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ABSTRACT. An edge-colored grap¥ is rainbow connectedf any two vertices are connected by a
path whose edges have distinct colors. Tai@ebow connectivityof a connected grapty’, denoted
re(G), is the smallest number of colors that are needed in order to @alenbow connected. In
addition to being a natural combinatorial problem, the rainbow connectivity problem is motivated
by applications in cellular networks. In this paper we give the first proof that computif@) is
NP-Hard. In fact, we prove that it is already NP-Complete to decide(ifr) = 2, and also that it is
NP-Complete to decide whether a given edge-colored (with an unbounded number of colors) graph
is rainbow connected. On the positive side, we prove that for every0, a connected graph with
minimum degree at least: has bounded rainbow connectivity, where the bound depends only on
and the corresponding coloring can be constructed in polynomial time. Additional non-trivial upper
bounds, as well as open problems and conjectures are also presented.

1. Introduction

Connectivity is perhaps the most fundamental graph-theoretic property, both in the combinato-
rial sense and the algorithmic sense. There are many ways to strengthen the connectivity property,
such as requiring hamiltonicitys-connectivity, imposing bounds on the diameter, requiring the
existence of edge-disjoint spanning trees, and so on.

An interesting way to quantitavely strengthen the connectivity requirement was recently intro-
duced by Chartrand et al. in [5]. An edge-colored grépis rainbow connectedf any two vertices
are connected by a path whose edges have distinct colors. Clearly, if a graph is rainbow connected,
then it is also connected. Conversely, any connected graph has a trivial edge coloring that makes
it rainbow connected; just color each edge with a distinct color. Thus, one can properly define the
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rainbow connectivityf a connected grapfy, denoted-¢(G), as the smallest number of colors that
are needed in order to make rainbow connected. An easy observation is thaf iis connected
and has vertices themr¢(G) < n — 1, since one may color the edges of a given spanning tree with
distinct colors. We note also the trivial fact that G) = 1 if and only if G is a clique, the (almost)
trivial fact thatrc(G) = n — 1 if and only if G is a tree, and the easy observation that a cycle with
k > 3 vertices has rainbow connectivifyt/2]. Also notice that, clearly;c(G) > diam(G) where
diam(G) denotes the diameter 6f.

Chartrand et al. computed the rainbow connectivity of several graph classes including complete
multipartite graphs [5]. Caro et al. [6] considered the extremal graph-theoretic aspects of rainbow
connectivity. They proved that @ is a connected graph withvertices and with minimum degreée
thenrc(G) < 5n/6, and if the minimum degree &thenr¢(G) < %n(lJrf(é)) wheref(0) tends
to zero as’ increases. They also determine the threshold function for a random Gfaptp(n))
to haverc(G) = 2. In their paper, they conjecture that computingG) is an NP-Hard problem,
as well as conjecture that even deciding whether a graphdig§ = 2 in NP-Complete.

In this paper we address the computational aspects of rainbow connectivity. Our first set of
results solve, and extend, the complexity conjectures from [6]. Indeed, it turns out that deciding
whetherrc¢(G) = 2 is an NP-Complete problem. Our proof is by a series of reductions, where
on the way it is shown that-rainbow-colorability is computationally equivalent to the seemingly
harder question of deciding the existence @-eadge-coloring that is required to rainbow-connect
only vertex pairs from a prescribed set.

Theorem 1.1. Given a graphG, deciding ifrc¢(G) = 2 is NP-Complete. In particular, computing
re(G) is NP-Hard.

Suppose we are given an edge coloring of the graph. Is it then easier to verify whether the
colored graph is rainbow connected? Clearly, if the number of colors in constant then this problem
becomes easy. However, if the coloring is arbitrary, the problem becomes NP-Complete:

Theorem 1.2. The following problem is NP-Complete: Given an edge-colored gi@pltheck
whether the given coloring makésrainbow connected.

For the proof of Theorem 1.2, we first show that the- ¢ version of the problem is NP-
Complete. That is, given two verticesandt of an edge-colored graph, decide whether there is a
rainbow path connecting them.

