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Abstract

Classical algorithms and mathematical optimization techniques have been
used extensively by airlines to optimize their profit and ensure that regu-
lations are followed. In this thesis, we explore which role quantum algorithms
can have for airlines. Specifically, we have considered the two quantum op-
timization algorithms; the Quantum Approximate Optimization Algorithm
(QAOA) and Quantum Annealing (QA). We present a heuristic that inte-
grates these quantum algorithms into the existing classical algorithm, which
is currently employed to solve airline planning problems in a state-of-the-art
commercial solver. We perform numerical simulations of QAOA circuits and
find that linear and quadratic algorithm depth in the input size can be re-
quired to obtain a one-shot success probability of 0.5. Unfortunately, we are
unable to find performance guarantees. Finally, we perform experiments with
D-wave’s newly released QA machine and find that it outperforms 2000Q for
most instances.

Keywords: discrete optimization, quantum approximate optimization algo-
rithm, quantum annealing, airline scheduling, column generation
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CHAPTER 1

Introduction

Airlines have used classical algorithms and mathematical optimization [1]
techniques extensively for decades [2]. In this thesis, we explore which role
quantum algorithms can have in this context. In the following sections, we
give a brief overview of the airline industry, airline scheduling problems, and
quantum computing.

1.1 The Airline Scheduling Process

Airlines operate within an industry that is highly competitive with large op-
erational costs. In particular, the largest costs are related to fuel consumption
and crew. The airlines are furthermore governed by many operational rules
imposed by aviation authorities and unions. It is also common that airlines
themselves have internal rules that need to be respected. Additionally, airlines
also must deal with uncertainties due to weather conditions and other disrup-
tions. These characteristics force airlines to carefully schedule their flights,
crew, and aircraft to maximize revenue and minimize cost.
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Chapter 1 Introduction

Scheduling Problems

An airline has two significant decisions before scheduling [3], namely the fleet
size and structure and which routes to cover. Typically an airline begins by
determining the fleet, i.e., how many aircraft of each fleet should exist and how
many aircraft there are in total. Given that the set of aircraft is determined,
the airline can consider which origins and destinations they wish to cover,
i.e., route planning. Generally, after these planning stages are completed, the
airline can consider the scheduling of flights, aircraft, and crew.

The scheduling problem [4], [5] has historically been divided into subprob-
lems Flight Scheduling, Fleet Assignment, Crew Scheduling, Tail Assignment,
and lastly Recovery Planning. Commonly, Crew Scheduling is further parti-
tioned into Crew Pairing and Crew Rostering. In this setting, the output of
a subproblem is input to the following subproblem and solved sequentially;
see Fig. 1.1. However, by considering the subproblems individually, the over-

Flight Scheduling

Fleet Assignment

Crew Pairing

Crew Rostering

Tail Assignment

Recovery Planning

Figure 1.1: Sequential airline scheduling process

all scheduling problem is not solved optimally. Therefore more integrated
solutions have also been considered, where two or more subproblems can be
solved iteratively, considering some aspects of other subproblems, or a com-
pletely new integrated model of multiple problems is proposed. Although
there exists no proposal to integrate all subproblems into a single problem,
probably due to the complexity and size such a problem would have. Exam-
ples of integrated problems are Crew Scheduling with Tail Assignment and
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1.1 The Airline Scheduling Process

Fleet Assignment with Flight Scheduling. There are some drawbacks when
considering integrated optimization models since the subproblems are com-
plex and large, even when considered individually. Integrating two or more
subproblems can be very di�cult to model, and the integrated optimization
models will obviously become even larger in the number of required variables
and constraints. The integrated optimization problems can therefore be more
cumbersome to find good solutions to and fail in practice to perform better
than the sequential approach in Fig. 1.1.

The goal of Flight Scheduling [6]–[15] is to construct a flight schedule, which
is a list of flight legs specified by their arrival and departure airport, dates
or frequency, and time. This stage is typically completed six months in ad-
vance. The considerations an airline usually has in Flight Scheduling are
demand, ticket price, market share, airport slots, and non-stop flights versus
connecting flights for certain origins and destinations. Since the sold flight
tickets constitute the airline’s revenue, the objective becomes to maximize the
expected revenue.

