8,752 research outputs found

    Rainbow Connection Number and Radius

    Full text link
    The rainbow connection number, rc(G), of a connected graph G is the minimum number of colours needed to colour its edges, so that every pair of its vertices is connected by at least one path in which no two edges are coloured the same. In this note we show that for every bridgeless graph G with radius r, rc(G) <= r(r + 2). We demonstrate that this bound is the best possible for rc(G) as a function of r, not just for bridgeless graphs, but also for graphs of any stronger connectivity. It may be noted that for a general 1-connected graph G, rc(G) can be arbitrarily larger than its radius (Star graph for instance). We further show that for every bridgeless graph G with radius r and chordality (size of a largest induced cycle) k, rc(G) <= rk. It is known that computing rc(G) is NP-Hard [Chakraborty et al., 2009]. Here, we present a (r+3)-factor approximation algorithm which runs in O(nm) time and a (d+3)-factor approximation algorithm which runs in O(dm) time to rainbow colour any connected graph G on n vertices, with m edges, diameter d and radius r.Comment: Revised preprint with an extra section on an approximation algorithm. arXiv admin note: text overlap with arXiv:1101.574

    Hardness and Algorithms for Rainbow Connectivity

    Get PDF
    An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In addition to being a natural combinatorial problem, the rainbow connectivity problem is motivated by applications in cellular networks. In this paper we give the first proof that computing rc(G) is NP-Hard. In fact, we prove that it is already NP-Complete to decide if rc(G) = 2, and also that it is NP-Complete to decide whether a given edge-colored (with an unbounded number of colors) graph is rainbow connected. On the positive side, we prove that for every ϵ\epsilon > 0, a connected graph with minimum degree at least ϵn\epsilon n has bounded rainbow connectivity, where the bound depends only on ϵ\epsilon, and the corresponding coloring can be constructed in polynomial time. Additional non-trivial upper bounds, as well as open problems and conjectures are also pre sented

    On Rainbow Connection Number and Connectivity

    Full text link
    Rainbow connection number, rc(G)rc(G), of a connected graph GG is the minimum number of colours needed to colour its edges, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we investigate the relationship of rainbow connection number with vertex and edge connectivity. It is already known that for a connected graph with minimum degree δ\delta, the rainbow connection number is upper bounded by 3n/(δ+1)+33n/(\delta + 1) + 3 [Chandran et al., 2010]. This directly gives an upper bound of 3n/(λ+1)+33n/(\lambda + 1) + 3 and 3n/(κ+1)+33n/(\kappa + 1) + 3 for rainbow connection number where λ\lambda and κ\kappa, respectively, denote the edge and vertex connectivity of the graph. We show that the above bound in terms of edge connectivity is tight up-to additive constants and show that the bound in terms of vertex connectivity can be improved to (2+ϵ)n/κ+23/ϵ2(2 + \epsilon)n/\kappa + 23/ \epsilon^2, for any ϵ>0\epsilon > 0. We conjecture that rainbow connection number is upper bounded by n/κ+O(1)n/\kappa + O(1) and show that it is true for κ=2\kappa = 2. We also show that the conjecture is true for chordal graphs and graphs of girth at least 7.Comment: 10 page

    Rainbow Connection Number and Connected Dominating Sets

    Full text link
    Rainbow connection number rc(G) of a connected graph G is the minimum number of colours needed to colour the edges of G, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we show that for every connected graph G, with minimum degree at least 2, the rainbow connection number is upper bounded by {\gamma}_c(G) + 2, where {\gamma}_c(G) is the connected domination number of G. Bounds of the form diameter(G) \leq rc(G) \leq diameter(G) + c, 1 \leq c \leq 4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, AT-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G) \leq 3.radius(G). In most of these cases, we also demonstrate the tightness of the bounds. An extension of this idea to two-step dominating sets is used to show that for every connected graph on n vertices with minimum degree {\delta}, the rainbow connection number is upper bounded by 3n/({\delta} + 1) + 3. This solves an open problem of Schiermeyer (2009), improving the previously best known bound of 20n/{\delta} by Krivelevich and Yuster (2010). Moreover, this bound is seen to be tight up to additive factors by a construction of Caro et al. (2008).Comment: 14 page
    corecore