We now turn to positive algorithmic results. Our main positive result is that conneetedex
graphs with minimum degre®(n) haveboundedainbow connectivity. More formally, we prove:

Theorem 1.3.For everye > 0 there is a constant’ = C'(¢) such that ifG is a connected graph with
n vertices and minimum degree at least thenrc(G) < C. Furthermore, there is a polynomial
time algorithm that constructs a corresponding coloring for a fixed

The proof of Theorem 1.3 is based upon a modified degree-form version of Szemerédi’'s Regu-
larity Lemma that we prove and that may be useful in other applications. From our algorithm it is
also not hard to find a probabilistic polynomial time algorithm for finding this coloring with high
probability (using on the way the algorithmic version of the Regularity Lemma from [1] or [7]).

We note that connected graphs with minimum degre@ave bounded diameter, but the latter
property by itself doesotguarantee bounded rainbow connectivity. As an extreme example, a star
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with n vertices has diamet@rbut its rainbow connectivity i& — 1. The following theorem asserts
however that having diamet2rand only logarithmic minimum degree suffices to guarantee rainbow
connectivity3.

Theorem 1.4.If G is ann-vertex graph with diamete? and minimum degree at leaStog n then
re(G) < 3. Furthermore, such a coloring is given with high probability by a uniformly randem
edge-coloring of the grapty, and can also be found by a polynomial time deterministic algorithm.

Since a graph with minimum degree/2 is connected and has diametrwe have as an
immediate corollary:

Corollary 1.5. If G is ann-vertex graph with minimum degree at least thenrc(G) < 3.

The rest of this paper is organized as follows. The next section contains the hardness results,
including the proofs of Theorem 1.1 and Theorem 1.2. Section 3 contains the proof of Theorem 1.3
and the proof of Theorem 1.4. At the end of the proof of each of the above theorems we explain how
the algorithm can be derived — this mostly consists of using the conditional expectation method to
derandomize the probabilistic parts of the proofs. The final Section 4 contains some open problems
and conjectures. Due to space limitations, several proofs have been omitted from this write-up.

2. Hardness results

We first give an outline of our proof of Theorem 1.1. We begin by showing the computational
equivalence of the problem of rainbow connectidfythat asks for a red-blue edge coloring in which
all vertex pairs have a rainbow path connecting them, to the problembsit rainbow connectivity
2, asking for a red-blue coloring in which every pair of vertices igieen subsebf pairs has a
rainbow path connecting them. This is proved in Lemma 2.1 below.

In the second step, we reduce the problemexiending to rainbow connectivity, asking
whether a given partial red-blue coloring can be completed to a obtain a rainbow connected graph,
to the subset rainbow connectividyproblem. This is proved in Lemma 2.2 below.

Finally, the proof of Theorem 1.1 is completed by reduc3R8AT to the problem oéxtending
to rainbow connectivity.

Lemma 2.1. The following problems are polynomially equivalent:
(1) Given a graph decide whetherc(G) = 2.
(2) Given a graphG and a set of paird? C V(G) x V(G), decide whether there is an edge
coloring of G with 2 colors such that all pair§u, v) € P are rainbow connected.

Lemma 2.2. The first problem defined below is polynomially reducible to the second one:

(1) Given a graphG = (V, E) and a partial 2-edge-coloringy : £ — {0,1} for E C E,
decide whethery can be extended to a compleéteedge-coloringy : E — {0,1} that
makes’ rainbow connected.

(2) Given a graphGG and a set of pairs? C V(G) x V(G) decide whether there is an edge
coloring of G with 2 colors such that all pairgu, v) € P are rainbow connected.
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We are unable to present the proofs of Lemma 2.1 and Lemma 2.2 due to space limitations.

Proof of Theorem 1.1 We show that Problem 1 of Lemma 2.2 is NP-hard, and then deduce that
2-rainbow-colorability is NP-Complete by applying Lemma 2.1 and Lemma 2.2 while observing
that it clearly belongs to NP.

We reduce3-SAT to Problem 1 of Lemma 2.2. Given a 3CNF formyla= A, ¢; over
variablesz, zs, ..., z,, we construct a graphy, and a partiaR-edge coloringy’ : E(Gy4) —
{0,1} such that there is an extensiqrof x’ that makes~,, rainbow connected if and only i is
satisfiable.

