034
Dropout rate readout layers 0.2001 0.401
Number of MLP layers 4 6
Dimension of MLP layer 1 1024 · 21 1024 · 21

Dimension of MLP layer 2 1024 · 21 1024 · 21

Dimension of MLP layer 3 1024 · 22 1024 · 22

Dimension of MLP layer 4 1024 · 22 1024 · 20

Dimension of MLP layer 5 - 1024 · 20

Dimension of MLP layer 6 - 1024 · 20

Pearson correlation on validation set 0.774 0.755

Table C.10: Results of hyperparameter tuning of MLP with FCFP-1024 fingerprints.
1Result of hyperparameter optimization is 0.842 but since this results in bad performances
(especially in combination with early stopping of 5) the value was set to 0.200.
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Hyperparameter PB Included PB Excluded
Learning rate 0.0010 0.0007
Activation function Leaky ReLU Leaky ReLU
Number of filters protein convolution 25 -

Kernel size of protein convolution 23 -

Dropout rate GNN layers 0.001 0.038
Dropout rate readout layers 0.017 0.058
Number of GNN layers 5 3
Dimension of GNN layer 1 27 · 21 27 · 22

Dimension of GNN layer 2 27 · 21 27 · 22

Dimension of GNN layer 3 27 · 22 27 · 20

Dimension of GNN layer 4 27 · 22 -

Dimension of GNN layer 5 27 · 20 -

Pearson correlation on validation set 0.748 0.772

Table C.11: Results of hyperparameter tuning of GCN with PLIGs.

Hyperparameter PB Included PB Excluded
Learning rate 0.0006 0.0005
Activation function Leaky ReLU ReLU
Number of filters protein convolution 23 -

Kernel size of protein convolution 23 -

Dropout rate GNN layers 0.080 0.058
Dropout rate readout layers 0.001 0.066
Dimension of GNN layer 1 27 · 22 27 · 22

K 2 8
Pearson correlation on validation set 0.761 0.765

Table C.12: Results of hyperparameter tuning of SGC with PLIGs.
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Hyperparameter PB Included PB Excluded
Learning rate 0.0001 0.0008
Activation function ReLU ReLU
Number of filters protein convolution 22 -

Kernel size of protein convolution 22 -

Dropout rate GNN layers 0.001 0.012
Dropout rate readout layers 0.034 0.020
Number of GNN layers 3 3
Dimension of GNN layer 1 27 · 21 27 · 21

Dimension of GAT head 1 5 6
Dimension of GNN layer 2 27 · 22 27 · 22

Dimension of GAT head 2 6 5
Dimension of GNN layer 3 27 · 21 27 · 22

Dimension of GAT head 3 9 8
Pearson correlation on validation set 0.786 0.787

Table C.13: Results of hyperparameter tuning of GAT with PLIGs.

Hyperparameter PB Included PB Excluded
Learning rate 0.0008 0.0002
Activation function ReLU Leaky ReLU
Number of filters protein convolution 24 -

Kernel size of protein convolution 25 -

Dropout rate GNN layers 0.004 0.000
Dropout rate readout layers 0.023 0.073
Number of GNN layers 1 2
Dimension of GNN layer 1 27 · 22 27 · 22

Dimension of GAT head 1 6 8
Dimension of GNN layer 2 - 27 · 22

Dimension of GAT head 2 - 9
Pearson correlation on validation set 0.761 0.776

Table C.14: Results of hyperparameter tuning of GAT-GCN with PLIGs.

220



Hyperparameter PB Included PB Excluded
Learning rate 0.0007 0.0012
Activation function ReLU Leaky ReLU
Number of filters protein convolution 22 -

Kernel size of protein convolution 25 -

Dropout rate GNN layers 0.000 0.000
Dropout rate readout layers 0.014 0.307
Number of GNN layers 1 1
Dimension of GNN layer 1 27 · 22 27 · 22

Initial ϵ 1.583 1.509
GIN MLP activation function sigmoid sigmoid
Pearson correlation on validation set 0.761 0.769

Table C.15: Results of hyperparameter tuning of GIN with PLIGs.

