
Imperial College London

Department of Electrical and Electronic Engineering

Design of Approximate Overclocked
Datapath

Kan Shi

Supervised by George A. Constantinides

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy of Imperial College London
and the Diploma of Imperial College London

1



Abstract

Embedded applications can often demand stringent latency requirements. While high

degrees of parallelism within custom FPGA-based accelerators may help to some ex-

tent, it may also be necessary to limit the precision used in the datapath to boost the

operating frequency of the implementation. However, by reducing the precision, the

engineer introduces quantisation error into the design.

In this thesis, we describe an alternative circuit design methodology when consid-

ering trade-offs between accuracy, performance and silicon area. We compare two

different approaches that could trade accuracy for performance. One is the traditional

approach where the precision used in the datapath is limited to meet a target latency.

The other is a proposed new approach which simply allows the datapath to oper-

ate without timing closure. We demonstrate analytically and experimentally that for

many applications it would be preferable to simply overclock the design and accept

that timing violations may arise. Since the errors introduced by timing violations

occur rarely, they will cause less noise than quantisation errors.

Furthermore, we show that conventional forms of computer arithmetic do not fail

gracefully when pushed beyond the deterministic clocking region. In this thesis we

take a fresh look at Online Arithmetic, originally proposed for digit serial operation,

and synthesize unrolled digit parallel online arithmetic operators to allow for graceful

degradation. We quantify the impact of timing violations on key arithmetic primitives,

and show that substantial performance benefits can be obtained in comparison to

binary arithmetic. Since timing errors are caused by long carry chains, these result

in errors in least significant digits with online arithmetic, causing less impact than

conventional implementations.
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Chapter 1

Introduction

Circuit performance has increased tremendously over the past decades with the con-

tinuous scaling of Complementary Metal-Oxide-Semiconductor (CMOS) technology,

such that circuits can occupy less silicon area and operate faster. However, the drastic

variations introduced by higher integration densities are anticipated to be the major

obstacle when designing reliable, high performance circuits. Typically hardware de-

signers tend to employ conservative safety margins for timing closure and to ensure

a uniform functionality of the design across various possible working environments.

Nevertheless, continuing with this approach could become very costly in the short

term future. As circuit dimensions scale down, it is increasingly difficult to maintain

low relative manufacturing variation, meaning that we can no longer expect a uniform

circuit performance. Because timing margins in static timing analysis tools increase

with process variability, designing for worst-case delay in circuits will become increas-

ingly difficult, expensive, and will result in large yield loss as relative process variation

rises.

Hardware accelerator based on Field-Programmable Gate Arrays (FPGAs) serves

as an ideal candidate to sustain performance scaling [123]. A large volume of current

1
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studies has demonstrated that significant performance gains can be achieved by us-

ing FPGAs over software designs across a wide range of applications [39, 121, 126].

However, one of the major factors that limits the performance of these accelerators is

that they typically run at much lower clock frequencies than their counterparts such

as General Purpose Processors (GPPs) or Graphics Processing Units (GPUs).

In order to boost the operating frequency of a datapath in an FPGA, the standard

approaches are either to heavily pipeline the design or reduce the precision throughout

the datapath. For the former method, it should be noted that pipelining will not tend

to reduce the circuit latency. Actually the latency in terms of clock cycles will increase.

As a result, this method will not be applicable to many embedded applications, which

typically have strict latency requirements, or in any datapath containing feedback

where C-slow retiming [131] is inappropriate. For the second approach, although

at the cost of introducing quantisation errors, tuning the precision of datapath to

meet desired accuracy criteria can help to meet the performance demands. Due to the

freedom of FPGAs to employ customised variable representations, study into exploiting

the potential benefits of using the minimum precision necessary to satisfy a design

specification, such as the maximum tolerable error, has been an extensive research

topic within the FPGA community [25, 75].

Unfortunately, neither of these conventional approaches tends to remove the conser-

vative timing margin. Over the past few years we have seen a growth of research in the

field of “approximate computing”. In contrast to the conventional design approach

that ensures deterministic circuit performance, approximate computing explores the

potential power or performance benefits that can be obtained when designing and/or

operating circuits beyond the deterministic region. This topic is expected to be of

growing importance in the short term future due to various reasons such as the in-

creasingly stringent timing and power requirements, design complexity and the envi-
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ronmental and process variations, which are all accompanied by the continuous scaling

of process technologies [23]. As pointed out by the International Technology Roadmap

for Semiconductors (ITRS07) [107], while future technologies may suffer from much

poorer timing performance, extra benefits of manufacturing, test and power consump-

tion can be obtained if the tight requirement of absolute correctness is released for

devices and interconnect. Current research in this area has typically focused on relax-

ing the design constraints and the safety margins that are conventionally used.

In this thesis, we demonstrate an alternative approximate computing methodology

when considering trade-offs among multiple design specifications, such as accuracy,

performance, area and different types of computer arithmetic. Since it is unlikely

to create a completely error-free design as any fixed or floating point representations

would introduce quantisation errors, we take a radical shift by suggesting that for

certain applications it is beneficial to move away from the traditional model of creating

a conservative design that is guaranteed to avoid timing violations. Instead, it may

be preferable to create a design in which timing violations may only occur rarely. In

order to back up this hypothesis, the answers of three main research questions have

to be addressed:

1. How can we quantify the occurrence and impact of timing errors on a datapath?

2. Is it possible to minimise the impact of timing errors by carefully selecting the

appropriate computer arithmetic and data representations?

3. How can we efficiently implement the selected “overclocking friendly” computer

arithmetic on existing hardware platforms such as modern FPGAs?

In this thesis, we attempt to provide answers to all of these questions.
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1.1 Thesis Organization

Chapter 2 highlights the theoretical background and reviews the relevant work to

this thesis. It initially provides the background of existing techniques for numerical

precision optimisation within hardware. It then introduces the reader to the subject of

approximate computing. The state-of-the-art approaches and techniques are reviewed

in-depth, together with their limitations in comparison to our proposed approach.

Finally we discuss the background of an alternative form of computer arithmetic known

as “online arithmetic”, which potentially embodies the overclocking friendly feature.

In Chapter 3, we introduce our proposed overclocking approach for approximate

datapath design. We evaluate the probabilistic behaviour of basic arithmetic primitives

with different datapath precisions, when operating beyond the deterministic clocking

region. We demonstrate that for certain applications it is beneficial to move away

from the conservative design approach of ensuring timing closure. Alternatively, it

may be preferable to allow timing violations to happen, under the knowledge that

they are unlikely to occur frequently, because specific input patterns are required to

generate errors. We have created probabilistic models for both design scenarios and

we show that not only does the overclocking approach allow us to reduce the need

for the conservative timing margin, more importantly, our models and experimental

results demonstrate that performance benefits can be achieved in comparison to the

traditional situation where target latency is limited by choice of precision.

The limitations of the work in Chapter 3 are addressed in Chapter 4. In standard

arithmetic operators such as ripple-carry adders, the most significant digit (MSD) is

updated last due to carry propagation, therefore if timing violation happens, it will

initially affect the MSD of the results. This potentially results in timing errors of large

magnitude. In order to tackle this problem, for the first time we employ an alternative

form of MSD-first arithmetic known as “online arithmetic”. Similarly to the previous
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chapter, we develop probabilistic models for basic arithmetic operators such as general

purpose multiplier, which is implemented with online arithmetic, when operating be-

yond the deterministic clocking region. The model is verified with experimental results

from an image processing application. We demonstrate that substantial performance

benefits can be achieved when compared to the design method using conventional

arithmetic as proposed in Chapter 3.

Chapter 5 tackles the major limitation of utilising online arithmetic operators, which

is that they normally require a large area overhead for FPGA implementation. In

this chapter, we propose novel approaches to implement the key primitives of online

arithmetic: adders and multipliers, efficiently on modern FPGA architectures. The

proposed new implementation method makes full use of logic resources within an

FPGA, such as its 6-input look-up-tables (LUTs) and dedicated carry resources. We

demonstrate experimentally that in comparison to a direct Register-Transfer Level

(RTL) synthesis, large area savings can be achieved using the proposed architectures.

In addition, because an online multiplier generates the MSD first, we develop a method

to create a correctly rounded online multiplier with a reduced precision output that is

smaller than a traditional multiplier producing the same results.

In the final chapter, Chapter 6, the thesis is summarised and potential avenues for

future research are identified.

1.2 Statement of Originality

In this thesis, we make three main original contributions, of which the full discussions

and the quantitative descriptions are detailed in the introduction section of their own

dedicated chapter. Here we summarise and highlight the key information of the three

main contributions as below:
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• A novel combination of datapath function with overclocking in a holistic frame-

work to trade off between accuracy, latency and silicon area, together with the

detailed modelling methods of probabilistic errors generated in basic arithmetic

primitives from two different design scenarios: overclocking the datapath or trun-

cating precisions that used throughout the datapath. (Chapter 3, [110, 109, 112])

• According to our knowledge, the first proposal and evaluation of online arith-

metic as an “overclocking friendly” arithmetic, and the modelling methods of

overclocking errors for a digit-parallel multiplier with online arithmetic. (Chap-

ter 4, [113])

• Efficient methods to map digit-parallel adders and multipliers with online arith-

metic to modern FPGAs, and a novel method to implement correctly rounded

online multipliers for a chosen output precision. (Chapter 5, [111, 114])

1.3 Publications

The following papers and articles have been written during the course of this thesis:

1. Overclocking Datapath for Latency-Error Tradeoff, Kan Shi, David Boland, and

George A. Constantinides, in Proc. IEEE International Symposium on Circuits

and Systems (ISCAS), 2013, pp. 2537-2540.

2. Accuracy-Performance Tradeoffs on an FPGA Through Overclocking, Kan Shi,

David Boland, and George A. Constantinides, in Proc. IEEE International Sym-

posium on Field-Programmable Custom Computing Machines (FCCM), 2013,

pp. 29-36. Winner of a HiPEAC paper award.

3. Imprecise Datapath Design: An Overclocking Approach, Kan Shi, David Boland,

and George A. Constantinides, ACM Transactions on Reconfigurable Technology
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and Systems (TRETS), vol. 8, no. 2, pp. 1-23, 2013. Invited paper.

4. Datapath Synthesis for Overclocking: Online Arithmetic for Latency-Accuracy

Trade-offs, Kan Shi, David Boland, Ed Stott, Samuel Bayliss and George A.

Constantinides, in Proc. ACM/IEEE Design Automation Conference (DAC),

2014, pp. 1-6. Winner of a HiPEAC paper award.

5. Efficient FPGA Implementation of Digit Parallel Online Arithmetic Operators,

Kan Shi, David Boland and George A. Contantinides, in Proc. International

Conference of Field-Programmable Technology (FPT), 2014, pp. 115-122. Best

paper nominee.

6. Evaluation of Design Trade-offs of Adders in Approximate Datapath, Kan Shi and

George A. Constantinides, in HiPEAC Workshop on Approximate Computing

(WAPCO), 2015.



Chapter 2

Background

2.1 Introduction

The main focus of this thesis is exploring the trade-off between accuracy and per-

formance when designing a datapath. In this chapter, we discuss relevant work and

background theory to help place our work in context. In general, we restrict our

discussions to three main research areas as highlighted below.

We initially discuss the work in the area of word-length optimisation in Section 2.2,

because reducing the datapath precision will reduce the circuit latency at the cost of

introducing quantisation errors into the design. As FPGAs are capable of employing

customised variable representations, there has been extensive research into exploiting

the potential benefits of using the minimum precision necessary to satisfy a design

specification, such as the maximum tolerable error, within the FPGA community. We

will use this methodology as the major comparison to our approach throughout this

thesis.

It is worth noting that the choice of precision is not the only source of error when

designing a datapath. For the past few years we have seen a growth of parallel streams

8
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of research which aim at exploring alternative methods to trade accuracy for design

efficiency. This strand of research is known as “approximate computing”, and it is

motivated by the fact that extra benefits of manufacturing, test, power and timing

can be obtained if the tight requirement of absolute correctness is released for devices

and interconnects, as indicated by the ITRS in 2007 [107]. This topic is expected to

be of growing importance in the future, because we will face new design challenges as

the technology scales further. Research in this area will be discussed in Section 2.3.

However, applying approximate computing techniques with conventional computer

arithmetic may potentially result in large errors as indicated by previous research [140]

and will be highlighted in our study in Chapter 3. This is largely due to carry propaga-

tion in conventional arithmetic, in which carry is propagated from the least significant

end to the most significant end. In this thesis, we attempt to tackle this issue by using

an alternative form of computer arithmetic named “online arithmetic”, which performs

all types of computations in a most-significant-digit-first manner. In Section 2.4, we

provide a broad overview of online arithmetic. This section lays the foundation of

our discussions on utilising online arithmetic in approximate computing and imple-

menting online arithmetic efficiently on modern FPGAs in Chapter 4 and Chapter 5

respectively.

2.2 Word-Length Optimisation

In comparison to implementations based on general purpose processors, the recon-

figurable nature of FPGA enables the employment of customised numerical variable

representations. The target of optimising the word-length is to represent variables

within a design using minimum precision, while meeting the required accuracy and

performance constraints [25]. Normally, a word-length optimisation algorithm is de-

signed to provide the trade-offs between computation accuracy and performance. On
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one hand, more resources and higher cost of data transfer are required for more accu-

rate implementation of a design. On the other hand, the hardware budget is limited

due to the consideration of power and performance.

Existing approaches for word-length optimisation can be classified into two main cat-

egories: simulation-based and analytical-based. The former approach decides the opti-

mal word-length by comparing simulation outcomes from both the chosen word-length

and a very high precision representation, and thereafter checking whether the com-

parison result meets the error requirement. This straightforward approach is widely

employed in industry, since the whole implementation can be treated as a black box,

and a very compact data representation can be obtained. However, the major draw-

back of this approach is that the quality of output highly depends on the selection

of input vectors. For large designs, performing exhaustive simulations is infeasible

because of the long simulation time, and therefore corner cases may be missed [75].

As for the analytical-based approach, its basic idea is to model the accuracy of

computation results in terms of the chosen word-length. In comparison to its counter-

part, the analytical-based approach usually provides more conservative determination

of word-length and it is better suited for large designs [22]. Existing work employs

multiple kinds of modelling methods, including: interval arithmetic (IA) [2, 86], affine

arithmetic (AA) [115] and Satisfiability-Modulo Theory (SMT) [68, 69]. The remain-

ing parts of this section briefly review these three approaches.

In interval arithmetic, each variable is bounded with an interval, and the bounds of

final computation results can be determined. This approach is straightforward but may

generate an extremely loose bound due to the data-dependency problem [75]. That

is, the bound will be significantly overestimated when employing the same variable

repeatedly [11].

Affine arithmetic is employed to mitigate the data dependency problem. Instead of
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representing variables through intervals, AA uses affine expressions which keep track

of the correlations of intervals. AA is often employed in digital signal processing (DSP)

area, especially for analysis of linear time-invariant (LTI) systems [25], because AA

will generate tight bounds for fully affine operations. However, AA still produces loose

bounds when there are non-affine calculations.

In the SMT-based approach [68, 69], initial variable ranges are firstly determined

through existing analytical methods, i.e. AA. Then the initial results are refined using

SMT with additional constraints. More specifically, the range refinement procedure of

a single variable works similarly as the binary search method, which starts with the

initial constraints and update the bounds according to the satisfiability of constraints.

For instance, in order to find the upper bound of variable z within a certain expression

z = f(x, y), an initial constraint z > 20 is applied to check whether there is a satisfiable

assignment. If not then 20 can be treated as a refined upper bound and 10 can be

applied to repeat the process. Otherwise increase 20 to 40 and check the satisfiability

again. In comparison to IA or AA, the SMT-based approach will generate more

compact bounds while retaining robustness. However the major weakness of this

approach is that the growing of instance set can result in very long operating time.

2.3 Approximate Computing

With the progressive shrinking of fabrication technology into the nanometre range,

new design challenges such as design complexity and device uncertainty have arisen in

order to sustain performance scaling.

Design complexity becomes a critical challenge due to rapid technology shrinking.

Since the introduction of Moore’s Law in 1965, the speed of transistor has scaled by

nearly fiver orders of magnitude [92]. Meanwhile, the transistor density keeps doubling
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and power consumption is about 50% lower in every technology generation. In this

context, circuit designers are able to create complex architectures by exploiting the

increasing transistor integration. On the other hand, the ever rising design complexity

has become the driving force of significant research efforts to sustain performance

scaling. For instance, we have seen the employment of different levels of parallelism

in microprocessor architectures, as well as the shifting from single-core to multi-core

architecture, and the rise of heterogeneous parallelism [54].

However, as predicted by the ITRS, the size of individual transistors is reaching

physical limits with the transistor gate length near 10nm [108]. As a consequence,

the operating frequency is expected to increase slowly in the near future. Besides,

device scaling is also curtailed by practical power limits, which is also known as “dark

silicon”. It is predicted that at 8nm more than 50% of fixed-size chip must be powered

off [36]. Therefore, alternative approaches for circuit design and operating must be

investigated to release the burden of design complexity.

Another design challenge is the uncertainty accompanied by technology scaling. For

example, in 22nm technology the oxide and gate length are only five and 42 atomic

layers thick, respectively [45]. With critical device dimensions scaling to atomic range,

manufacturing identical devices and maintaining uniform and non-deterministic cir-

cuit behaviour become increasingly difficult and expensive. According to Pelgrom’s

Law [98], the mismatches between device behaviour are inversely proportional to the

transistor size. This means the impact of environmental and process variations on

performance and reliability of integrated circuits is greatly amplified by technology

shrinking.

While a uniform behaviour should no longer be expected with current devices and

chip components, the conventional approaches of designing and operating digital cir-

cuits remain unchanged. A typical solution to these design challenges is to introduce
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guard bands, which are designed for worst cases to ensure a uniform circuit behaviour

across various operating environments and process variations. This approach is com-

monly used throughout all types of engineering. It is clearly conservative, and con-

sequently results in significant overhead of both performance and energy. Continuing

with this approach and designing for worst-case delay in circuits become increasingly

expensive as relative process variation rises.

For the past few years, a novel design strategy known as “approximate computing”

has been proposed to tackle the aforementioned design challenges. Research in this

area suggests that relaxing the absolute accuracy requirements can provide the free-

dom to create circuits with better performance and/or energy efficiency. Specifically in

this section we review two main research directions in the field of approximate comput-

ing. In Section 2.3.1 we discuss one design paradigm called “Better Than Worst-Case

(BTWC) Design” [6, 23]. While a typical BTWC design usually contains a checker

circuit to ensure the correctness of outputs, another stream of research focuses on pro-

viding “good enough” results without adding correction mechanism. This approach

can lead to even better performance benefits, at the cost of accuracy loss. In addition,

there is also research investigating the methods to provide “imprecise architectures”

by designing simplified circuits for approximate computing. Research progress in this

area is reviewed in Section 2.3.2.

2.3.1 Better Than Worst-Case Design

As suggested from the name, the BTWC design allows the circuits to operate beyond

the worst cases by either partially or completely removing the conservative guard

bands. In this case, either a higher operating frequency can be achieved for better

performance, or the supply voltage can be reduced for better power efficiency. A

typical BTWC design is composed of cores and checkers, as shown in Figure 2.1 [6].
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Figure 2.1: Better Than Worst-Case Design Concept, from [6].

This structure enables the checker to address the design correctness and robustness

issues independently, whereas the accuracy requirements of the cores are relaxed such

that they can be operated with higher performance. Optionally the system can be

recovered at the observation of errors.

As an exemplary design, the Razor project [7, 35] was proposed to shave the conser-

vative timing margins by dynamically scaling the supply voltage and clock frequency

beyond the worst-case levels, while monitoring the output error rates by utilising a

self-checking circuit. The Razor flip-flop and the pipeline recovery mechanism are il-

lustrated in Figure 2.2. Each Razor flip-flop contains a shadow latch which is triggered

by a delayed clock, and it is constrained such that the shadow latch will always provide

reliable results. Once the setup time for the main flip-flop is violated due to excessive

voltage or frequency scaling, a different result will be sampled by the main flip-flop

in comparison to the shadow latch, and an error signal will be generated from the

comparator. Razor utilised a pipeline recovery mechanism, as shown in Figure 2.2b,

in order to avoid the timing error from corrupting the register and memory state.

On occurrence of timing errors, the recovery mechanism will generate forward a bub-

ble and backward flush signal to recover the pipeline from timing failure. This work

demonstrated that the benefits brought by removing the safe margin outweigh the cost

of monitoring and recovering from errors. For example, 22%, over 30% and up to 64%
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Figure 2.2: Structure of Razor Logic from [7, 35]. (a) the Razor flip-flop. It is utilised
to detect timing errors. (b) the pipeline recovery mechanism.

power consumption can be saved with around 0.01%, 1% and 3% error rates at the

output, respectively.

Besides the Razor project, related work of BTWC design also includes a similar fre-

quency overscaling technique by operating circuits slightly slower than the critical path

delay with dedicated checker circuits to ensure that timing errors will not occur [125]

and a processor architecture that decouples the issues of design performance from

those of correctness and program verification [5, 16, 130]. In addition, there is work

focusing on providing Computer-Aided Design (CAD) solutions, such as synthesis and

verification, for BTWC designs. For instance, there is work proposing timing analysis

tools that decide the optimum operating frequencies in the non-deterministic region

due to process variation [66], and developing synthesis and mapping technologies for

BTWC design targeting FPGAs [24, 84].
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2.3.2 Unreliable Computing with Unreliable Components

Inherent Application Resilience

Although significant performance and power benefits can be achieved from BTWC

design, its major problem is the extra cost, such as silicon area, additional clock cycles

and power consumption, introduced by implementing the checker circuits for error

detection and recovery. Instead, studies have shown that for a large volume of existing

and emerging applications, errors can be potentially tolerated [20]. This feature is

also referred to as “inherent application resilience”. For these applications, acceptable

results can still be generated despite the existence of portions of the application that

are computed incorrectly or approximately.

In general, inherent application resilience originates from three main sources, as

listed below:

1. Redundant and noisy input data. Applications processing real-world data are

designed to be robust to noise. For instance in medical applications such as elec-

troencephalogram (EEG) and visual evoked potential (VEP) that detect and

process biomedical signals, data sampled from sensors are inevitably contam-

inated by environmental noise, which will in turn become an important factor

that determines the quality of successive computations and final results. In order

to achieve noise robustness, data redundancy is normally utilised. On the other

hand, the redundancy and noise of input data could potentially form resilience

to approximations, as it is not necessary to perform fully accurate computations

with noisy data in the first place at the cost of expensive computational efforts.

2. Algorithmic resilience. Probabilistic algorithms typically take stochastic inputs

and generate outputs with non-deterministic behaviour in terms of correctness

and time of operation. Normally a range of outputs can be generated but are
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treated equally acceptable. This type of algorithm uses randomness to achieve

more efficient computations in comparison to their deterministic competitors.

For example, several probabilistic algorithms, such as K-means clustering, it-

eratively converge to the final solution by sequentially producing approximate

answers. In addition, algorithms such as quicksort and simulated annealing em-

body randomness within the algorithm. The intrinsic algorithmic resilience can

remove the necessity for accurate computation to a large extent.

3. Perceptual resilience. If the end user of an application is human, it may em-

body inherent application resilience because of the limited sensitivities of human

perceptions. In this case, minor fluctuations of outputs can hardly be recog-

nised and/or distinguished by human senses. For example, human hearing can

only perceive sounds with frequency range from about 20Hz to 20kHz, and hu-

man visual perception systems will unconsciously fill in missing information from

images or videos and filter out high frequency patterns. Consequently for appli-

cations involving human perception, ensuring 100% computation accuracy can

be expensive and unnecessary.

