12 research outputs found

    GRADIENT BOOSTING TREES METHOD IN THE TASK OF SOFTWARE IDENTIFICATION

    Get PDF
    Subject of Research.The paper proposes an approach to the use of gradient boosted decision trees algorithm. For this purpose, CatBoost algorithm developed by Yandex is proposed. Its implementation is aimed at the problem solution of OS Linux software identification in order to reduce the number of system vulnerabilities, which occur due to the installation of unauthorized software by automated system users. We consider an approach to the program signatures formation and further training of CatBoostClassifier classifier model. The subsequent recognition task is set for the identified programs that were not previously involved in the model training process. Method. Free CatBoost software was used for implementation of the gradient boosted decision trees algorithm. CatBoostClassifier multi-classification model was created on its basis. The use of this model allows identifying test sample elf-files.Main Results. The training parameters of the classification model are selected. An experiment is carried out to identify elf-files with the use of ten different featuresof emerging signature programs. The results obtained in the new approach are compared with the results of the previously developed method of identification based on the application of the statistical criterion of Chi-square homogeneity at the significance level p = 0.01. Practical Relevance. The results of the study can be recommended to information security specialists for data media audit. The developed approach gives the possibility to identify violations of the established security policy in the processing of confidential information

    Performance Analysis of Color Cascading Framework on Two Different Classifiers in Malaria Detection

    Get PDF
    Malaria, as a dangerous disease globally, can be reduced its number of victims by finding a method of infection detection that is fast and reliable. Computer-based detection methods make it easier to identify the presence of plasmodium in blood smear images. This kind of methods is suitable for use in locations far from the availability of health experts. This study explores the use of two methods of machine learning on Cascading Color Framework, ie Backpropagation Neural Network and Support Vector Machine. Both methods were used as classifier in detecting malaria infection. From the experimental results it was found that Cascading Color Framework improved the classifier performance for both in Support Vector Machine and Backpropagation Neural Network

    Review on Intrusion Detection System Based on The Goal of The Detection System

    Get PDF
    An extensive review of the intrusion detection system (IDS) is presented in this paper. Previous studies review the IDS based on the approaches (algorithms) used or based on the types of the intrusion itself. The presented paper reviews the IDS based on the goal of the IDS (accuracy and time), which become the main objective of this paper. Firstly, the IDS were classified into two types based on the goal they intend to achieve. These two types of IDS were later reviewed in detail, followed by a comparison of some of the studies that have earlier been carried out on IDS. The comparison is done based on the results shown in the studies compared. The comparison shows that the studies focusing on the detection time reduce the accuracy of the detection compared to other studies

    Pendekatan unsupervised untuk Mendeteksi Serangan Tingkat Rendah pada Jaringan Komputer

    Get PDF
    Serangan tingkat rendah merupakan serangan yang diam-diam masuk ke dalam system tanpa mengirimkan paket-paket dalam jumlah besar. Contoh dari serangan jenis ini adalah exploit, backdoors, dan worms. Untuk mencegah serangan jenis ini, kami mengusulkan system deteksi intrusi dengan menggunakan Recurrent Neural Network dan Autoencoders.Pendekatan unsupervised yang diusulkan mampu mengidentifikasi serangan tingkat rendah dalam koneksi jaringan, mengesampingkan persyaratan untuk menyediakan sampel berbahaya untuk data pelatihan. Pendekatan yang diusulkan memberikan peningkatan detection rate setidaknya 12,04% dari penelitian sebelumnya

    Intelligent and Improved Self-Adaptive Anomaly based Intrusion Detection System for Networks