Hyperparameter PB Included PB Excluded
Learning rate 0.0007 0.0003
Activation function ReLU Leaky ReLU
Number of filters protein convolution 25 -

Kernel size of protein convolution 23 -

Dropout rate GNN layers 0.000 0.020
Dropout rate readout layers 0.018 0.253
Number of GNN layers 3 5
Dimension of GNN layer 1 27 · 22 27 · 21

Dimension of GNN layer 2 27 · 22 27 · 21

Dimension of GNN layer 3 27 · 22 27 · 22

Dimension of GNN layer 4 - 27 · 22

Dimension of GNN layer 5 - 27 · 22

Pearson correlation on validation set 0.768 0.762

Table C.16: Results of hyperparameter tuning of SAGE with PLIGs.

C.2 Protein Atom Types

The 22 ECIF protein atom types were identified based on the identifiers outlined

by Sánchez-Cruz et al. [2020] from the PDBbind 2020+2016 combined dataset. An

atom is defined through the following parameters: atom symbol, explicit valence,

number of attached heavy atoms, number of attached hydrogens, aromaticity and

ring membership. The possible protein atom types based on the naturally occurring

amino acids utilized in PLIG identified based on those parameters is shown in Figure
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C.1. Out of all possible atom types based on the amino acids only 22 unique atom

types are identified. The unique atom types are shown in Table C.17. Those atom

types form the dimensionality of the PLIG contact vector of the node features.

Figure C.1: All heavy atoms in every amino acid in the PDBbind dataset and their
corresponding ECIF atom type.

C.3 Cross Validation

5-fold cross validation was performed on the combined PDBBind general 2020 and

PDBBind refined 2016 set (dataset details in the main text Section 4.3.1). The vali-

dation and test set (CASF-2016) used in the main study was removed from the cross
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C;4;2;2;0;0
N;4;1;2;0;0
S;2;2;0;0;0
C;4;3;0;1;1
N;3;1;2;0;0
C;4;3;0;0;0
C;4;1;3;0;0
N;3;2;1;1;1
S;2;1;1;0;0
C;4;3;1;0;1
N;3;2;0;1;1
C;4;3;1;0;0
O;2;1;1;0;0
N;4;2;1;0;0
N;3;2;1;0;0
N;4;1;3;0;0
C;6;3;0;0;0
C;4;2;2;0;1
C;4;2;1;1;1
O;2;1;0;0;0
N;3;3;0;0;1
C;5;3;0;0;0

Table C.17: Unique 22 ECIF atom types present in the 20 proteinogenic amino acids in
the PDBbind 2020/2016 dataset.

validation set, to leave the training set of 14254 compounds. Cross validation was

done separately for the docked and crystal-based datasets to ensure model stability

for both, crystal derived structures and docked poses. This set was split into 5 ran-

dom folds, using 20 % of the dataset as validation in each fold. Models were run

across all 5 folds until model performance converged. The performance of all models

during cross validation is recorded for every epoch. The number of epochs to train

each model for training and test on the CASF-2016 benchmark was determined as the

point where no significant performance increase (difference of less than 0.01 pearson

correlation coefficient between epoch n and n− 1). The determined optimal number

of epochs for each model is given in Tables C.18, C.19 and C.20.
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Model Architecture PB Included PB Excluded
GATNet + PLIG 9 16
GCNNet + PLIG 8 18
GIN + PLIG 6 18
GAT/GCN + PLIG 9 19
SGCNet + PLIG 4 14
SageNet + PLIG 6 21
MLPNet + ECIF 5 15

Table C.18: Optimal number of epochs for models trained on crystal structures.

Model Architecture PB Included PB Excluded
GATNet + PLIG 9 11
GCNNet + PLIG 5 12
GIN + PLIG 6 17
GAT/GCN + PLIG 3 18
SGCNet + PLIG 4 14
SageNet + PLIG 8 21
MLPNet + ECIF 5 6

Table C.19: Optimal number of epochs for models trained on docked poses.

Model Architecture PB Included PB Excluded
GATNet 4 13
GCNNet 5 15
GIN 7 22
GAT/GCN 7 15
SGCNet 5 22
SageNet 7 21
MLPNet + ECFP512 5 6
MLPNet + ECFP1024 7 6
MLPNet + FCFP512 5 8
MLPNet + FCFP1024 5 4

Table C.20: Optimal number of epochs for ligand-based models.