Current Research

Inspired by the existence of inherent application resilience, a novel design concept

“unreliable computing with unreliable components” has been proposed and studied

over the past few years [93, 94, 95]. Instead of maintaining absolutely correct and

reliable computational results, it is more beneficial in terms of performance and energy

to only provide “good enough” results that meet given design specifications. This

design strategy is particularly interesting and beneficial to applications with inherent

error resilience, such as multimedia [4, 106], digital signal processing (DSP) [77, 1],

machine learning [14, 21, 19] and so on. In comparison to BTWC design, another
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advantage of this design approach is that the checker circuit can be eliminated to

reduce extra costs.

Current research in this area mainly focuses on designing probabilistic or imprecise

circuits at different levels of the Very-Large-Scale Integration (VLSI) design flow, such

as software and algorithm level [60, 78, 100], architecture and circuit level [59] and

even transistor level [17, 18, 96]. For instance at the programming language level,

a tool was proposed [37, 105] to divide variables and objects in a program into pre-

cise parts and approximate parts, which can be mapped to different hardware with

different speed-grades, supply voltages, etc., respectively. For instance, approximate

data can be processed less reliably, whereas the error sensitive part of the program

should be operated with guarantees of correctness. This technique enabled a rela-

tively high service quality, in the meantime energy reduction can be obtained due to

approximation. It demonstrated up to 50% of energy saving can be achieved. Another

study [139] proposed a design framework that allowed circuit designers to explicitly

define the approximate portion of the entire system at Hardware Description Lan-

guage (HDL) level. The design abstractions were presented as extensions to Verilog

HDL through high-level annotations. This framework enabled design and reuse of

approximate hardware building blocks.

Similar ideas have also been applied on hardware directly. As an example, a non-

uniform voltage scaling technique is proposed for the ripple carry adder [65]. In this

study, multiple voltage regions are employed for different bits along a carry chain.

That is, higher voltage would be applied for computations generating most significant

bits, and vice versa. There is also research developing probabilistic CMOS transistors

which modelled the relationship between energy consumption and the probability of

correct transistor switching [18].

Another main stream of research focuses on designing approximate logic and impre-
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cise arithmetic circuits by mainly simplifying original structure to trade for perfor-

mance and energy efficiency. For instance, Lu et al. proposed a “shrinking” datapath

that can be utilised to mimic and speculate the original logic functions [80]. Kulka-

rni et al. described an under-designed 2×2 multiplier unit, of which the worst case was

replaced by a normal case based on the straightforward Karnaugh-Map analysis [71].

In both cases, reduction of area and power consumption can be achieved with the cost

of accuracy.

In addition, a large volume of current work is targeting approximate adder design.

For example, Gupta et al. developed approximate adders at the transistor level and

compared the energy efficiency of their proposed architectures over truncation of in-

put word-length of conventional structures [46]. Based on the observation that the

accuracy demands for different applications might vary, Kahng et al. proposed an

adder architecture which offered the flexibility to trade accuracy for energy benefits

by optionally utilising part of the adder or enabling additional circuitry to correct for

errors for high accuracy requirements [61]. Ye et al. derived the relationship between

achievable quality and computational effort for a reconfigurable adder, which can be

tuned based on the quality-effort curve to achieve better trade-offs [140].

2.3.3 Summary

In this section, we initially discussed the background for the generation of approx-

imate computing. We then reviewed two main research directions in the area of ap-

proximate computing: better than worst-case design and unreliable computing with

unreliable components. For the BTWC design, we discussed the general architecture

that combined cores and checkers, based on an exemplary design: Razor logic. For the

second approach of approximate computing, we introduced the inherent application

resilience that can be utilised to trade absolute accuracy for performance and power
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benefits, followed by a review of existing work in this area.

From the current literature, we notice several issues when using the methodology

of approximate computing. For example in work conducted by Kedem et al. [65] as

introduced before, utilising several voltage regions within a ripple carry adder will

rarely be practical in real situations. Furthermore, the overhead of applying this tech-

nique is not addressed. For research targeting the creation of imprecise architectures,

it should be noted that using this type of approach means correct results would never

be obtained for certain input patterns. Another limitation is that the link between

the probability of output correctness and energy savings or performance improvements

for designs beyond operator level are rarely analysed in current research. In addition,

these techniques normally target Application-Specific Integrated Circuit (ASIC) im-

plementations and cannot be directly applied onto existing hardware platforms such

as FPGAs.

In this thesis, we aim to address these issues by proposing an alternative methodology

for designing approximate datapath with the consideration of overclocking into the

error regime, as will be discussed in detail in Chapter 3.

2.4 Online Arithmetic

A major obstacle of applying approximate computing techniques with conventional

computer arithmetic is that it may potentially result in large error magnitudes. This

is because in conventional arithmetic, carry propagates from the least significant end

to the most significant end, therefore errors generated by the scaling of either volt-

age or frequency will initially affect the most significant digits. Normally the existing

approach of tackling this problem is to either speculate the carry using additional

logic [79, 141] or correct the result after computation with actual carry [62, 140]. In



2.4. Online Arithmetic 21

comparison to these existing approaches which still employ conventional arithmetic,

we attempt to tackle this issue by adopting a different form of computer arithmetic

named online arithmetic. In this section, we review and describe basic concepts of on-

line arithmetic, which was introduced by Ercegovac and Trivedi in 1977 [29, 124]. In

general, online arithmetic is designed to perform Most Significant Digit First (MSDF)

computation. This requires an implementation of redundancy in the number repre-

sentation system, as will be detailed in Section 2.4.1. Originally online arithmetic

was designed for digit serial operations, of which the benefits are highlighted in Sec-

tion 2.4.2. Finally, we provide an in-depth discussion of online arithmetic together

with existing research in this area in Section 2.4.3.

2.4.1 Redundant Number System

Fixed Point Number Representation

For a standard number system with fixed radix r, a number X can be represented

by (2.1) where n and m denote the number of integer digits and fractional digits used

for representing X, respectively. The selection of xi can be either from a canonical

system, in which we have xi ∈ {0, 1, · · · , r − 1}, or from a noncanonical system, i.e.

xi ∈ {−b, · · · ,−1, 0, 1, · · · , a} where a+ b+ 1 ≥ r.

X =
n−1∑

i=−m

xir
i (2.1)

A system with fixed positive radix r and canonical set of digit values is referred to

as a radix-r conventional number system [34]. In comparison, the noncanonical sys-

tem is normally employed for redundant number representation. A redundant radix-r

weighted number system has more than r possible values for one digit, and hence

it allows multiple representations of a given number. In other words, there is “re-
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dundancy” in number representation. For example, the binary number 0.011 can be

represented in redundant form as 0.111, 0.101 or 0.011 among many other possible

representations, where 1 = −1.

For a redundant number representation, the digit set can be symmetric or asymmet-

ric with different levels of redundancy. For instance, a radix-4 redundant digit set can

be one of the following forms:

1. Symmetric with minimal redundancy (a+ b = r): e.g. {2̄, 1̄, 0, 1, 2};

2. Asymmetric with minimal redundancy: e.g. {3̄, 2̄, 1̄, 0, 1};

3. Symmetric with over redundancy (a+ b > r): e.g. {4̄, 3̄, 2̄, 1̄, 0, 1, 2, 3, 4};

4. Asymmetric with over redundancy: e.g. {5̄, 4̄, 3̄, 2̄, 1̄, 0, 1, 2, 3}.

In the following sections we restrict our discussion to the very first type, because it

is used most commonly. This type of data representation is also known as “Signed

Digit (SD)” and it was introduced by Avizienis in 1961 [8].

Coding for Signed-Digit Number

For radix-2 SD representation, the value of a binary digit xi can be selected within

the digit set {1̄, 0, 1}, and xi is represented using two bits x+
i and x−

i . There exists

several codings for xi using x+
i and x−

i . For instance, two possible codings are listed

in Table 2.1.

For the first form, we have xi = x+
i − x−

i . For circuit level implementation, this

coding can be achieved by simply using adders. For the second form, the negation

of xi can be directly obtained by inverting the value of the corresponding x+
i and x−

i

pair.
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Table 2.1: Two Possible Coding Metric for Signed-Digit Number.

(a) Coding Metric 1

x+
i x−

i xi

0 0 0
0 1 1̄
1 0 1
1 1 0

(b) Coding Metric 2

x+
i x−

i xi

0 0 1̄
0 1 0
1 0 0
1 1 1

Addition with Signed-Digit Numbers

The most significant feature of a redundant number system is that carry propagation

can be eliminated when performing addition. Thus the delay of addition is a fixed value

which is independent of the operand word-length. To achieve this, a 2-stage procedure

is employed to guarantee that the carry output is independent of carry input. In

the first step, the intermediate sum (S ′
i) and carry (Ci+1) is calculated based on the

corresponding operands xi and yi, as given in (2.2)

rCi+1 + S ′
i = xi + yi (2.2)

In the second step, S ′
i is added with the previous carry output Ci to obtain the final

sum digit Si without generating carry output, as given in (2.3).

Si = S ′
i + Ci (2.3)

The structure diagram of this process is shown in Figure 2.3. It can be seen that

there only exists 1-digit carry propagation. In comparison to adder with conventional

arithmetic and data representation, each SD adder unit embodies a more complex
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Figure 2.3: Two stages Signed-Digit addition.

structure and correspondingly operates at lower speed than a full adder. However,

the delay within the SD adder is independent of the operand word-length, whereas

the carry propagation delay in conventional adders is proportional to the operand

word-length.

2.4.2 Digit-Serial Arithmetic

In general, digital arithmetic can be classified into digit-parallel arithmetic and digit-

serial arithmetic based on how inputs and outputs are processed. For digit-parallel

arithmetic, all digits of inputs are applied in parallel, and all digits of outputs are

delivered in the same fashion. In this case, all operands can be transferred in one

clock cycle, and correspondingly the results can be sampled in one clock cycle. How-

ever, transferring data in parallel requires large input and output (I/O) bandwidth

for the module. This is potentially the bottleneck when implementing digit-parallel

arithmetic, especially for large signal word-length.

For digit-serial arithmetic, both inputs and outputs are processed and delivered one

digit per clock cycle. The major advantage of using digit-serial arithmetic is the reduc-

tion of the number of signal lines, which in turn can lead to smaller implementations
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with better performance and energy efficiency.

Generally there are two types of digit-serial modes. The first one is referred to “Least

Significant Digit First” (LSDF) mode, which can be commonly found in conventional

arithmetic operations. It is worth noting that in the LSDF arithmetic, there is poten-

tially mismatches of the computation directions between different arithmetic units and

operations. For instance, the computation results of adders and multipliers are gener-

ated from the least significant digit (LSD) to the most significant digit (MSD) due to

carry propagation. In comparison, computations such as division and square root, or

applications such as analogue to digital (A/D) or digital to analogue (D/A) converters

will generate results from MSD to LSD. This inconsistency in computing directions

can result in large latency when propagating data among different operations.

The second type of digit-serial mode is “Most Significant Digit First (MSDF)” mode,

which is also known as “Online Arithmetic”. Using online arithmetic, both the inputs

and outputs are processed in a MSD-first manner, enabling parallelism among multiple

operations. Therefore the overall latency can be greatly reduced.

2.4.3 Theoretical Background of Online Arithmetic

In order to achieve MSDF mode of operation, two requirements should be satisfied.

Firstly, redundant number representation should be utilised to eliminate carry prop-

agation, because the results are generated in the MSDF manner. Secondly, an extra

δ input digits are required before generating the first digit of output. If the operator

processes one digit per clock cycle, then (δ + 1) cycles are needed before the MSD

of output is delivered, and subsequently the full precision result will be generated in

overall (δ + 1 + n) cycles for n-digit operand word-length. This process is shown in

Figure 2.4.

Constant δ is known as the online delay, which can be determined mathematically
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Input X[j] x1

Input Y[j]
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y1 y2 y3 y4 y5 yN

Output Z[j] z1 z2 z3 zN
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✁ 
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Figure 2.4: Dataflow in digit-serial Online Arithmetic.

Table 2.2: Rated Frequencies of Example Designs.

Operation δ (radix 2)
± 2
× 3
÷ 4√

4

Max/Min 0

based on the type of operation, and is independent of the precision of a given operation.

For example, the value of δ for a variety of basic operations is summarised in Table 2.2.

In general, an online algorithm operates iteratively. For ease of discussion, assume

the circuit input to be normalised to a fixed point number in the range (−1, 1). Based

on this premise, the online representation of an N -digit number X is defined in (2.4)

where j denotes the iteration number, r denotes the radix, and the value of X[0] is

given in (2.5). Notice that the specific methods of determine the value of δ is beyond

the scope of this thesis and will not be detailed here.

X[j] = X[j−1] + xj+δ · r−δ−j (2.4)

X[0] =
δ∑

i=1

xir
−i (2.5)
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The digit value xi belongs to a redundant digit set {−a, · · · ,−1, 0, 1, · · · , a} where

a ∈ [r/2, r − 1]. a is also known as redundancy factor and it determines the amount

of redundancy. Due to redundancy, MSDs of result can be calculated only based on

partial information of inputs and then the value of the number can be revised by the

following digits, because each number has multiple representations.

For an online algorithm with operands such as X, Y and result Z, the general form

of each iteration is given in (2.6) where W[j] denotes the internal vectors required by

the algorithm [30].

W[j] = f(W[j−1], X[j], Y[j], Z[j]) (2.6)

The iteration function f() should use primitive operations such as addition, mul-

tiplication by single digit and one digit shift. For each iteration, one digit result is

generated based on a selection function sel() with limited precision as given in (2.7),

where Ŵ[j−1] is a truncated value of W[j−1].

zj = sel(Ŵ[j−1], X[j], Y[j]) (2.7)

In this thesis, the online multiplication algorithm will be used. The algorithm de-

scription together with its implementation will be detailed in Chapter 4.

2.4.4 Advantages and Disadvantages of Online Arithmetic

One major advantage of employing online arithmetic is that it enables high perfor-

mance parallel computations. This is because of several reasons. Firstly, long carry

propagation, which is common in conventional arithmetic, is eliminated in online arith-

metic, because redundant number systems are used. As discussed previously, online
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Table 2.3: Comparison of different forms of arithmetic in terms of time and area
complexity.

Arith.

Operations.

Parallel Arith. Online Arith. LSDF Arith.

area time area time area time

± O(n) O(1) O(1) O(n) O(1) O(n)
× O(n2) O(log n) O(n) O(n) O(n) O(n)
÷ O(n2) O(n) O(n) O(n) N/A N/A
√ O(n2) O(n) O(n) O(n) N/A N/A

delay δ is a constant value for a given arithmetic operation, and it is independent of the

precision of the operand word-length. This is of interest particularly for large designs.

In comparison, the carry propagation delay in conventional arithmetic is proportional

to the precision of operator.

Secondly, the digit-serial nature of online arithmetic offers great potential for over-

lapping multiple operations to reduce computation latency, and enabling pipelining

within operations. This feature compensates the possible speed inefficiency of deliv-

ering data serially, and improves the system throughput. In addition, with online

arithmetic the interconnection bandwidth can be significantly reduced. Therefore a

more area-efficient design can be achieved in comparison to digit-parallel arithmetic.

In Table 2.3, the comparison of digit-parallel arithmetic and digit-serial arithmetic

including online arithmetic and LSDF arithmetic is summarised in terms of time and

area complexities for basic arithmetic operations [122]. Notice that the complexity val-

ues are obtained based on implementation results for each operator and corresponding

arithmetic. The N/A in Table 2.3 indicates that certain operations cannot be achieved

using LSDF arithmetic.

Another advantage of online arithmetic is that computations can be dynamically

terminated based on the required precision. This is because computation results are

delivered in an MSD-first manner using online arithmetic. For instance, traditionally
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2N digits of results will be generated in a N -digit multiplier, while often only the

most significant N digits will be used for successive computations and the N LSDs

will be discarded. In contrast, the computation latency can be reduced using online

arithmetic, which can be finished immediately once the first N digits of results are

obtained. This feature will be further investigated in Chapter 5.

Conversions to conventional representations are not needed if both inputs and out-

puts are in online representation. This is common when online operators are utilised

within a datapath to generate intermediate results. For those cases where conversion

is necessary, online representation provides a more efficient conversion approach than

redundant parallel representation [28, 32]. This is because for redundant conversion,

a carry-propagation adder is required, which limits the overall performance. How-

ever, the conversion from online representation can be performed using an on-the-fly

method without carry propagation [28]. In terms of resource overhead, the conversion

requires two extra registers, the word-lengths of which are equal to the word-length

of the inputs to the operator. For the latency overhead, the conversion time equals to

two logic levels delay plus a register shift/load time [28].

The major disadvantage of using online arithmetic is the extra area paid by using

redundant number representation. We will address this issue in Chapter 5 by proposing

an area-efficient implementation of online arithmetic on modern FPGAs.

2.4.5 Current Research

General Purpose Multiplier with Redundant Binary Number System

There has been a significant amount of research into employing redundant number

systems for high-speed binary multipliers over the last few decades. This strand of

research serves as a great example that when a performance bottleneck is encoun-
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tered, people turn to explore the possibility of utilising alternative number systems in

conventional arithmetic to boost system performance.

Specifically for conventional binary (CB) multiplication, two typical steps will be

performed:

(1) generation of partial products based on inputs;

(2) accumulation of partial products and delivery of output.

The speed of multiplication can be improved by reducing the number of partial prod-

ucts or/and by speeding up the generation as well as summation of partial products.

In order to accelerate the accumulation of partial products, redundant binary (RB)

representation is used as an efficient alternative, because there is no carry-propagation

in RB addition. Instead of accumulating partial products in the CB format, an ex-

tra step is inserted into the multiplication flow by converting the data from CB to

RB. Consequently a RB-to-CB converter is needed to reverse the former process when

the accumulation is completed. In this case, there are totally three stages for RB

multiplication:

(1) generation RB partial products;

(2) summation of RB partial products;

(3) RB-to-NB conversion and deliver results.

It is worth noting that the final stage is added so that the results can be directly

utilised by successive operations, which are normally designed based on the CB number

system [52].

The first attempt of implementing RB for fast multiplication was presented by Tak-

agi et al. [117, 49]. In their work, the aforementioned 3-stage process was proposed,
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and the accumulation of partial products was performed based on the RB adder tree.

It was demonstrated that the time for N -digit multiplication was O(log2 N).

A modified RB adder and conversion circuit were presented by Makino et al. [81].

The modification was based on observation that the conversion circuits (both CB-to-

RB and RB-to-CB) limited the operating speed, because carry-propagate was required

in this process. However, the major drawback of this work is that an additional vector

was introduced during conversion, which increased delay and area overhead. Moreover

it placed extra complexity on layout. But this work still lays the foundation for

numerous future works.

To-date, current work in this area mainly focus on several aspects such as improving

the conversion speed from RB to CB [51, 53], exploring novel encoding metric to reduce

the number of partial products [58], and more efficient architecture for redundant

binary addition [64, 67].

Online Arithmetic Operators and Applications

There has been a significant amount of research focusing on developing arithmetic

operators using online arithmetic, and utilising online arithmetic in a variety of appli-

cations.

Addition serves as a key building block for other arithmetic operations. Besides the

standard implementation of online addition based on redundant addition as discussed

before, alternative structures for online adders [57, 76] were proposed to simplify design

complexity in terms of the number of transistors within an adder cell. Correspondingly

the performance can be increased in comparison to previous designs. In addition, a

binary online adder that took multiple operands with online representation was devel-

oped [128, 129]. This structure was designed to cope with streaming or vector inputs,

which were common in numerous DSP applications. This work was extended by either
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taking binary multioperand with multiple data representations, including SD and two’s

complement [87], or taking decimal multioperand with online representation [43, 127].

Online arithmetic is also implemented with other arithmetic operations, such as mul-

tiplication [32, 119, 124], division [33, 85, 120], multiply-accumulation [90], polynomial

approximation [10] and Coordinate Rotation DIgital Computer (CORDIC) [48, 116].

In addition, libraries of online arithmetic operators were also proposed [9, 74].

Online arithmetic has been widely used to implement recursive filtering algorithms,

digital filters [12, 31, 38] such as Finite Impulse Response (FIR) filter and Infinite

Impulse Response (IIR) filter, Discrete Fourier Transform (DFT) and Fast Fourier

Transform (FFT) [74, 91, 83], Discrete Cosine Transform (DCT) [74, 73] and so on.

Since online arithmetic performs computations in a MSD first manner, consistent order

of data consumption and production can be achieved among multiple operations. This

leads to area efficient designs because the extra hardware that is used to reform data

order can be removed, which is common with conventional arithmetic. In addition,

multiple computations can be overlapped and pipelined at the digit level to increase

system frequency and throughput.

Online arithmetic can also be used to control the computation precision dynami-

cally to produce both performance and area benefits. Research has shown exemplary

designs in Wideband Code Division Multiple Access (WCDMA) communication sys-

tem [102]. In comparison to conventional arithmetic which delivers the MSD at the

end of computations, online arithmetic computes in MSD-first manner, thus provid-

ing a natural way of truncating the computation results without introducing severe

output errors. Research has also shown that in detection algorithms [103], computa-

tion can be dynamically terminated when the first non-zero MSD (sign) is calculated,

instead of waiting for the end of entire computation. This potentially leads to effi-

cient implementation of finite precision embedded system with power and performance
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advantages.

FPGA Implementation of Online Arithmetic

Research effort has also given into implementing online arithmetic using FPGAs

at operator level and algorithm level. For example at operator level, lots of studies

focus on efficient FPGA implementation of both digit-serial and digit-parallel on-

line adders [15, 55, 63, 99]. Since FPGAs are normally optimised for conventional

arithmetic, these works attempt to map the online adder onto sophisticated FPGA

resources, such as the fast carry logic of Xilinx FPGAs, in order to compensate the

area overhead brought by using redundant number system. There is also work develop-

ing multioperand adders on FPGAs based on compressor trees [56, 82], redefining the

arithmetic structure within FPGAs for efficient operation of online arithmetic [13, 97],

and implementation of floating point online adders on FPGAs [70]. In addition, FPGA-

based online arithmetic operator libraries were proposed targeting signal processing

applications [74, 42]. The operator library could be incorporated into conventional

FPGA development flow, and could be used as an alternative to existing arithmetic

operators.

At algorithm and application level, existing studies mainly focus on DSP applica-

tions [41, 73, 83, 88] and control algorithms [26]. In addition, a modified FPGA struc-

ture for low power online arithmetic operation was developed [122]. This highly-specific

architecture combined the advantages brought by online arithmetic as highlighted be-

fore, and could help to reduce the time for logic mapping, placing and routing.

2.4.6 Summary

In this section, we introduced online arithmetic in terms of its basic concepts and

theoretical background. Online arithmetic is designed to perform computations in
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digit serial with MSD first, which is achieved by using a redundant number system.

We then discussed two types of digit serial computations, LSD first and MSD first,

and highlighted the advantages and disadvantages of both types. Finally we reviewed

current research in this area in three categories: the first one is designing general

purpose multipliers with a redundant number system to accelerate the summation

of partial products. This research area shows the potential performance benefits of

using redundant representation. The following two categories focused on designing

online arithmetic primitives and applications, and FPGA implementation of online

arithmetic modules.

From current literature, it can be seen that the MSD-first nature of online arithmetic

offers significant potential to build a high performance embedded system. Although it

was originally designed for digit serial operation, online arithmetic can be implemented

in a unrolled digit parallel manner to trade area for better performance. In this case,

we suggest that if timing violation happens, timing errors will initially affect LSDs of

results, which will potentially lead to significant reduction in error magnitude. This

hypothesis will be addressed in detail in Chapter 4.

We also notice a major drawback of implementing online arithmetic is that it requires

large area overhead due to the utilisation of a redundant number system. This issue

is severe especially for FPGA designs, because current FPGA structures from both

main vendors are optimised for conventional arithmetic operations. Although we see

work investigating area efficient FPGA implementation of online primitives, none of

these were targeting modern FPGAs. This issue will be the main focus of Chapter 5.



