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ABSTRACT 

Detecting cancer cells from computed tomography (CT), magnetic resonance 

imaging (MRI) or mammogram scan images is a challenging task as the images are 

black and white and the neighbouring organs tend to be separated by edges with 

smooth varying intensity. On top of that, medical images segmentation is challenging 

due to the presence of weakly correlated and ambiguous multiple regions of interest. 

A few bio-inspired algorithms were developed to efficiently generate optimum 

threshold values for the process of segmenting such images. Their exhaustive search 

nature makes them computationally expensive when extended to multilevel 

thresholding, thus, this research is keen to solve the optimum threshold problems. This 

research propose an enhancement of image segmentation algorithms based on Otsu’s 

method by incorporating Cuckoo Search (CS) method for Lévy flight generation while 

simultaneously modifying and optimizing it to work on CT, MRI or mammogram 

image scanners, specifically to detect breast cancer. The performance of the proposed 

Otsu’s method with CS algorithm was compared with other bio-inspired algorithms 

such as Otsu with Particle Swarm Optimization (PSO) and Otsu with Darwinian 

Particle Swarm Optimization (DPSO). The experimental results were validated by 

measuring the peak signal-to-noise ratio (PNSR), mean squared error (MSE), feature 

similarity index (FSIM) and CPU running time for all cases investigated. The proposed 

Otsu’s method with CS algorithm experimental results achieved an average of 231.52 

of MSE, 24.60 of PNSR, 0.93 of FSIM and 3.36 second of CPU running time. The 

method evolved to be more promising and computationally efficient for segmenting 

medical images. It is expected that the experiment results will benefit those in the areas 

of computer vision, remote sensing and image processing application. 
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ABSTRAK 

Mengesan sel kanser melalui imej imbasan tomografi berkomputer (CT), 

pengimejan resonans magnetic (MRI) atau mammogram adalah satu tugas yang 

mencabar kerana imej berwarna hitam putih dan organ-organ berhampiran cenderung 

untuk terasing oleh imbasan garis pinggiran yang berintensiti berbeza. Di samping itu, 

proses pensegmenan imej perubatan menjadi agak sukar dengan kewujudan Kawasan-

kawasan berhubung kait yang berkolerasi lemah dan kabur. Terdapat beberapa 

algoritma yang dibangunkan berasaskan konsep biologi untuk mencari nilai ambang 

yang optimum untuk proses pensegmenan imej yang efisyen. Sifat gelintaran habisan 

algoritma tersebut menyebabkan mereka mahal dari segi pengiraan apabila dilanjutkan 

kepada pencarian nilai ambang berbilang aras. Oleh itu, kajian ini sangat berminat 

untuk menyelesaikan masalah-masalah nilai ambang yang optimum. Kajian ini 

mencadangkan penambahbaikan algoritma pensegmenan imej melalui kaedah Otsu 

dengan menggabungkan teknik Cuckoo Search (CS) untuk penjanaan Lévy flight, 

pada masa yang sama mengubah suai dan mengoptimumkan algoritma tersebut untuk 

mengimbas imej imbasan CT, MRI atau mammogram, khusus untuk mengesan sel 

kanser payudara. Prestasi algoritma Otsu dengan CS yang dicadangkan ini 

dibandingkan dengan prestasi bio-algoritma lain, seperti Otsu dengan Particle Swarm 

Optimization (PSO) serta Otsu dengan Darwinian Particle Swarm Optimization 

(DPSO). Hasil kajian telah disahkan dengan mengukur nilai peak signal-to-noise ratio 

(PNSR), mean squared error (MSE), feature similarity index (FSIM) dan masa operasi 

algoritma di komputer unit pemprosesan pusat (CPU) bagi semua kes yang diselidiki. 

Hasil kajian menunjukkan algoritma Otsu dengan CS yang dicadangkan ini mendapat 

purata sebanyak 231.52 bagi MSE, 24.60 bagi PSNR, 0.93 bagi FSIM dan 3.36 saat 

bagi masa operasi CPU. Kaedah tersebut telah berevolusi menjadi lebih berpotensi dan 

efisyen dari segi pengiraan untuk melakukan pensegmenan imej perubatan. Keputusan 

kajian ini dijangkakan dapat memberi manfaat kepada mereka yang berada dalam 

bidang-bidang berkaitan seperti visi komputer, penderian jauh dan aplikasi 

pemprosesan imej. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

An image can uphold important information that can be useful in 

understanding the conceptual condition within it (Yuheng and Hao, 2017). 

Historically, computer vision had tried to mimic the ability of eyes and brain to foresee 

image as it is regarded as a high-level image processing using a computer or malicious 

software to interpret the physical content of the image.  In digital image technology, 

the rudimentary step in understanding the image itself is image segmentation. This 

technique is essential to facilitate the characterization and visualization of areas of 

interest in medical image segmentation (Patil and Deore, 2013). 

The role of segmentation is pivotal in many tasks requiring image analysis. 