Using the output of Flight Scheduling, i.e., the flight schedule, it is possible
to consider Fleet Assignment. In Fleet Assignment [16]–[33], the goal is to
cover the flight schedule with the existing fleet and maximize the profit. This
means that we need to assign a fleet type to each flight leg while not exceeding
the number of aircraft in each fleet. To maximize the profit, the goal is to
match the demand to the capacity of the aircraft, as this minimizes the spill
cost of lost passengers and operating costs.

Once the flight schedule and the fleet type are known for each flight, we can
consider the Crew Scheduling problem. The Crew Scheduling problem [34]–
[37] is typically partitioned into two problems, Crew Pairing and Crew Roster-
ing. The reasons for separating the problems are the sheer size and complexity
and the constraints and goals that di�er. In Crew Pairing, the goal is to find
anonymous legal pairings in the most cost-e�ective way such that the flight
schedule is covered and the working contractual rules for the anonymous crew
are respected. The cost is typically measured in the working time, and a legal
pairing is a sequence of duties, that are sequences of flight legs typically rep-
resenting one day of work, with rest and layovers in between that start and
ends in a crew base and respect a set of additional rules.

Crew Rostering, on the other hand, focuses on finding monthly personalized
rosters for each crew member such that all flights are covered, and the weekly
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Chapter 1 Introduction

and monthly rules for individual crew members are respected. The personal-
ized rosters for each crew consist of pairings generated in the Crew Pairing
phase and personal activities such as vacation, reserves, and training with
time o� in between. The typical objective is to maximize the roster qualities
by fairness and/or requests from individual crew members. Crew Pairing is,
therefore, more important than Crew Rostering when it comes to increasing
profit.

Once there is a Fleet Assignment and/or Crew Scheduling solution, individ-
ual tails, the numbers that identify a particular aircraft, must be assigned to
each flight in the flight schedule while performing the required maintenance
checks. This problem is an Aircraft Assignment problem, and specifically here
the Tail Assignment problem [38]–[42]. The solution of Tail Assignment is a
set of maintenance feasible aircraft routes, that is, sequences of flight legs,
assigned to minimize the assignment cost.

Once all these problems are solved, the airline has successfully scheduled
its flights, aircraft, and crew to maximize profit while respecting all rules.
However, there are many uncertainties, as noted previously. As a result,
schedules can be disrupted by unforeseen circumstances. To manage this new
situation, it is often necessary to reevaluate the schedules, which is handled
in the Recovery Planning phase [43], [44].

Ch. 2 and 3 will explain further the mathematical models and solution
techniques commonly used.

1.2 Quantum Computing

Quantum mechanics [45] was discovered and developed during the first quarter
of the 1900s, introducing concepts such as quantum superposition, quantum
entanglement, and quantum measurement. The theory allowed for a greater
understanding of the universe throughout the century, as it correctly described
nature in regimes where classical mechanics failed.

The theory of computational complexity [46]–[48] and the performance of
the classical computer progressed at great speed during the latter half of the
1900s, following Moore’s law [49], [50] which says that the power of classi-
cal computers will double every two years. However, this law is currently
breaking down as the hardware components become so small that quantum
mechanical e�ects disturb their functionality. One possible way of further-
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1.2 Quantum Computing

ing our computing capability is to propose a new model of computation. In
1979-1981 Benio� [51], Manin [52] and Feynman [53] independently proposed
such concepts, namely a model of computation based on quantum mechan-
ics. Feynman argued that to simulate quantum mechanical systems, such a
model of computation might be required, as it seems to be intractable for
a classical computer to do exactly without exponential resources and time.
The idea was thus that a machine where information is embedded in quantum
mechanical systems might be more powerful than a machine where the infor-
mation is embedded in classical mechanical systems. Today we view quantum
superposition and entanglement as resources of this model that are distinctly
di�erent from the resources of classical computation. Quantum entanglement
allow for non-local operations compared to classical computing and quantum
superposition allow the device to be in a superposition of all classical states.
Indeed, quantum computers stand today as a possible model of computation
that may violate the extended Church-Turing thesis, which says that a prob-
abilistic Turing machine can simulate any reasonable model of computation
in polynomial time. The principles of quantum computing can be found in
Ref. [54] but also will be introduced in Ch. 4.