Chapter 3

Overclocked Datapath with

Conventional Arithmetic

3.1 Introduction

As stated in Section 2.2 of the previous chapter, we have seen the potential for

achieving performance benefits by optimising the precision throughout datapath to

meet a desired accuracy criterion. This idea stems from the fact that in general it

is rarely possible to create a completely error-free design, since any fixed or floating

point representation introduces quantisation errors into an algorithm. We also note

that the choice of precision is not the only source of error in a datapath, and parallel

streams of research reviewed in Section 2.3 in Chapter 2 have explored the approximate

computing techniques to trade accuracy for performance or energy efficiency.

In this chapter, we describe an alternative circuit design methodology when con-

sidering the trade-offs between accuracy, performance and silicon area. In general we

examine two design scenarios: one is the conventional design scenario where precision

of the datapath is truncated to ensure timing closure; the other is the overclocking

35
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scenario where the original datapath word-length is maintained, but the circuit is op-

erated with frequencies higher than rated values. We initially present probabilistic

models of errors generated in this process for two different adder structures: the Rip-

ple Carry Adder (RCA) and the Carry-Select Adder (CSA), as discussed in Section 3.2

and Section 3.3, respectively. The decision of the optimum adder structure under the

trade-offs between latency, accuracy and silicon area, is then analysed in Section 3.4.

This is followed by a description of the probabilistic error models for another arith-

metic operator, the Constant Coefficient Multiplier (CCM), in Section 3.5. Section 3.7

discusses a practical experimental setup on an FPGA to verify our models and test

the proposed design methodology. We then demonstrate the benefits of our proposed

approach in Section 3.6 and Section 3.8.

A summary of the main contributions of this chapter are listed below:

• Detailed modelling methods for probabilistic errors generated in basic arithmetic

primitives from two design scenarios to trade accuracy for performance.

• Exploring the accuracy-performance-area trade-offs for different implementations

of adders to identify the optimum architecture for a certain arithmetic function

under a given requirement of silicon area.

• Demonstration of the proposed findings analytically and experimentally from

FPGA implementations that allowing rare timing violations to happen leads to

a reduction of average errors or an improvement of performance over truncating

the datapath precision to meet timing.

3.2 Ripple Carry Adder

Adders serve as a key building block for arithmetic operations, and other major arith-

metic operators such as multipliers and dividers can be implemented using adders. In
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general, the ripple carry adder is the most straightforward and widely used adder

structure. As such, the philosophy of our approach is first exemplified with the anal-

ysis of an RCA. In this section we discuss the modelling method for both truncation

error and overclocking error in an RCA. We later describe how this methodology can

be extended to other arithmetic operators such as CSAs and CCMs, which are also

commonly used in DSP applications and numerical algorithms, in Section 3.3 and

Section 3.5 respectively.

3.2.1 Adder Structures in FPGAs

An n-bit RCA is composed of n serial connected Full Adders (FAs). Typically the

maximum frequency of a RCA is determined by the longest carry propagation delay.

Consequently, modern FPGAs offer built-in architectures for very fast ripple carry

addition. For instance, the Altera Cyclone series uses fast tables [3] while the Xilinx

Virtex series employs dedicated multiplexers and encoders for the fast carry logic [135].

Figure 3.1 illustrates the structure of an n-bit RCA in the Xilinx Virtex-6 FPGA by

utilising the built-in fast carry logic.

While the fast carry logic reduces the time of each individual carry propagation

delay, the overall delay of carry propagation will eventually overwhelm the delay of

sum generation of each LUT with increasing operand word-lengths. We perform our

initial analysis based on the assumption that the carry propagation delay of each FA

is a constant value µ, which is a combination of logic delay and routing delay. Hence

the critical path delay of the RCA is given by (3.1), as shown in Figure 3.1.

µRCA = n · µ (3.1)

For an n-bit RCA, it follows that if the sampling period TS is greater than µRCA,
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Figure 3.1: An n-bit ripple carry adder in Xilinx Virtex-6 FPGA.

correct results will be sampled. If, however, faster-than-rated sampling frequencies

are applied such that TS < µRCA, intermediate results will be sampled, potentially

generating errors.

In the following sections, we consider two methods that would allow the circuit to run

at a frequency higher than 1/µRCA. The first is a traditional circuit design approach

where operations are executed without timing violations. To this end, the operand

word-length is truncated in order to meet the timing requirement. As a consequence,

this process would result in truncation or roundoff error. In the second method, we

propose a new design scenario in which circuits are implemented with greater word-

length, but are clocked beyond the safe region so that timing violations sometimes
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Figure 3.2: Generation of Truncation Error.

occur. Errors may also be generated during this process, and they are referred to as

“overclocking error”.

3.2.2 Probabilistic Model of Truncation Error

For ease of discussion, we assume that the input to our circuit is a fixed point number

scaled to lie in the range [−1, 1). In our initial analysis, we assume every bit of each

input is uniformly and independently generated. However, this assumption will be

relaxed in Section 3.6 and Section 3.8 where the predictions are verified using real

data from several image benchmarks. In our analysis, the errors at the output are

evaluated in terms of both the absolute value and the probability of their occurrence.

These two metrics are combined as the error expectation.

If the input signal of a circuit contains k bits, truncation error occurs when the input

signal is truncated from k bits to n bits, as shown in Figure 3.2, where BP denotes the

binary point. Under our previous assumption that all bits are independently generated

following uniform distribution, the mean value of the truncated bits at signal input

(ET in) is given by (3.2).

ET in =
1

2

k∑

i=n+1

2−i = 2−n−1 − 2−k−1 (3.2)

Since there are two mutually independent inputs to the RCA, the overall expectation
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of truncation error for the RCA is given by (3.3).

ET =




2−n − 2−k, if n < k

0, otherwise
(3.3)

3.2.3 Generation of Overclocking Error

For an n-bit RCA, in order to avoid timing violations it is always ensured the sam-

pling period TS is greater than µRCA. In this case, correct results will be sampled.

In the overclocking scenario we have TS < µRCA, hence intermediate results might

be sampled and this potentially generates overclocking error. For instance consider a

4-bit addition 0.1111 + 0.0001: a carry is initially generated at the least significant

bit (LSB), it will be propagated to the most significant end and finally annihilated at

the most significant bit (MSB). This process is shown in Figure 3.3. We see that it

takes 4µ before the final result is stabilised. For this example, if TS ≥ 4µ, the correct

result will be sampled, as illustrated by the solid line of TS. However, if TS < 4µ, as

indicated by the dotted line of TS, the intermediate result 0 will be sampled and thus

an error value of 1 is generated.

A

B

Sum

Ts

0 0.1111

0 0.0001

0 00.1110 0.1100 0.1000 1.0000

Error-free Sampling 

Time
Faster Sampling Time, 

with overclocking error

μ

Figure 3.3: An example of the generation of overclocking error.

If TS is given, we define the maximum length of error-free carry propagation by (3.4)

where fS denotes the sampling frequency. For instance, if TS = 3.5µ, according to (3.4)
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we have b = 4 which means the maximum length of error-free carry propagation under

this situation is 4-bit. In other words, timing violation will happen on any carry chain

with length greater than 4 given TS = 3.5µ.

b :=

⌈
TS

µ

⌉
=

⌈
1

µ · fS

⌉
(3.4)

However, since the length of an actual carry chain during execution is dependent

upon input patterns, in general, the worst case may occur rarely. As a result, in order

to determine when this timing constraint is not met, and the size of the error in this

case, we make use of standard results [101] which decide carry generation, propagation

and annihilation at bit i based on the inputs Ai and Bi as below. The corresponding

summation results Si can also be calculated by (3.5) where ⊕ denotes the exclusive or

operation.

Si = Ai ⊕ Bi ⊕ Ci−1 (3.5)

1. Carry generation: if Ai = Bi = 1, then a new carry chain is generated at bit i,

and we have Si = Ci−1;

2. Carry propagation: given a carry is generated from previous bit, i.e. Ci−1 = 1,

and if Ai 6= Bi, then the carry propagates for this carry chain at bit i, and we

have Si = Ci−1 = 0;

3. Carry annihilation: if Ai = Bi (either 0 or 1), the current carry chain annihilates

at bit i, and we have Si = Ci−1 = 1.
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3.2.4 Absolute Value of Overclocking Error

For an n-bit RCA, let Ctm denote the carry chain generated at bit t with the length

of m bits. For a certain fS, the maximum length of error-free carry propagation, b,

is determined through (3.4). The presence of overclocking error requires m > b and

t ≤ n − b. In addition, the length of any carry chain cannot be greater than n. To

sum up, we obtain the bounds of parameters t and m as given by (3.6) and (3.7):

0 ≤ t ≤ n− b (3.6)

b < m ≤ n+ 1− t (3.7)

For Ctm, correct results will be generated from bit t to bit t+ b− 1, whereas the

potential overclocking errors may generate from bit t + b to bit n. Therefore the

absolute value of error seen at the RCA output, normalised to the MSB (2n), is given

by (3.8), where Ŝi and Si denote the actual and error-free output of bit i respectively.

etm =

∣∣∣
∑n

i=t+b(Ŝi − Si) · 2i
∣∣∣

2n
(3.8)

The value of Si and Ŝi can be determined based on the previous statements that

determine carry generation, propagation and annihilation in Section 3.2.3. More

specifically, in the error-free case, the carry will propagate correctly from bit t to

bit t+m− 1, and we will obtain St+b = St+b+1 = · · · = St+m−2 = 0 for carry propaga-

tion, and St+m−1 = 1 for carry annihilation. However, when a timing violation occurs,

the carry will not propagate through all these bits. Hence we have the actual outputs

Ŝt+b = Ŝt+b−1 = · · · = Ŝt+m−2 = 1 for carry propagation, and Ŝt+m−1 = 0 for carry
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annihilation. Substituting these values into (3.8) we have:

etm =

∣∣2t+m−1 − 2t+m−2 − · · · − 2t+b
∣∣

2n
=

2t+m −
∑t+m−1

i=t+b 2i

2n

=
2t+m − 2t+b(2m−b − 1)

2n

And this finally yields (3.9). Interestingly as seen in (3.9), the magnitude of over-

clocking error has no dependence on the length of carry chain m.

etm = 2t+b−n (3.9)

3.2.5 Probability of Overclocking Error

The carry chain Ctm occurs when there is a carry generating at bit t, a carry annihi-

lates at bit t+m− 1 and carry propagates in between. Consequently, its probability

Ptm is given by (3.10).

Ptm = P(At=Bt=1, Ai 6=Bi, At+m−1=Bt+m−1), i ∈ [t+ 1, t+m− 1) (3.10)

Under the assumption that both inputs A and B are mutually independent and uni-

formly distributed, (3.10) can be modified as given in (3.11). Also we have P(Ai=Bi=1) =

1/4, P(Ai 6=Bi) = 1/2 and P(Ai=Bi) = 1/2. By substituting these values into (3.11) we

obtain the expression of Ptm in (3.12). Note that (3.12) takes into account the carry

annihilation always occurs when t+m− 1 = n.

Ptm = P(At=Bt=1)P(At+m−1=Bt+m−1) ·
t+m−2∏

i=t+1

P(Ai 6=Bi) (3.11)
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Ptm =





(1/2)m+1 if t+m− 1 < n

(1/2)m if t+m− 1 = n
(3.12)

In addition, the probabilistic models for the magnitude and probability of over-

clocking errors can be easily generalised for any input distributions with mutually

independent bits, since (3.8) and (3.9) are not related to the input distribution, while

(3.11) can be employed as long as the value of P(Ai=Bi=1) and P(Ai 6=Bi) is known. If

there is dependency between input bits, (3.10) can still be utilised whereas the value

of probability P(Ai=Bi=1) and P(Ai 6=Bi) may change. For instance, if the dependency of

inputs Ai and Bi is unknown, we have P(Ai=1) = E(Ai) = 1/2 and P(Bi=1) = E(Bi) = 1/2

separately for uniform distribution, where E(Ai) and E(Bi) denote the expectation of

Ai and Bi. The probability of Ai = Bi = 1 is then given by (3.13) [104] where σ(Ai) de-

notes the standard variation of Ai and ρi denotes the temporal correlation between the

two inputs at the ith bit. ρi = 0 corresponds to the case where bits are uncorrelated.

P(Ai=Bi=1) = E(Ai)E(Bi) + ρiσ(Ai)σ(Bi) (3.13)

It can be seen that if ρi = 0 then P(Ai=Bi=1) = 1/4 as used to derive (3.12). Otherwise

ρi should be determined before employing our models.

3.2.6 Expectation of Overclocking Error

For an n-bit RCA, the expectation of overclocking error can be expressed by (3.14),

where t is bounded by (3.6) and m is bounded by (3.7).

EO =
∑

t

∑

m

Ptm · etm (3.14)
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Substituting Ptm and etm from (3.9) and (3.12) respectively into (3.14), under the

situation that b ≤ n we have:

EO =
∑

t

∑

m

Ptm · etm

=
n−b∑

t=0

2t+b−n ·
(

n−t∑

m=b+1

(1/2)m+1 + (1/2)n−t+1

)

=
n−b∑

t=0

2t+b−n ·
(
(1/2)b+1 − (1/2)n−t+1 + (1/2)n−t+1

)

=
n−b∑

t=0

2t+b−n · 2−b−1

= 2−b − 2−n−1

In a general case EO can be obtained by (3.15).

EO =




2−b − 2−n−1, if b ≤ n

0, otherwise
(3.15)

3.2.7 Comparison between Two Design Scenarios

In traditional scenario, for a given fS, the word-length of RCA must be truncated

to n = b− 1 in order to meet the required latency. The expectation of the truncation

error in the traditional scenario is then given by (3.16) according to (3.3).

Etrad = 2−b+1 − 2−k (3.16)

Overclocking errors are allowed to happen in our proposed overclocking design sce-

nario, and the original word-length is maintained. Therefore the word-length of RCA

is set to be equal to the input word-length, that is, n = k. Hence we obtain (3.17)
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according to (3.15).

Enew = 2−b − 2−k−1 (3.17)

Comparing (3.17) and (3.16), we have (3.18).

Enew

Etrad

=
2−b − 2−k−1

2−b+1 − 2−k
=

1

2
(3.18)

This equation indicates that by allowing timing violations, the overall error expecta-

tion of RCA outputs drops by a factor of two in comparison to the traditional scenario.

This provides the first hint that our approach is useful in practice.

3.3 Carry Select Adder

As seen in (3.18), a 2× reduction in error expectation can be achieved by using the

proposed approach in RCA. However, implementing our approach costs extra silicon

area in comparison to the conventional approach, because we keep the original word-

length k in the overclocking scenario instead of truncating to only b − 1 bits in the

traditional scenario. Besides our approach, there are existing techniques that could

also be employed to trade extra silicon area for low latency. For instance, alternative

adder architectures, such as carry select adder (CSA), have been proposed to boost

performance.

In a CSA, the carry chain is divided into multiple overlapped stages, where each

stage contains two RCAs and two multiplexers, as shown in Figure 3.4(a) and Fig-

ure 3.4(b), respectively. For a given input, two additions are performed simultaneously

within a single stage with carry inputs setting to zero and one separately. One of these

two results is then selected according to the actual carry input. Although this struc-
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ture brings performance benefits, it costs extra hardware resources in comparison to

a standard RCA mainly because the carry chain is duplicated, also multiplexers are

introduced to select correct results. However in FPGA technology, implementing mul-

tiplexers are expensive in terms of area. In order to combine all of the aforementioned

design considerations, we explore the trade-offs between silicon area, accuracy and

latency of RCA and CSA in this section.

Cout

Stage i Stage 1 Stage 0Stage s-1

Cin
CSA CSA... RCA...

... ...

... ...

CSA

n1 n0nins-1

Inputs

Sum

(a) A CSA with s stages.

RCA ni Bits

RCA ni Bits

0
0

1
1

0 1

ni

Inputs

Sum

Cin_i

Cout_i

Stage i

(b) The ith stage in the CSA.

Figure 3.4: The structure of CSA.

3.3.1 Timing Models for Carry Select Adder

We initially model the CSA in order to understand the relationship between the

operating frequency and the maximum word-length of the CSA. This information can

then be employed to determine the truncation error based on the models presented in

Section 3.2.2.

In our analysis, the stage delay of the ith stage in the CSA refers to the combination

of the i-bit carry propagation delay and the delay of multiplexing the carry from

the carry input of the ith stage to the carry output of the CSA. For a CSA with s

stages (s > 2), let the stage delay be denoted by di where i ∈ [s − 1, 0], and ds−1

and d0 represent the delay of the most significant stage and the least significant stage,
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respectively. We still follow the previous assumption that the critical path delay of

the CSA is due to carry propagation and multiplexing the carry output, instead of

generating the sum outputs. It should be noted that unlike other stages, the least

significant stage of the CSA can be built only by one RCA without multiplexers, since

it is directly driven by the carry input. Hence we can obtain the delay of the ith

stage as presented in (3.19), where µc, µmux and ni denote the delay of 1-bit carry

propagation, the delay of multiplexing and the word-length of the ith stage of the CSA,

respectively.

di =





ni · µc + (s− i) · µmux, if i ∈ [1, s− 1]

n0 · µc + (s− 1) · µmux, if i = 0
(3.19)

Under the timing-driven design environment, the delay of each stage of CSA is

equalised in order to achieve the fastest operation, as presented in (3.20).

ds−1 = ds−2 = · · · = d0 (3.20)

In this case, combining (3.19) and (3.20) yields ni in (3.21), which is represented by

the word-length of the most significant stage ns−1.

ni =




ns−1 − (s− 1− i) · µmux

µc

, if i ∈ [1, s− 1]

ns−1 − (s− 2) · µmux

µc

, if i = 0
(3.21)

Sum up ni to give the total word-length of the CSA in (3.22).

nCSA =
s−1∑

i=0

ni = s · ns−1 −
µmux

µc

· (s+ 1)(s− 2)

2
(3.22)

Conventionally under a given frequency constraint, the word-length of RCA is trun-
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cated by using nRCA = b− 1 bits, where b is determined by (3.4). Similarly for CSA,

the word-length of each stage should be selected in order to satisfy (3.23).

∀i ∈ [0, s− 1] , di 6
1
fs

(3.23)

Therefore for the same frequency requirement, we can form the relationship between

the delay of the most significant stage of CSA and the delay of RCA, as given by (3.24),

µc · (b− 1) = ns−1 · µc + µmux (3.24)

Substitute (3.24) into (3.22) to replace ns−1, we derive the representation of the

word-length of CSA in terms of b, as given in (3.25).

nCSA = s · (b− 1)− µmux

µc

· (s+ 2)(s− 1)

2
(3.25)

3.3.2 Accuracy Benefits and Area Overhead in CSA

We first verify the models for the RCA and CSA in terms of the maximum word-

length under the given operating frequencies. For the CSA, the ratio µmux/µc can be

computed experimentally. We perform post place-and-route simulations on the CSA

with two stages using a Xilinx Virtex-6 FPGA. The delay of the ith stage di in (3.19)

is recorded with respect to different word-lengths. The total word-length of CSA can

be predicted through (3.25). In addition, the maximum word-lengths of the 2-stage

CSA and RCA are obtained experimentally by increasing nCSA and nRCA respectively

until errors are observed at the output. The comparison between the modelled value

and the empirical results is illustrated in Figure 3.5. It can be seen that our models

for both RCA and CSA match well with the experimental results.



3.3. Carry Select Adder 50

450 500 550 600 650

2

4

6

8

10

12

14

16

Frequency (MHz)

M
a

x
. 

W
o

rd
−

L
e

n
g

th

 

 

RCA

CSA 2−stage

Model: RCA

Model: CSA 2−stage

Figure 3.5: The modelled value and experimental results of the maximum word-length
of RCA and CSA with respect to various frequency requirements.

Figure 3.5 also highlights that for a relatively relaxed frequency constraint, the CSA

achieves greater word-length than the RCA. This is because the stage parallelism in the

CSA enables a greater overall word-length, even though the multiplexer delay limits

the word-length of each stage in the CSA when compared to the RCA. When more

stringent latency requirements are applied, however, the word-length of each stage is

largely limited such that the multiplexer delay becomes comparable to the delay of

the carry chain, and this inhibits the benefits of parallelism.

However, the accuracy benefits brought by CSA comes at the cost of a large area

overhead. Figure 3.6 depicts the number of LUTs in the FPGA used for an RCA, a

2-stage CSA and a 3-stage CSA. It can be seen that in order to meet a given frequency,

the 3-stage CSA consumes 2.4× to 3.7× more area than RCA, while the 2-stage CSA
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Figure 3.6: Usage of LUTs for an RCA and a CSA with two stages and three stages
with respect to various frequency requirements.

requires 1.7× to 3.1× extra area. This finding poses a question of which is the best

adder structure for a specific area budget.

3.4 Choosing the Optimum Adder Structure

In Section 3.2, we discussed two design scenarios for the RCA when considering

timing constraints. In this section, we expand our analysis by incorporating silicon

area as another evaluation metric, and investigate the accuracy, latency and area trade-

offs for different adder structures. In the conventional design scenario, the word-length

of RCA and CSA is limited by the given frequency constraint, or/and the available

hardware resources. The precision loss potentially generates large errors even without

timing violations. However in the overclocking design scenario, we use RCA with the
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maximum possible word-length under a given area budget, whilst timing constraints

are allowed to be violated. This process might result in timing errors as well as

truncation errors due to area limitation. We compare these two scenarios with different

design goals with the aim of finding the optimum design methodology under each

situation, instead of ranking of all possible design approaches.

3.4.1 Determination of the Optimum Adder Structure for

Given Frequency Requirements

First, suppose an algorithm designer wishes to create a circuit that can run at a

given frequency in a given resource constraint while achieving the minimum possible

output error. A decision must then be taken over which adder structure achieves this

minimum, and whether the structure should be overclocked.

As an example slice through the design space, in Figure 3.7 we record the mean

value of error at outputs with respect to different operating frequencies for both design

scenarios when the number of the available LUTs is set to 25. The results are obtained

from post place-and-route simulations on a Xilinx Virtex-6 FPGA. In this graph, we

have labelled the optimum adder structure and the corresponding design scenario.

Notice that in this and all the following experiments within this section, in order to

apply our models the input data are all randomly generated following independent

uniform distributions.

We first notice from Figure 3.7 that for all frequency values, the overclocked RCA

achieves no larger error expectation than the RCA with truncated operand word-

lengths, as predicted by the models for the RCA in Section 3.2.7. It can also be

observed that the CSA cannot be implemented with the original word-length due to

the limited area budget and this leads to large truncation errors. Although the CSA

with four stages is best for some frequencies, the overclocked RCA is still the optimum
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Figure 3.7: A comparison between two design scenarios when the number of available
LUTs is 25. The RCA and CSA are investigated in the conventional scenario, while
the RCA is explored in the overclocking scenario.

design when high operating frequencies are required.

We then perform similar experiments with a variety of area constraints. The op-

timum design methods with respect to different operating frequencies and area con-

sumptions are demonstrated in Figure 3.8. From this figure, several observations can

be made. Firstly, if the frequency requirement is not large whilst the available area

is large enough to implement a CSA in full precision, it will be the optimum design.

This is expected from our earlier analysis in Figure 3.5. Secondly, the 2-stage CSA is

better than the 3-stage CSA and the 4-stage CSA for low frequency requirements, as

it consumes less area although they all achieve the same error expectation. Thirdly, it

is possible that only part of the CSA can be implemented under a tighter area budget,

whereas the RCA still keeps full precision. In this case, area becomes the dominant

factor and precision is lost for the CSA, meaning the RCA with overclocking is the
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Figure 3.8: A demonstration of the optimum design methodology which achieves the
minimum error at outputs with respect to a variety of frequency and area constraints.

optimum design method across almost the whole frequency domain in this situation.

Finally, for very stringent area constraints, the word-length of RCA is also limited.