Medical image segmentation allows visualization of the structure of interest and 

removing unnecessary information. Segmentation also enables structural analysis such 

as counting the number of tumours, executing based on the characteristics of image-

to-patient registration which is an important part of the image guided surgery. One of 

the medical related disease that require the use of image segmentation is cancer 

research. The development of computer-aided detection (CAD) system based on 

image segmentation has shown its efficacy to improve diagnostic accuracy in breast 

cancer and therapeutic planning. 
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Segmentation divides the digital image into its component objects or regions. 

it is categorized based on two properties of discontinuity and equation (Vala and Baxi, 

2013). The process of dividing the image into different regions is aimed to closely 

relate objects in the image highlights. Segmentation can also be regarded as a process 

of grouping together pixels that have similar properties. Image segmentation 

algorithms have been developed to the point that they can provide segmentation that 

agrees substantially with human intuition. One of several segmentation algorithm that 

is commonly used in image segmentation is threshold segmentation method. 

Threshold is a region-based segmentation algorithm focusing on establishment 

of clustering based on direct divides of image gray scale (Haralick et al, 1985). The 

essence of this algorithm is by incorporation of  pixel with similar properties to form 

region. The proposed Otsu’s with Cuckoo Search algorithm has evolved to be the most 

promising and computationally efficient method for segmenting breast mammogram 

images. The Otsu’s method chooses the threshold to decline the intra class variance of 

the threshold black and white pixel and it will run directly on the gray level histogram 

of 256 x 256 pixel ranges (Meharunnisa et al, 2015). 

It is important to note that the existing segmentation algorithm is yet to be near 

ideal. The challenges perceived from the presence of poor correlation and vague 

multiple region of interest. Their exhaustive search nature makes them 

computationally expensive when extended to a multilevel thresholding. Although 

previous study tried to come out with the optimum threshold by the optimization 

between the variance class, the inefficient formulation made the method a time 

consuming process (Otsu, 1979). In addition, threshold method only consider the gray 

information without considering the spatial information of the image, it is sensitive to 

noise and unevenness grayscale which led this system to the combination with other 

method. 

In this research, we proposed an efficient image segmentation algorithm, called 

Otsu’s with Cuckoo Search method, incorporating Lévy flights method for flight 

generation in Cuckoo Search (CS) algorithm. By incorporating Lévy flight in Cuckoo 

Search, it will help to get rid of local minima and improve global search capability are 
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ensured via this distribution in the basic Cuckoo Search. This study is a progressive 

effort to revamp and boost up the existing system in hope that the outcome of study 

can improve image target consequently help in better diagnostic of breast cancer cells. 

1.2 Problem Background 

The role of computers in the medical image display and analysis continues to 

be one of the most computationally demanding tasks. More efficient implementation 

is necessary, as most of the segmentation methods are expensive, and many methods 

of medical data is rapidly increasing. In addition, manually detecting cancer using 

CT/MRI/Mammogram scan images is a challenging task to radiologist because there 

is no colour information in the images and the neighbouring organs tend to be 

separated by smooth edges with varying intensities. As volumetric imaging such as 

CT/MRI/Mammogram to digital histology has become invaluable to modern 

medicine, segmentation is fundamental for personalized medicine has become more 

complex (Baxter et al, 2018). 

Thresholding is an important technique in image segmentation applications 

because it is simple and easy to code. The Otsu’s method chooses the threshold to 

decline the intra-class variance of the threshold black and white pixel and it will run 

directly on the gray level histogram of 256 x 256 pixel ranges (Meharunnisa et al, 

2015). But as reported by (Vala and Baxi, 2013), as the number in classes of an image 

increases, Otsu’s intra-class variance takes too much time to be practical for multi-

level threshold selection. Besides that, Otsu method assumes the histogram of the 

image is bi-modal which may break down when the two classes are very unequal. This 

will cause optimum threshold to be difficult to achieve thus affect in the segmentation 

accuracy. 

Furthermore, a means of segmentation of medical images is to select the best 

threshold value to optimize the criteria for the use of entropy. However, they are 

computationally expensive when extended to multilevel thresholding depth as they 

seek optimal threshold to optimize the objective function (Oliva et al, 2014). Both 
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Palani Thanaraj (2014) and Raja et al (2015) studies used particle swarm optimization 

(PSO) to find the optimal threshold value before the segmentation process is 

performed. As reported by Adnan et al (2013), using PSO in finding the optimal 

threshold requires large amount of memory, which can limit the implementation of the 

resource-rich based stations. Moreover, the iterative nature of PSO can forbid it from 

being used for high-speed real-time applications. 

The introduction of cuckoo search (CS) algorithm has the potential to 

overcome the PSO problem as it satisfies the global convergence requirements and 

support the local and global search capabilities. However, although it satisfied the 

global convergence requirements and support local and global search capabilities, CS 

analysis implies that the convergence rate of Cuckoo Search, to some extent, is not 

sensitive to the parameter used. This means that the fine adjustment of algorithm 

dependent parameters is not needed for any given problem (Adnan et al, 2013). The 

problem of early convergence in the PSO algorithm often causes the search process to 

be trapped in a local optimum (Raju and Rao, 2013). This problem often occurs when 

the diversity of the swarm decrease and the swarm cannot escape from local optimum. 

