7 research outputs found

    A novel cheater and jammer detection scheme for IEEE 802.11-based wireless LANs

    Get PDF
    The proliferation of IEEE 802.11 networks has made them an easy and attractive target for malicious devices/adversaries which intend to misuse the available network. In this paper, we introduce a novel malicious entity detection method for IEEE 802.11 networks. We propose a new metric, the Beacon Access Time (BAT), which is employed in the detection process and inherits its characteristics from the fact that beacon frames are always given preference in IEEE 802.11 networks. An analytical model to define the aforementioned metric is presented and evaluated with experiments and simulations. Furthermore, we evaluate the adversary detection capabilities of our scheme by means of simulations and experiments over a real testbed. The simulation and experimental results indicate consistency and both are found to follow the trends indicated in the analytical model. Measurement results indicate that our scheme is able to correctly detect a malicious entity at a distance of, at least, 120 m. Analytical, simulation and experimental results signify the validity of our scheme and highlight the fact that our scheme is both efficient and successful in detecting an adversary (either a jammer or a cheating device). As a proof of concept, we developed an application that when deployed at the IEEE 802.11 Access Point, is able to effectively detect an adversary. (C) 2015 Elsevier B.V. All rights reserved.Postprint (author's final draft

    Node Cooperation to Avoid Early Congestion Detection Based on Cross-Layer for Wireless Ad Hoc Networks

    Get PDF
    The resent application of wireless ad hoc networks (WANET) demands a high and reliable data load. The simultaneous transfer of large amounts of data different nearby sources to nearby destinations in a massive network under these circumstances results in the possibility of network congestion. Congestion is an extremely unwanted condition because it creates extra overhead to the already deeply loaded environment, which ultimately leads to resource exhaustion, and can lead to packet drops and retransmission at either the MAC or upper layers. We present a lightweight congestion control and early avoidance congestion control scheme, which can effective control congestion while keeping overhead to a minimum. This scheme is based on the Cross-layer between the MAC and network layers lead to early detection of congestion. With the help of node cooperation the sender node is triggered to find an alternative route based on TMT. This mechanism controls the network resources rather than the data traffic. Detailed performance results show enhancement in the throughput and packet delivery ratio, as well as a reduction in packet drop. Generally, network performance increases

    Estudi bibliomètric any 2016. EETAC

    Get PDF
    El present document recull les publicacions indexades a la base de dades Scopus durant el període comprès entre el mesos de gener a desembre de l’any 2016, escrits per autors pertanyents a l’EETAC. Es presenten les dades recollides segons la font on s’ha publicat, els autors que han publicat, i el tipus de document publicat. S’hi inclou un annex amb la llista de totes les referències bibliogràfiques publicades.Postprint (author's final draft

    Detecting MAC Misbehavior of IEEE 802.11 Devices within Ultra Dense Wi-Fi Networks

    Get PDF
    The widespread deployment of IEEE 802.11 has made it an attractive target for potential attackers. The latest IEEE 802.11 standard has introduced encryption and authentication protocols that primarily address the issues of confidentiality and access control. However, improving network availability in the presence of misbehaving stations has not been addressed in the standard. Existing research addresses the problem of detecting misbehavior in scenarios without overlapping cells. However, in real scenarios cells overlap, resulting in a challenging environment for detecting misbehavior. The contribution of this paper is the presentation and evaluation of a new method for detecting misbehavior in this environment. This method is based on an objective function that uses a broad range of symptoms. Simulationresultsindicatethatthisnewapproachisverysensitive to misbehaving stations in ultra dense networks

    Detecting MAC Misbehavior of IEEE 802.11 Devices within Ultra Dense Wi-Fi Networks

    Get PDF
    The widespread deployment of IEEE 802.11 has made it an attractive target for potential attackers. The latest IEEE 802.11 standard has introduced encryption and authentication protocols that primarily address the issues of confidentiality and access control. However, improving network availability in the presence of misbehaving stations has not been addressed in the standard. Existing research addresses the problem of detecting misbehavior in scenarios without overlapping cells. However, in real scenarios cells overlap, resulting in a challenging environment for detecting misbehavior. The contribution of this paper is the presentation and evaluation of a new method for detecting misbehavior in this environment. This method is based on an objective function that uses a broad range of symptoms. Simulationresultsindicatethatthisnewapproachisverysensitive to misbehaving stations in ultra dense networks

    Estudi bibliomètric any 2015. EETAC

    Get PDF
    El present document recull les publicacions indexades a la base de dades Scopus durant el període comprès entre el mesos de gener a desembre de l’any 2015, escrits per autors pertanyents a l’EETAC. Es presenten les dades recollides segons la font on s’ha publicat, els autors que han publicat, i el tipus de document publicat. S’hi inclou un annex amb la llista de totes les referències bibliogràfiques publicades.Postprint (published version
    corecore