This results in truncation errors initially for all design scenarios. However, the RCA

with overclocking can still be employed as the optimum design, because it loses less

precision than the CSA under the same area constraint.

3.4.2 Determination of the Optimum Adder Structure for

Given Accuracy Requirements

If the design goal is to operate the circuit as fast as possible with the minimum

area whilst a certain error budget can be tolerated, the optimum design methodology

can be decided as illustrated in Figure 3.9. In this situation, the error specifications

are evaluated in terms of Mean Relative Error (MRE), as given by (3.26), where
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Eerror and Eout refer to the expected value of error and the expected value of outputs,

respectively.

MRE =

∣∣∣∣
Eerror

Eout

∣∣∣∣× 100% (3.26)

In our experiments within this section, MRE is set ranging from 0.001% to 50%. For

a given value of MRE, the design with the maximum operating frequency is selected

as the optimum design. Moreover, the smallest design is the optimum one if multiple

structures operate at the same frequency, with a certain area requirement. Figure 3.9

can thus be obtained based on these criteria.

For a tight accuracy requirement, e.g. MRE < 0.005%, CSA serves as the opti-

mum design choice for large area constraints, as it intrinsically operates faster than

RCA. Once again, when the area budget shrinks, the RCA performs best because
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the precision of the CSA is limited. Similarly to the results in Figure 3.8, we see

that the overclocked RCA achieves the fastest operating frequencies under most area

constraints when the accuracy requirement is released.

3.4.3 Design Guidance

To sum up, our experiments reveal that for both design goals, CSA is not competitive

with the overclocking approach unless one has very relaxed area budget. As a result,

for the remainder of this chapter, we will focus on the RCA in our following analysis

and experiments.

3.5 Constant Coefficient Multiplier

As another key primitive of arithmetic operation, constant coefficient multiplier

(CCM) can be implemented using RCA and shifters. For example, a constant coeffi-

cient multiplication B = 9A is equivalent to B = A+ 8A = A+ (A << 3), which can

be built using one RCA and one shifter, as demonstrated in Figure 3.10. We first focus

on this single RCA and single shifter structure, before describing how more complex

structures consisting of multiple RCAs and multiple shifters can be built in accordance

with this baseline structure in Section 3.5.5.

A B9 +

<<3

A B

RCA
As

Ao

Constant Coefficient 

Multiplier
Equivalent Circuit

Figure 3.10: Constant coefficient multiplier: symbol and equivalent circuit.

In this CCM structure, let the two inputs of the RCA be denoted by AS and AO
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Figure 3.11: Four possible carry chain types in a constant coefficient multiplier with
n-bit inputs. The notion s denotes the shifted bits and BP denotes the binary point.

respectively, which are both two’s complement numbers. AS denotes the “shifted

signal”, with zeros padded after LSB, while AO denotes the “original signal” with

MSB sign extension. For an n-bit input signal, it should be noted that an n-bit RCA

is sufficient for this operation, because no carry will be generated or propagated when

adding with zeros, as shown in Figure 3.11.

3.5.1 Probabilistic Model of Truncation Error

Let ET in and ETout denote the expectation of truncation error at the input and

output of the CCM respectively. We then have (3.27), where coe denotes the coefficient

value of the CCM, and ET in can be obtained according to (3.3).

ETout = |coe| · ET in (3.27)
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3.5.2 Absolute Value of Overclocking Error

For a CCM, the absolute value of overclocking error of carry chain Ctm is increased

by a factor of 2s due to shifting, when compared to RCA. Therefore etm in CCM can

be modified from (3.9) to give (3.28).

etm = 2t+b−n+s (3.28)

3.5.3 Probability of Overclocking Error

Due to the dependencies in a CCM, carry generation requires at = at+s = 1, while

the propagation and annihilation of a carry chain is best considered separately for

four types of carry chain generated at bit t. We label these by Ctm1 to Ctm4 in

Figure 3.11, defined by the end region of the carry chain. For Ctm1, we have the

following statements:

• Carry propagation: ai 6= ai+s, where i ∈ [t+ 1, n− s− 2];

• Carry annihilation: aj = aj+s, where j ∈ [t+ 1, n− s− 1].

Similarly for Ctm2, we have:

• Carry propagation: ai 6= an−1, where i ∈ [n − s − 1, n − 3]; or ai 6= ai+s, where

i ∈ [t+ 1, n− s− 2];

• Carry annihilation: aj = an−1, where j ∈ [n− s− 1, n− 2].

For the first two types of carry chain Ctm1 and Ctm2, the probability of carry prop-

agation and annihilation is 1/2 and the probability of carry generation is 1/4, under

the premise that all bits of input signal are mutually independent. Therefore (3.29)
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can be obtained by substituting the probability value into (3.11).

Ptm = (1/2)m+1 , if t+m− 1 6 n− 2 (3.29)

For carry annihilation of Ctm3, it requires an−1 = an−1, which is always true. Thus

the probability of Ctm3 is given by (3.30).

Ptm = (1/2)m , if t+m− 1 = n− 1 (3.30)

Ctm4 represents carry chain annihilates over an−1, therefore carry propagation re-

quires an−1 6= an−1. This means Ctm4 never occurs in a CCM.

Altogether, Ptm for a CCM is given by (3.31).

Ptm =





(1/2)m+1 if t+m− 1 < n− 1

(1/2)m if t+m− 1 = n− 1
(3.31)

3.5.4 Expectation of Overclocking Error

Since the carry chain of a CCM will not propagate over an−1, the upper bound of

parameter t and m should be modified from (3.6) and (3.7) to give (3.32) and (3.33).

0 6 t 6 n− b− 1 (3.32)

b < m 6 n− t (3.33)

Finally, by substituting (3.31) and (3.28) with modified bounds of t and m into

(3.14), we obtain the expectation of overclocking error for a CCM to be given by
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(3.34).

EO =




2s−b−1 − 2s−n−1, if b ≤ n− 1

0, otherwise
(3.34)

3.5.5 CCM with Multiple RCAs and Shifters

In the case where a CCM is composed of two shifters and one RCA, such as operation

B = 20A = (A << 2) + (A << 4), let the shifted bits be denoted as s1 and s2

respectively. Hence the equivalent s in (3.34) can be obtained through (3.35).

s = |s1 − s2| (3.35)

For those operations such as B = 37A = (A << 5) + (A << 2) + (A << 1), the

CCM can be built using a tree structure. Each root node is the baseline CCM and

the errors are propagated through an adder tree, of which the error can be determined

based on our previous RCA model.

3.6 Case Study: FIR Filter

3.6.1 Experimental Setup and Model Verification

In Section 3.2 and Section 3.5 we made assumptions that the delay is only generated

due to the carry propagation whereas the generation of the output costs no delay.

In this section, we first verify the proposed design methodology with overclocking

according to this assumption by using an FIR filter, as shown in Figure 3.12. Results

shown here are obtained from behavioural model simulations where we only consider

carry propagation delay within the design. Results from actual FPGA measurements



3.6. Case Study: FIR Filter 61

OutputInput

FIR 

Filter

nk

Figure 3.12: A simple FIR filter.

will be described in the next section.

As seen in Figure 3.12, the word-length of the input signal is truncated through

the quantiser (Q) in the traditional scenario, in order to achieve the desired latency

between input and output. However, in the proposed new scenario, the operating

frequency is over-scaled while maintaining the original input word-length. We explore

the best trade-off between latency and error based on these two scenarios.

In this experiment, two types of input signal are employed. The first type is 8-bit

data which are randomly sampled from a uniform distribution, which we refer to as

“uniform independent inputs”. The second type, denoted as “real inputs”, is 8-bit

pixel values of several 512× 512 image benchmarks.

We first assess the accuracy of our proposed models of error. The amount of input

signal truncation for the traditional scenario varies from one bit to seven bits. When

the circuit is truncated, it allows the circuit to operate at a higher frequency than the

rated frequency, up to 2.75×, which corresponds to the maximum frequency required

for 1-bit input word-length. Results in Figure 3.13 demonstrate that our models for

both overclocking error and truncation error match well with the ideal case. However,

we observe a small deviation when using real inputs, since the real data does not

exactly follow the uniform distribution or the independent assumption. In Figure 3.13

we only plot results for the “Lena” benchmark image as an example.
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Figure 3.13: Verification of proposed models under timing assumptions.

3.6.2 Error Expectation

Table 3.1 summarises the experimental results obtained by uniform independent

inputs together with four benchmark images. First we see that for all input types,

error expectation is reduced in the overclocking scenario, as expected by our model,

with the geometric mean of reduction varying from 5.6× to 36.7×. In addition, we

observe that in practice with real image data as inputs, larger differences of error

expectation are achieved. This is because for real data, long carry chains occur with

smaller probabilities than those with uniform independent data.

Table 3.1: Ratio of Error Expectation: Traditional Over New.

Inputs
Normalised Frequency Geo.

Mean1.10 1.22 1.38 1.57 1.83 2.20 2.75

Uniform 7.11 4.17 5.06 5.35 5.86 5.92 5.83 5.55

Lena 8.55 6.93 5.20 5.45 7.54 11.74 17.30 8.24

Sailboat 35.31 15.19 11.41 9.70 9.39 10.92 11.69 13.24

Pepper 17.91 10.79 8.84 7.67 8.13 10.39 16.49 10.90

Tiffany 204.5 50.52 28.78 21.94 18.57 22.14 33.69 36.74
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3.6.3 Signal-to-Noise Ratio

Although Signal-to-Noise Ratio (SNR) is not modelled in our previous analysis, it

is an important metric to assess performance especially for DSP applications, and the

value of SNR can be obtained through experiments. Figure 3.14 demonstrates SNR

for uniform independent inputs and the “Tiffany” image with increasing frequencies.

For the former input type, higher SNR is obtained in the traditional scenario where

fs is increased from 1.1× to 1.6× of rated frequency, while the overclocking scenario

outperforms when fS is increased to over 1.8× of rated frequency. This is because

SNR is inversely proportional to square of the error magnitude, as specified in (3.36),

where Asignal and Anoise denote the magnitude of output signal and noise, respectively.

SNR ∝
(
A2

signal

A2
noise

)
(3.36)

In the traditional scenario, small fS corresponds to limited truncation of LSBs,

which in turn lead to small noise power. However in the overclocking scenario, timing

error is generated in the MSBs, therefore large noise power is expected at early stage

of overclocking. However, as fS is further increased, the corresponding amount of

truncation rises, resulting in smaller SNR compared to the overclocking scenario.

For inputs with real image data, SNR is higher for all frequencies under the over-

clocking scenario, since long carry chains occur rarely with real image inputs. This

information could be used to achieve better performance in the overclocking scenario.

For example, suppose a user only require an SNR of 30dB or less. In this case, one

could operate at a frequency of 2.1× over rated frequency under the overclocking

scenario but only a 1.5× frequency speed-up can be achieved under the traditional

scenario.

Table 3.2 presents the differences of SNR (dB) obtained by uniform inputs and
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(b) Real Inputs (Tiffany Image).

Figure 3.14: Comparison between overclocking scenario and traditional scenario in
terms of SNR.

four benchmark images. Similar to error expectation, we also see that the average

improvement of SNR is higher for real image data than the uniform data.

Table 3.2: Difference of SNR (dB): New Over Traditional

Inputs
Normalised Frequency

1.10 1.22 1.38 1.57 1.83 2.20 2.75

Uniform -13.68 -11.57 -6.56 -2.72 1.14 4.30 7.18

Lena -12.90 -9.20 -6.78 -2.71 2.83 9.05 14.41

Sailboat -6.75 -5.11 -2.06 1.04 4.56 8.76 11.33

Pepper -9.71 -6.99 -3.71 -0.56 3.46 8.29 14.67

Tiffany 0.89 0.70 2.96 5.90 8.97 13.75 19.71

3.7 Test Platform on An FPGA

We also perform experiments on an actual hardware platform. Similarly we com-

pare the traditional scenario and the overclocking scenario and explore the trade-offs

between latency and accuracy. The benefits of the proposed methodology are demon-
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strated over a set of DSP example designs, which are implemented on the Xilinx ML605

board with a Virtex-6 XC6VLX240T-1FFG1156 FPGA.

3.7.1 Experimental Setup

We initially build up an FPGA test framework. The general architecture is depicted

in Figure 3.15. The main body of the test framework consists of the circuit under

test (CUT), the test frequency generator and the control logic, as shown in the top

dotted box in Figure 3.15. The I/Os of the CUT are registered by the launch registers

(LRs) and the sample registers (SRs), which are all triggered by the test clock. Input

test vectors are stored in the on-chip memory during initialisation. The results are

sampled using Xilinx ChipScope. Finally, in the host computer we perform an offline

comparison between the error-free data, which are the outputs of the original circuit

sampled at the rated frequency, and the outputs of the overclocked as well as the

truncated designs using the same input vectors.

The test frequency generator is implemented using two cascaded Mixed-Mode Clock

Managers (MMCMs) [134], created using Xilinx Core Generator [137]. The frequency

of the MMCM clock output can be dynamically reconfigured during run time [72, 118],

such that it is not necessary to re-implement the entire design, which may introduce

timing differences between multiple tests. Besides the outputs, the corresponding

input vectors and memory addresses are also recorded into the comparator for cross

comparison, as can be seen in Figure 3.15, in order to ensure that the recorded errors

arise from overclocking the CUT rather than the surrounding circuitry when high test

frequencies are applied.
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Figure 3.15: Test framework, which is composed of a measurement architecture (the
top dotted box) on an FPGA and an off-line comparator using software. The error-free
data are obtained by either pre-computation or initial run with rated frequencies.
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3.7.2 Benchmark Circuits

Three types of DSP designs are tested: digital filters (FIR, IIR and Butterworth), a

Sobel edge detector and a direct implementation of a Discrete Cosine Transformation

(DCT). The filter parameters are generated using MATLAB filter design toolbox, as

listed below:

• FIR filter (5th order): 0.023, 0.095, 0.431, 0.431, 0.095, 0.023.

• IIR filter (7th order):

1. Numerator: 0.014, 0.042, 0.082, 0.109, 0.109, 0.081, 0.042, 0.014.

2. Denominator: 1.000, 1.802, 2.273, 1.584, 0.805,−0.238, 0.046,−0.003.

• Butterworth filter (9th order):

1. Numerator: 0.001, 0.009, 0.038, 0.089, 0.134, 0.134, 0.089, 0.038, 0.009, 0.001.

2. Denominator: 1.000, 1.791, 2.531, 2.118, 1.370, 0.609, 0.199, 0.043, 0.005, 0.001.

Table 3.3 summarises the rated operating frequency of each implemented design

reported by Xilinx ISE14.1 when the word-length of input signal is 8-bit. Notice that

all designs are implemented using LUTs only without DSPs for fairer comparisons.

Table 3.3: Rated Frequencies of Example Designs.

Design Frequency (MHz) Description
FIR Filter 126.2 5th order

Sobel Edge Detector 196.7 3× 3
IIR Filter 140.3 7th order

Butterworth Filter 117.1 9th order
DCT 176.7 4-point

Similar to the experiments described in Section 3.6, two sources of the input data

are generated in this experiment. One is “uniform independent inputs”, which are
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randomly sampled from a uniform distribution of 8-bit numbers. The other is called

“real inputs”, which are 8-bit pixel values of the 512×512 Lena image.

3.7.3 Correcting for Conservative Timing Margin

Generally, the operating frequency reported by electronic design automation (EDA)

tools tends to be conservative to ensure the correct functionality under a wide range

of operating environments and workloads. In a practical situation, this may result in

a large gap between the predicted frequency and the actual frequency under which the

correct operation is maintained [44].

For example, the frequencies predicted by Xilinx ISE and the actual frequencies of

a 5th order FIR filter using different word-lengths are depicted in Figure 3.16. The

“actual” maximum frequencies are obtained by increasing the operating frequency

from the rated value until errors are observed at the output; the maximum operating

frequency with correct output is recorded for the corresponding word-length. As can

be seen in Figure 3.16, according to our experiments the circuit can operate without

errors at a much higher frequency in practice than predicted by the tool. A maximum

speed differential of 3.2× is obtained when the input signal is 5-bit.

In our experiments as will be discussed in Section 3.8, the conservative timing margin

will be removed in the traditional scenario for a fairer comparison to the overclocking

scenario. To do this, for each truncated word-length, we select the maximum frequency

at which we see no overclocking error on the FPGA board in our lab. For example, in

Figure 3.16, the operating frequency of the design when the word-lengths are truncated

to 8 bits, 5 bits and 2 bits are 400MHz, 450MHz and 500MHz respectively.

Figure 3.16 also demonstrates that when the circuit is truncated, it allows the circuit

to operate at a higher frequency than the frequency of full precision implementation.

However, we can also see that the maximum operating frequency keeps almost con-
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Figure 3.16: The maximum operating frequencies for different input word-lengths of
an FIR filter. The dotted line depicts the rated frequency reported by the timing
analysis tool from Xilinx ISE 14.1. The solid line is obtained through FPGA tests
using our platform.

stant when the operand word-length reduces from 8 to 6 or from 5 to 3 in both the

experimental results and those of timing analyser. This will cause a slight deviation

between our analytical model which assumes that the single bit carry propagation

delay to be a constant value, as discussed in (3.16) with expression n = b − 1. This

deviation will be influenced by many factors such as how the architecture has been

packed onto logic elements on FPGAs such as LUTs and Slices. In addition, process

variation might cause non-uniform interconnection delays [132]. Nevertheless, we shall

see that our models remain close to the true empirical results in Section 3.8.

3.7.4 Computing Model Parameters

The accuracy of our proposed models is examined with practical results on Virtex-6

FPGA. In order to apply the proposed models, the model parameters should be deter-

mined first. In general there are two types of parameters in the models of overclocking

error. The first is based on the circuit architecture. For example, the word-length
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of RCAs and CCMs (n), the shifted bits of the shifters in CCM (s), and the word-

length of the input signal (k). This is determined through static analysis. The second

depends on timing information, such as the single bit carry propagation delay µ. In

order to keep consistency with the assumption made in models that µ is a fixed value,

it is obtained according to the actual FPGA measurement results.

In the FPGA tests, initially the maximum error-free frequency f0 is applied. In this

case we have (3.37) where dc is a constant value which denotes the interconnection

delay, and d0 = 1/f0. The frequency is then increased such that (3.38) is obtained.

This process repeats until the maximum frequency fn−1 is applied in (3.39). Based on

these frequency values, µ can be determined.

d0 = nµ+ dc (3.37)

d1 = (n− 1)µ+ dc (3.38)

· · ·

dn−1 = µ+ dc (3.39)

3.8 Results from FPGA Measurements

3.8.1 Case study: FIR Filter

In this section, the aforementioned timing assumptions in our models are relaxed

by using results from real FPGA measurements. We first assess the accuracy of our

proposed models of errors. We record the value of MRE based on (3.26) in a 5th order
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Figure 3.17: A demonstration of two design perspectives with a 5th order FIR filter,
which is implemented on Virtex-6 FPGA. The modelled values of both overclocking
errors and truncation errors are presented as dotted lines. The actual FPGA mea-
surements are depicted using solid lines. Two types of inputs are employed in the
overclocking scenario: the uniformly distributed data and the real image data from
Lena.

FIR with respect to different operating frequencies. The modelled values of both

overclocking error and truncation error of the FIR filter are presented in Figure 3.17

(dotted lines), as well as the actual measurements on the FPGA (solid lines) with two

types of input data. The results demonstrate that our models match well with the

practical results obtained using the uniform independent inputs.

According to Figure 3.17, output errors are reduced in the overclocking scenario for

both input types in comparison to the traditional scenario, as the analytical model

validates. In addition, we see that using real data, more significant reduction of MRE
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(a) n=8, SNR=47.97dB. (b) n=8, SNR=44.94dB. (c) n=8, SNR=21.58dB. (d) n=8, SNR=10.03dB.

(e) n=7, SNR=26.02dB. (f) n=5, SNR=21.76dB. (g) n=2, SNR=6.57dB. (h) n=1, SNR=3.95dB.

Figure 3.18: Output images of the FIR filter for both overclocking scenario (top
row) and traditional scenario (bottom row) when operating frequencies are 425MHz,
450MHz, 480MHz and 520MHz, respectively (from left to right).

are achieved, and that no errors are observed when frequency is initially increased.

This is because for real data, long carry chains are typically generated with even

smaller probabilities, and the longest carry chain rarely occurs.

The output images of the FIR filter for both of the two scenarios with increasing

frequencies are presented in Figure 3.18, from which we can clearly see the differences

between the errors generated in these two scenarios. In the overclocking scenario, we

observe errors in the MSBs for certain input patterns. This leads to “salt and pepper

noise”, as shown on the images in the top row of Figure 3.18. In the traditional

scenario, truncation causes an overall degradation of the whole image, as can be seen

in the bottom row of Figure 3.18. Furthermore, it is worth noting that recovering from

the latter type of error is more difficult, since it is generated due to precision loss.

In addition, we record the probability distribution of different length of carry chains

using an 8-bit RCA with both data types, as shown in Figure 3.19. As the input data is
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Figure 3.19: Probability distribution of different length of carry chains in a 8-bit
RCA. For the uniform data, two inputs of RCA are randomly sampled from a uniform
distribution. For the image data Lena, one input of RCA uses the original data and
the other uses the delayed original data for several clock cycles.

8-bit, the longest possible carry chain is of length 9-bit. It can be observed that when

using the Lena data, the probability is only higher than that using uniform data for

carry chain with a length of 3-bit. While in other situations, using uniform data leads

to higher probability, especially for long carry chain length. This finding explicitly

demonstrates that longer carry chain happens with an even smaller probability when

utilising real data.

3.8.2 Potential Benefits in Datapath Design

As we mentioned in Section 3.4, our results could be of interest to a circuit designer

in two ways. Typically, either the designer will want to create a circuit that can run at

a given frequency with the minimum possible value of MRE, or the algorithm designer

will wish to run as fast as possible whilst maintaining a specific error tolerance. For the

first design target, the experimental results for all five example designs on FPGA are
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Table 3.4: Relative Reduction of MRE (%) in Overclocking Scenario for Various Nor-
malised Frequencies Based on (3.40) for Two Types of Input Data: Uniform Data
(Uni) and Real Image Data from Lena (Lena).

Norm.

Freq.

FIR Sobel IIR Butterworth DCT4 Geo.Mean

Uni Lena Uni Lena Uni Lena Uni Lena Uni Lena Uni Lena

1.04 99.85 100.00 99.51 99.74 72.28 90.09 79.03 100.00 83.58 98.06 86.14 97.50

1.08 98.93 99.97 96.26 93.75 71.64 90.50 78.81 100.00 83.26 98.45 85.15 96.46

1.12 94.27 98.82 96.25 93.62 73.63 88.25 81.88 84.87 89.44 99.56 86.68 92.84

1.16 99.66 99.91 73.73 93.62 73.10 89.92 79.30 84.23 79.07 99.44 80.44 93.23

1.20 96.03 99.90 81.55 81.52 70.76 75.67 64.96 84.50 N/A* N/A* 77.46 84.95

1.24 98.46 99.32 81.43 81.67 70.47 76.12 63.66 84.23 N/A* N/A* 77.44 84.92

1.28 95.39 99.29 60.41 78.24 N/A* N/A* 54.38 75.15 N/A* N/A* 67.92 83.58

1.32 95.37 98.75 N/A* N/A* N/A* N/A* N/A* N/A* N/A* N/A* 95.37 98.75

* Current frequency cannot be achieved in the traditional scenario. These points are ex-
cluded from the calculation of geometric means.

summarised in Table 3.4 in terms of the relative reduction of MRE as given in (3.40)

where MREtrd and MREovc denote the value obtained in the traditional scenario and

in the overclocking scenario, respectively.