Following the proposals by Benio�, Manin and Feynman, much insight has
been obtained about controlling single quantum systems such as ion traps
and superconducting qubits, quantum information, quantum algorithms, and
how to construct a quantum computer [54], [55]. Deutsch showed in 1985
that universal quantum computing [56] is possible to realize in theory, along
with a problem that can be solved in constant time by a quantum algorithm
compared to linear time by a deterministic classical algorithm [57], albeit
a probabilistic classical algorithm also solves the problem in constant time.
Bernstein and Vazirani [58] were the first to show separation between quantum
computation and classical computation, as they gave a problem that a quan-
tum algorithm solves in constant time whereas linear time is required for both
the deterministic and probabilistic classical algorithms. They also proposed a
version of the quantum Fourier transform, which gives an exponential speed-
up compared to classical algorithms. Exponential speedup was also obtained
by Simon’s algorithm [59] shortly after, but what is now considered a defining
major breakthrough in the field was discovered by Shor [60], who presented
an algorithm, that uses the quantum Fourier transform as a building block,
that solves the discrete log problem and in extension the integer factoriza-
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Chapter 1 Introduction

tion problem. This quantum algorithm provides exponential speedup over the
best known classical algorithm, and is applicable to a problem we encounter
on a regular basis, namely the RSA encryption [61], which is broken by Shor’s
algorithm. Moreover, Grover presented an unstructured database search algo-
rithm with quadratic speedup [62], which has later also been used to propose
several algorithms to solve discrete optimization problems. However, these al-
gorithms rely on quantum error correction and hence fault-tolerant quantum
computers, which have yet to be shown experimentally viable. Furthermore,
some algorithms require specific oracle access, which is nontrivial to achieve
experimentally.

What has been proposed instead is to consider hybrid quantum-classical
variational algorithms such as the Quantum Approximate Optimization Al-
gorithm (QAOA) [63] and the Variational Quantum Eigensolver (VQE) [64] in
the so-called Noisy Intermediate-Scale Quantum [65] (NISQ) era of quantum
computers. We will discuss the quantum variational algorithms designed to
solve optimization problems further in Ch. 4.

Moreover, the idea of quantum computing has given rise to quantum com-
plexity classes. The complexity class of greatest interest to us is Bounded-
error Quantum Polynomial-time (BQP) [54], which is the quantum analog
of Bounded-error Probabilistic Polynomial-time (BPP) [47]. Finally, we note
that it has been shown that BPP™ BQP™PSPACE [58], but it is not known
if there is a separation BPP ”=BQP, meaning that it is still not proven that
quantum computers are more powerful than classical computers. This can
be considered counterintuitive, as we just have mentioned quantum speedup.
However, for the problems and quantum algorithms presented, the speedup is
either given when we assume oracle access, which can’t separate the classes,
or when we do not know the hardness of the problem as in the case of integer
factorization.

1.3 Contribution

I assisted with the following work related to the papers appended and dis-
cussed in this thesis:

• Paper A: I derived problem instances of interest, performed all numerical
simulations, and was the main author of the manuscript
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1.4 Thesis Outline

• Paper B: I derived the problem instances and assisted with reviewing
the manuscript

• Paper C: I assisted in reviewing the manuscript and assisted in some
numerical circuit simulations

• Paper D: I presented the instances to consider and assisted in reviewing
the manuscript

1.4 Thesis Outline

In Ch. 2, the mathematical background is given for Multi-Commodity Net-
work Flow problems and solution methodologies. A further explanation of the
mathematical models used for the Aircraft Assignment problem Tail Assign-
ment is then given in Ch. 3. Ch. 4 gives a review of the model of quantum
computation and some quantum algorithms designed to solve integer program-
ming problems. The appended papers are summarized in Ch. 5, and finally,
we give our conclusions and suggestions for future research possibilities in
Ch. 6.
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CHAPTER 2

Network Flows and Mathematical Optimization

This chapter introduces the general minimum cost Multi-Commodity Network
Flow Problem (MCNFP) as it models many airline planning problems, some-
times with additional constraints. We also summarize solution methodologies
and focus on Dantzig-Wolfe decomposition, Column Generation, and in the
integrality case Branch-and-Price.