We defineG; as follows:

V(Gy) ={ci:ie[m]} U{z; i€ [n]}U{a}
E(Gy) = {{ci,xj} Lzj€¢;in (j)}u{{a:i,a} Lie [n]}u{{ci,cj} Qi€ [m]}u{{xi,xj} Qi€ [n]}

and we define the partial coloring as follows:
vi,je[m}xl({civ Cj}) =0

vi,je[n}xl({xivl‘j}) =0
Viei e yeBGo)X ({Ti,¢;}) = 0if x; is positive in ¢;, 1 otherwise

while all the edges ir{{xi, a} :i € [n]} (and only they) are left uncolored.

Assuming without loss of generality that all variablespimppear both as positive and as neg-
ative, one can verify that 2-rainbow-coloring of the uncolored edges corresponds to a satisfying
assignment op and vice versa. [

The proof of Theorem 1.2 is based upon the proof of the follgvtheorem.

Theorem 2.3. The following problem is NP-complete: Given an edge colored g@pnd two
verticess, t of G, decide whether there is a rainbow path connectirandt.

Proof. Clearly the problem is in NP. We prove that it is NP-Complete by reducing 3-SAT to it.
Given a 3CNF formulap = A, ¢; over variablesy, zo, . .., z,, we construct a grapty¥, with
two special vertices, t and a coloringy : E(Gg) — [|E(G,)|] such that there is a rainbow path
connectings andt in G, if and only if ¢ is satisfiable.
We start by constructing an auxiliary grapt from ¢. The graphG’ has3m + 2 vertices, that
are partitioned inton + 2 layersVy, Vi, ..., Vin, Vint1, WhereVy = {s}, Vi1 = {t} and for each
i € [m], the layerV; contains the three vertices corresponding to the literals ¢d clause inp).
The edges of+’ connect between all pairs of vertices residing in consecutive layers. Formally,

BE(G) = {{u,v} Jiem+1stucVijandve V}

Intuitively, in our final colored graplt/;, every rainbow path frons to ¢ will define a satisfying
assignment ob in a way that for every € [m], if the rainbow path contains a vertexc V; then

the literal ofc; that corresponds to is satisfied, and hencg is satisfied. Since any path from

to ¢t must contain at least one vertex from every laygrthis will yield a satisfying assignment for

the whole formulap. But we need to make sure that there are no contradictions in this assignment,
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that is, no opposite literals are satisfied together. For this we métifyy replacing each literal-
vertex with a gadget, and we define an edge coloring for which rainbow paths yield only consistent
assignments.

For every variabler;, j € [n], letv;,,vj,,...,v; be the vertices of¥’ corresponding to the
positive literalz;, and letv;,,v;,,...,v;, be the vertices corresponding to the negative litaral
We can assume without loss of generallty that both 1 and? > 1, since otherwise the formula
can be simplified. For every such variahlewe also introducé: x ¢ distinct CO|0I’SO£1 Loeeer OO,
Next, we transform the auxiliary grapgi into the final grapiG,,. ’

For everya € [k] we replace the vertex;, that resides in layer (say} with £+ 1 new vertices
vy, ve, ..., vpqq that form a path in that order. We also connect all verticdg in to v; and connect
all vertices inV; to v,y 1. For everyb € [¢], we color the edgéuv;, vp11 } In the new path with the
colorai »- Similarly, for everyb < [¢] we replace the vertex;, from layer (say); with k + 1 new
veﬁices%l,ﬁg, ..., Ur41 that form a path, and connect all verticeslin_; to v; and all vertices in
Viry1 t0 Ty 1. For everya € [k], we color the edgdv,, v,+1} with a;b. All other edges of&,
(which were the original edges 6f') are colored with fresh distinct colors.

Clearly, any path frons to ¢ in G4 must contain at least one of the newly built paths in each
layer. On the other hand, it is not hard to verify that any two paths of opposite literals of the same
variable have edges sharing the same color. [

Proof of Theorem 1.2. We reduce from the problem in Theorem 2.3. Given an edge colored
graphG = (V, E) with two special vertices andt, we construct a grap&’ = (V’/, E’) and define
acoloringy’ : E' — [|E’|] of its edges such thatand¢ are rainbow connected ii if and only if
the coloring ofG’ makesG’ rainbow connected.

