394 research outputs found

    AN IMPROVED BARE-BONES PARTICLE SWARM ALGORITHM FOR MULTI-OBJECTIVE OPTIMIZATION WITH APPLICATION TO THE ENGINEERING STRUCTURES

    Get PDF
    In this paper, an improved bare-bones multi-objective particle swarm algorithm is proposed to solve the multi-objective size optimization problems with non-linearity and constraints in structural design and optimization. Firstly, the development of particle individual guide and the randomness of gravity factor are increased by modifying the updated form of particle position. Then, the combination of spatial grid density and congestion distance ranking is used to maintain the external archive, which is divided into two parts: feasible solution set and infeasible solution set. Next, the global best positions are determined by increasing the probability allocation strategy which varies with time. The algorithmic complexity is given and the performance of solution ability, convergence and constraint processing are analyzed through standard test functions and compared with other algorithms. Next, as a case study, a support frame of triangle track wheel is optimized by the BB-MOPSO and improved BB-MOPSO. The results show that the improved algorithm improves the cross-region exploration, optimal solution distribution and convergence of the bare-bones particle swarm optimization algorithm, which can effectively solve the multi-objective size optimization problem with non-linearity and constraints

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Distribution based artificial fish swarm in continuous global optimization

    Get PDF
    Distribution based artificial fish swarm (DbAFS) is a new heuristic for continuous global optimization. Based on the artificial fish swarm paradigm, the new algorithm generates trial points from the Gaussian distribution, where the mean is the midpoint between the current and the target point and the standard deviation is the difference between those two points. A local search procedure is incorporated into the algorithm aiming to improve the quality of the solutions. The performance of the proposed DbAFS is investigated using a set of small bound constrained optimization problems.Fundação para a Ciência e a Tecnologia (FCT

    A Modular Hybridization of Particle Swarm Optimization and Differential Evolution

    Get PDF
    In swarm intelligence, Particle Swarm Optimization (PSO) and Differential Evolution (DE) have been successfully applied in many optimization tasks, and a large number of variants, where novel algorithm operators or components are implemented, has been introduced to boost the empirical performance. In this paper, we first propose to combine the variants of PSO or DE by modularizing each algorithm and incorporating the variants thereof as different options of the corresponding modules. Then, considering the similarity between the inner workings of PSO and DE, we hybridize the algorithms by creating two populations with variation operators of PSO and DE respectively, and selecting individuals from those two populations. The resulting novel hybridization, called PSODE, encompasses most up-to-date variants from both sides, and more importantly gives rise to an enormous number of unseen swarm algorithms via different instantiations of the modules therein. In detail, we consider 16 different variation operators originating from existing PSO- and DE algorithms, which, combined with 4 different selection operators, allow the hybridization framework to generate 800 novel algorithms. The resulting set of hybrid algorithms, along with the combined 30 PSO- and DE algorithms that can be generated with the considered operators, is tested on the 24 problems from the well-known COCO/BBOB benchmark suite, across multiple function groups and dimensionalities.Comment: 8 pages, 1 figure, to be published in GECCO 2020 Companio
    corecore