2.1 The Multi-Commodity Network Flow Problem

Surveyed in [66] and [67], the MCNFP [68] model optimization problems in
areas such as logistics, transportation, and telecommunication. The problem
consists of a directed graph G = (V, A) with a set of nodes V and arcs A.
In addition, we have a set of K commodities that, in essence, di�erentiates
the problem from the Single-Commodity Network Flow Problem (SCNFP).
The goal is to ship B

k units of each commodity k œ K across the graph from
source nodes sk to sink nodes tk such that the sum of arc costs c

k

ij
is as small

as possible, whilst respecting capacity constraints on each arc uij and arc-flow
variable x

k

ij
.

Thus, similarly to the SCNFP, we wish to move commodities from the source
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Chapter 2 Network Flows and Mathematical Optimization

to the sink subject to mass balance constraints, capacity constraints and a cost
minimization. However, here the capacity constraints link all commodities
together, which causes the MCNFP to be a more di�cult problem to solve
than the SCNFP. In particular, if we have integral variables as the Linear
Programming (LP) relaxation [69] of the SCNFP, in this case, has integer
solutions, whereas the MCNFP does not. Clearly, if the linking constraints
are ignored, the MCNFP decomposes to |K| SCNFPs that can be solved
separately. There are two main formulations of these problems, an arc-flow
formulation, and a path-flow formulation. We will now discuss these.

Arc-flow Formulation

The arc-flow formulation of the minimum cost MCNFP is the following

z
ú = minimize

ÿ

kœK

ÿ

(i,j)œA

c
k

ij
x

k

ij
, (2.1)

subject to
ÿ

(i,j)œA

x
k

ij
≠

ÿ

(j,i)œA

x
k

ji
= b

k

i
, ’i œ V, ’k œ K, (2.2)

ÿ

kœK

x
k

ij
Æ uij , ’(i, j) œ A, (2.3)

x
k

ij
Ø 0, ’(i, j) œ A, ’k œ K, (2.4)

where

b
k

i
=

Y
__]

__[

B
k if i = sk

≠B
k if i = tk

0 otherwise
. (2.5)

The decision variables x
k

ij
represent the flow of commodity k on each arc

(i, j) œ A in the directed graph. Eq. (2.1) is the linear cost function with cost
coe�cients c

k

ij
associated with sending commodity k across arc (i, j). There

are |V ||K| mass balance constraints, sometimes referred to as continuity con-
straints, in Eq. (2.2). Here the supply, demand, and continuity are secured
by the coe�cients b

k

i
for each node and commodity. Each commodity has

its own source node sk and sink node tk, and there can in general be several
source and/or sink nodes, but here we only consider the case when we have
a single source node and a single sink node for each commodity. The linking
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2.1 The Multi-Commodity Network Flow Problem

constraints of the commodities are given by the upper bound on the arc ca-
pacity uij in Eq. (2.4), clearly these |A| constraints are forcing us to solve the
problem in this form, whereas if these constraints are ignored, it is possible
to decompose the problem into |K| separate problems.

Path-flow Formulation

We can reformulate the arc-flow formulation as a path-flow formulation. Since
there are for each commodity k a set of P

k possible simple directed paths from
sk to tk, we can associate the flow on each path with a decision variable fp.
We can then relate the arc-flow decision variable to the path-flow decision
variable accordingly

x
k

ij
=

ÿ

pœP k

”ij(p)fp, (2.6)

where ”ij(p) is 0 if arc (i, j) is not in path p and 1 otherwise. We can also
express the cost of a path p for commodity k as c

k

p
=

q
(i,j)œA

”ij(p)ck

ij
. Re-

garding the mass balance constraints, we can remove some, as we require that
the sum of all directed paths from source to sink for each commodity deliver
B

k units. Lastly, the capacity constraint is easily expressed in path-flow vari-
ables by replacing the arc-flow variables. Since we require that each arc-flow
variable is non-negative, we also require this for the path-flow variables. The
path-flow formulation is thus

z
ú = minimize

ÿ

kœK

ÿ

pœP k

c
k

p
fp, (2.7)

subject to
ÿ

pœP k

fp = B
k
, ’k œ K, (2.8)