It is noteworthy, that the model architecture that includes the protein branch (PB

Included) consistently reaches peak performance significantly faster than the models

without protein sequence embedding (all models except the ligand-based ECFP and

FCFP fingerprints models using the MLPNet architecture). On average, GNNs us-

ing PLIGs and do not include the protein branch take 17 epochs to converge while
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the same models with the protein branch take only 6 epochs. This could be due

to the protein branch models over fitting during training, reaching peak performance

quickly, while pure GNN PLIG models need several epochs to slowly learn more mean-

ingful information about the system. The following pages include the performance

evaluation of all models during cross validation for the reader to inspect.
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Figure C.2: 5-fold cross validation of the GATNet models reported as the average calcu-
lated pearson correlation coefficient and its corresponding standard deviation (error bars)
at each epoch. a) PB excluded, crystal structures; b) PB included, crystal structures; c)
PB excluded, docked poses; d) PB included, docked poses, e) PB excluded, ligand-based,
f) PB included, ligand-based. Models including the protein branch reach peak performance
extremely fast, indicating potential overfitting.
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Figure C.3: 5-fold cross validation of the GCNNet models reported as the average calcu-
lated pearson correlation coefficient and its corresponding standard deviation (error bars)
at each epoch. a) PB excluded, crystal structures; b) PB included, crystal structures; c)
PB excluded, docked poses; d) PB included, docked poses, e) PB excluded, ligand-based,
f) PB included, ligand-based. Models including the protein branch reach peak performance
extremely fast, indicating potential overfitting.
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Figure C.4: 5-fold cross validation of the GIN models reported as the average calculated
pearson correlation coefficient and its corresponding standard deviation (error bars) at
each epoch. a) PB excluded, crystal structures; b) PB included, crystal structures; c) PB
excluded, docked poses; d) PB included, docked poses, e) PB excluded, ligand-based, f)
PB included, ligand-based. Models including the protein branch reach peak performance
extremely fast, indicating potential overfitting.
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Figure C.5: 5-fold cross validation of the GAT/GCN models reported as the average
calculated pearson correlation coefficient and its corresponding standard deviation (error
bars) at each epoch. a) PB excluded, crystal structures; b) PB included, crystal structures;
c) PB excluded, docked poses; d) PB included, docked poses, e) PB excluded, ligand-based,
f) PB included, ligand-based. Models including the protein branch reach peak performance
extremely fast, indicating potential overfitting.
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Figure C.6: 5-fold cross validation of the SGCNet models reported as the average calcu-
lated pearson correlation coefficient and its corresponding standard deviation (error bars)
at each epoch. a) PB excluded, crystal structures; b) PB included, crystal structures; c)
PB excluded, docked poses; d) PB included, docked poses, e) PB excluded, ligand-based,
f) PB included, ligand-based. Models including the protein branch reach peak performance
extremely fast, indicating potential overfitting.
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Figure C.7: 5-fold cross validation of the Sage models reported as the average calculated
pearson correlation coefficient and its corresponding standard deviation (error bars) at
each epoch. a) PB excluded, crystal structures; b) PB included, crystal structures; c) PB
excluded, docked poses; d) PB included, docked poses, e) PB excluded, ligand-based, f)
PB included, ligand-based. Models including the protein branch reach peak performance
extremely fast, indicating potential overfitting.
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Figure C.8: 5-fold cross validation of the MLPNet + ECIF models reported as the average
calculated pearson correlation coefficient and its corresponding standard deviation (error
bars) at each epoch. a) PB excluded, crystal structures; b) PB included, crystal structures;
c) PB excluded, docked poses; d) PB included, docked poses. Models including the protein
branch reach peak performance extremely fast, indicating potential overfitting.
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Figure C.9: 5-fold cross validation of the MLPNet + ECFP models reported as the average
calculated pearson correlation coefficient and its corresponding standard deviation (error
bars) at each epoch. a) ECFP512, PB excluded; b) ECFP512, PB included; c) ECFP1024,
PB excluded; d) ECFP1024, PB included. Models including the protein branch reach peak
performance extremely fast, indicating potential overfitting.
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Figure C.10: 5-fold cross validation of the MLPNet + FCFP models reported as the
average calculated pearson correlation coefficient and its corresponding standard deviation
(error bars) at each epoch. a) FCFP512, PB excluded; b) FCFP512, PB included; c)
FCFP1024, PB excluded; d) FCFP1024, PB included. Models including the protein branch
reach peak performance extremely fast, indicating potential overfitting.