LetV = {v; = s,v9,...,v, = t} be the vertices of the original gragh We set

Vi =V ul{s,t, b} u{st vl 3, ... 0l 02 12

» “n—1> “n—1>
and
B = BU{{s, s} {t,t} {s,s' {2} U {{b,ui} i€ ol ju
U{{vi,vg}:ie ), j € {1,2}} U{{vz, W ij e nl, abe {1,2}}.
The coloringy’ is defined as follows:

all edges: € E retain the original color, that ig’(e) = x(e);
the edgedt, t'}, {s, b} and{{vi, vil i€ n— 1]} are colored with a special coles;

the edgeqs, s'}, {t,b} and{{vz, v2} i € [2, n]} are colored with a special coleg;

the edges ir{{vi, b} i€ 2,n— 1]} are colored with a special colog;

the edges |r{{vZ O NS [n], a,b € {1,2}} are colored with a special colej.

One can verify thai’ makesG’ rainbow connected if and only if there was a rainbow path from
totinG. [
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3. Upper bounds and algorithms

The proof of our main Theorem 1.3 is based upon a modified degree-form version of Sze-
merédi’'s Regularity Lemma, that we prove here and that may be useful in other applications. We
begin by introducing the Regularity Lemma and the already known degree-form version of it.

3.1. Regularity Lemma

The Regularity Lemma of Szemerédi [9] is one of the most important results in graph theory
and combinatorics, as it guarantees that every graph hasjpproximation of constant descriptive
size, namely a size that depends onlycomnd not on the size of the graph. This approximation
“breaks” the graph into a constant number of pseudo-random bipartite graphs. This is very useful in
many applications since dealing with random-like graphs is much easier than dealing with arbitrary
graphs. In particular, as we shall see, the Regularity Lemma allows us to prove that graphs with
linear minimum degree have bounded rainbow connectivity.

We first state the lemma. For two nonempty disjoint vertex getnd B of a graphG, we
defineE (A, B) to be the set of edges 6f betweend and B. Theedge densityf the pair is defined
by d(A, B) = |E(A, B)|/(|A||B).

Definition 3.1 (e-regular pair) A pair (A, B) ise-regularif forevery A’ C AandB’ C B satisfying
|A’| > €|A| and|B’| > €|B|, we haveld(A’, B') — d(A, B)| < e.

An e-regular pair can be thought of as a pseudo-random bipartite graph in the sense that it
behaves almost as we would expect from a random bipartite graph of the same density. Intuitively,
in a random bipartite graph with edge densityall large enough sub-pairs should have similar
densities.

Apartition V1, ..., V}, of the vertex set of a graph is called equipartitionif |V;| and|V}| differ
by no more than forall 1 < i < j < k (so in particular every; has one of two possible sizes).

The order of an equipartition denotes the number of partition clasgesbpve). An equipartition
1i,...,V; of the vertex set of a graph is calledegular if all but at moste (’;) of the pairs(V;, V;)
arece-regular. Szemerédi’'s Regularity Lemma can be formulated as follows.

Lemma 3.2 (Regularity Lemma [9]) For everye > 0 and positive integet<, there existaV =
N3o(e, K), such that any graph with > N vertices has ar-regular equipartition of orderk,
whereK <k < N.

As mentioned earlier, the following variation of the lemma comes useful in our context.

Lemma 3.3(Regularity Lemma - degree form [8]Jor everye > 0 and positive integeK there is
N = Nj3(e, K) such that given any grap@ = (V, E)) withn > N vertices, there is a partition of
the vertex-seV” into k& + 1 setsVj;, V/, ..., V/, and there is a subgrap&’ of G with the following
properties:

(1) K<k<N,

(2) s = |V§| < €5n and all other components;, i € [k] are of size/ £ 22,

(3) forall i € [k], V/ induces an independent setd,

(4) forall 4, € [k], the pair(V/, V]) is e>-regular in G, with density eithef or at least¢,
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(5) forall v € V, deggr(v) > degg(v) — §n.