MREtrd −MREovc

MREtrd

× 100% (3.40)

In this table, the frequency is normalised to the maximum error-free frequency for

each design when the input signal is 8-bit. The N/A in Table 3.4 refers to the situations

where a certain frequency simply cannot be achieved using the traditional scenario,

and these points are excluded from the calculation of geometric means. It can be seen

that a significant reduction of MRE can be achieved using the proposed overclocking

scenario, and the geometric mean reduction varies from 67.9% to 95.4% using uniform

input data. Even larger differences of MRE can be observed when testing with real

image data for each design, ranging from 83.6% to 98.8%, as expected given the results

shown in Figure 3.17.

For the second design target, higher operating frequencies can be obtained if certain
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Table 3.5: Frequency Speedups (%) in Overclocking Scenario Under Various Error
Budgets for Two Types of Input Data: Uniform Data (Uni) and Real Image Data
from Lena (Lena).

Error

Budget

FIR Sobel IIR Butterworth DCT4 Geo.Mean

Uni Lena Uni Lena Uni Lena Uni Lena Uni Lena Uni Lena

0.05% 4.76 21.43 6.82 6.82 0.95 1.26 12.40 24.03 0.72 0.96 3.07 5.32

0.5% 19.05 21.43 13.64 6.82 0.63 10.06 24.03 24.03 0.48 12.44 4.52 13.45

1% 19.05 28.57 13.64 18.18 10.06 16.35 24.03 24.03 0.48 12.44 7.86 19.10

5% 19.15 25.53 18.18 18.18 0.54 0.82 0.63 0.94 7.66 12.44 3.91 5.36

10% 19.15 25.53 10.64 10.64 0.54 1.09 6.92 13.21 4.91 4.911 5.19 7.19

20% 19.15 25.53 5.77 15.39 8.70 8.70 3.26 3.26 6.70 10.88 7.32 10.39

50% 15.69 15.69 10.53 19.30 42.50 50.00 46.74 54.89 15.06 19.25 21.8 27.59

error budget can be tolerated. We record the frequency speed-ups for each benchmark

circuit in Table 3.5, when the specified error tolerance varies from 0.05% to 50%. For

all designs, we see that the overclocking scenario still outperforms the traditional sce-

nario for each MRE budget in terms of operating frequency. Likewise, the frequency

speed-up is higher for real image inputs than uniform inputs. The geometric mean of

frequency speed-ups of 3.1% to 21.8% can be achieved by using uniform data, while

5.3% to 27.6% when using real image data.

3.8.3 Area Overhead of Our Approach

For both aforementioned design goals, it should be noted that a benefit of using the

traditional approach is that reducing datapath precision would potentially lead to a

smaller design, in comparison to our proposed overclocking scenario which maintains

the original word-length throughout the datapath. Consequently, the area overheads

of our approach are summarised in Table 3.6 and Table 3.7 for both design goals. In

our experiments, the area overhead is evaluated in terms of the number of LUTs and

Slices in the FPGA technology, while similar metrics, e.g. the number of logic gates

and transistors, can also be employed if applying our approach into other hardware
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Table 3.6: Area Overhead of Our Approach with respect to Various Frequency Re-
quirements

Normalised

Frequency

FIR Sobel IIR Butterworth DCT4 Geo.Mean

LUT Slice LUT Slice LUT Slice LUT Slice LUT Slice LUT Slice

1.04 1.24 1.05 1.12 1.22 1.26 1.42 1.16 1.11 1.13 1.00 1.18 1.15

1.08 1.24 1.05 1.03 1.08 1.26 1.42 1.16 1.11 1.11 1.15 1.16 1.16

1.12 1.24 1.05 1.03 1.08 1.26 1.42 1.37 1.54 2.30 2.17 1.38 1.40

1.16 2.95 2.56 1.03 1.08 1.61 1.71 1.99 2.03 4.60 2.89 2.14 1.95

1.20 2.95 2.56 1.66 1.39 2.77 3.48 3.17 3.50 N/A* N/A* 2.56 2.57

1.24 4.42 3.15 4.00 3.55 7.87 6.73 6.92 5.25 N/A* N/A* 5.57 4.46

1.28 4.42 3.15 4.00 3.55 N/A* N/A* 6.92 5.25 N/A* N/A* 4.97 3.89

1.32 4.42 3.15 N/A* N/A* N/A* N/A* N/A* N/A* N/A* N/A* 4.42 3.15

* Current frequency cannot be achieved in the traditional scenario. These points are
excluded from the calculation of geometric means.

Table 3.7: Area Overhead of Our Approach with respect to Given Error Budgets.

Error

Budget

FIR Sobel IIR Butterworth DCT4 Geo.Mean

LUT Slice LUT Slice LUT Slice LUT Slice LUT Slice LUT Slice

0.05% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5% 1.02 1.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03

1% 1.02 1.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03

5% 1.24 1.05 1.00 1.00 1.26 1.42 1.65 1.11 1.00 1.00 1.13 1.11

10% 1.24 1.05 1.12 1.22 1.26 1.42 1.65 1.11 1.11 1.15 1.18 1.18

20% 1.24 1.05 1.03 1.08 1.26 1.42 6.92 5.25 3.45 2.17 2.07 1.79

50% 2.95 2.56 4.00 3.55 7.87 6.73 6.92 5.25 3.45 2.12 4.67 3.70

platforms. It can be seen that for a given frequency requirement with minimum

possible errors, the geometric mean of area overhead ranges from 1.16× and 1.15×

to 5.57× and 4.46× for LUTs and Slices, respectively. This result illustrates that

although using traditional approach would lead to smaller design, the area benefits

are less attractive than the performance or accuracy benefits brought by utilising the

our proposed new approach, especially for not stringent frequency requirements.

An even smaller area overhead can be found for a specified error budget with the

maximum clock frequencies. As seen in Table 3.6, the geometric mean of area overhead
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in terms of LUTs and Slices is from 1.00× to 4.67× and from 1.00× to 3.70× respec-

tively. Notice that an area overhead of 1.00× means the original precision is employed

in both the overclocking scenario and the traditional scenario. However the former

achieves frequency speed-ups as seen in Table 3.7, because a specific error budget can

be tolerated and the design can be overclocked.

In general, a very small area overhead of our approach can be observed when the

design is initially operated beyond the safe region with higher frequencies or with a

small error budget (e.g. below 10%). In addition, at even higher operating frequencies

or with larger error specifications, our approach achieves significant performance or

accuracy improvements at the cost of a relatively small extra silicon area.

3.9 Conclusion and Discussion

In this section, we have explored the probabilistic behaviour of several key arithmetic

primitives in an FPGA when operating beyond the deterministic clocking region. Two

design scenarios that might generate errors: violating timing constraints as well as

reducing precisions, have been investigated. It has been found that simply allowing

timing violations to happen would potentially lead to either reductions in average

errors or speed-ups in clock frequencies, in comparison to the traditional approach

where the target timing is met by limiting the precisions throughout the datapath. To

verify this hypothesis, probabilistic models have been developed for errors generated

from both design methodologies, and empirical results on a Virtex-6 FPGA have also

been obtained over a set of DSP applications. Besides, the silicon area has also been

taken into account for the trade-offs. We have shown that applying our approach

on basic arithmetic primitives would potentially outperform utilising the traditional

approach on either the same architectures or structures specifically designed for high

performance, of which the precision loss is even greater under a tight area budget.
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In this thesis, the proposed approach is targeted at datapath logic. This is because

the critical path of complex signal processing systems often resides in the datapath,

in which case our proposed approach would directly improve the clock frequency. In

the case where the critical path lies elsewhere, it may still be possible to improve the

overall operating speed of the system-level design solely by this approach, by using

multiple clock domains, which may be practical in the case of large sections of datapath

with simple control structures (e.g. the filters we present in this chapter) that are then

interfaced to more complex control at IP boundaries.

In addition, the timing model is proposed with the purpose of capturing the notion

of overclocking, therefore we focus on the fundamental feature of arithmetic datapath,

i.e. carry propagation, to build up the models. We have then reverted to experimental

results to verify whether the model sufficiently captures the complexity of a real im-

plementation. For the circuits we have used, the model prediction matches well with

the empirical results. These benchmarks are sufficiently large to have confidence that

the presence of more than one basic arithmetic core does not have a significant impact

on the overall behaviour.

On the other hand, there are numerous theoretical limits of the proposed model

especially for practical usage. For example, in a practical FPGA implementation the

carry propagation delay µ is unlikely to be a constant number as assumed in our model.

In addition, our model isolates the targeting arithmetic operators from the datapath,

whereas the error propagation between multiple operators as well as the corresponding

impact on the overall accuracy are not addressed theoretically. Overcoming the the-

oretically limitations of the proposed models potentially serves as a promising future

research direction and will be discussed in Chapter 6.



Chapter 4

Overclocking Datapath with Online

Arithmetic

4.1 Introduction

In the previous chapter, a novel datapath design methodology using overclocking

has been described in detail. We have demonstrated that allowing timing violations

to happen can be beneficial when considering trade-offs between latency, accuracy

and silicon area, because the worst case scenario only happens with a very small

probability. However, we notice that one main obstacle of applying this approach is

that once timing violation happens, large magnitude errors potentially occur. This

is because, in standard arithmetic operators such as ripple-carry adders, the most

significant digit (MSD) is updated last due to carry propagation, so timing violation

initially affects the MSD of the result.

In this chapter, for the first time we attempt to solve this problem by adopting an

alternative form of computer arithmetic named online arithmetic. In online arithmetic,

all operations are preformed in an MSD-first manner. We suggest that in comparison

79
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to conventional arithmetic, operators employing this arithmetic are less sensitive to

overclocking, because timing errors only affect the least significant digits (LSDs). To

support this hypothesis, we evaluate the probabilistic behaviour of basic arithmetic

primitives with different types of arithmetic when operating beyond the deterministic

clocking region. A probabilistic model of overclocking error for an online arithmetic

multiplier is proposed. We back up the model with experimental results from an

image processing application. We demonstrate that our novel design methodology

that combines overclocking and online arithmetic can lead to substantial performance

benefits in comparison to the design method using conventional arithmetic.

In summary, the main contributions of this chapter are as follows:

• to our knowledge, the first consideration and evaluation of online arithmetic as

an “overclocking friendly” computer arithmetic;

• probabilistic models of overclocking errors for a digit parallel online multiplier;

• analytical and empirical results which demonstrate that the impact of timing

violations can be ameliorated with online arithmetic and that significant perfor-

mance benefits can be achieved.

In the reminder of this chapter, we firstly describe the background of online arith-

metic in Section 4.2, including its main features, together with the implementation

of basic online arithmetic operators such as adder and multiplier. We then discuss

the modelling of overclocking error for the online multiplier in Section 4.3. This is fol-

lowed by a case study on image filter in Section 4.4, which demonstrates the benefits of

applying our approach. Finally we draw the conclusion of this chapter in Section 4.5.



4.2. Background 81

4.2 Background

In Chapter 2 we have provided an in-depth review of theoretical background of online

arithmetic. In this section, we limit our discussion specifically on digit parallel online

adder and online multiplier in Section 4.2.1 and Section 4.2.2, respectively. For ease of

discussion, in the following of this chapter we only discuss online arithmetic algorithms

with binary radix, as the it is used most commonly in computer arithmetic.

4.2.1 Binary Online Addition

Adders serve as a critical building block for arithmetic operations. The structure of

an N -digit binary digit-parallel online adder is shown in Figure 4.1 [34], where all digits

are represented with signed digit (SD) numbers with digit set {1̄, 0, 1}. In this figure,

the module “3:2” denotes a 3:2 compressor, which takes three inputs and generates

two outputs, and is logically equivalent to a full adder (FA). Notice that this structure

is identical to an adder that employs a redundant number system [89]. As highlighted

in Chapter 2, a major advantage with the redundant number system over the standard

ripple-carry based arithmetic is that the propagation of carry is eliminated, resulting

in a precision-independent computation time for addition. As seen in Figure 4.1, the

computation delay of this adder is only two FA delays for any operand word-length,

with the cost of one extra FA for each digit of operands. Therefore this adder structure

has been widely used as a part of other arithmetic operators such as multipliers to

accelerate the sum of partial products [49, 117].

4.2.2 Binary Online Multiplication

Multiplication is another key primitive of arithmetic operations. Typically the on-

line multiplication is performed in an iterative digit-serial manner, as illustrated in
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Figure 4.1: An N -digit binary digit-parallel online adder. Both inputs and outputs
are represented using SD representation. “3:2” denotes a 3:2 compressor.

Algorithm 1 where both inputs and outputs are N -digit SD numbers as represented

in (4.1) for j ∈ [−δ, 2N − 1] and r denotes the radix [34]. For a given iteration j, the

product digit zj is generated through a selection function sel(). For any radix r and

chosen digit set, there exits an appropriate selection method and a value of δ which

ensure the convergence of the algorithm. The mathematical analysis of determining δ

and the selection function is beyond the scope of this thesis, and the full details can be

fond in [34]. Specifically for the case of binary radix, we have δ = 3, and sel() is given

by (4.2). It can be seen that the selection can be made only based on one fractional

bit together with integer bits of W[j].

X[j] =

j+δ∑

i=1

xir
−i, Y[j] =

j+δ∑

i=1

yir
−i, Z[j] =

j∑

i=1

zir
−i (4.1)
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Algorithm 1 Online Multiplication

1: Initialisation: X[−δ] = Y[−δ] = P[−δ] = 0

2: for j = −δ, − δ + 1, · · · , 2N − 1 do

3: H[j] ← r−δ
(
xj+δ+1 · Y[j+1] + yj+δ+1 ·X[j]

)

4: W[j] ← P[j] +H[j]

5: zj ← sel(W[j])

6: P[j+1] ← r
(
W[j] − Z[j]

)

7: end for

sel(W[j]) =





1 if W[j] >
1
2

0 if − 1
2
6 W[j] <

1
2

1 if W[j] < −1
2

(4.2)

It is worth noting that the precision of the product Z can be determined by directly

truncating from the LSDs, since there is no carry propagation from the LSD to the

MSD. This is useful especially when the multiplication product is used by successive

computations, where often only the most significant N digits of the results are used.

In comparison, the product is generated starting from the LSD with conventional

arithmetic. Hence the successive operations cannot commence until the result with

full-precision is generated. This feature of online arithmetic has inspired research

about dynamically control of computation precision in numerous applications [102].

Algorithm 1 can be synthesized into a unrolled digit parallel structure as shown

in Figure 4.2(a). In order to generate results with full precision, there are in total

2N + δ stages. The online inputs are generated from the appending logic according

to (4.1). For each stage, an online adder is used as shown in Figure 4.2(b). The

SDVM module performs the Signed Digit Vector Multiplication, that is, it generates

the results of (xj+δ+1 · Y[j+1]) or (yj+δ+1 · X[j]) in Algorithm 1. For the binary radix,
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Figure 4.2: (a) A digit-parallel implementation of the online multiplication algorithm
(b) Structure of one stage of online multiplier, the maximum digit widths of signals
are labelled.

the implementation of SDVM is straightforward, because in this case we have xj, yj ∈

{1, 0, 1}, hence for instance the output of (yj+δ+1 ·X[j]) can be 0, X[j] or −X[j] when

y is equal to 0, 1 and −1 respectively.

Instead of duplicating the digit-serial implementation 2N + δ times, each stage in

the digit-parallel architecture can be optimised for area reduction. For example, the

SDVM modules and the appending logic are not required in the last δ stages because

the inputs are zero. This leads to a smaller online adder in these stages. Similarly

for the first δ stages the selection logic can be removed, as these stages generate no

output digits and the first digit of the result is generated at S0.
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4.3 Probabilistic Model of Overclocking Error

As the delay of online adder is small, the occurrence of timing violation requires

very fast frequency. Hence we only model the overclocking error for the radix-2 online

multiplier OM. From Figure 4.2 we observe two types of delay chains. One is caused by

generation and propagation of P[j] among different stages. The other is the generation

of online inputs X[j] and Y[j]. Since according to (4.1) the appending logic is basically

wires and simple combinational logic [28], the overall latency will eventually be deter-

mined by the delay of the P[j] path, especially with increasing operand word-lengths.

As such, we initially model the delay of each stage within an OM to be a constant

value µ, as shown in Figure 4.2(b). We also assume in our model that the generation

of online inputs costs no delay.

Let µOM denote the worst-case delay of an OM, thus we have µOM = (2N + δ)µ.

Similar to the modelling process of overclocking error of an RCA as detailed in the

previous chapter, it follows that if the clock period TS is greater than µOM , correct

results will be sampled. If, however, faster-than-rated sampling frequencies are applied

such that TS < µOM , timing violations might happen and intermediate results will

be sampled, potentially generating overclocking errors. For a given TS, we re-use the

previous definition in (3.4) of Chapter 3 that parameter b denotes the maximum length

of error-free propagation, as given by (4.3) where fS denotes the operating frequency.

In the model we always ensure that the first digit of the product will be generated

correctly, i.e. b > δ.

b :=

⌈
TS

µ

⌉
=

⌈
1

µ · fS

⌉
(4.3)

We now determine when this timing constraint is not met, and the size of error in

this case. Similar to Chapter 3, we model the overclocking errors with the following
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assumptions:

1. Every digit of each input to our circuit is uniformly and independently generated

with the digit set {1, 0, 1}.

2. All internal signals of the circuit is reset to zero before the first iteration in

Algorithm 1 starts.

However, all these assumptions will be relaxed in Section 4.4 where data from real

image benchmarks are used as inputs, and results are obtained from simulations after

implementing the design on an FPGA.

4.3.1 Probability of Timing Violations

For an N -digit online multiplier, there are overall 2N + δ stages for digit parallel

implementation. We use τ to denote the stage number, that is, the τ th stage is referred

to as Sτ . The value of τ is then bounded by (4.4). Also let a propagation chain be

generated at stage Sτ with the length of d(τ) digits. Because the presence of timing

violation requires d(τ) > b, and the chain cannot propagate over S2N−1, we cam obtain

the bound of parameter d(τ) as given by (4.5).

−δ 6 τ 6 2N − 1− b = τmax (4.4)

b < d(τ) 6 2N − 1− τ (4.5)

However, the actual length of a “carry” chain is dependent upon input patterns. We

now examine and model the relationship between d(τ) and the input patterns that

correspond to the generation, propagation and annihilation of the carry chain. In
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addition, for a given carry chain of length d(τ), we quantify its probability based on

inputs, such that the probability of timing violation, i.e. the probability of d(τ) > b,

can be determined using our model.

Let the specific input pattern of stage Sτ be represented by C(τ), which can be

classified into four types based on whether a digit of inputs x and y is zero, as listed

in (4.6). Under the assumption that all digits of input signal are mutually independent

and uniformly distributed, the probabilities of C1 to C4 equal to 1/9, 4/9, 2/9 and 2/9

respectively.

C(τ) =





Case 1 (C1) : xτ+δ+1 = 0, yτ+δ+1 = 0

Case 2 (C2) : xτ+δ+1 6= 0, yτ+δ+1 6= 0

Case 3 (C3) : xτ+δ+1 6= 0, yτ+δ+1 = 0

Case 4 (C4) : xτ+δ+1 = 0, yτ+δ+1 6= 0

(4.6)

As we assume that all internal signals are reset to zero initially, we have H[j] = P[j] =

Z[j] = 0. Therefore before the first iteration of Algorithm 1 starts, Algorithm 1 can be

simplified to give (4.7) for j = τ > −δ. This equation is used to determine whether a

carry chain will be generated at Sτ , for a given value of C(τ).

P[τ+1] = r ·W[τ ]

= r−δ+1(xτ+δ+1Y[τ+1] + yτ+δ+1X[τ ])

(4.7)

If C(τ) = C1, no chain will be generated at Sτ because in this case P[τ+1] = 0. In

other cases, P[τ+1] 6=0 and a new chain will be generated at Sτ . We denote the number

of the leading non-zero digits of P[τ+1] be D. When P[τ+1] propagates to the next stage,

from Algorithm 1 we notice that the value of D is reduced by one, because of the one

digit shifting left when computing P[τ+1] = r(W[τ ] − zτ ). Also it is worth noting that

this process is independent of inputs, thus it will repeat in the following stages until
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D = 1, when this carry chain is finally annihilated. Hence we see that the value of D

can affect the chain length d(τ), which we consider more specifically and separately

for C(τ) = C2, C3 and C4.

If C(τ) = C2, D equals to the maximum word-length of P[τ+1] as shown in Fig-

ure 4.2(b), i.e. D = τ + 2δ + 1. Combining this value of D and (4.5) gives the

maximum chain length d(τ) in (4.8).

d(τ)max = Min(D, 2N − 1− τ)

= Min(τ + 2δ + 1, 2N − 1− τ)

(4.8)

For C3 and C4, the carry generation, propagation and annihilation behaviour of both

cases are statistically identical. Hence we only discuss C(τ) = C3, and the conclusion

can be directly applied for C(τ) = C4. For C(τ) = C3, (4.7) is modified to give (4.9),

because yτ+δ+1 = 0. Due to the same reason we also have Y[τ+1] = Y[τ ]. According to

(4.9), D can be determined only based on the number of the leading non-zero digits

of Y[τ ].

P[τ+1] = r−δ+1(xτ+δ+1Y[τ+1]) = r−δ+1(xτ+δ+1Y[τ ]) (4.9)

If the carry chain is generated from the first stage, we have τ = −δ. Substituting

this into (4.9) yields P[−δ+1] = r−δ+1(x1y1). Therefore if C(−δ) = C2, we have d(−δ) =

d(−δ)max as given in (4.8), otherwise d(−δ) = 0.

If the carry chain is generated from other stages where τ > −δ, D and d(τ) should

be determined based on two possible judgements for τ ′ = τ − 1 as stated below:

1. If yτ ′+δ+1 6= 0, D equals to the maximum word-length of Y[τ ′+1]. Thus we have

d(τ) = d(τ ′)max − 1.
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2. If yτ ′+δ+1 = 0, then Y[τ ′] = Y[τ ′−1]. This is a recursive process and these two

judgements should be performed recursively for τ ′′ = τ ′ − 1. This process will

terminate when either the first judgement is satisfied or the first stage is reached,

i.e. τ = −δ.

Now we have examined all possible cases of C(τ) and the corresponding value of d(τ)

for any given value of τ . Since the occurrence of timing violation requires d(τ) > b, the

probability of timing violation can be determined by summing up the probabilities of all

carry chains that satisfy d(τ) > b. This process can be summarised into Algorithm 2,

of which the general idea is to examine all possible stages that timing violations may

occur, together with all possible input patterns for each stage. This algorithm returns

Pr(TS), which denotes the probability that timing violations happen in an N -digit

online multiplier as a function of TS. In this algorithm, b and τmax are obtained from

(4.3) and (4.4), respectively. The probability of the input pattern for stage i is denoted

by Pr(C(i)), which can be determined through (4.6).

Algorithm 2 Probability of Timing Violations

1: Pr(TS)← 0;
2: for all Stages τ ∈ {−δ,−δ + 1, · · · , τmax} do
3: for all Input cases C(τ) ∈ {C1, · · · , C4} do
4: Determine d(τ) according to C(τ);
5: if d(τ) > b then
6: Pr(TS)← Pr(TS) +

∏τ

i=−δ Pr(C(i));
7: end if
8: end for
9: end for
10: return Pr(TS)
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4.3.2 Magnitude of Overclocking Error

In the presence of timing violations, multiple chains might not be correctly prop-

agated, resulting in overclocking errors generated from LSDs. In order to determine

in which digits overclocking errors may generate, we start by locating the first out-

put digit zλ that contains error, and hence errors are expected to occur for all digits

from digit zλ to digit z2N . For a given TS and a minimum value of τ such that the

maximum length of the carry chain generated at Sτ satisfies d(τ)max > b, this carry

chain will be annihilated at the stage that delivers output digit zλ. Therefore we have

λ = τ + dmax(τ) + 1. As such, the magnitude of overclocking error can be expressed

by (4.10), where zi and zi
′ denote the correct value and the actual value of the output

digit of Si, and εi ∈ {±2−i,±2−i+1, 0} since z is represented using digit set {1, 0, 1}.

|ε| =
∣∣∣∣∣
2N∑

i=λ

2−i(zi − zi
′)

∣∣∣∣∣ =
∣∣∣∣∣
2N∑

i=λ

εi

∣∣∣∣∣ (4.10)

However, it is worth noting that using online arithmetic, the change of output digits

does not necessarily result in a different number as it is represented using a redundant

form. This will lead to smaller error magnitude in practice. For instance, due to

timing violation two digits of a computation output is changed from 0.101 to 0.111.