C.4 Performance and Stability of All Models

All models were trained on the PDBBind dataset (description see main text Section

4.3.1) and tested on the CASF-2016 benchmark set (crystal case is trained and tested

on crystal structures, docked case is trained and tested on docked poses and the lig-

and case does not use 3D information). Since the models’ predictions are somewhat

stochastic, model performance and stability against the withheld test set (CASF-
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2016) for all trained models was evaluated using the average and standard deviation

(SD) of the pearson correlation coefficient (ρ) as well as the root-mean-square error

(RMSE) over 10 runs. ρ and RMSE and their corresponding standard deviations are

shown in Figure C.11 and FigureC.12. The scatter plots of the average prediction

versus the experimentally determined pK value for each protein-ligand complex be-

tween the 10 model runs for each model and feature combination are shown in Figure

C.14-C.22. The best performing PLIG model was the GATNet PLIG without pro-

tein sequence embedding (ρ = 0.80) and the best performing model overall was the

MLPNet ECIF model with protein sequence embedding (ρ = 0.82). However, since

the standard deviation of the Pearson correlation coefficient is as large as the differ-

ence between the GATNet PLIG and MLPNet ECIF model (Figure C.11, standard

deviation of 0.018 versus 0.009 for GATNet PLIG and MLPNet ECIF, respectively),

the difference is not significant and both models should be considered to be of similar

performance. Overall, model stability as measured by ρ standard deviation varied

between 0.007 (GCNNet PLIG, no sequence trained and tested on crystal poses) and

0.023 (SGCNet ligand-based, no sequence)

In addition, the case where models were trained on crystal poses and tested on

docked poses was tested as well to investigate if performance improves. The results

are shown in Figure C.13. There is no significant difference when training on crystal

poses and testing on docked poses as opposed to the standard case (trained and tested