This form of the lemma (see e.g. [8]) can be obtained by applying the original Regularity
Lemma (with a smaller value af), and then “cleaning” the resulting partition. Namely, adding to
the exceptional sét; all componentd/; incident to many irregular pairs, deleting all edges between
any other pairs of clusters that either do not formeanregular pair or they do but with density less
thane, and finally adding td/, also vertices whose degree decreased too much by this deletion of
edges.

3.2. A maodified degree form version of the Regularity Lemma

In order to prove that graphs with linear minimum degree have bounded rainbow connectivity
number, we need a special version of the Regularity Lemma, which is stated next.

Lemma 3.4 (Regularity Lemma - new versionfor everye > 0 and positive integelk there is
N = N3.4(e, K) so that the following holds: I& = (V, E) is a graph withn > N vertices and
minimum degree at least then there is a subgrapt” of G, and a partition of/” into V{’, ..., V}”
with the following properties:

(1) K<k <N,

(2) foralli e [k], (1 —e)7 < |V/| < (1+ €)%,

(3) forall i € [k], V” induces an independent setd,

(4) forall i, 5 € [k], (V/",V/")isan e3-regular pair in G”, with density eithef or at least,

(5) forall i € [k] and everyv € V" there is at least one other cla$g’ so that the number of

neighbors of in G” belonging toV" is at least5|V)|.

We also note that the above a partition as guaranteed by our modified version of the Regularity
Lemma can be found in polynomial time for a fixedgwith somewhat worse constants), by using
the exact same methods that were used in [1] for constructing an algorithmic version of the original
Regularity Lemma. We are unable to give the complete proof of Lemma 3.4 due to space limitations.

3.3. Proof of Theorem 1.3

In this section we use our version of the Regularity Lemma to prove Theorem 1.3. First we
need some definitions. Given a graph= (V, E) and two subset¥;,V, C V, let E(V1, V)
denote the set of edges having one endpoint;iand another endpoint ivc. Given a vertex, let
I'(v) denote the set af's neighbors, and fol/ C V, letI'y, (v) denote the s’ N I'(v).

For an edge coloring : £ — C, letr, denote the corresponding partition Bfinto (at most)
|C| components. For two edge coloringsand x’, we say thaty’ is arefinementf y if =,/ is a

refinement ofr,, which is equivalent to saying that(e;) = x’(e2) always impliesy(e;) = x(e2).

Observation 3.5. Let xy andy’ be two edge-colorings of a grafh, such thaty’ is a refinement
of x. For any pathP in G, if P is a rainbow path undey, then P is a rainbow path undey’. In
particular, if y makesG rainbow connected, then so dogs n
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We define a set of eight distinct colofs = {a1, as, a3, ayq, b1, b2, b3, bs}. Given a coloring
x : E — C we say thaty,v € V area-rainbow connectedf there is a rainbow path from to v
using only the colors, as, as, as. We similarly defineb-rainbow connectegairs. The following
is a central lemma in the proof of Theorem 1.3. The proof of Lemma 3.6 is given in Section 3.4.

Lemma 3.6. For anye > 0, there iSN = N3 ¢(¢) such that any connected gragh= (V, E) with
n > N vertices and minimum degree at leastsatisfies the following. There is a partitidhof V'
into k& < N componentd/, V5, ..., Vj, and a coloringy : E — C such that for every € [k] and
everyu, v € V;, the pairu, v is botha-rainbow connected anérainbow connected undey.

Using Lemma 3.6 we derive the proof of Theorem 1.3. For a given 0, setN = N3 ¢(e)
and setC' = %N + 8. Clearly, any connected graght = (V, E) with n < C vertices satisfies
re(G) < C. So we assume that > C > N, and letll = Vi,...,V, be the partition o from
Lemma 3.6, while we know thdt < N.