Nevertheless, no error is generated in this case, as both numbers represent 0.011 in

the two’s complement form. In contrast, errors will always be generated with conven-

tional arithmetic if the output digits are changed, because each number has a unique

representation.

4.3.3 Expectation of Overclocking Error

For a given TS, the expectation of overclocking error can be obtained by combining

Pr(TS) from Algorithm 2 and |ε| from (4.10), as presented in (4.11). We first verify the
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proposed model against the results from behavioural simulations with the aforemen-

tioned assumptions on timing and inputs, as shown in Figure 4.3(a) and Figure 4.3(b)

for 8-digit OM and 12-digit OM, respectively. TS is normalised with respect to the

value from structural timing analysis, i.e. (2N+δ)µ. It can be seen that the modelled

value match well with the simulation results. We also verify the models against the

FPGA timing simulation results without timing assumptions, as illustrated in Fig-

ure 4.3(c) and Figure 4.3(d). We notice that the general behaviour of the model is

similar to the FPGA results, however it does not capture the small increments in er-

rors because we only model the coarse delay which is in units of µ. Whereas the other

sources of delay, such as the generation of the online form of inputs and result digits,

are not included in our model.

Eovc = Pr(TS) · |ε| (4.11)

From Algorithm 2, instead of accumulating Pr(TS), the probability of each individual

chain delay Pr(d) is shown in Figure 4.4 for a variety of word-lengths of OM, together

with the corresponding error magnitude |ε(d)| and the product of both in terms of

error expectation E(d), where parameter d represents the chain delay. For a given TS,

the overall error expectation in (4.11) can also be obtained from (4.12).

Eovc =
∑

d>b

Pr(d) · |ε(d)| =
∑

d>b

E(d) (4.12)

From Figure 4.4 several observations can be made. Firstly, for all operand word-

lengths the magnitude of overclocking error decreases exponentially with longer chain

lengths. This is in contrast to designs with conventional arithmetic, and justifies the

advantage of using online arithmetic in the first place that timing violation firstly

affects LSDs with online arithmetic. Secondly, interestingly we see that carry chains
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Figure 4.3: Expectation of overclocking error for online multipliers: verification of the
proposed model against behavioural simulations with timing assumptions (top row)
and FPGA timing simulations (bottom row).

with longer delay would happen with greater probabilities in an OM. This is because

for the unrolled radix-2 OM, d(τ) is only dependent upon the inputs for chain gener-

ation, whereas carry propagation and annihilation will not be affected by inputs, as

highlighted in Section 4.3.1. Therefore long carry chains will be generated as long as

both input digits are nonzero with the probability 4/9. In comparison to the tradi-

tional arithmetic, carry generation, propagation and annihilation are all decided by

specific input patterns. This limits the overall probability of long chains. However,

we also notice that for chains with long delays, the increasing in likelihood of error is
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(a) 8-digit.
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(b) 12-digit.
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(c) 16-digit.
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(d) 32-digit.

Figure 4.4: Probabilities of different chain delay, the corresponding magnitude of
overclocking error and the combination of both in terms of error expectation in the
radix-2 OM with different word-lengths.

outweighed by the decrease in magnitude of error. Therefore the combination of both

results in a decline in error expectation. In contrast, one would expect error expecta-

tion to grow faster as the amount of overclocking is increased when using traditional

arithmetic because errors occur in MSDs.
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4.4 Case Study: Image Filter

4.4.1 Experimental Setup

The benefits of the proposed methodology are demonstrated by using a 3× 3 Gaus-

sian image filter with two types of computer arithmetic. One is the standard binary

arithmetic with all data represented in the two’s complement form. In order to imple-

ment the image filter, speed-optimised adders and multipliers are created using Xilinx

Core Generator [136]. The other is the radix-2 online arithmetic, with the basic build-

ing blocks described in Section 4.2.1 and Section 4.2.2. In the online design, all signals

are represented in the online format. In order to achieve the desired latency between

input and output, both designs are overclocked and the errors seen at the output

are recorded. The results are obtained from a Xilinx Virtex-6 FPGA through post

place-and-route simulations. Same to the previous chapter, the differences between

the actual results and error-free results are still evaluated in terms of mean relative

error (MRE), as given by (3.26) and it denotes the ratio between the mean value of

error and mean value of outputs.

Since the redundant digit set is used in online arithmetic, a signed integer number

within [−2N , 2N − 1] can be represented using N digits. However the representation

range is [−(2N−1, 2N−1 − 1)] with N digits using two’s complement number system.

For a valid comparison, an N -digit image filter using online arithmetic is employed to

compare against an (N + 1)-digit design using traditional arithmetic.

In our experiments, two types of input data are utilised. One is randomly sampled

from a uniform distribution of N -digit numbers. This type is referred to as “Uniform

Independent (UI) inputs”. The other is called “real inputs”, which are the pixel values

of several 512× 512 benchmark images.
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4.4.2 The Impact of Overclocking

The MRE values of the image filter with traditional arithmetic (dotted lines) and

online arithmetic (solid lines) when N = 8 are illustrated in Figure 4.5. Note that we

plot the “actual” maximum frequencies which are obtained experimentally increasing

the operating frequency from the rated value until errors are observed at the out-

puts. This is to remove the conservative timing margin for a fairer comparison once

overclocking is introduced.

According to the timing report, the rated operating frequencies are 168.7MHz and

148.3MHz for design with conventional arithmetic and design with online arithmetic,

respectively. However as seen in Figure 4.5, both designs are actually running at faster

frequencies without timing errors. This is in accordance to the results shown in the

previous chapter, and is due to the removal of the conservative guard bands. For the UI

inputs, design with online arithmetic actually operates at a higher frequency without

timing violations in comparison to the design using traditional arithmetic. This error-

free frequency is even larger when using the real image data as inputs, because the real

data do not exactly follow the uniform distribution or the independent assumption,

and the worst cases happen with even smaller possibilities. In Figure 4.5 the “Lena”

benchmark image is used as the real inputs.

If errors can be tolerated, we may allow timing violations to happen for better per-

formance. The sensitivity of overclocking error for a given arithmetic can be evaluated

by the data slope in Figure 4.5. For instance under an error budget of 1% MRE,

using the UI inputs the frequency of the traditional design can be improved by 3.89%

with respect to the maximum frequency without errors, whereas the design with online

arithmetic can be overclocked by 6.85%. This indicates that online arithmetic is less

sensitive to overclocking, as illustrated in Section 4.3.3. The difference is even greater

using real image data: 13.74% frequency speed-up using online arithmetic against
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Figure 4.5: Overclocking error in an image filter with two types of computer arithmetic:
online arithmetic and standard binary arithmetic, of which the rated frequencies are
148.3MHz and 168.7MHz, respectively, according to the timing analysis tool.

4.04% with traditional arithmetic, because fewer long chains are generated with real

inputs.

The output images for both design scenarios are presented in Figure 4.6. Images

obtained from design with online arithmetic are shown in the top row, while output

images obtained from design with conventional arithmetic are illustrated in the bottom

row. In Figure 4.6, f0 and f0
′ denote the maximum error-free frequencies for the online

design and the conventional design, respectively. Both f0 and f0
′ are obtained from our

experiments instead of timing reports. In addition, SNR of each image is also recorded.

Since the overclocking errors are in the LSDs of the results with online arithmetic, this

leads to small error magnitude and consequently the degradation on the image can

hardly be observed. In contrast, timing violations cause errors in the MSDs with

traditional arithmetic. This leads to “salt and pepper noise”, which causes severe

quality loss of the images especially for high frequencies, as can be clearly observed

from the bottom row of Figure 4.6. Meanwhile, errors in the MSDs would result in

large noise power and therefore the SNR for the traditional design is small.
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(a) 1.05f0, SNR=38.3dB. (b) 1.15f0, SNR:36.2dB. (c) 1.25f0, SNR:26.7dB.

(d) 1.05f0
′, SNR:21.5dB. (e) 1.15f0

′, SNR:9.0dB. (f) 1.25f0
′, SNR:8.5dB.

Figure 4.6: Output images of image filter using online arithmetic (top row) and tra-
ditional arithmetic (bottom row).

4.4.3 Potential Benefits in Circuit Design

Similarly to Section 3.8.2, our results could be of interest to a circuit designer in

two ways. By choosing different arithmetic and data representations, either a circuit

can be designed to operate at a certain frequency with the minimum possible MRE,

or a given error budget can be met with the fastest achievable frequency. For the first

case, the experimental results obtained by UI inputs and four benchmark images are

summarised in Table 4.1 in terms of the relative reduction of MRE, and in Table 4.2 for

the differences of SNR, which are calculated by (4.13) where SNRonline and SNRconv

denote the SNR obtained from the design with online arithmetic and conventional

arithmetic, respectively. In both tables the frequency is normalised to the maximum

error-free frequency for each arithmetic, i.e. f0 and f0
′ in Figure 4.6. From our results,

a significant reduction of MRE can be observed using online arithmetic for all input
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types. The geometric mean reduction of MRE is 89.2% using UI data. Even larger

differences of MRE reduction can be achieved when testing with real image data,

varying from 97.3% to 98.2%, as long chains occur with smaller probabilities with real

data. Similarly from Table 4.2, the improvements in SNR are ranging from 21.4dB to

43.9dB.

SNRdiff = SNRonline − SNRconv (4.13)

For the second design perspective, Table 4.3 illustrates the frequency speed-ups with

different input types when specific error budgets can be tolerated. Note that the “N/A”

in this table means certain error budget cannot be met with traditional arithmetic at

all. We see that for all input types, design using online arithmetic still outperforms

the traditional design for each MRE budget in terms of operating frequency. Likewise

the geometric mean of frequency speed-ups is larger for real image inputs.

Table 4.1: Relative Reduction of MRE with Online Arithmetic for Various Normalised
Frequencies.

Inputs
Normalised Frequency Geo.

Mean1.05 1.10 1.15 1.20 1.25

Uniform 94.5% 89.1% 90.1% 88.3% 84.3% 89.2%

Lena 99.3% 99.2% 98.9% 97.7% 94.9% 97.9%

Pepper 99.7% 98.3% 98.1% 97.2% 95.1% 97.7%

Sailboat 99.5% 97.9% 97.3% 96.8% 95.1% 97.3%

Tiffany 99.9% 97.6% 98.4% 97.8% 97.2% 98.2%

Table 4.2: Improvement of SNR (dB) with Online Arithmetic for Various Normalised
Frequencies, Calculated Using (4.13).

Inputs
Normalised Frequency

1.05 1.10 1.15 1.20 1.25

Lena 44.6 36.3 33.2 29.1 22.9

Pepper 35.7 28.3 28.7 25.9 24.1

Sailboat 33.7 27.5 26.3 25.0 21.7

Tiffany 43.9 25.9 29.5 25.6 24.5
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Table 4.3: Relative Improvement in Frequency with Online Arithmetic for Various
Error Budgets.

Inputs
Error Budget Geo.

Mean0.01% 0.1% 1% 10%

Uniform N/A 4.59% 8.78% 12.83% 8.03%

Lena 7.96% 11.50% 16.39% 13.71% 11.88%

Pepper 6.22% 8.87% 18.68% 15.94% 11.32%

Sailboat 5.71% 8.87% 16.93% 15.29% 10.70%

Tiffany 2.35% 6.90% 18.58% 12.22% 7.79%

4.4.4 Area Overhead of The Proposed Approach

Transferring from conventional arithmetic to online arithmetic comes at the cost

of extra usage of silicon area. The area comparison between the above two designs is

illustrated in Table 4.4 in terms of the number of LUTs and Slices in FPGA technology.

While we notice that our approach does cause increment in area utilisation, it should

be noticed that the FPGA architecture is optimised for conventional arithmetic. For

instance, the Xilinx Virtex series FPGAs employ dedicated multiplexers and XOR

gates for very fast ripple carry addition [135]. In comparison, our designs are not

specified optimised for FPGA architecture. Besides, at least two orders of magnitude

error reduction is obtained for a given frequency in our design, as shown in Figure 4.5.

Although the differences in both error and area can be compensated by using more

digits with traditional arithmetic, this will result in longer delay and an even larger

gap in frequency between two designs.

Table 4.4: Area Comparison between Designs with Two Types of Computer Arith-
metic.

Metric
Arithmetic Type

Overhead
Conventional Online

LUT 912 1896 2.08
Slice 324 525 1.62
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4.5 Conclusion

In this chapter, we have studied the probabilistic behaviour of key arithmetic prim-

itives with different types of computer arithmetic when operating beyond the deter-

ministic clocking region. For the first time we attempt to combine online arithmetic

with approximate datapath design in order to achieve a graceful degradation under

overclocking. Through the usage of analytical models and empirical FPGA results, we

have demonstrated that significant error reduction and performance improvement can

be achieved by using the “overclocking friendly” online arithmetic. Furthermore, we

have identified that the major drawback of implementing online arithmetic on existing

hardware platform such as FPGAs is that it normally requires large area overhead.

This issue will be the main focus of the next Chapter.



Chapter 5

Efficient FPGA Implementation of

Online Arithmetic Operators

5.1 Introduction

In the previous chapter, we have demonstrated the “overclocking friendly” feature

of online arithmetic. We have shown that digit parallel online operators allow grace-

ful degradation when operating the circuit beyond the deterministic clocking region,

because timing errors only occur at LSDs of the results. In comparison, traditional

forms of computer arithmetic do not fail gracefully when timing violations happen,

since timing errors tend to affect MSDs of the results.

Despite its attractiveness, we have also pointed out in the end of previous chapter

that the usage of online arithmetic on existing hardware platforms such as FPGAs

is still limited due to a large area overhead. For the implementation of standard

arithmetic on FPGAs, because it is inefficient and slow to map arithmetic circuits

solely onto look-up-tables (LUTs), both main commercial FPGA vendors have intro-

duced dedicated carry logic [135] to address this issue. Significant prior work explores

101



5.1. Introduction 102

methods that can effectively map circuits to the carry logic for performance improve-

ments [99], or proposes alternative carry logic for FPGAs [50, 40]. Hard DSP blocks

are also included in modern architectures to improve area efficiency and performance

of arithmetic operations such as multiplication and multiply accumulation. However,

most of these approaches are designed to accelerate computations with the conven-

tional form of arithmetic.

For online arithmetic, a major research direction is about its efficient FPGA im-

plementation: a brief review of relevant work in this area is presented in Section 5.2.

Specifically, there are existing approaches to build general purpose online adders specif-

ically for FPGAs with 4-input LUTs (4-LUT) and with two LUTs within a slice or a

logic element (LE), such as the Xilinx Spartan 3 series FPGAs [133] and the Altera

Cyclone III FPGA [3]. However, as will be discussed in Section 5.2, these approaches

cannot be directly and/or efficiently applied on many modern FPGAs, which typically

have 6-input LUTs (6-LUT) and four LUTs in a slice, such as the Xilinx Virtex series

FPGAs and all Xilinx 7 series FPGAs [138]. Moreover, the move to the 6-LUT on the

basic architecture opens new opportunities for further optimisation, which have not

been investigated by previous studies.

In this chapter, this issue will be addressed. In Section 5.2, we propose a novel

approach to map digit parallel online adders onto FPGAs with 6-LUT. The mapping

is based on the fast carry logic and ensures the available logic resources within a slice

are fully utilised. We demonstrate experimentally on a Xilinx Virtex-6 FPGA that the

proposed designs achieve significant area reduction and performance gain over their

original implementations. For online adders, our method achieves slice savings of over

67% and frequency speed-ups of over 1.2× in comparison to a direct implementation.

In comparison to the standard ripple-carry adder, the area overhead drops from up to

8.41× to 1.88× using the proposed online adder.
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In Section 5.3, we expand the evaluations of the optimum adder structure in Chap-

ter 3 by adding our proposed online adder into the comparison. We take into account

multiple design constrains and options, such as accuracy, operating frequency, silicon

area, different types of adder structure, and whether the design is overclocked or not.

We demonstrate that for limited area budgets, applying the overclocking approach

to RCA can be more beneficial than using faster adders to achieve similar latency.

Whereas with more relaxed area constraints, using our proposed online adder outper-

forms in terms of accuracy or performance.

In Section 5.4, we optimise the online multiplication algorithm to yield an efficient

digit parallel online multiplier for FPGAs. The performance of the proposed online

multiplier is demonstrated experimentally on a Xilinx Virtex-6 FPGA. We show that

the slice utilisation of the proposed online multiplier reduces by over 69%, with a

frequency speed-up over 1.5× in comparison to a direct implementation. When com-

pared to the multiplier with standard arithmetic, the direct implementation has an

area overhead up to 8.11×, which drops to 1.84× when using the proposed new archi-

tecture.

In addition, our approach has the advantage of being able to create a correctly

rounded multiplier with a reduced output precision using less hardware than a full

multiplier, which multiplies two N -digit numbers and produces an output of 2N dig-

its. However, in many cases the full precision product is not required. In such cases,

a reduced precision output is created by either truncating or rounding the LSDs. Al-

though there has been research into saving area by avoiding the creation of unnecessary

LSDs [27], these techniques still often require extensive simulation to guarantee cor-

rectness. In contract, since online multipliers compute the output from the MSD first,

hardware can be saved by not generating the LSDs in the first place. As an example,

if we are only interested in the most significant half of the product, according to our
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experiments we can create a digit parallel online multiplier that saves up to 56% slice

usage in comparison to a standard multiplier with truncated output.

Finally in Section 5.5, we re-implement the benchmark circuits employed in Chap-

ter 3 with online arithmetic on a Virtex-6 FPGA, and evaluate the performance ben-

efits of using online arithmetic operators based on FPGA measurements.

In summary, the main contributions of this chapter are:

• Efficient methods to map online adders and online multipliers to modern FPGAs;

• Comparison of online adders to traditional arithmetic adders when considering

a variety of design trade-offs;

• A method to implement correctly rounded online multipliers for a chosen output

precision;

• Demonstration of the performance improvements of online operators in terms of

area and frequency.

5.2 Digit Parallel Online Adder for FPGAs

The structure of a digit parallel online adder is detailed in Chapter 4. In this section,

we aim to investigate an area-efficient FPGA implementation of online adder.

5.2.1 Related Work

As discussed in Chapter 2, there has been previous work on FPGA implementation

of digit parallel online adders. From the literature, the existing approaches can be

classified into three types:
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1. Efficient mapping of the digit parallel online adder onto sophisticated FPGA

resources [63, 55];

2. Addition of multiple operands by designing compressor trees based on bit coun-

ters [56, 97];

3. Modifying existing FPGA architecture for more efficient digit parallel online

addition [13] and for specific applications [47].

Type 2 examines the use of counters to sum k N -digit numbers where k > 2. Instead,

we focus on online addition with two operands which performs Z = X+Y , as discussed

in the previous chapter. In comparison to Type 3, we attempt to obtain the best

performance from mainstream FPGAs instead of suggesting ways to modify the FPGA

fabric. Therefore both Type 2 and Type 3 are beyond the consideration of this thesis.

For Type 1, existing work takes advantage of the built-in carry resources in FPGAs.

Conventionally the ASIC implementation of online adders is based on 4:2 compressors,

as outlined in Figure 5.1 within the grey background. However, directly applying this

approach in FPGAs could be less efficient. This is because there is no carry propagation

between the two FAs within a 4:2 compressor, and the net delay between them can

be large. Instead, Kamp et al. [63] and Hormigo et al. [55] described very similar

mapping techniques for online adders with signed digit (SD) representations and carry

save (CS) representations, respectively. They share the common idea of building the

online adder based on the logic block (LB) as highlighted within the dotted circle in

Figure 5.1. In this case, the fast carry logic in the FPGA can be employed, and the

delay between the two 3:2 compressors can be greatly reduced.

However, we notice the major limitations of both approaches are that they only

target on FPGAs with 4-input LUTs (4-LUT) and two LUTs within a logic slice, such

as the Xilinx Spartan series FPGAs and the Altera Cyclone series FPGAs. This is



5.2. Digit Parallel Online Adder for FPGAs 106




















































 











 

 



Figure 5.1: Map the online adder onto Spartan FPGAs using the fast-carry resources.
The grey background highlights the 4:2 compressor. Dotted circle indicates the logic
block (LB) which can be mapped to the FPGA using the carry resources.

naturally reasonable because one LB can be mapped to a single slice. Nevertheless,

for modern FPGAs with 6-input LUTs (6-LUT) and four LUTs in a slice, such as

the Xilinx Virtex series FPGAs, all Xilinx 7 series FPGAs as well as Xilinx Zynq All

programmable System-on-Chip (SoC), directly applying these approaches will result

in either resource waste or wrong results. For instance, if two LBs are mapped to a

slice with four LUTs as seen in Figure 5.2, the outputs of LB1 should not be used

because its carry input cannot be explicitly initialised. Due to the same reason, the

output of XORCY2 should not be used.

5.2.2 Proposed Mapping Method

To tackle this problem, we first present an alternative structure of the online adder to

enable an efficient FPGA mapping. The structure of a 4-digit online adder is given as

an example in Figure 5.3. In this equivalent structure, the first 3:2 compressor in each

4:2 compressor is split into two parts, which only generate carry and sum respectively,
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Figure 5.2: An example illustrating that the mapping method in [63] should not
be directly applied on a Virtex-6 FPGA, because the carry input of LB1 cannot be
explicitly initialised.

  

 
   




















 




































 








































Figure 5.3: Alternative structure of online adder. Left: 4-digit online adder. The
shaded part refers to the two logic blocks (LBs) that can be mapped onto one slice.
Right: one LB. The dotted boxes outline the logic that can be mapped onto each LUT
and the corresponding fast carry logic.
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as shown on the right of Figure 5.3. In this case they can be mapped individually

on two LUTs. The second 3:2 compressor, which generates the outputs, is unchanged

and can be implemented using the fast carry logic.

The detailed slice mapping of the two LBs and the logic in each LUT are shown in

Figure 5.4. The I/O signals are identical to the previous example in Figure 5.3. The

6-LUT can be configured with two different output ports O6 and O5. For LB1, the

carry input can be initialised by setting the O6 of LUT2 to zero. Thus the output

of MUXCY2 is always O5 of LUT2, and the carry from LB2 will not affect the result of

LB1. The logic to generate the MSD and the LSD can be combined into one slice as

observed from Figure 5.3. Therefore using this mapping method the resources within

one slice can be fully utilised, leading to a significant area reduction, while maintaining

the performance advantage of online adder.

In this mapping approach, the resource usage of the online adder in terms of the

number of LUTs and slices with respect to the operand word-lengths (N) can be

calculated as given in (5.1) and (5.2), respectively.

OA LUT = 2N (5.1)

OA slice = 1 +

⌈
N − 2

2

⌉
(5.2)

5.2.3 Performance Analysis

We now evaluate the performance of our proposed online adder. In our experiments,

we compare the proposed online adder (OA new) against the original design which is

implemented using functional descriptions in Verilog HDL based on 4:2 compressors

(OA behv). We also compare these architectures against a ripple carry adder (RCA),
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Figure 5.4: Implementation of two logic blocks (LBs) in one FPGA slice which contains
four 6-LUTs. NC stands for “Not Care”.
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Figure 5.5: Rated frequencies of RCA and online adder with different implementation
methods. The results are obtained from post place-and-route timing reports in ISE
14.7.

which uses conventional arithmetic. While our experiments target Xilinx Virtex-6

FPGAs (speed grade -1), our methods are applicable to any FPGAs with the same

slice architecture such as all the Xilinx 7 series FPGAs. Notice that in order to utilise

the carry resources and avoid logic optimisations by the synthesis tool, the Xilinx

primitive component “Carry4” is used to create OA new.