on docked poses).
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Figure C.11: Model stability of all models measured by Pearson correlation coefficient
(rho) over 10 runs. Sequence and No Sequence denote the presence or absence of the protein
sequence encoding branch in the model architecture, respectively. (a and d) ρ and SD of the
structure-based GNN and MLPNet models when trained and tested on crystal structures.
(b and e) ρ and SD of the structure-based GNN and MLPNet models when trained and
tested on docked poses. (c and f) ρ and SD of all ligand-based GNN and MLPNet models.
ECFP and FCFP fingerprint radius was 2 in all cases. Model stability as measured by
ρ standard deviation varied between 0.007 (GCNNet PLIG no sequence trained/tested on
crystal poses) and 0.023 (SGCNet ligand-based no sequence).
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Figure C.12: Model stability of all models measured by RMSE over 10 runs. Sequence
and No Sequence denote the presence or absence of the protein sequence encoding branch in
the model architecture, respectively. (a and d) RMSE and SD of the structure-based GNN
and MLPNet models when trained and tested on crystal structures. (b and e) RMSE and
SD of the structure-based GNN and MLPNet models when trained and tested on docked
poses. (c and f) RMSE and SD of all ligand-based GNN and MLPNet models. ECFP and
FCFP fingerprint radius was 2 in all cases. Model stability as measured by RMSE standard
deviation varied between 0.02 (several models) and 0.08 (several SGCNet based models).
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Figure C.13: Model performance when trained on crystal structures and tested on docked
poses. Sequence and No Sequence denote the presence or absence of the protein sequence
encoding branch in the model architecture, respectively. (a and b) ρ and SD of the structure-
based GNN and MLPNet models when trained on crystal poses and tested on docked poses.
(c and d) RMSE and SD of the structure-based GNN and MLPNet models when trained on
crystal poses and tested on docked poses. Best performing model overall was the MLPNet
ECIF model with protein sequence embedding (ρ = 0.78, RMSE = 1.38). There is no
significant performance difference to models trained and tested on docked poses as shown
in Figure C.11 and C.12
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Figure C.14: Scatter plots of the average prediction versus the experimentally determined
pK value for each protein-ligand complex between the 10 model runs for all GAT+GCN
models. a) PLIG, no protein sequence embedding, trained and tested on crystal structures;
b) PLIG, with sequence embedding, trained and tested on crystal structures; c) PLIG, no
protein sequence embedding, trained and tested on docked structures; d) PLIG, with protein
sequence embedding, trained and tested on docked structures; e) ligand-based graph, no
protein sequence embedding; f) ligand-based graph, with protein embedding.
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Figure C.15: Scatter plots of the average prediction versus the experimentally determined
pK value for each protein-ligand complex between the 10 model runs for all GATNet models.
a) PLIG, no protein sequence embedding, trained and tested on crystal structures; b)
PLIG, with sequence embedding, trained and tested on crystal structures; c) PLIG, no
protein sequence embedding, trained and tested on docked structures; d) PLIG, with protein
sequence embedding, trained and tested on docked structures; e) ligand-based graph, no
protein sequence embedding; f) ligand-based graph, with protein embedding.
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Figure C.16: Scatter plots of the average prediction versus the experimentally determined
pK value for each protein-ligand complex between the 10 model runs for all GCNNet models.
a) PLIG, no protein sequence embedding, trained and tested on crystal structures; b)
PLIG, with sequence embedding, trained and tested on crystal structures; c) PLIG, no
protein sequence embedding, trained and tested on docked structures; d) PLIG, with protein
sequence embedding, trained and tested on docked structures; e) ligand-based graph, no
protein sequence embedding; f) ligand-based graph, with protein embedding.
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Figure C.17: Scatter plots of the average prediction versus the experimentally determined
pK value for each protein-ligand complex between the 10 model runs for all GIN models.
a) PLIG, no protein sequence embedding, trained and tested on crystal structures; b)
PLIG, with sequence embedding, trained and tested on crystal structures; c) PLIG, no
protein sequence embedding, trained and tested on docked structures; d) PLIG, with protein
sequence embedding, trained and tested on docked structures; e) ligand-based graph, no
protein sequence embedding; f) ligand-based graph, with protein embedding.
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Figure C.18: Scatter plots of the average prediction versus the experimentally determined
pK value for each protein-ligand complex between the 10 model runs for all SageNet models.
a) PLIG, no protein sequence embedding, trained and tested on crystal structures; b)
PLIG, with sequence embedding, trained and tested on crystal structures; c) PLIG, no
protein sequence embedding, trained and tested on docked structures; d) PLIG, with protein
sequence embedding, trained and tested on docked structures; e) ligand-based graph, no
protein sequence embedding; f) ligand-based graph, with protein embedding.
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Figure C.19: Scatter plots of the average prediction versus the experimentally determined
pK value for each protein-ligand complex between the 10 model runs for all SGCNet models.
a) PLIG, no protein sequence embedding, trained and tested on crystal structures; b)
PLIG, with sequence embedding, trained and tested on crystal structures; c) PLIG, no
protein sequence embedding, trained and tested on docked structures; d) PLIG, with protein
sequence embedding, trained and tested on docked structures; e) ligand-based graph, no
protein sequence embedding; f) ligand-based graph, with protein embedding.
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Figure C.20: Scatter plots of the average prediction versus the experimentally determined
pK value for each protein-ligand complex between the 10 model runs for all MLPNet +
ECIF models. a) no protein sequence embedding, trained and tested on crystal structures;
b) including sequence embedding, trained and tested on crystal structures; c) no protein
sequence embedding, trained and tested on docked structures; d) including protein sequence
embedding, trained and tested on docked structures.
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Figure C.21: Scatter plots of the average prediction versus the experimentally determined
pK value for each protein-ligand complex between the 10 model runs for all MLPNet +
ECFP models. a) ECFP512, no protein sequence embedding, trained and tested on ligand
information; b) ECFP512, including sequence embedding, trained and tested on ligand
information; c) ECFP1024, no protein sequence embedding, trained and tested on ligand
information; d) ECFP1024, including protein sequence embedding, trained and tested on
ligand information
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Figure C.22: Scatter plots of the average prediction versus the experimentally determined
pK value for each protein-ligand complex between the 10 model runs for all MLPNet FCFP
models. a) FCFP512, no protein sequence embedding, trained and tested on ligand informa-
tion; b) FCFP512, including sequence embedding, trained and tested on ligand information;
c) FCFP1024, no protein sequence embedding, trained and tested on ligand information; d)
FCFP1024, including protein sequence embedding, trained and tested on ligand information

C.5 Proximity Analysis

C.5.1 Cross Validation

5-fold cross validation was performed on the combined PDBBind general 2020 and

PDBBind refined 2016 set (dataset details in the main text Section 4.3.1). The vali-

dation and test set (CASF-2016) used in the main study was removed from the cross

validation set, to leave the training set of 14254 compounds. Cross validation was

done separately for the docked and crystal-based datasets to ensure model stability
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for both, crystal derived structures and docked poses. This set was split into 5 ran-

dom folds, using 20 % of the dataset as validation in each fold. Models were run

across all 5 folds until model performance converged. The performance of all models

during cross validation is recorded for every epoch. The number of epochs to train

each model for training and test on the CASF-2016 benchmark was determined as the

point where no significant performance increase (difference of less than 0.01 Pearson

correlation coefficient between epoch n and n − 1). The GATNet model was chosen

without the protein sequence embedding branch as the architecture to try out differ-

ent PLIG proximity thresholds since it was the best performing model in the main

study. The optimal number of epochs as determined by cross validation is shown in

Table C.21.