ÿ

kœK

ÿ

pœP k

”ij(p)fp Æ uij , ’(i, j) œ A, (2.9)

fp Ø 0, ’p œ P
k
, ’k œ K. (2.10)

We now have an equivalent formulation of the problem where we have reduced
|V ||K| + |A| constraints in the arc-flow formulation to |K| + |A| constraints,
but we have increased the number of variables from |A||K| to

q
kœK

|P
k
|

which is in general exponential in the size of the directed graph.
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Chapter 2 Network Flows and Mathematical Optimization

2.2 Solution Approaches

The solution approaches to MCNFP [68, Chapter 17] are typically classified
into three categories: price-directive decomposition, resource-directive decom-
position, and partitioning methods.

The price-directive decomposition decomposes the problem into a main
problem and |K| subproblems where prices are put on the linking constraints.
The mass balance constraints and individual arc flow constraints define the
subproblems for each commodity along with an objective function to be mini-
mized. The objective function is the original arc cost for a path with additional
prices added. The role of the subproblems is to find improving paths for the
main problem. The main problem sets the prices and connects the individual
subproblems via the linking constraints. This is often done via Lagrangian de-
composition, Dantzig-Wolfe decomposition and/or Column Generation. The
two latter approaches will be presented in the following sections.

The idea of resource-directive decomposition is that we view the problem as
a capacity allocation problem. We then separate the MCNFP into a resource
allocation problem and |K| additional minimum cost flow problems that de-
pend on a fixed resource vector r. This decomposition changes the arc-flow
formulation to the following two problems

z
ú = minimize

ÿ

kœK

zk(r), (2.11)

subject to
ÿ

kœK

r
k

ij
Æ uij , ’(i, j) œ A, (2.12)

r
k

ij
Ø 0, ’(i, j) œ A, ’k œ K, (2.13)

and

zk(r) = minimize
ÿ

(i,j)œA

c
k

ij
x

k

ij
, (2.14)

subject to
ÿ

(i,j)œA

x
k

ij
≠

ÿ

(j,i)œA

x
k

ji
= b

k

i
, ’i œ V, (2.15)

0 Æ x
k

ij
Æ r

k

ij
, ’(i, j) œ A. (2.16)

These problems are solved iteratively, where we reallocate capacities such that
the solution is improved in each iteration.
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2.2 Solution Approaches

For partitioning methods, one uses the fact that the MCNFP is an LP with
embedded single-commodity network flow problems. One useful method that
has been developed for SCNFP is that spanning tree solutions are basic feasible
solutions in the simplex algorithm [70]. By generating improving spanning
trees, the SCNFP can be solved. This idea is expanded upon for MCNFP,
where additional arcs are required to ensure that the linking constraints are
satisfied.

To summarize, all three categories of solution approaches to the MCNFP
share the fact that we separate the problem into several problems, that each
only considers one commodity. In this thesis, we focus on a price-directive
method, namely the Dantzig-Wolfe decomposition and Column Generation.
Our motivation for this choice is that we consider the current state-of-the-art
implementation to solve problems of interest in the airline planning process.

Dantzig-Wolfe Decomposition

The Dantzig-Wolfe decomposition was first presented in [71], and constitutes
a method for decomposing a linear program such that we obtain a formulation
based on extreme rays and points in domains that are defined by constraints
in the original formulation. If we consider the linear program

minimize cT

1 x1 + cT

2 x2 + · · · + cT

N
xN , (2.17)

subject to D1x1 + D2x2 + · · · + DN xN Æ d, (2.18)
S

WWWU

A1x1
A2x2

. . .
AN xN

T

XXXV
Æ

S

WWWU

b1
b2
...

bN

T

XXXV
, (2.19)

x1, x2, . . . , xN Ø 0, (2.20)

where all variables are linked by the Di matrices, and the Ai matrices are
separate constraints for each vector xi.