From timing reports we record the rated frequencies of all designs when varying the

operand word-lengths. The results are shown in Figure 5.5. The frequency values are

obtained through Xilinx Timing Analyzer after placing and routing the designs in ISE

14.7. It can be seen that both designs with online arithmetic achieve relatively stable

operating frequencies across a variety of operand word-lengths. This is as expected,

because the critical path delay of the online adder is theoretically independent of the
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operand precision. In comparison, the rated frequency of the RCA drops dramatically

for larger word-lengths. It follows that both online adders outperform RCA for large

word-lengths. More specifically, the frequency of OA behv is faster than RCA when

N > 30, whereas our new online adder outperforms RCA for N > 16. As a result, this

makes the OA new more attractive for a wider range of applications. Furthermore, the

speed-ups of OA new against OA behv are over 1.2×.

We also compare the resource usage of all three adder designs with respect to a

variety of operand word-lengths. The results are presented in Figure 5.6. We can

see that in comparison to the original OA behv, our implementation OA new achieves

significant area savings from 25% to 33% in LUTs and from 67% to 77% in slices. This

is because the dedicated FPGA resources are fully utilised. These area savings reduce

the overhead of an OA over an RCA from 2.95× to 1.98× for LUTs, and from 8.41×

to 1.88× for slices. It is unlikely that the overhead can be completely avoided when

using an OA because of the usage of a redundant number system. Nevertheless, with

the reduced overhead, using OA to take advantage of the graceful degradation when

operating beyond the deterministic clocking region may become more attractive for

an FPGA developer.

5.3 Design Trade-off Evaluation for Different Adders

In this section, we expand the previous evaluation of optimal adders in Chapter 3, by

adding our newly proposed implementation of online adder in to the comparison. We

compare different forms of adders when taking into account various design trade-offs

such as accuracy, latency and area.
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Figure 5.6: Area comparisons of different binary adder implementations with respect
to a variety of operand word-lengths.
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Figure 5.7: The maximum word-lengths of different adder structures with respect to
a variety of frequency requirements.

5.3.1 Accuracy, Latency and Area Trade-offs for Adders

Firstly, we demonstrate the benefits of CSA and OA in accuracy and performance,

as well as the area overhead in comparison to RCA. As an example, the maximum

word-lengths of RCA, CSA and OA with respect to a variety of operating frequencies

are illustrated in Figure 5.7. The results are obtained from post place-and-route

simulations in ISE 14.7. In this experiment, circuits are operated with timing closure,

i.e. the conventional design scenario is evaluated for all structures. We consider the

operand word-length of adders ranging from 32-digit to 4-digit with a step of 4-digit.

As can be seen in Figure 5.7, for a relatively relaxed frequency requirement (e.g.

at 470 MHz), both CSA and OA can be implemented with greater word-lengths than

RCA. For CSA, this is because the stage parallelism enables a larger word-length, even
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Figure 5.8: Area consumption with respect to a variety of frequencies of different adder
structures.

though the multiplexer delay limits the precision of each CSA stage in comparison to

RCA. For OA, an even larger gap in word-length can be observed when compared to

RCA. Additionally, unlike RCA and CSA of which the maximum word-length drops

gradually with the increment of frequency, OA maintains full precision across a large

range of frequencies. This is as expected, because the critical path delay of OA is

theoretically irrelevant to the operand word-length as discussed in Section 4.2.1. How-

ever, we also observe that for a large operating frequency, the word-length of OA drops

drastically because OA performs computations in parallel, and if it is operated beyond

the maximum frequency, most output digits are likely to be affected. Besides, CSA

cannot be implemented with larger precision than RCA either, because in this case

the multiplexer delay becomes comparable to the delay of the carry chain for CSA,

and it inhibits the benefits of parallelism.
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We also record the corresponding area consumption of each adder structure in terms

of the usage of LUTs as depicted in Figure 5.8. It can be seen that the CSA with four

stages and two stages costs up to 4.5× and 3.1× area than RCA, respectively. OA is

also up to 3.8× larger than RCA.

To combine the results seen in Figure 5.7 and Figure 5.8, it is not straightforward to

decide which adder structure is optimum for given design specifications on accuracy,

performance and area consumption. Therefore, it is necessary to provide comprehen-

sive evaluations of different adder structures to quantify the trade-offs between these

design constraints, as will be detailed in the following section.

5.3.2 Evaluation of Optimum Adder Structure

In this section, we evaluate three types of adders: RCA, CSA (with two stages and

four stages) and OA. All adders are implemented in the digit parallel form with the

original word-length of 32 digits. Similarly to Chapter 3, our evaluation is performed

when considering either of the following two situations:

1. Operate the circuit at a given frequency within a specific area budget, while

achieving the minimum output error;

2. Operate the circuit at the fastest frequency with a minimum resource usage,

under a given error budget.

In both cases, decisions must be made on which adder structure achieves this min-

imum, and which design scenario should be adopted. Again in our experiments, the

inputs are set to randomly generated data following uniform distribution.
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Optimum Adder with Given Frequency and Area Requirements

For this type of application, the available area and expected operating frequency are

given at the design time. Again we aim to provide the optimum design approach when

considering this trade-off, instead of ranking of all possible design approaches. As an

example slice through the design space, in Figure 5.9 we record the mean relative error

(MRE) with respect to a range of operating frequencies for different design scenarios,

when the area budget is set to 35 LUTs and 55 LUTs separately. The results are

obtained from post place-and-route simulations in ISE 14.7. MRE can be calculated

as given by (3.26) in Chapter 3, and it represents the ratio between the mean value of

error and mean value of outputs. Notice that the optimum adder design metric that

achieves the minimum MRE is labelled.

In Figure 5.9(a), the area budget is set to 35 LUTs. For all frequency values, the

overclocked RCA achieves no larger MRE than the RCA with truncated operand

word-lengths. This is in accordance with the analysis in Section 3.2 of Chapter 3. We

also notice that both CSA and OA cannot be implemented with full precision due to

area limitation, and this leads to large truncation errors. Despite the CSA with four

stages is best for some frequencies, in general the overclocked RCA is the optimum

design for most frequency requirements. In this case, the actual difference between

the overclocked RCA and the second best design ranges from 1.4× to 26.5× in terms

of MRE reduction.

However if the area budget is released to 55 LUTs, OA can be implemented with the

original word-length. Additionally CSA can also be implemented with larger precision,

but still with truncation errors. Therefore as shown in Figure 5.9(b), OA serves as the

optimum design with respect to a wide range of frequency requirements. In this case

at least 8.4× MRE reduction can be achieved by OA in comparison to the second best
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Figure 5.9: Two examples of comparisons between different design scenarios and adder
implementations with limited area budget. Design scenario with minimum error is
labelled.
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mum error with respect to a variety of frequency and area constraints.

design. For higher frequencies, the MRE of OA increases rapidly, and CSA with four

stages outperforms both OA and RCA for higher frequencies. Similar to Figure 5.9(a),

the overclocked RCA is the optimum design for even higher frequencies, because in

this case the CSA can only be implemented with small precisions, and the multiplexer

delay limits the benefits of parallelism.

The results shown in Figure 5.9 can be further extended by testing with a variety

of area constraints. In this case, we can map the optimum design scenarios into the

design space of different operating frequencies and area consumptions, as shown in

Figure 5.10. In general this graph can be divided into several regions for in-depth

analysis. Firstly, if the frequency requirement is moderate whilst the area budget is

large enough to implement an OA in full precision, it will be the optimum design.
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This is because long carry chains are eliminated from OA such that it can maintain

full precision for a wide range of frequency values. Also this is in accordance with the

results in Figure 5.9(b).

Secondly, CSA is a better design choice for high frequency requirements and large

area budget, because it is originally designed for high speed operation. Besides, each

stage of CSA is implemented in the FPGA with fast carry logic [135], hence it runs

even faster than OA. In addition, in this region we notice that the 2-stage CSA is better

than the 4-stage CSA for 610 MHz. This can also be observed from Figure 5.9(b) that

the results of these two designs are overlapped for this frequency value. In this case,

since the 2-stage CSA costs less silicon area, it serves the optimum design.

Thirdly, for a tighter area budget only part of OA and CSA can be implemented,

whereas RCA still keeps original precision. In this situation, area becomes the limi-

tation factor. Both OA and CSA generate truncation errors, which are greater than

the overclocking error of RCA. Therefore, the overclocked RCA is the optimum design

option across almost the entire frequency domain. Furthermore, the precision of RCA

is also limited under very stringent area constraints. This causes truncation errors for

every design option. Nevertheless, RCA with either overclocking or truncation sce-

nario equally serves to be optimal, because it maintains more precision than OA and

CSA for a specific area budget.

Optimum Adder with Given Accuracy and Area Budgets

If the circuit is designed to operate as fast as possible with minimum area, whilst a

certain amount of inaccuracy can be tolerated, the optimum adder design metric can

also be determined as illustrated in Figure 5.11. In this set of experiments, the error

budget is evaluated in terms of MRE, which varies from 10−6% to 10%. For a given
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MRE, the optimum adder is selected with maximum operating frequency. In this case,

if multiple designs can operate with the same frequency, the optimum design is then

selected based on actual area consumption within the area constraint.

Similar to the analysis in Section 5.3.2, for tight accuracy requirement and large area

budget, OA is the optimum design choice because it keeps full precision while running

at high frequencies. If relaxing the accuracy requirement (e.g. 0.01%), CSA gradually

outperforms because its precision loss is less than that of OA. Once again, if area

budget is tightened, the RCA becomes the best design choice, because the precision

of OA and CSA is largely limited. Furthermore, when the accuracy requirement is

released (e.g. over 1%), RCA can operate with the fastest frequency across most area

constraints.
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5.4 Digit Parallel Online Multiplier for FPGAs

In this section, we investigate an area-efficient FPGA implementation of digit parallel

online multiplier. In addition, we introduce a method to implement correctly rounded

online multipliers for a chosen output precision, together with the area-efficient FPGA

implementation for this structure.

5.4.1 Digit Parallel Online Multiplication Algorithm

The binary online multiplication algorithm and its digit parallel implementation are

discussed in the previous chapter. For ease of discussion, the algorithm is re-listed

below, where the selection function is given in (5.3).

Algorithm 3 Online Multiplication

1: Initialization: X[−δ] = Y[−δ] = P[−δ] = 0

2: for j = −δ, − δ + 1, · · · , 2N − 1 do

3: H[j] ← r−δ
(
xj+δ+1 · Y[j+1] + yj+δ+1 ·X[j]

)

4: W[j] ← P[j] +H[j]

5: zj ← sel(W[j])

6: P[j+1] ← r
(
W[j] − Z[j]

)

7: end for

sel(W[j]) =





1 if W[j] >
1
2

0 if − 1
2
6 W[j] <

1
2

1 if W[j] < −1
2

(5.3)

This algorithm can be synthesized into a unrolled digit parallel structure, as exam-

ined in the previous chapter. We have also demonstrated that the digit-parallel online
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Algorithm 4 Digit Parallel Online Multiplication

1: Initialization: P[0] = 0

2: for j = 1, 2, · · · , N do

3: Xyj ← X · yj
4: W[j] ← P[j−1] +Xyj

5: zj ← sel(W[j])

6: P[j+1] ← r
(
W[j] − Z[j]

)

7: end for

8: Z[N+1:2N ] ← frac(W[N ])

multiplier (OM) is also more tolerant to timing violations in comparison to the multi-

plier with conventional arithmetic, because timing errors initially affect the LSDs and

this will lead to smaller error magnitude.

However, we have noticed that significant area overhead is required in order to

implement this type of OM, generally for three main reasons. First, in comparison to

the conventional multiplier, more iteration stages are needed to generate same precision

of output. For instance in an N -digit OM, (2N + δ) iterations are required to generate

2N digits outputs, or (N + δ) iterations are required to generate the most significant

N digits. Second, the logic of each stage is complex as it involves operations such as

online addition, digit-vector multiplication (to generate xj+δ+1 · Y[j+1] and yj+δ+1 ·X[j]

in Algorithm 3), shifting and other combinational logic blocks such as the selection

function. Also, the word-length of signals H[j], W[j] and P[j] is (N + 2 + δ), because

the selection function needs two integer digits and one fractional digit to generate zj,

as described in Section 4.2 of Chapter 4. Third, this OM architecture is not optimised

specifically for FPGA technology, such that the dedicated logic resources within an

FPGA such as the fast carry logic are not efficiently utilised.

For the first two design issues, we address them by providing a modified form of

online multiplication algorithm. Instead of simply implementing the unrolled version

of Algorithm 3, it is optimised specifically for digit parallel operations. In the original
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online multiplication algorithm, because the input data is available in a digit serial

fashion, the online delay δ is used to accumulate enough input digits to generate the

MSD of the result. However for digit parallel operation, normally all digits of the

inputs will be available simultaneously. In this case the online delay δ is no longer

necessary. For the same reason, H[j], which takes one digit of each input per stage

as shown in the original algorithm, can be optimised to take one partial product Xyj

or Y xj per stage. To summarise, the modified algorithm for digit parallel online

multiplication is described in Algorithm 4, where N denotes the operand word-length,

function frac(W[N ]) refers to the fractional digits of W[N ], and the selection function

sel() is unchanged as given in (5.3) .

In comparison to Algorithm 3, the maximum number of stages required to generate

results with full precision drops by a factor of two using the proposed new algorithm.

In each stage, the word-length of all signals also reduces from (N + 2+ δ) to (N + 2),

as δ is not necessary for digit parallel operations. In addition, the frac() function can

be implemented only based on wire connections without using logic resources.

5.4.2 FPGA Implementation

We now address the third aforementioned design issue by presenting an area efficient

implementation of Algorithm 4 on modern FPGAs. The general structure of a 4-digit

OM using the proposed algorithm is shown in Figure 5.12(a), and the structure of a

single stage j is shown in Figure 5.12(b) with the word-lengths of all signals labelled.

Area optimisations can be performed on all modules. It can be seen that in each

stage, an (N +2) digit online adder is used to derive W[j]. Our proposed online adder

architecture can be employed. The selection logic takes three input digits (six binary

bits) and generates one output digit (two binary bits). Hence it can be implemented

using two 6-LUTs for each output bit. Similarly the generation of P[j] can also be
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Figure 5.12: (a) Structure of a 4-digit online multiplier using the proposed algorithm.
(b) Structure of Stage j. The word-length of all signals are labelled in terms of the
number of digits. N denotes the word-length of the input signals.

implemented using one 6-LUT, since only the integer digits of W[j] need to be modified

due to the selection of Z[j]. In addition, the structure of Stage one in Figure 5.12(a)

can be further optimised by removing the online adder, because P[0] = 0.

The blocks that generate partial products Xyj can be incorporated into the online

adder for further area reduction. In the online adder structure as presented in Fig-

ure 5.4, we notice that only four inputs per 6-LUT are used. This leaves at least two

available inputs per LUT. Originally in order to generate one digit of partial product,

one digit of inputs X and Y are required respectively, as indicated in the left of Fig-

ure 5.13. Alternatively, instead of using extra logic to generate Xyj, it can be merged

into the corresponding LUTs in the online adder by fully utilising all six LUT inputs,

as shown on the right of Figure 5.13. Notice that this approach is only available for
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FPGAs with 6-LUTs.



 

























 












 

Figure 5.13: Left: Direct implementation with extra logic to generate partial products.
Right: Combining the logic blocks that generate partial products into the Online Adder
by fully utilizing all the inputs of the 6-LUTs.

The resource usage of the proposed OM can be calculated as follows. In an N -digit

OM, in total (N − 1) online adders are needed. According to Algorithm 4, the word-

length of each online adder is (N+2)-digit (two integer digits and N fractional digits).

Therefore based on (5.1) and (5.2), the number of LUTs and the number of slices used

by the OM is given in (5.4) and (5.5), respectively. Note that LS1 and SS1 denote the

number of LUTs and slices used by the first stage, which is built without online adders.

OM LUT = 2(N + 2)(N − 1) + LS1 (5.4)

OM slice =

(
1 +

⌈
N

2

⌉)
(N − 1) + SS1 (5.5)

5.4.3 Structure Optimisation for Half Precision Results

In practical applications, normally the multiplier is connected with other arithmetic

operators. If the outputs of a multiplier is utilised for subsequent operations, and a
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Figure 5.14: (a) Modified structure of a 4-digit online multiplier which only generates
the most significant 4-digit result. (b) Structure of Stage j, with the word-lengths of
all internal signals labelled.

consistent word-length is used throughout the system, then only the most significant

half of the product is required. In a conventional multiplier with standard binary

arithmetic, this is achieved by either truncating or rounding the least significant half

of the products. However, both the computation time and the structure remains

unchanged, because the results are generated from LSDs using conventional arithmetic.

In comparison, the OM offers the flexibility to simplify the structure corresponding

to the required precision. This is possible because in an OM, the product digits are

generated initially from the MSD, and there is no carry propagation from the LSD to

the MSD with the employment of the redundant number system. This will potentially

lead to a more area efficient design. For example, the modified structure of a 4-digit

OM is illustrated in Figure 5.14(a). The word-length of signals within each stage can



5.4. Digit Parallel Online Multiplier for FPGAs 127

be correspondingly reduced, as shown in Figure 5.14(b). It can be seen that instead of

keeping identical word-length throughout the stages (in Figure 5.12), in the modified

structure the signal word-lengths depend on the stage number j and fewer bits of

signals are needed for LSD stages.

5.4.4 Performance Analysis

Similar to the experiments as described in Section 5.2.3, we compare the behavioural

RTL implementation of online multiplier (OM behv) against the proposed two types of

multiplier, which are implemented based on Algorithm 4 to generate products with

full precision (OM full) and half precision (OM half), respectively. In addition, we

also compare OM with multiplier implemented with conventional binary arithmetic.

The conventional multiplier is created using the Xilinx Core Generator with speed

optimisation (CoreGen), and it is implemented based on LUTs without DSPs for a

fairer comparison.

The comparison of area in terms of the cost of LUTs and slices with respect to

different operand word-lengths are shown in Figure 5.15. The results are obtained

from ISE 14.7 after mapping the design to the Virtex-6 FPGA. In comparison to

OM behv, significant area savings have been obtained by the optimised design OM full.

Specifically, the reductions of LUTs and slice utilisations vary from 59.0% to 70.1% and

from 68.6% to 81.7%for different operand word-lengths, respectively. In comparison

to the CoreGen multiplier, the area overhead of online multipliers drops significantly

using the proposed new structure. In order to generate full precision product, the

area overhead of OM behv against CoreGen are 3.94× to 5.82× for LUTs, and 3.58×

to 8.11× for slices. Using the proposed structure OM full the area overheads drop

to 1.48× to 1.83× for LUTs and up to 1.84× for slices. Furthermore, a traditional

multiplier is unable to compute this correctly rounded output using less silicon area. In
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Figure 5.15: Area comparisons of different types of binary multipliers.



5.4. Digit Parallel Online Multiplier for FPGAs 129

contrast, using our approach we can trade area for precision and tune output precision

to be the minimum desired. As an example, if only half of the output precision is

required, OM half can save silicon area over the traditional CoreGen multiplier. The

area saving varies from 40% to 55% for LUTs, and 46% to 56% for slices.

We also check the rated frequencies of all multipliers with respect to a variety of

operand word-lengths. The frequency values are plotted in Figure 5.16, which are still

obtained from the post place-and-route timing reports. In Figure 5.16 we see that

in comparison to OM behv, our proposed architectures achieve frequency speed-ups

varying from 1.49× to 1.98×.
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Figure 5.16: Rated frequencies of different types of binary multipliers for a variety of
operand word-lengths.

We comment that there remains a large gap in terms of frequency between the

proposed online multipliers and the CoreGen multiplier, especially for large operand

word-lengths. This is because in the online multiplier, even with the carry resources in

the FPGA being used efficiently, each 4-digit carry logic within a slice is divided into
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two parts, as shown previously in Section 5.2. Therefore the critical path delay of an OM

is determined by both the carry logic delays, and the net delay among different stages,

which is significant for large operand word-lengths. This also explains why OM full

and OM half run at similar frequencies, because the critical path of both designs are

identical in theory.

However, we can take advantage of the “overclocking friendly” feature of the online

arithmetic, and push the previous tests one step further by operating the circuits be-

yond their deterministic region while allowing timing violations to happen. We adopt

the same evaluation metric as used in previous chapters and examine the overclocking

behaviour of all three types of multipliers in terms of the mean relative error (MRE) as

given in (3.26).
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Figure 5.17: Mean relative errors seen at the outputs of different types of binary
multipliers, when clocked with faster-than-rated frequencies.

For instance, Figure 5.17 demonstrates the MRE values of the 8-digit multipliers. The
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results are from post place-and-route simulations targeting Xilinx Virtex 6 FPGA,

and the input stimulus are randomly sampled from a uniform distribution of 8-digit

numbers. We see that although the timing analysis tool predicts slower frequencies for

the OMs, they actually operate faster than CoreGen without the occurrence of timing

errors. This is in accordance with the results seen in the previous chapter.

5.5 Results from FPGA Measurements

In this section, we evaluate the performance of online arithmetic operators by per-

forming experiments using the FPGA test platform, as described in Section 3.7 of

Chapter 3.

5.5.1 DSP Benchmark Circuits

We first implement the DSP benchmark circuits as listed in Table 3.3 of Chapter 3

using online arithmetic operators such as adder and constant coefficient multiplier. The

rated operating frequencies of designs with online arithmetic are recorded according to

the post place-and-route timing reports from Xilinx ISE 14.7. Table 5.1 summarises

the rated frequencies of designs with these two types of computer arithmetic. It can

be seen that designs with online arithmetic achieve constantly higher rated frequencies

in comparison to design implemented with traditional arithmetic. The speed-ups in

terms of rated frequency range from 1.45× to 2.83×.

Similar to previous chapters, we also perform experiments on FPGA platform with

overclocking to quantify both the reduction of MRE and the frequency speed-ups with

online arithmetic, for given frequency specifications and given error budgets that can be

tolerated, respectively. Again we use two types of input data: the uniform independent

data (UI) and real data from several image benchmarks.
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Table 5.1: Rated Frequencies of Example Designs with Traditional Arithmetic and
Online Arithmetic.

Design Description
Frequency (MHz)

Speed-up
Trad. Arith. Online Arith.

FIR Filter 5th order 126 356 2.83×
Sobel Edge 3× 3 Detector 197 457 2.32×
IIR Filter 7th order 140 277 1.98×

Butterworth Filter 9th order 117 289 2.47×
DCT 4-point 177 255 1.45×

If given frequency specifications are given, the reduction of MRE with online arith-

metic can be calculated by (5.6) where MREtrad and MREonline denote the MRE of

designs with traditional arithmetic and online arithmetic, respectively.

MREtrad −MREonline

MREtrad

× 100% (5.6)

For each design, the relative reduction of MRE obtained from FPGA measurements

are summarised from Table 5.2 to Table 5.6. In each table, we use the normalised

frequency with respect to the maximum error-free frequency for the corresponding

design when the input signal is 8-digit. Notice that the N/A in these tables refers to

the situations where a certain operating frequency cannot be achieved using traditional

arithmetic. In addition, the geometric mean values of the reduction of MRE for all

designs with respect to different types of input data are summarised in Table 5.7.

From the experimental results it can be seen that a significant reduction of MRE can

be obtained using online arithmetic. For uniform input data, the geometric mean

reduction varies from 73% to 92%. For real image data, at least 80% of MRE reduction

can be achieved.
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Table 5.2: Relative Reduction of MRE of FIR Filter with Online Arithmetic.

