2,462 research outputs found

    The arity gap of order-preserving functions and extensions of pseudo-Boolean functions

    Get PDF
    The aim of this paper is to classify order-preserving functions according to their arity gap. Noteworthy examples of order-preserving functions are so-called aggregation functions. We first explicitly classify the Lov\'asz extensions of pseudo-Boolean functions according to their arity gap. Then we consider the class of order-preserving functions between partially ordered sets, and establish a similar explicit classification for this function class.Comment: 11 pages, material reorganize

    Learning pseudo-Boolean k-DNF and Submodular Functions

    Full text link
    We prove that any submodular function f: {0,1}^n -> {0,1,...,k} can be represented as a pseudo-Boolean 2k-DNF formula. Pseudo-Boolean DNFs are a natural generalization of DNF representation for functions with integer range. Each term in such a formula has an associated integral constant. We show that an analog of Hastad's switching lemma holds for pseudo-Boolean k-DNFs if all constants associated with the terms of the formula are bounded. This allows us to generalize Mansour's PAC-learning algorithm for k-DNFs to pseudo-Boolean k-DNFs, and hence gives a PAC-learning algorithm with membership queries under the uniform distribution for submodular functions of the form f:{0,1}^n -> {0,1,...,k}. Our algorithm runs in time polynomial in n, k^{O(k \log k / \epsilon)}, 1/\epsilon and log(1/\delta) and works even in the agnostic setting. The line of previous work on learning submodular functions [Balcan, Harvey (STOC '11), Gupta, Hardt, Roth, Ullman (STOC '11), Cheraghchi, Klivans, Kothari, Lee (SODA '12)] implies only n^{O(k)} query complexity for learning submodular functions in this setting, for fixed epsilon and delta. Our learning algorithm implies a property tester for submodularity of functions f:{0,1}^n -> {0, ..., k} with query complexity polynomial in n for k=O((\log n/ \loglog n)^{1/2}) and constant proximity parameter \epsilon

    On the Extension of Pseudo-Boolean Functions for the Aggregation of Interacting Criteria

    Get PDF
    The paper presents an analysis on the use of integrals defined for non-additive measures (or capacities) as the Choquet and the \Sipos{} integral, and the multilinear model, all seen as extensions of pseudo-Boolean functions, and used as a means to model interaction between criteria in a multicriteria decision making problem. The emphasis is put on the use, besides classical comparative information, of information about difference of attractiveness between acts, and on the existence, for each point of view, of a ``neutral level'', allowing to introduce the absolute notion of attractive or repulsive act. It is shown that in this case, the Sipos integral is a suitable solution, although not unique. Properties of the Sipos integral as a new way of aggregating criteria are shown, with emphasis on the interaction among criteria.

    Measuring the interactions among variables of functions over the unit hypercube

    Get PDF
    By considering a least squares approximation of a given square integrable function f ⁣:[0,1]nRf\colon[0,1]^n\to\R by a multilinear polynomial of a specified degree, we define an index which measures the overall interaction among variables of ff. This definition extends the concept of Banzhaf interaction index introduced in cooperative game theory. Our approach is partly inspired from multilinear regression analysis, where interactions among the independent variables are taken into consideration. We show that this interaction index has appealing properties which naturally generalize the properties of the Banzhaf interaction index. In particular, we interpret this index as an expected value of the difference quotients of ff or, under certain natural conditions on ff, as an expected value of the derivatives of ff. These interpretations show a strong analogy between the introduced interaction index and the overall importance index defined by Grabisch and Labreuche [7]. Finally, we discuss a few applications of the interaction index
    corecore