91 research outputs found

    A Multi-Objective Approach to Optimize a Periodic Maintenance Policy

    Get PDF
    The present paper proposes a multi-objective approach to find out an optimal periodic maintenance policy for a repairable and stochastically deteriorating multi-component system over a finite time horizon. The tackled problem concerns the determination of the system elements to replace at each scheduled and periodical system inspection by ensuring the simultaneous minimization of both the expected total maintenance cost and the expected global system unavailability time. It is assumed that in the case of system elements failure they are instantaneously detected and repaired by means of minimal repair actions in order to rapidly restore the system. A non-linear integer mathematical programming model is developed to solve the treated multi-objective problem whereas the Pareto optimal frontier is described by the Lexicographic Goal Programming and the \u3b5-constraint methods. To explain the whole procedure a case study is solved and the related considerations are given

    Quantum Computing for Airline Planning and Operations

    Get PDF
    Classical algorithms and mathematical optimization techniques have beenused extensively by airlines to optimize their profit and ensure that regulationsare followed. In this thesis, we explore which role quantum algorithmscan have for airlines. Specifically, we have considered the two quantum optimizationalgorithms; the Quantum Approximate Optimization Algorithm(QAOA) and Quantum Annealing (QA). We present a heuristic that integratesthese quantum algorithms into the existing classical algorithm, whichis currently employed to solve airline planning problems in a state-of-the-artcommercial solver. We perform numerical simulations of QAOA circuits andfind that linear and quadratic algorithm depth in the input size can be requiredto obtain a one-shot success probability of 0.5. Unfortunately, we areunable to find performance guarantees. Finally, we perform experiments withD-wave’s newly released QA machine and find that it outperforms 2000Q formost instances

    Combining Dantzig-Wolfe and Benders decompositions to solve a large-scale nuclear outage planning problem

    Get PDF
    International audienceOptimizing nuclear unit outages is of significant economic importance for the French electricity company EDF, as these outages induce a substitute production by other more expensive means to fulfill electricity demand. This problem is quite challenging given the specific operating constraints of nuclear units, the stochasticity of both the demand and non-nuclear units availability, and the scale of the instances. To tackle these difficulties we use a combined decomposition approach. The operating constraints of the nuclear units are built into a Dantzig-Wolfe pricing subproblem whose solutions define the columns of a demand covering formulation. The scenarios of demand and non-nuclear units availability are handled in a Benders decomposition. Our approach is shown to scale up to the real-life instances of the French nuclear fleet

    Design and Operations of Satellite Constellations for Complex Regional Coverage

    Get PDF
    Fueled by recent technological advancements in small and capable satellites, satellite constellations are now shaping the new era of space commercialization creating new forms of services that span from Earth observations to telecommunications and navigation. With the mission objectives becoming increasingly complex, a new paradigm in the design and operations of satellite constellations is necessary to make a system cheaper and more efficient. This dissertation presents a set of novel mathematical formulations and solution methods that lend themselves to various applications in the design and operations of satellite constellation systems. The second chapter establishes the Access-Pattern-Coverage (APC) decomposition model that relaxes the symmetry and homogeneity assumptions of the classical global-coverage constellation design methods. Based on the model, this dissertation formulates an integer linear programming (ILP) problem that designs an optimal constellation pattern for complex spatiotemporally-varying coverage requirements. The third chapter examines the problem of reconfiguring satellite constellations for efficient adaptive mission planning and presents a novel ILP formulation that combines constellation design and transfer problems that are otherwise considered independent and serial in the state-of-the-art. Furthermore, the third chapter proposes a Lagrangian relaxation-based heuristic method that exploits the assignment problem structure embedded in the integrated design-transfer model. The fourth chapter extends the third chapter by investigating the multi-stage satellite constellation reconfiguration problem and develops two heuristic sequential decision-making methods based on the concepts of myopic policy and the rolling horizon procedure. This dissertation presents several illustrative examples as proofs-of-concept to demonstrate the value of the proposed work.Ph.D

    Models and algorithms for railway line planning problems

    Get PDF

    Large-Scale Solution Approaches for Healthcare and Supply Chain Scheduling

    Get PDF
    This research proposes novel solution techniques for two real world problems. We first consider a patient scheduling problem in a proton therapy facility with deterministic patient arrivals. In order to assess the impacts of several operational constraints, we propose single and multi-criteria linear programming models. In addition, we ensure that the strategic patient mix restrictions predetermined by the decision makers are also enforced within the planning horizon. We study the mathematical structures of the single criteria model with strict patient mix restrictions and derive analytical equations for the optimal solutions under several operational restrictions. These efforts lead to a set of rule of thumbs that can be utilized to assess the impacts of several input parameters and patient mix levels on the capacity utilization without solving optimization problems. The necessary and sufficient conditions to analytically generate exact efficient frontiers of the bicriteria problem without any additional side constraint are also explored. In a follow up study, we investigate the solution techniques for the same patient scheduling problem with stochastic patient arrivals. We propose two Markov Decision Process (MDP) models that are capable of tackling the stochasticity. The second problem of interest is a variant of the parallel machine scheduling problem. We propose constraint programming (CP) and logic-based Benders decomposition algorithms in order to make the best decisions for scheduling nonidentical jobs with time windows and sequence dependent setup times on dissimilar parallel machines in a fixed planning horizon. This problem is formulated with (i) maximizing total profit and (ii) minimizing makespan objectives. We conduct several sensitivity analysis to test the quality and robustness of the solutions on a real life case study
    • …
    corecore