    Get PDF
    With the advent of digital technology, computer networks have developed rapidly at an unprecedented pace contributing tremendously to social and economic development. They have become the backbone for all critical sectors and all the top Multi-National companies. Unfortunately, security threats for computer networks have increased dramatically over the last decade being much brazen and bolder. Intrusions or attacks on computers and networks are activities or attempts to jeopardize main system security objectives, which called as confidentiality, integrity and availability. They lead mostly in great financial losses, massive sensitive data leaks, thereby decreasing efficiency and the quality of productivity of an organization. There is a great need for an effective Network Intrusion Detection System (NIDS), which are security tools designed to interpret the intrusion attempts in incoming network traffic, thereby achieving a solid line of protection against inside and outside intruders. In this work, we propose to optimize a very popular soft computing tool prevalently used for intrusion detection namely Back Propagation Neural Network (BPNN) using a novel machine learning framework called “ISAGASAA”, based on Improved Self-Adaptive Genetic Algorithm (ISAGA) and Simulated Annealing Algorithm (SAA). ISAGA is our variant of standard Genetic Algorithm (GA), which is developed based on GA improved through an Adaptive Mutation Algorithm (AMA) and optimization strategies. The optimization strategies carried out are Parallel Processing (PP) and Fitness Value Hashing (FVH) that reduce execution time, convergence time and save processing power. While, SAA was incorporated to ISAGA in order to optimize its heuristic search. Experimental results based on Kyoto University benchmark dataset version 2015 demonstrate that our optimized NIDS based BPNN called “ANID BPNN-ISAGASAA” outperforms several state-of-art approaches in terms of detection rate and false positive rate. Moreover, improvement of GA through FVH and PP saves processing power and execution time. Thus, our model is very much convenient for network anomaly detection.

    New Anomaly Network Intrusion Detection System in Cloud Environment Based on Optimized Back Propagation Neural Network Using Improved Genetic Algorithm

    Get PDF
    Cloud computing is distributed architecture, providing computing facilities and storage resource as a service over an open environment (Internet), this lead to different matters related to the security and privacy in cloud computing. Thus, defending network accessible Cloud resources and services from various threats and attacks is of great concern. To address this issue, it is essential to create an efficient and effective Network Intrusion System (NIDS) to detect both outsider and insider intruders with high detection precision in the cloud environment. NIDS has become popular as an important component of the network security infrastructure, which detects malicious activities by monitoring network traffic. In this work, we propose to optimize a very popular soft computing tool widely used for intrusion detection namely, Back Propagation Neural Network (BPNN) using an Improved Genetic Algorithm (IGA). Genetic Algorithm (GA) is improved through optimization strategies, namely Parallel Processing and Fitness Value Hashing, which reduce execution time, convergence time and save processing power. Since,  Learning rate and Momentum term are among the most relevant parameters that impact the performance of BPNN classifier, we have employed IGA to find the optimal or near-optimal values of these two parameters which ensure high detection rate, high accuracy and low false alarm rate. The CloudSim simulator 4.0 and DARPA’s KDD cup datasets 1999 are used for simulation. From the detailed performance analysis, it is clear that the proposed system called “ANIDS BPNN-IGA” (Anomaly NIDS based on BPNN and IGA) outperforms several state-of-art methods and it is more suitable for network anomaly detection

    Automatic Building of a Powerful IDS for The Cloud Based on Deep Neural Network by Using a Novel Combination of Simulated Annealing Algorithm and Improved Self- Adaptive Genetic Algorithm

    Get PDF
    Cloud computing (CC) is the fastest-growing data hosting and computational technology that stands today as a satisfactory answer to the problem of data storage and computing. Thereby, most organizations are now migratingtheir services into the cloud due to its appealing features and its tangible advantages. Nevertheless, providing privacy and security to protect cloud assets and resources still a very challenging issue. To address the aboveissues, we propose a smart approach to construct automatically an efficient and effective anomaly network IDS based on Deep Neural Network, by using a novel hybrid optimization framework “ISAGASAA”. ISAGASAA framework combines our new self-adaptive heuristic search algorithm called “Improved Self-Adaptive Genetic Algorithm” (ISAGA) and Simulated Annealing Algorithm (SAA). Our approach consists of using ISAGASAA with the aim of seeking the optimal or near optimal combination of most pertinent values of the parametersincluded in building of DNN based IDS or impacting its performance, which guarantee high detection rate, high accuracy and low false alarm rate. The experimental results turn out the capability of our IDS to uncover intrusionswith high detection accuracy and low false alarm rate, and demonstrate its superiority in comparison with stateof-the-art methods
    corecore