In addition, the extend problem from original CS is on the highly random 

search leading to a strong leaping (Wang et al, 2015). The easy jump from one region 

to another makes the search to another causing a reckless search around each bird nest 

consequently deny the full use of information nearby the bird nest. Therefore, flight 

generation using Lévy flight can be proposed in solving this situation. More efficient 

search takes place in the search space in order to solve the optimum threshold issues 

in Otsu segmentation method thanks to the long jump to be made by the particle (Haklı 

and Harun, 2014). 

1.3 Problem Statement 

In present time, the image segmentation research theory is far from perfect and 

there are plenty of upgrade that need to be done. The objective of medical image 

segmentation is to extract meaningful objects. Digital image processing is the use of 
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computer algorithms to perform image segmentation techniques, which is an important 

and challenging process of medical image processing. 

In a study conducted by Otsu (1979) , they had chosen the optimal thresholds 

by maximizing the between-class variance. However, inefficient formulation of 

between-class variance makes the method very time consuming. In addition, it is 

computationally expensive when extended to multilevel thresholding since they 

exhaustively search for the optimal threshold to optimize the objective functions. 

Research theory is far from perfect and there are plenty of upgrade that need to be 

done. Therefore, the aim of this research is to find the solution for the following 

statement: 

“How to obtain the optimal threshold value in multilevel image segmentation?” 

Two main research questions were addressed which in line with the aim of this 

study: 

i. How Lévy Flight can enhance Cuckoo Search to get optimum threshold value 

in multilevel image segmentation? 

ii. How is the image segmentation performance of hybrid Cuckoo Search-Lévy 

Flight compare to others optimization methods?  

 

1.4 Objectives  

The objectives of present study are; 

1. To develop a hybrid Cuckoo Search with Otsu method by using the chosen 

breast cancer images in order to obtain the benchmark of performance.  
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2. To enhance the proposed hybrid image segmentation algorithm using Lévy 

Flight to improve random walk in original Cuckoo Search. 

3. To evaluate the performance of proposed hybrid image segmentation algorithm 

in terms of accuracy compared to others standard approach. 

 

1.5 Research Scope 

The scope of the research focuses on: 

1. CT/MRI/Mammogram image of breast cancers  

2. All CT/MRI/Mammogram scan images are gathered from 

cancerimagingarchive.net. 

 

1.6 Research Contribution 

As information technology (IT) is rapidly developing and has grown 

tremendously, organisations should take the opportunity to gain more benefits and 

advantages from it. Hence, this research contributes to the field of study as follows: 

1. The experiment yielded promising results, which encourage other researchers 

in the field of computer vision, remote sensing and image processing 

applications. 

2. An efficient optimization algorithm designed was equivalent to mimic the 

evolution of a self-organizing system. 
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3. It paves a way to the development of many meta-heuristic approaches for 

implementing optimization algorithms to solve complex image segmentation 

problems. 

4. Lévy Flight Generation implied two randomly distributed variables with the 

amount of time required to retrieve random numbers, which in this case is 

relatively low. 

 

1.7 Thesis Organization 

The arrangement of the thesis is as follows: 

i. Chapter 1: Introduction 

This chapter gives the preface to the background of the research problems and 

justification of the proposed new hybrid image segmentation technique for cancer 

detection. The research aim and objectives are defined. 

ii. Chapter 2: Literature Review 

This chapter reviews literature on topics related to the research. Among the 

topics discussed is explanation and description about cancer in Malaysia. Then, the 

concept of image segmentation is briefly discussed, the advantages and disadvantages 

of each techniques are explained and the performance benchmark of breast cancer 

image segmentation is presented. Optimization algorithm for image segmentation like 

Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) 

and Cuckoo Search (CS) are described on this chapter. Besides that, image 

segmentation measurement are being discussed where all possible methods are 

presented and reasons of selected method are justified. 
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iii. Chapter 3: Methodology 

In this chapter, a brief explanation about steps, techniques, strategies and 

experimental setup in carrying out the whole research are presented. Database 

descriptions and how the data preparation was conducted are described. The overall 

research design was presented in schematic way. In addition, formula for each 

optimization algorithm are explained.  

iv. Chapter 4: Results 

The results of the image segmentation of breast images scanned using a 

mammogram will be discussed in this chapter. Qualitative analysis of the results 

presented in each performance table are well explained. Discussion on Lévy flights 

that has improved all performance metrics where it helped in retrieving optimum 

threshold for the segmentation process are highlighted. 

v. Chapter 5: Conclusion 

The contributions of the research are well explained in this chapter. 

Suggestions for future will also be proposed besides inspiring other researchers to 

further explore the topics. 

1.8 Summary  

The background of the problem, objectives and scope of the research were 

discussed in this chapter. Since most of the environmental phenomena have image 

properties/weight, it is possible to incorporate high-level image processing knowledge 

on medical images like CT/MRI/Mammogram. The literature review related to this 

research will be described on the next chapter.  
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