34,259 research outputs found

    Cantilever-based Resonant Microsensors with Integrated Temperature Modulation for Transient Chemical Analysis

    Get PDF
    This work introduces a resonant cantilever platform with integrated temperature modulation for real-time chemical sensing. Embedded heaters allow for rapid thermal cycling of individual sensors, thereby enabling real-time transient signal analysis without the need for a microfluidic setup to switch between analyte and reference gases. Compared to traditional mass-sensitive microsensors operating in steady state, the on-chip generation of signal transients provides additional information for analyte discrimination

    Determination of protection system requirements for DC UAV electrical power networks for enhanced capability and survivability

    Get PDF
    A growing number of designs of future Unmanned Aerial Vehicle (UAV) applications utilise dc for the primary power distribution method. Such systems typically employ large numbers of power electronic converters as interfaces for novel loads and generators. The characteristic behaviour of these systems under electrical fault conditions, and in particular their natural response, can produce particularly demanding protection requirements. Whilst a number of protection methods for multi-terminal dc networks have been proposed in literature, these are not universally applicable and will not meet the specific protection challenges associated with the aerospace domain. Through extensive analysis, this paper seeks to determine the operating requirements of protection systems for compact dc networks proposed for future UAV applications, with particular emphasis on dealing with the issues of capacitive discharge in these compact networks. The capability of existing multi-terminal dc network protection methods and technologies are then assessed against these criteria in order to determine their suitability for UAV applications. Recommendations for best protection practice are then proposed and key inhibiting research challenges are discussed

    Fault Detection of Gearbox from Inverter Signals Using Advanced Signal Processing Techniques

    Get PDF
    The gear faults are time-localized transient events so time-frequency analysis techniques (such as the Short-Time Fourier Transform, Wavelet Transform, motor current signature analysis) are widely used to deal with non-stationary and nonlinear signals. Newly developed signal processing techniques (such as empirical mode decomposition and Teager Kaiser Energy Operator) enabled the recognition of the vibration modes that coexist in the system, and to have a better understanding of the nature of the fault information contained in the vibration signal. However these methods require a lot of computational power so this paper presents a novel approach of gearbox fault detection using the inverter signals to monitor the load, rather than the motor current. The proposed technique could be used for continuous monitoring as well as on-line damage detection systems for gearbox maintenance

    Deep Level Transient Spectroscopy (DLTS) System And Method

    Get PDF
    A computer-based deep level transient spectroscopy (DLTS) system (10) efficiently digitizes and analyzes capacitance and conductance transients acquired from a test material (13) by conventional DLTS methods as well as by several transient methods, including a covariance method of linear predictive modeling. A unique pseudo-logarithmic data storage scheme allows each transient to be tested at more than eleven different rates, permitting three to five decades of time constants τ to be observed during each thermal scan, thereby allowing high resolution of closely spaced defect energy levels. The system (10) comprises a sensor (12) for detecting capacitance and/or conductance transients, a digitizing mechanism (14) for digitizing the capacitance and/or conductance transients, preamplifiers (16a, 16b) for filtering, amplifying, and for forwarding the transients to the digitizing mechanism (14), a pulse generator (18) for supplying a filling pulse to the test material (13) in a cryostat (24), a trigger conditioner for coordinating the timing between the digitizing mechanism (14) and the pulse generator (18), and a temperature controller (26) for changing the temperature of the cryostat (24).Georgia Tech Research Corporatio

    The use of real time digital simulation and hardware in the loop to de-risk novel control algorithms

    Get PDF
    Low power demonstrators are commonly used to validate novel control algorithms. However, the response of the demonstrator to network transients and faults is often unexplored. The importance of this work has, in the past, justified facilities such as the T45 Shore Integration Test Facility (SITF) at the Electric Ship Technology Demonstrator (ESTD). This paper presents the use of real time digital simulation and hardware in the loop to de-risk a innovative control algorithm with respect to network transients and faults. A novel feature of the study is the modelling of events at the power electronics level (time steps of circa 2 μs) and the system level (time steps of circa 50 μs)

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    A novel fault location method for a cross-bonded hv cable system based on sheath current monitoring

    Get PDF
    In order to improve the practice in the operation and maintenance of high voltage (HV) cables, this paper proposes a fault location method based on the monitoring of cable sheath currents for use in cross-bonded HV cable systems. This method first analyzes the power–frequency component of the sheath current, which can be acquired at cable terminals and cable link boxes, using a Fast Fourier Transform (FFT). The cable segment where a fault occurs can be localized by the phase difference between the sheath currents at the two ends of the cable segment, because current would flow in the opposite direction towards the two ends of the cable segment with fault. Conversely, in other healthy cable segments of the same circuit, sheath currents would flow in the same direction. The exact fault position can then be located via electromagnetic time reversal (EMTR) analysis of the fault transients of the sheath current. The sheath currents have been simulated and analyzed by assuming a single-phase short-circuit fault to occur in every cable segment of a selected cross-bonded high voltage cable circuit. The sheath current monitoring system has been implemented in a 110 kV cable circuit in China. Results indicate that the proposed method is feasible and effective in location of HV cable short circuit faults

    Program latihan industri di Kolej Universiti Teknologi Tun Hussein Onn : kajian terhadap perlaksanaan sistem penilaian

    Get PDF
    Kajian yang dijalankan adalah bertajuk "Program Lalilian lndustri Di Kolej Universiti Teknologi Tun Hussein Onn : Kajian Terhadap Perlaksanaan Sistem Penilaian". Sampel terdin daripada 6 orang pakar serta 63 orang pelajar yang terlibat dalam latihan industri. Maklumat yang diperolehi berdasarkan kaedah kualitatif dan kuantitatif Data dianalisis untuk meninjau kaedah penilaian yang dijalankan dan seterusnya memastikan apakali sistem penilaian yang perlu diperbaiki. Secara keseluruhannya, kebanyakan responden berpendapat bahawa sistem penilaian yang sedia ada adalah perlu diperbaki dan disistematikkan selaras dengan ISO 9000 : 2001. Berdasarkan daripada keputusan yang diperolehi dan bimbingnan pakar dari Unit Latihan lndustri KUiTTHO, maka satu "Buku Panduan Penilaian Latihan lndustri" dihasilkan dengan panduan yang ringkas dan lampiran borang-borang yang telah diperbaiki dan diubahsuai. Diharapkan produk mi dapat digunakan untuk masa-masa akan datang

    Impact of converter interface type on the protection requirements for DC aircraft power systems

    Get PDF
    The utilization of converter interfaces has the potential to significantly alter the protection system design requirements in future aircraft platforms. However, the impact these converters will have can vary widely, depending on the topology of converter, its filter requirements and its control strategy. This means that the precise impact on the network fault response is often difficult to quantify. Through the analysis of example converter topologies and literature on the protection of DC networks, this paper tackles this problem by identifying key design characteristics of converters which influence their fault response. Using this information, the converters are classified based on their general fault characteristics, enabling potential protection issues and solutions to be readily identified. Finally, the paper discusses the potential for system level design benefits through the optimisation of converter topology and protection system design
    corecore