First observe that since the minimal degreg-ois en, the diameter of> is bounded by/e.
This can be verified by e.g. by taking an arbitrary vertex V' and executing & F'S algorithm
from it. Let Ly,...,L; be the layers of vertices in this execution, whdreare all vertices at
distancei from . Observe that since the minimal degree is at leasthe total number of vertices
in every three consecutive layers must be at leasthust < 3/¢. Since the same claim holds for
anyr € V, this implies thatliam(G) <t < 3/e.

Now letT" = (Vr, Er) be a connected subtree @fon at mostk - diam(G) < %N vertices
such that for every € [k], Vr N'V; # (). Such a subtree must exist@since as observed earlier,
diam(G) < 3/e. Lety : E — C be the coloring from Lemma 3.6, and lét= {h1, ha, ..., hg, |}
be a set of E7| < 2N fresh colors. We refing by recoloring every; € E(T') with color h; € H.

Lety' : E — (CU H) be the resulting coloring aofi. The following lemma completes the proof
of Theorem 1.3.

Lemma 3.7. The coloringx’ makes rainbow connected. Consequentty(G) < |Er|+8 < C.

Proof. Letwu, v € V be any pair ofG’s vertices. Ifu andv reside in the same componéritof the
partitionII, then (by Lemma 3.6) they are connected by a gathf length at most four, which is a
rainbow path under the the original coloring Sincey’ is a refinement of, the pathP remains a
rainbow path undex’ as well (see Observation 3.5).

Otherwise, letu € V; andv € Vj for i # j. Lett; andt; be vertices of the subtreg, residing
in V; andV; respectively. By definition of’, there is a rainbow path from to ¢; using colors from
‘H. Let P, denote this path. In addition, by Lemma 3.6 we know that for the original colgfing
there is a rainbow pati®, from u to ¢; using colorsaq, . . . , a4 and there is a rainbow path, from
v tot; using colorsy, ..., bs. Based on the fact that is a refinement of, it is now easy to verify
that P, P, and P, can be combined to form a rainbow path franto v undery’. ]

This concludes the proof of Theorem 1.3, apart from the extsteof a polynomial time al-
gorithm for finding this coloring. We note that all arguments above apart from Lemma 3.6 admit
polynomial algorithms for finding the corresponding structures. The algorithm for Lemma 3.6 will
be given with its proof.
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3.4. Proof of Lemma 3.6
First we state another auxiliary lemma, which is proved in the next section.

Lemma 3.8. For everye > 0 there existsN = Nj3g(e) such that any graplG = (V, E) with

n > N vertices and minimum degree at least satisfies the following: There exists a partition
IT = Vi,...,V, of V such that for every € [k] and everyu,v € V;, the number of edge disjoint

paths of length at most four fromto v is larger than8® log n. Moreover, these sets can be found
using a polynomial time algorithm for a fixed

Proof. (of Lemma 3.6) First we apply Lemma 3.8 to get the partitibh Now the proof follows
by a simple probabilistic argument. Namely, we color every edge E by choosing one of the
colorsinC = {ay,...,a4,b1,...,bs} uniformly and independently at random. Observe that a fixed
path P of length at most four is an-rainbow path with probability at least*. Similarly, P is
a b-rainbow path with probability at least™*. So any fixed paiu, v € V; is not botha-rainbow-
connected anéirainbow-connected with probability at maxtl —8—4)8° 8™ < =2, and therefore
the probability that all such pairs are batkrainbow connected angrainbow connected is strictly
positive. Hence the desired coloring must exist.

To find the coloring algorithmically, we note that for evegpgrtial coloring of the edges of
the graph it is easy to calculate thenditional probability that the fixed pair of verticas, v is not
both a-rainbow-connected anktrainbow-connected. Therefore we can calculate the conditional
expectation of the number of pairs that are not so connected for any partial coloring. Now we
can derandomize the random selection of the coloring above by using the conditional expectation
method (cf. [2]): In every stage we color one of the remaining edges in a way that does not increase
the conditional expectation of the number of unconnected pairs. Since this expectation is smaller
than1 in the beginning, in the end we will have less thaaonconnected pair, and so all pairs will
be connected. [

3.5. Proof of Lemma 3.8

Givene > 0 let L = N34(¢,1) and setV to be the smallest number that satisféé% >
8% log N. Now, given any graple; = (V, E) with n > N vertices and minimum degree at least
en, we apply Lemma 3.4 with parameterand1. LetIl = V4, V4,,..., V, be the partition oft”
obtained from Lemma 3.4, while as promiséds< L = N3 4(¢).