Proximity threshold Epochs (Crystal) Epochs (Docked)

PLIG 4 Å 12 11
PLIG 5 Å 14 9
PLIG 6 Å 16 11
PLIG 7 Å 14 15
PLIG 8 Å 15 13

Table C.21: Optimal number of epochs for different PLIG thresholds when trained and
tested on docked and crystal poses using the GATNet PLIG architecture without the protein
sequence embedding.

The performance of the 4,5,7 and 8 Å GATNet PLIG models during cross valida-

tion is shown in Figure C.23 & C.24. Details on cross validation for the 6 Å PLIG

model can be found in the general cross validations Section C.3 above.
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Figure C.23: 5-fold cross validation of the GATNet PLIG models (no sequence) with 4 and
5 Å proximity thresholds reported as the average calculated pearson correlation coefficient
and its corresponding standard deviation (error bars) at each epoch. a) 4 Å threshold,
trained and tested on crystal poses; b) 4 Å threshold, trained and tested on docked poses;
c) 5 Å threshold, trained and tested on crystal poses ; d) 5 Å threshold, trained and tested
on docked poses.
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Figure C.24: 5-fold cross validation performance of the GATNet PLIG models (no se-
quence) with 7 and 8 Å proximity thresholds reported as the average calculated pearson
correlation coefficient and its corresponding standard deviation (error bars) at each epoch.
a) 7 Å threshold, trained and tested on crystal poses; b) 7 Å threshold, trained and tested
on docked poses; c) 8 Å threshold, trained and tested on crystal poses ; d) 8 Å threshold,
trained and tested on docked poses.

C.5.2 Performance and Stability over 10 Stochastic Runs

All models were trained on the PDBBind dataset (description see main text Section

4.3.1) and tested on the CASF-2016 benchmark set (crystal case is trained and tested

on crystal structures, docked case is trained and tested on docked poses and the lig-

and case does not use 3D information). Since the models’ predictions are somewhat

stochastic, model performance and stability against the withheld test set (CASF-

2016) for all trained models was evaluated using the average and standard deviation

(SD) of the pearson correlation coefficient (ρ) as well as the root-mean-square error
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(RMSE) over 10 independent runs. ρ and RMSE and their corresponding standard

deviations are shown in figure C.25 and figure C.26. Overall, the 5 and 6 Å repre-

sentations reach similar performance metrics (ρ = 0.80 / 0.80, RMSE = 1.33 / 1.32

for 5 / 6 Å respectively) however the 6 Å model is slightly more stable with a lower

standard deviation for the RMSE (SD RMSE = 0.06 / 0.04 for 5 / 6 Å respectively).

The difference in ρ and standard deviation of the ρ is insignificant between the two

models. In addition, performance of all models against docked poses is extremely

similar and overall lower than the crystal poses. This observation is in line with our

expectations since a majority of docked poses were found to have a RMSD between

the crystal and docked pose of larger than 2 Å (Main text Section 3.1). A threshold

change of the same magnitude should therefore not alter results drastically, as most