Frequency (MHz) UI Lena Pepper Sailboat Tiffany

1.20 100% 100% 100% 100% 100%

1.25 100% 100% 100% 100% 100%

1.30 100% 100% 100% 100% 100%

1.35 100% 100% 100% 100% 100%

1.40 100% 100% 100% 100% 100%

1.45 99.83% 100% 100% 99.98% 100%

1.50 54.61% 98.70% 95.75% 96.48% 100%

Table 5.3: Relative Reduction of MRE of Sobel Edge Detector with Online Arithmetic.

Frequency (MHz) UI Lena Pepper Sailboat Tiffany

1.20 100% 100% 100% 100% 100%

1.25 100% 100% 100% 100% 100%

1.30 100% 100% 100% 100% 100%

1.35 88.12% 100% 100% 100% 100%

1.40 90.57% 95.29% 100% 63.37% 100%

1.45 81.28% 67.57% 52.78% 66.92% 58.50%

1.50 N/A N/A N/A N/A N/A

Table 5.4: Relative Reduction of MRE of IIR Filter with Online Arithmetic.

Frequency (MHz) UI Lena Pepper Sailboat Tiffany

1.20 29.06% 100% 100% 100% 100%

1.25 74.82% 34.20% 71.24% 71.86% 42.58%

1.30 62.06% 64.80% 68.94% 67.57% 60.22%

1.35 56.57% 56.06% 61.98% 58.14% 56.67%

1.40 N/A 59.55% 60.84% 60.52% 61.01%

1.45 N/A N/A N/A N/A N/A

1.50 N/A N/A N/A N/A N/A

Table 5.5: Relative Reduction of MRE of Butterworth Filter with Online Arithmetic.

Frequency (MHz) UI Lena Pepper Sailboat Tiffany

1.20 100% 100% 100% 100% 100%

1.25 100% 100% 100% 100% 100%

1.30 100% 100% 100% 100% 100%

1.35 88.43% 100% 100% 100% 100%

1.40 88.54% 56.78% 87.70% 100% 90.55%

1.45 86.53% 78.41% 76.61% 76.85% 80.23%

1.50 100% 68.07% 100% 74.84% 68.84%
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Table 5.6: Relative Reduction of MRE of DCT with Online Arithmetic.

Frequency (MHz) UI Lena Pepper Sailboat Tiffany

1.20 74.14% 100% 100% 100% 100%

1.25 33.63% 100% 100% 100% 100%

1.30 59.48% 100% 100% 100% 100%

1.35 78.20% 100% 100% 100% 100%

1.40 90.66% 100% 100% 100% 100%

1.45 80.19% 100% 99.56% 99.11% 100%

1.50 71.21% 98.98% 98.98% 96.93% 97.95%

Table 5.7: Geometric Mean of Relative Reduction of MRE of All Designs with Online
Arithmetic.

Frequency (MHz) UI Lena Pepper Sailboat Tiffany

1.20 73.57% 100% 100% 100% 100%

1.25 75.89% 80.69% 93.44% 93.61% 84.30%

1.30 78.60% 91.69% 92.83% 92.46% 90.35%

1.35 78.90% 89.07% 90.88% 89.72% 89.26%

1.40 92.34% 79.73% 88.19% 82.56% 79.78%

1.45 91.23% 85.32% 79.65% 87.12% 77.79%

1.50 72.99% 87.29% 98.23% 88.79% 87.69%

For the second design target, certain error budget can be tolerated. In this case,

we set the error budget to vary from 0.05% to 25%. The corresponding frequency

speed-ups for each design with online arithmetic are recorded from in Table 5.8 to

Table 5.12. In addition, the geometric mean of frequency speed-ups for all designs

with online arithmetic are presented in Table 5.13. We can see that designs with online

arithmetic achieve frequency speed-ups for all input types with respect to all error

budgets, in comparison to designs implemented with traditional arithmetic. Besides,

higher frequency speed-up can be obtained using real image inputs than uniform inputs

for most error budgets. Specifically, the geometric mean of frequency speed-ups varying

from 8.7% to 22.1% can be achieved by using uniform data, while from 4.5% to 25.0%

when using real image data.
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Table 5.8: Frequency Speed-ups of FIR Filter with Online Arithmetic.

Error Budget UI Lena Pepper Sailboat Tiffany

0.05% 38.64% 23.53% 21.57% 21.57% 25.49%

0.5% 24.00% 23.53% 21.57% 21.57% 27.45%

1% 24.00% 20.37% 14.81% 14.81% 20.37%

5% 10.71% 11.86% 10.17% 8.47% 12.20%

10% 10.71% 11.86% 11.86% 8.47% 12.54%

25% 12.50% 13.56% 12.71% 10.17% 12.88%

Table 5.9: Frequency Speed-ups of Sobel Edge Detector with Online Arithmetic.

Error Budget UI Lena Pepper Sailboat Tiffany

0.05% 17.02% 25.53% 29.79% 25.53% 25.53%

0.5% 10.00% 25.63% 29.79% 25.53% 25.53%

1% 12.00% 13.46% 19.23% 13.46% 13.46%

5% 15.38% 17.31% 21.15% 13.46% 13.46%

10% 17.31% 17.31% 21.15% 45.38% 13.46%

25% 10.91% 5.00% 5.83% 5.00% 8.33%

Table 5.10: Frequency Speed-ups of IIR Filter with Online Arithmetic.

Error Budget UI Lena Pepper Sailboat Tiffany

0.05% 15.63% 18.38% 21.50% 18.38% 18.38%

0.5% 15.63% 8.57% 11.43% 8.57% 8.57%

1% 5.71% 2.70% 5.41% 2.70% 2.70%

5% 2.78% 2.43% 5.12% 2.43% 2.43%

10% 1.37% 2.15% 4.84% 2.15% 2.15%

25% 5.00% 1.27% 1.27% 0.25% 0.76%

Table 5.11: Frequency Speed-ups of Butterworth Filter with Online Arithmetic.

Error Budget UI Lena Pepper Sailboat Tiffany

0.05% 31.03% 21.88% 22.50% 21.25% 22.81%

0.5% 18.75% 21.88% 22.50% 23.13% 22.81%

1% 18.75% 21.88% 23.75% 23.13% 23.44%

5% 18.75% 21.50% 23.36% 22.74% 23.05%

10% 11.76% 8.33% 10.00% 10.56% 9.72%

25% 5.00% 4.76% 5.95% 4.76% 2.38%
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Table 5.12: Frequency Speed-ups of DCT with Online Arithmetic.

Error Budget UI Lena Pepper Sailboat Tiffany

0.05% 16.67% 47.27% 44.89% 45.37% 47.27%

0.5% 16.67% 31.91% 31.91% 32.34% 32.71%

1% 16.67% 38.30% 36.17% 32.34% 32.71%

5% 13.33% 44.68% 45.74% 46.38% 44.68%

10% 17.02% 44.68% 45.74% 46.38% 44.68%

25% 23.53% 28.30% 29.25% 29.81% 28.87%

Table 5.13: Geometric Mean of Frequency Speed-ups of All Designs with Online Arith-
metic.

Error Budget UI Lena Pepper Sailboat Tiffany

0.05% 22.14% 25.79% 26.70% 25.09% 26.21%

0.5% 16.36% 20.47% 21.98% 20.12% 21.11%

1% 13.88% 14.41% 16.49% 13.03% 13.89%

5% 10.27% 13.68% 16.03% 12.16% 13.08%

10% 8.74% 11.05% 13.52% 10.09% 10.62%

25% 9.57% 6.50% 6.95% 4.44% 6.43%

5.5.2 Taylor Expansion

In the previous experiments, the benchmark circuits are implemented using adders

and constant coefficient multipliers. In order to evaluate the performance of the gen-

eral purpose online multiplier, we also implement a Taylor expansion of log(x) using

online adders and general purpose online multipliers. The general form of the Taylor

expansion of function f(x) at the point x0 is given in (5.7) where f (n)(x0) denotes the

nth derivative of f(x) at x0 and n! denotes the factorial of n.

∞∑

n=0

f (n)(x0)

n!
(x− x0)

n (5.7)

According to (5.7), as an example the Taylor expansion of log(x) for n = 2 at x0 = 1

is given by (5.8) where x ∈ (1, 2) and constant e denotes the Euler’s number.

log(x) = log(e) · (x− 1)− 1

2
log(e) · (x− 1)2 (5.8)
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It can be seen that overall three online multipliers and two online adders are required

to implement (5.8). In our experiments, we evaluate two common design situations,

where computation results are required to either keep full precision or only deliver the

most significant half precision. For both situations, we compare the designs imple-

mented with conventional arithmetic and online arithmetic. Again the multiplier with

conventional arithmetic is created with Xilinx Core Generator with speed optimisation,

and it is implemented with logic resources such as LUTs instead of DSPs.

Design with Full Precision Results

For design requiring full precision outputs, intermediate computations results are not

truncated for both implementations with traditional arithmetic and online arithmetic.

According to the timing reports after implementation, the rated frequency is 127MHz

for traditional arithmetic design, and 69MHz for online arithmetic design. In this case

we can notice the conventional design runs almost twice as fast as the online design

in terms of rated frequency.

We also perform overclocking experiments on both designs using our FPGA test

platform. Again we use uniform independent data as well as image data as inputs to

our circuits, and the quality of results is evaluated using MRE. The recorded results

are demonstrated in Figure 5.18. In this figure, for image data we only plot the

results from “Sailboat” benchmark as an example. It can be seen that the design with

online arithmetic can actually operate at higher frequencies without timing errors in

comparison to the design with conventional arithmetic. In addition, if a certain amount

of timing errors can be tolerated, the online design can achieve better performance than

conventional design. Correspondingly we record the frequency speed-ups of the online

design with respect to a variety of error budgets in Table 5.14. We can see that the

geometric mean of frequency speed-ups of the online design vary from 2.6% to 34%
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Figure 5.18: Mean relative errors of Taylor expansion of log(x) implemented with
conventional arithmetic and online arithmetic with full precision outputs under over-
clocking.

with different levels of error tolerance. Especially when a large error budget can be

tolerated, using online arithmetic is more beneficial in performance, because timing

errors only affect LSDs of computation results, and correspondingly results in small

error magnitude. This can also been observed in Figure 5.18 that the slope of results

of the online design is much smaller than that of the conventional design. This is in

accordance with the results in Section 4.4 of Chapter 4.

Table 5.14: Frequency Speed-ups of Design with Full Precision Results.

Error Budget UI Lena Pepper Sailboat Tiffany Geo. Mean

0.05% 0% 1.33% 6.67% 0% 6.67% 3.9%

0.5% 1.25% 2.50% 0% 6.25% 9.38% 3.68%

1% 2.50% 3.75% 8.13% 9.38% 7.50% 5.57%

5% 1.11% 4.44% 5.56% 2.78% 1.67% 2.63%

10% 6.38% 6.38% 17.02% 11.70% 14.36% 10.31%

25% 20.00% 45.00% 40.00% 35.00% 37.50% 34.27%
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Design with Half Precision Results

We also examine another common situation where the datapath outputs are required

to maintain the same precision of inputs. In this case, it is not necessary for adders and

multipliers to deliver results with full precision throughout the datapath. Specifically

for multipliers, under this design requirement we can only keep the MSD half of the

product. However, for the conventional design, although the LSD half of multiplica-

tion results is not required, it still has to be generated before truncation due to carry

propagation from LSD to MSD in conventional arithmetic. For instance, in order to

deliver the MSD N digits result, 2N digits results are generated and truncated to N

digits for conventional multiplier. In comparison, online arithmetic performs compu-

tations in MSD first manner, therefore we can only implement the most significant N

stages of the online multiplier at design time, as discussed in Section 5.4.3.

According to the timing reports after implementation, the rated frequencies are

136MHz and 218MHz for the conventional design and online design, respectively. In

comparison to designs with full precision as discussed in the previous section, the rated

frequencies for both designs are increased because of the reduction of precision. We

can also notice that the rated frequency of the online design is 1.6× higher than the

conventional design in this situation. This is because the structure of the online multi-

plier can be simplified more significantly, as discussed in Section 5.4.3. For the online

multiplier itself, a significant increase of 3.2× of rated frequency can be achieved in

this situation, whereas this value is only 1.1× for design with conventional arithmetic.

We also perform overclocking experiments on both designs. The FPGA measure-

ments of the MRE with respect to a variety of operating frequencies for both designs

are demonstrated in Figure 5.19. Again we use two types of input data for online

design. From Figure 5.19 it can be clearly observed that the design with online arith-

metic can be operated at much higher frequencies than the rated value without timing
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Figure 5.19: Mean relative errors of design implemented with conventional arithmetic
and online arithmetic with half precision outputs under overclocking.

errors. Similar to previous results, the design with real image data as inputs can run

at higher frequencies than using uniform inputs. In addition, there is a large gap of

frequency between the online design and the conventional design. According to our

experiments, the maximum error-free frequency of the online design is 2.7× more than

the conventional design.

Table 5.15: Frequency Speed-ups of Design with Half Precision Results.

Error Budget UI Lena Pepper Sailboat Tiffany Geo. Mean

0.05% 2.62× 2.73× 2.80× 2.77× 2.87× 2.76×
0.5% 2.11× 2.16× 2.24× 2.31× 2.26× 2.21×
1% 2.16× 2.21× 2.26× 2.37× 2.69× 2.25×
5% 2.29× 2.34× 2.42× 2.60× 2.45× 2.42×
10% 2.29× 2.57× 2.48× 2.52× 2.50× 2.47×
25% 2.55× 2.77× 2.91× 2.82× 2.64× 2.73×
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The frequency speed-ups for the online design are recorded in Table 5.15 for a variety

of error budgets. It can be seen that the geometric mean of frequency speed-up varies

from 2.2× to 2.8× for the online design. In addition, using image data as inputs can

achieve consistently higher frequency speed-ups than using UI data, because worst

case happens even more rarely with real data.

5.6 Conclusion

In this chapter, we initially describe a novel methodology that can efficiently map

digit parallel online adders onto FPGAs. The proposed mapping method targets

modern FPGAs, which have 6-input LUTs and four LUTs in a slice, and fully utilises

the built-in carry resources. We demonstrate that the proposed architecture is both

area and performance efficient in comparison to the original design. In addition, the

evaluation of the optimum adder structure as discussed in Chapter 3 is expanded by

the considering online adder as another design alternative.

We then propose an area efficient FPGA implementation of the online multiplier,

which is specifically optimised for digit parallel operations. We have shown that this

also obtains significant area reduction and frequency speed-ups. Furthermore, a cor-

rectly rounded online multiplier with reduced output precision can be created that is

smaller than a traditional multiplier producing results with same precision. We show

that this design can lead to silicon area savings of up to 56%.

The optimised FPGA implementations of online arithmetic operators are evaluated

based on FPGA measurements using the same set of DSP benchmark circuits as pre-

sented in Chapter 3. We demonstrate that in comparison to design with conventional

arithmetic, implementations with online arithmetic can be greatly beneficial in per-

formance and accuracy.



Chapter 6

Conclusion

This thesis has examined methods to design approximate datapath through over-

clocking. The main focus of our approach is on arithmetic operations, and we seek to

provide analytical evaluations together with experimental demonstrations to deliver

solutions in designing approximate datapath composed of different forms of arithmetic

operators, when considering a range of performance, accuracy and silicon area speci-

fications. In this chapter, we firstly discuss the main contributions and discoveries by

answering the questions as proposed in Chapter 1. We then discuss the potential av-

enue for future research based on the work of this thesis in Section 6.2, before drawing

the final remarks in Section 6.3.

6.1 Summary of Contributions

In Chapter 1 we have introduced three key research questions that we would like to

address in this thesis. We now summarise our answers to the corresponding question

as below:

• How can we quantify the occurrence and impact of timing errors on

142
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a datapath? This question highlights the importance of using quantitative ap-

proaches for the evaluation of timing errors when designing approximate datap-

ath. In this thesis, generally timing errors are introduced by using our proposed

overclocking approach to design approximate datapath. We propose probabilis-

tic models of overclocking errors for basic arithmetic operators, such as ripple

carry adder and constant coefficient multiplier. Our model employs two metrics

for quantitative evaluation: one is the probability of error occurrence, and the

other is the magnitude of overclocking error. These two metrics are then com-

bined into mean absolute value of overclocking error. In addition, we also model

the errors generated from the traditional design scenario where a target latency

requirement is met by limiting the choice of precision in the datapath. In this

case, the impact of both overclocking error and truncation error can be quanti-

fied. Through our models we observe that it is beneficial to move away from the

traditional approach of creating a conservative design that is guaranteed to avoid

timing violations. Alternatively, allowing timing violations to happen under the

knowledge that they only happens rarely with certain input patterns can bring

significant benefits in performance and accuracy. The proposed methodology

can potentially be applied on any hardware platforms with specified datapath

structure. In this thesis, our observation is verified with experimental data from

FPGAs using a range of benchmark circuits and applications. In summary, our

approach can achieve a geometric mean reduction of errors varies from 67.9% to

98.8%, or a frequency speed-up ranging from 3.1% to 27.6% when compared to

the traditional approach.

• Is it possible to minimise the impact of timing errors by carefully

selecting the appropriate computer arithmetic and data representa-

tions? This question highlights the importance of utilising proper types of

computer arithmetic when designing approximate datapath. In comparison to
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the traditional design scenario where a given timing requirement is met by trun-

cating datapath precision, we demonstrate that performance benefits can be

achieved in designs that timing violations may occur, under the knowledge that

they are unlikely to occur frequently because they require specific input patterns

to generate errors. On the other hand, as we quantify the impact of timing error

in terms of both its probability to happen and its magnitude, the occurrence of

timing violations will introduce large errors with standard arithmetic because

timing violation initially affects the most significant end of the results. However,

we highlight that the impact of timing errors can be mitigated by utilising an

alternative form of computer arithmetic known as “online arithmetic”, which

employs a redundant form of data representation. Because online arithmetic

performs computations in a most significant digit first manner, upon the occur-

rence of timing violations they will only affect the least significant end of the

results, which in tern leads to substantial performance benefits compared to the

design method using conventional arithmetic. We demonstrate analytically and

experimentally that digit parallel online operators can fail more gracefully when

operating beyond the deterministic clocking region. In summary, we show an

error reduction varying from 89.2% to 98.2% and an improvement in SNR from

21.4dB to 45.9dB using the proposed technique.

• How can we efficiently implement the selected “overclocking friendly”

computer arithmetic on existing hardware platforms such as modern

FPGAs? This question highlights the importance of efficient implementation

of computer arithmetic on hardware when attempting to apply our proposed

approach in practice. A major hurdle that limits the usage of the “overclocking

friendly” online arithmetic is that its implementation on existing hardware plat-

forms such as FPGAs normally requires a large area overhead in comparison to

conventional arithmetic. This is because online arithmetic employs a redundant
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number system which intrinsically cost extra area than conventional arithmetic.

In addition, both main commercial FPGA vendors have introduced dedicated

resources within FPGAs to enable efficient mapping of conventional arithmetic

onto FPGAs instead of online arithmetic. We tackle this problem by proposing a

novel method of efficiently implementing online arithmetic on modern FPGAs by

taking advantage of the built-in arithmetic resources. Specifically, our approach

targets FPGAs with 6-input LUTs, and ensures the available logic resources

within a slice are fully utilised when implementing digit parallel online arith-

metic operators such as adder and multiplier. Our approach has the additional

advantage of being able to create a correctly rounded multiplier with a reduced

output precision using less hardware than a full multiplier. This is because on-

line multipliers compute the output from the MSD first, therefore hardware can

be saved by not generating the LSDs in the first place. We demonstrate that

the proposed architectures achieve significant area savings of 67% and 69%, and

speed-ups of over 1.2× and 1.5× for adders and multipliers, respectively, when

compared to the direct HDL implementations.

6.2 Future Work

We now identify possible directions for future research that can be built upon the

work of this thesis, as summarised below:

• Enhancing the Proposed Models. As discussed in Section 3.9 of Chapter 3,

there are numerous theoretical limits of the proposed models, such as the carry

propagation delay µ is unlikely to be a constant number in a practical imple-

mentation. The potential means of addressing these limitations can be taking

into account the actual timing models of the targeting hardware platform (e.g.
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FPGA or ASIC). Another research direction is to develop a system-level mod-

elling method by considering the architecture of the practical design that the

models are targeting on to a further extent.

• Automatic Reasoning About Overclocking Errors. There are various

aspects in Chapter 3 and Chapter 4 could be automated. For example, a tool for

automatic modelling of overclocking errors for a range of arithmetic operators

could be developed following the similar procedures as discussed in this thesis.

• Automatic Selection of the Optimum Arithmetic Operator. In Chap-

ter 3 we examine the optimum adder design methodology when considering a

range of frequency, accuracy and area specifications. In Chapter 5 we expand

this evaluation by adding online adder into comparison. Actually this evalua-

tion can be further extended to other arithmetic operators such as multipliers.

Furthermore, a tool can be developed for automatically selecting the optimum

arithmetic operators for a given specification on frequency, accuracy and silicon

area, when performing a system level design.

• Verification Challenges of Approximate Datapath Design. To the best of

our knowledge, verification for approximate computing is a rarely investigated

field according to existing literature. This issue greatly limits the widespread

adoption of approximate computing in industry. For example, quantitative guar-

antees have to be provided to ensure that approximate techniques will not affect

error sensitive parts of the design, such as control logic. Unfortunately exist-

ing approaches to address this problem are either ad-hoc or empirical. That

is, the distinction between error resilience parts and error sensitive parts of a

given design is normally identified by circuit designers. This process should be

automated and generalised to fit a variety of applications. In addition, given

the error models of arithmetic operators proposed in this thesis, how to ver-
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ify whether the overall computation quality meets the design specification on

accuracy, performance and area still requires further examination.

• A Library of Online Arithmetic Operators. In Chapter 5 we discuss effi-

cient implementations of online adder and online multiplier on FPGAs for area

savings. Although there is research developing libraries of online arithmetic oper-

ators, they are not optimised for modern FPGA architectures. The general idea

in our work that fully utilising the built-in logic resources within an FPGA can be

directly applied to implement other types of online arithmetic operations, such

as division, multiply-accumulation and square root. Eventually this will form

a novel library of online arithmetic operators targeting mainstream FPGAs. In

addition, it can be incorporated into existing tools for FPGA development.

• High Level Synthesis with Online Arithmetic. The utilisation of online

arithmetic potentially offers great optimisation opportunities in high level syn-

thesis problems. For instance, consider the pseudo code as given in Algorithm 5.

It can be seen that the output Op is dependent upon the correctness of operation

a > b. If Computation1 and Computation2 are calculated using conventional

arithmetic, a > b is a timing critical operation and cannot be overclocked be-

cause large computation latency is required to wait for the update of MSDs of

both a and b before the comparison can be performed. In contrast, if online

arithmetic is used to calculate a and b, the computing delay can be greatly re-

duced. Because both a and b are generated from MSD first, it is not necessary

to generate full precision for a and b. Instead, computations can be terminated

dynamically as long as the result of a > b is obtained. A tool can be developed

based on this example to automatically address similar problems using online

arithmetic in the process of high level synthesis.

• Floating Point Operation. The work presented in this thesis only focuses
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Algorithm 5 Example Program

1: a := Computation1, b := Computation2

2: if a > b then

3: Op = 2a5 + b3

4: else

5: Op =
√
a− 4b

6: end if return Op

on fixed point numbers together with their operations. However, applying ap-

proximate computing technique or online arithmetic, or a combination of two,

using floating point number representations remains a rarely touched area and

requires extensive research.

6.3 Final Remarks

Over the course of this thesis, we have explored the methodology of datapath design

through the usage of approximate computing techniques and different forms of com-

puter arithmetic. This thesis has introduced several alternative approaches to create

datapaths with higher performance than existing methods. Furthermore, this thesis

has laid significant steps in combining approximate computing techniques and online

arithmetic for datapath design with the consideration of a range of performance, accu-

racy and area specifications. The contributions of this thesis should open new avenues

of research in both areas.
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