Fix i € [k] andu,v € V;. From Lemma 3.4 we know that there is a comporiénsuch that
u has at leastzn neighbors inV,,. Similarly, there is a componef, such that has at least;n
neighbors inV;. LetI', , denote the set af’s neighbors inV,, and similarly, letl’, ;, denotev’s
neighbors inV;,. We assume in this proof th&f, # V;, and at the end it will be clear that the case
V. = V, can only benefit.

We say that a sét’,, = {w1,...,w;} C V; is distinctly reachable fromu if there are distinct
verticeswy, ..., w; € I'y 4 such that for every € [t], {w;,w}} € E. Notice that the collection of
pairs{w;, w;} corresponds to a matching in the grag@ghwhere all edges of the matching have one
endpoint inV; and the other endpoint i, ,. Similarly, we say thatV,, C V; is distinctly reachable
from v if there are distinct vertices, ..., w; € I} such that for every € [t], {w;, w}} € E.
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Observe that it is enough to prove that there exists &1set V; of sizeé‘% > 8%log N which is
distinctly reachable from both andv. This will imply the existence o$® log N edge disjoint paths
of length four fromu to v.

Ouir first goal is to bound from below the size of the maximal EQt as above. Since (by
Lemma 3.4)V, andV; are e*-regular pairs with density> < s and sincee? < ¢/3, the number
of edges betweeh, , andV; is at least(:5 — €*) [T'y.q] - |V| Before proceeding, we make the
following useful observation.

Observation 3.9. Let H = (A, B) be a bipartite graph withy|A||B| edges. Ther{ contains a

matchingM of sizexy ‘Jﬂr@‘

Proof. Consider the following process that creafes Initially M, = (). Then in step, we pick

an arbitrary edgda, b} € E(H), setM;+1 = M; U {a,b} and remove fromE(H) all the edges
incident with eithera or b. Clearly, in each step the number of removed edges is bounded by
|A| + | B|, so the process continues for at Ieﬁ{ﬁ—) = ymﬂﬁ___';' steps. HenceM | = ||, M;| >

- lausl .
AT+BT

Returning to the proof of Lemma 3.8, by Observation 3.9 the sfa maximal setl’,, as above
is at least

(£ ) Luall¥il_, (€ ) (cn/GR)mm) o
16 |Cual +|Vi] — en/(3k) +n/k — 64k

To prove thatV = W,, N W, is large, we similarly use the regularity condition, but now on the
pair (I', », Wy,). We get,

B(Cop W)l = (5 =€) ol Wal.
Here too, by Observation 3.9 we can bound from below the size of a maximal matching in the pair
(Pv,by Wu) with

(5en) ()

() i > (5 =) ur gt =¥ 127> e
v,b u 3kTL + 64kn

where the last inequality follows from our choice &f. Recall that the matching that we found

defines the desired sé&t, concluding the proof. An algorithmic version of this lemma can be

derived by simply using an algorithmic version of Lemma 3.4 in the selectidf of . , V}, above.

3.6. Graphs with diameter2

Proof of Theorem 1.4. Consider a randorB-coloring of £/, where every edge is colored with
one of three possible colors uniformly and independently at random. It is enough to prove that for
all pairsu,v € V the probability that they are not rainbow connected is at migst. Then the
proof follows by the union bound (cf. [2]).
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Let us fix a pairu,v € V, and bound from above the probability that this pair is not rainbow
connected. We know that boli{«) andI'(v) (the neighborhoods af andv) contain at least log n
vertices.

(1) If {u,v} € E then we are done.

(2) If I'(u) NT'(v)| > 2logn then there are at lea8tog n edge-disjoint paths of length two
from u to v. In this case, the probability that none of these paths is a rainbow path is
bounded by(1/3)21°e™ < 1/n2, and we are done.