poses have an equally large inaccuracy in their pose.
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Figure C.25: Model stability of different threshold GATNet PLIG models measured by
rho and its corresponding SD. All GATNet models were used without the second protein
sequence embedding branch implementation. (a and c) ρ and SD of the GATNet PLIG
models with different proximity thresholds when trained and tested on crystal structures.
(b and d) ρ and SD of the GATNet PLIG models with different proximity thresholds when
trained and tested on docked poses. Model stability as measured by ρ standard deviation
varied between 0.01 (GATNet PLIG 7 Å trained/tested on crystal poses) and 0.02 (GATNet
PLIG 5 Å, trained/tested on crystal poses).
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Figure C.26: Model stability of different threshold GATNet PLIG models measured by
RMSE and its corresponding SD. All GATNet models were used without the second protein
sequence embedding branch implementation. (a and c) RMSE and SD of the GATNet PLIG
models with different proximity thresholds when trained and tested on crystal structures.
(b and d) RMSE and SD of the GATNet PLIG models with different proximity thresholds
when trained and tested on docked poses. Model stability as measured by ρ standard
deviation varied between 0.03 (GATNet PLIG 4,5 and 8 Å trained/tested on docked poses)
and 0.06 (GATNet PLIG 5 Å trained/tested on crystal poses).
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Figure C.27: Scatter plots of the average prediction versus the experimentally determined
pK value for each protein-ligand complex between the 10 model runs for the GATNet PLIG
model (no sequence) at different proximity thresholds. a) GATNet PLIG, 4 Å threshold,
trained and tested on crystal structures; b) GATNet PLIG, 4 Å threshold, trained and tested
on docked poses; c) GATNet PLIG, 5 Å threshold, trained and tested on crystal structures;
d) GATNet PLIG, 5 Å threshold, trained and tested on docked poses; e) GATNet PLIG, 6
Å threshold, trained and tested on crystal structures (same as Figure C.15 a); f) GATNet
PLIG, 4 Å threshold, trained and tested on docked poses (same data as Figure C.15 b).

254



Figure C.28: Scatter plots of the average prediction versus the experimentally determined
pK value for each protein-ligand complex between the 10 model runs for the GATNet PLIG
model (no sequence) at different proximity thresholds. a) GATNet PLIG, 7 Å threshold,
trained and tested on crystal structures; b) GATNet PLIG, 7 Å threshold, trained and
tested on docked poses; c) GATNet PLIG, 8 Å threshold, trained and tested on crystal
structures; d) GATNet PLIG, 8 Å threshold, trained and tested on docked poses.
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C.6 Sequence Similarity Threshold Experiments

In order to assess the ability of the best performing GATNet PLIG model to generalize

between different protein families, protein-ligand pairs in the training dataset were

eliminated based on their sequence identity to proteins represented in the CASF-2016

benchmark using 5 threshold levels between 50-100 % identity. The GATNet PLIG

(no sequence) model was trained on the reduced dataset and tested against the full

CASF-2016 dataset. The average PC and RMSE over 10 model runs as well as the

corresponding standard deviation is shown in Figure C.29. The scatter plots of the

average prediction versus the experimentally determined pK value for each protein-

ligand complex between the 10 model runs for each sequence similarity threshold

are shown in Figure C.30. In addition to a decrease in performance with increasing

strictness of the threshold, the standard deviation between model runs is increasing as

well, indicating that models are more unstable as dataset size decreases and similarity

between training and test set decreases.
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Figure C.29: Pearson correlation coefficient (ρ) and Root-mean-square error (RMSE) of
predicted versus experimental binding affinity for the GATNet PLIG model (no sequence,
average and SD between 10 runs) when trained and tested on crystal poses. Protein-ligand
complexes in the training set with a sequence identity at or above the cut-off value to
proteins in the CASF-2016 test set were excluded resulting in a smaller dataset at every
step.
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Figure C.30: Scatter plots of the average prediction versus the experimentally determined
pK value for each protein-ligand complex between the 10 model runs for each sequence simi-
larity threshold. All models are GATNet PLIG models with no protein sequence embedding.
a) No threshold, full training set; b) similarity threshold of 100%; c) similarity threshold of
95%; d) similarity threshold of 90%; e) similarity threshold of 70%; f) similarity threshold
of 50%
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J., Carbery, A., Davison, G., Dias, A., Downes, T. D., Dunnett, L., Fairhead, M.,

Firth, J. D., Jones, S. P., Keeley, A., Keserü, G. M., Klein, H. F., Martin, M. P.,
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Hopkins, A. L., Keserü, G. M., Leeson, P. D., Rees, D. C., and Reynolds, C. H.

(2014). The Role of Ligand Efficiency Metrics in Drug Discovery. Nature Reviews

Drug Discovery, 13(2):105–121.

271



Hu, Y., Gupta-Ostermann, D., and Bajorath, J. (2014). Exploring Compound

Promiscuity Patterns and Multi-Target Activity Spaces. Computational and Struc-

tural Biotechnology Journal, 9(13):e201401003.

Huey, R., Morris, G. M., Olson, A. J., and Goodsell, D. S. (2007). A Semiempirical

Free Energy Force Field with Charge-Based Desolvation. Journal of Computational

Chemistry, 28(6):1145–1152.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y.
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