6 research outputs found

    Determination of the degree of relationship between Activity Cost and Financial Management in beef cattle production in a region of Peru, based on Indeterminate Likert Scale and Neutrosophic Similarity

    Get PDF
    Activity Cost and Financial Management are two variables of vital importance in livestock production. This paper aims to measure the relationship existing between these two variables within the production of beef cattle in the Coto-Coto Chilca Livestock Fair in Peru. To do this, we selected 141 ranchers from the area to give their opinions regarding the behavior of these two variables. The data were represented with the help of an Indeterminate Likert Scale, to capture the uncertainty and indeterminacy of the respondents' opinion. Survey results were compared for the two variables using a measure of neutrosophic similarities. Neutrosophic similarities are used to measure the degree of similarity between two neutrosophic sets measured in certain aspects

    Early detection of Cancer using Mammograms with Advanced Artificial Intelligence (AI) Algorithms for Breast lesions

    Get PDF
    Not Availabl

    Neutrosophic Hough Transform

    Get PDF
    Hough transform (HT) is a useful tool for both pattern recognition and image processing communities. In the view of pattern recognition, it can extract unique features for description of various shapes, such as lines, circles, ellipses, and etc. In the view of image processing, a dozen of applications can be handled with HT, such as lane detection for autonomous cars, blood cell detection in microscope images, and so on. As HT is a straight forward shape detector in a given image, its shape detection ability is low in noisy images. To alleviate its weakness on noisy images and improve its shape detection performance, in this paper, we proposed neutrosophic Hough transform (NHT). As it was proved earlier, neutrosophy theory based image processing applications were successful in noisy environments. To this end, the Hough space is initially transferred into the NS domain by calculating the NS membership triples (T, I, and F). An indeterminacy filtering is constructed where the neighborhood information is used in order to remove the indeterminacy in the spatial neighborhood of neutrosophic Hough space. The potential peaks are detected based on thresholding on the neutrosophic Hough space, and these peak locations are then used to detect the lines in the image domain. Extensive experiments on noisy and noise-free images are performed in order to show the efficiency of the proposed NHT algorithm. We also compared our proposed NHT with traditional HT and fuzzy HT methods on variety of images. The obtained results showed the efficiency of the proposed NHT on noisy images

    Cuckoo lévy flight with otsu for image segmentation in cancer detection

    Get PDF
    Detecting cancer cells from computed tomography (CT), magnetic resonance imaging (MRI) or mammogram scan images is a challenging task as the images are black and white and the neighbouring organs tend to be separated by edges with smooth varying intensity. On top of that, medical images segmentation is challenging due to the presence of weakly correlated and ambiguous multiple regions of interest. A few bio-inspired algorithms were developed to efficiently generate optimum threshold values for the process of segmenting such images. Their exhaustive search nature makes them computationally expensive when extended to multilevel thresholding, thus, this research is keen to solve the optimum threshold problems. This research propose an enhancement of image segmentation algorithms based on Otsu’s method by incorporating Cuckoo Search (CS) method for Lévy flight generation while simultaneously modifying and optimizing it to work on CT, MRI or mammogram image scanners, specifically to detect breast cancer. The performance of the proposed Otsu’s method with CS algorithm was compared with other bio-inspired algorithms such as Otsu with Particle Swarm Optimization (PSO) and Otsu with Darwinian Particle Swarm Optimization (DPSO). The experimental results were validated by measuring the peak signal-to-noise ratio (PNSR), mean squared error (MSE), feature similarity index (FSIM) and CPU running time for all cases investigated. The proposed Otsu’s method with CS algorithm experimental results achieved an average of 231.52 of MSE, 24.60 of PNSR, 0.93 of FSIM and 3.36 second of CPU running time. The method evolved to be more promising and computationally efficient for segmenting medical images. It is expected that the experiment results will benefit those in the areas of computer vision, remote sensing and image processing application

    The Encyclopedia of Neutrosophic Researchers, 5th Volume

    Get PDF
    Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements. There are about 7,000 neutrosophic researchers, within 89 countries around the globe, that have produced about 4,000 publications and tenths of PhD and MSc theses, within more than two decades. This is the fifth volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation, with an introduction contains a short history of neutrosophics, together with links to the main papers and books

    Neutrosophic Multi-Criteria Decision Making

    Get PDF
    The notion of a neutrosophic quadruple BCK/BCI-number is considered in the first article (“Neutrosophic Quadruple BCK/BCI-Algebras”, by Young Bae Jun, Seok-Zun Song, Florentin Smarandache, and Hashem Bordbar), and a neutrosophic quadruple BCK/BCI-algebra, which consists of neutrosophic quadruple BCK/BCI-numbers, is constructed. Several properties are investigated, and a (positive implicative) ideal in a neutrosophic quadruple BCK-algebra and a closed ideal in a neutrosophic quadruple BCI-algebra are studied. Given subsets A and B of a BCK/BCI-algebra, the set NQ(A,B), which consists of neutrosophic quadruple BCK/BCInumbers with a condition, is established. Conditions for the set NQ(A,B) to be a (positive implicative) ideal of a neutrosophic quadruple BCK-algebra are provided, and conditions for the set NQ(A,B) to be a (closed) ideal of a neutrosophic quadruple BCI-algebra are given. Techniques for the order of preference by similarity to ideal solution (TOPSIS) and elimination and choice translating reality (ELECTRE) are widely used methods to solve multicriteria decision-making problems. In the second research article (“Decision-Making with Bipolar Neutrosophic TOPSIS and Bipolar Neutrosophic ELECTRE-I”), Muhammad Akram, Shumaiza, and Florentin Smarandache present the bipolar neutrosophic TOPSIS method and the bipolar neutrosophic ELECTRE-I method to solve such problems. The authors use the revised closeness degree to rank the alternatives in the bipolar neutrosophic TOPSIS method. The researchers describe the bipolar neutrosophic TOPSIS method and the bipolar neutrosophic ELECTRE-I method by flow charts, also solving numerical examples by the proposed methods and providing a comparison of these methods. In the third article (“Interval Neutrosophic Sets with Applications in BCK/BCI-Algebra”, by Young Bae Jun, Seon Jeong Kim and Florentin Smarandache), the notion of (T(i,j),I(k,l),F(m,n))-interval neutrosophic subalgebra in BCK/BCI-algebra is introduced for i,j,k,l,m,n infoNumber 1,2,3,4, and properties and relations are investigated. The notion of interval neutrosophic length of an interval neutrosophic set is also introduced, and the related properties are investigated
    corecore