(3) Otherwise, letA = I'(u) \ I'(v) andB = I'(v) \ I'(u). We know thatA|, |B| > 6logn,
and in addition, since the first two cases do not hold and the diameti®iwo, all the
(length two) shortest paths frod’s vertices tov go through the vertices ifs. This implies
that every vertex: € A has a neighbob(z) € B (b(x) need not be a one-one function).
Let us consider the set of at leddbg n edge-disjoint path® = {u,z,b(x) : © € A}. For
eachz € A, the probability that, z, b(x), v is a rainbow path (given the color of the edge
(b(x),v)) is 2/9. Moreover, this event is independent of the corresponding events for all
other members ofi, because this proabablity does not change even with full knowledge of
the colors of all edges incident with Therefore, the probability that none of the paths in
P extends to a rainbow path fromto v is at most(7/9)51°8™ < 1/n?, as required.

The above proof immediately implies a probabilistic polynomial expected time randomized
algorithm with zero error probability (since we can also efficiently check if the coloring indeed
makesG 3-rainbow connected). The algorithm can be derandomized and converted to a polynomial
time probabilistic algorithm using the method of conditional expectations (cf. [2]) similarly to the
proof of Lemma 3.6: For every partial coloring of the edges we can efficiently bound the conditional
probability that a fixed pait, v is not rainbow-connected, using the relevant one of the three cases
concerningu andv that were analyzed above. Now we can color the edges one by one, at each time
taking care not to increase the bound on the conditional expectation of unconnected pairs that results
from the above probability bound for evemyandv. Since the bound on the expectation was smaller
than1 before the beginning of the process, in the end we would get a ahthbow-coloring of
G. [

4. Concluding remarks and open problems

e Theorem 1.3 asserts that a connected graph with minimum degree atrddest bounded
rainbow connectivity. However, the bound obtained is huge as it follows from the Regularity
Lemma. It would be interesting to find the “correct” bound. It is even possible-tiiat) <
C'/e for some absolute constaft

e The proof of Theorem 1.1 shows that deciding wheth€(z) = 2 is NP-Complete. Al-
though this suffices to deduce that computingG) is NP-Hard, we still do not have a
proof that deciding whetherc(G) < k is NP-Complete for every fixedl. We can easily
it for every evenk by the following reduction from the case = 2. Given a graphG,
subdivide every edge intb/2 edges. Now, the new graghl hasrc(G’) = k if and only
if rc(G) = 2. Indeed, ifrc(G) = 2 then take a corresponding red-blue coloringébind
color G’ by coloring every subdivided red edge Gfwith the colorsl, ..., k/2 and every
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subdivided blue edge with the colokg2+1, ..., k. Conversely, ifG' has an edge coloring
making it rainbow connected using the colars. ., k, then color each edgeof G as fol-
lows. If the subdivision ot contains the colot, color e red; otherwise, coloe¢ blue. This
red-blue coloring of7 makesG rainbow connected.

It is tempting to conjecture that for evefyit is NP-Hard even to distinguish between
2-rainbow-colorable graphs and graphs that are not évexinbow-colorable.

e A parameter related to rainbow connectivity is fie@nbow diameter In this case we ask
for an edge coloring so that for any two vertices, there is a rairgfawtestipath connecting
them. The rainbow diameter number, denoté@) is the smallest number of colors used
in such a coloring. Clearlyyd(G) > rc(G) and obviously every connected graph with
n vertices has'd(G) < (3). Unlike rainbow connectivity, which is a monotone graph
property (adding edges never increases the rainbow connectivity number) this is not the case
for the rainbow diameter (although we note that constructing an example that proves non-
monotonicity is not straightforward). Clearly, computing(G) is NP-Hard sincec¢(G) =
2 if and only if rd(G) = 2. It would be interesting to prove a version of Theorem 1.3 for
rainbow diameter. We conjecture that, indeed¢iiis a connected graph with minimum
degree at leasin then it has a bounded rainbow diameter.

e Suppose that we are given a graghfor which we aretold that r¢(G) = 2. Can we
rainbow-color it in polynomial time witlo(n) colors? For the usual coloring problem, this
version has been well studied. It is known that if a graphc®lorable (in the usual sense),
then there is a polynomial time algorithm that colors it witn3/4) colors [3].
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