Assume for a moment that we want to formulate a problem with only the
constraints in Eq. (2.18) involving the linking constraints. This means that we
somehow wish to remove the rest of the constraints. Let us begin by defining
the sets

Xi = {xi Ø 0 | Aixi Æ bi} ’i = 1, . . . , N. (2.21)
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Chapter 2 Network Flows and Mathematical Optimization

If these sets are convex and nonempty, a point xi œ Xi can be written as a
convex combination of the extreme points x̄p

i
œ Pi and a conical combination

of extreme rays x̃r

i
œ Ri [72, Chapter 3]

xi =
ÿ

pœPi

⁄
p

i
x̄p

i
+

ÿ

rœRi

⁄
r

i
x̃r

i
,

ÿ

pœPi

⁄
p

i
= 1, ⁄

l

i
Ø 0, l œ Pi fi Ri. (2.22)

It is then possible to express the original linear program by substituting in
Eq. (2.22), which gives us the following equivalent formulation

minimize
Nÿ

i=1
(

ÿ

pœPi

⁄
p

i
cT

i
x̄p

i
+

ÿ

rœRi

⁄
r

i
cT

i
x̃r

i
), (2.23)

subject to
Nÿ

i=1
Di(

ÿ

pœPi

⁄
p

i
x̄p

i
+

ÿ

rœRi

⁄
r

i
x̃r

i
) Æ d | fį, (2.24)

ÿ

pœPi

⁄
p

i
= 1, i = 1, . . . , N | qi, (2.25)

⁄
l

i
Ø 0, ’l œ Pi fi Ri, i = 1, . . . , N. (2.26)

We have at this point successfully removed the constraints we desired in our
formulation by considering the extreme points and rays in the polyhedrons Xi.
The reformulated problem now has decision variables ⁄

l

i
, and we will denote

this problem as the Master Problem (MP).

Column Generation

If it is possible to find all extreme points and rays and the number of extreme
points and rays is not too large, the problem obtained from the Dantzig-
Wolfe decomposition can be solved directly. However, this is not the case in
general. Rather, the number of extreme points and rays can be very large,
even exponentially large in the input size. We, therefore, seek a method where
we only consider some subset of all variables. This is where the Column
Generation algorithm [73] becomes essential.

The problem with only a subset of variables R
Õ
i

µ Ri and P
Õ
i

µ Pi for
i = 1, . . . , N is called the Restricted Master Problem (RMP). By solving the
RMP, the optimal primal and dual variables can be obtained. Additionally,
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the reduced cost of a variables ⁄
p

i
and ⁄

r

i
for given dual variables fį and qi are

c̄
p

i
= cT

i
x̄p

i
≠ (Dix̄p

i
)T

fį ≠ qi and c̄
r

i
= cT

i
x̃r

i
≠ (Dix̃r

i
)T

fį, (2.27)

respectively. Since a variable with negative reduced cost can improve the
solution of the RMP, we wish to find the smallest by solving the Pricing
Problem (PP)

minimizexiœXi(ci ≠ D
T

i
fį)T xi ≠ qi, (2.28)

which is equivalent to solving the following two minimization problems

min(minimizepœPi(ci ≠ D
T

i
fį)T x̄p

i
≠ qi, minimizerœRi(ci ≠ D

T

i
fį)T x̃r

i
).

By solving the problems, we can find a column that can enter the basis (i.e.,
the RMP) which will either be an extreme point

Q

a
cT

i
x̄p

i

Dix̄p

i

1

R

b

or an extreme ray Q

a
cT

i
x̃r

i

Dix̃r

i

0

R

b .

When there are no variables p œ Pi or r œ Ri in any pricing problem i =
1, . . . , N with a negative reduced cost, the optimal RMP has been found, and
also the optimal solution to the original problem presented in Eq. (2.17)-(2.20).

The Column Generation algorithm viewed from a Dantzig-Wolfe decompo-
sition perspective is explained as iteratively solving the RMP and the 2 · N

pricing problems based on the dual variables. If we then solve each pricing
problem, and we find new extreme points or rays with negative reduced cost,
we introduce these variables in the basis (the RMP). Repeating this process
will generate an improved solution in each iteration. When no extreme point
or ray with a negative reduced cost is found, the problem is solved optimally.
However, we are not necessarily restricted to using Dantzig-Wolfe decompo-
sition to employ the Column Generation algorithm for a problem, and it is
possible to use it on the MCNFP directly where we have |K| pricing problems
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with the form

z
ú
k

= minimize
ÿ

(i,j)œA

(ck

ij
≠ fiij)xk

ij
≠ ‡

k
, (2.29)

subject to
ÿ

(i,j)œA

x
k

ij
≠

ÿ

(j,i)œA

x
k

ji
= b

k

i
, ’i œ V, (2.30)

x
k

ij
Ø 0, ’(i, j) œ A, (2.31)

and the Master Problem in the path-flow formulation of the MCNFP.

Branch-and-Bound and Branch-and-Price

Given that we have an MCNFP where the variables are continuous, linear
programming based techniques work well. However, it is often the case that
we have integer valued variables. In this case, we do not accept fractional
solutions nor is the domain convex.

One standard method used to find integer solutions is Branch-and-Bound [74],
[75]. Consider here that we are applying Branch-and-Bound to an integer lin-
ear program

ILP = min
I

nÿ

i=1
cixi : x̨ œ S

J

where S =
)

x̨ œ Zn

+ :
q

n

i=1 ajixi Ø bj ’j = 1, . . . , m
*

. First, we consider
what happens if the variables are relaxed to be continuous. We know from lin-
ear programming theory that we will obtain either a lower bound, an integer
solution, or that the problem is infeasible.

If we find either an integer solution or an infeasible solution, we have either
obtained the optimal solution or found that there is no integral solution, and
we can stop. However, if we obtain some fractional solution x0, we have
obviously not reached our goal. In Branch-and-Bound we, therefore, choose
to create k Ø 2 subproblems, where we choose the subproblems to be in
disjoint domains S1, . . . , Sk that exclude the solution x0.

One way of creating disjoint domains with respect to the fractional variables
in solution x0 is to add constraints for fractional variables in our solution xj Æ

Âx
0
j
Ê in one of the subproblems and xj Ø Áx

0
j
Ë in another. The original problem

and subproblems can be visualized as a tree, where the nodes represent the
optimization problems, with one parent and two or more children.
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Since we now have two or more new problems to explore, we again meet a
similar situation as for our relaxed ILP, but for the newly created subproblems.
This means that if a subproblem is found to be infeasible, the node is pruned,
i.e., the node representing one of the subproblems is not explored further as we
do not create any more subproblems. Instead, we choose a new subproblem to
explore that has been generated previously, and we say that the node is pruned
by infeasibility. If we find that a solution to a subproblem is integral, we also
do not create any further subproblems and prune this node. As we have found
an optimal partial solution, a candidate incumbent zi, for this specific region
and instead choose a new subproblem to explore. Imagine now that we also
have access to some other feasible solution to the ILP, which we denote z

ú and
call the incumbent. If we find that a subproblem yields a fractional solution
greater or equal to z

ú, this region cannot contain any integer solutions that
would improve upon the one we already have, and there is no point in creating
more subproblems to the node we are currently exploring. This particular
node is thus pruned by bound, and we choose a new subproblem to explore
that has been generated previously. On the other hand, if the fractional
solution is smaller than the incumbent, we create new subproblems, before we
pick a new node to explore.

With these ingredients, we can state the Branch-and-Bound algorithm. The
algorithm begins by first initializing a list L with the node N0 that represents
our relaxed ILP. We also initialize an incumbent z

ú = Œ. We then pick a
node in our list and attempt to solve this problem. If there are no feasible
solutions, we pick another node from our list as this node is pruned by in-
feasibility. If we obtain an integral solution the node is also pruned, now by
integrality, and if the integral solution is less than our incumbent, we update
it. We then pick a new subproblem from the list. If we obtain a fractional
solution worse than our incumbent, we prune this node by bound. Finally,
if a subproblem can not be pruned by infeasibility, bound or integrality, the
subproblem is partitioned into k Ø 2 nodes representing k subproblems, which
are children to the current subproblem we are exploring in the tree. The k

subproblems are then added to a list L of unexplored subproblems and a new
subproblem is chosen to be explored. When there are no unexplored subprob-
lems left, the algorithm terminates and returns the incumbent solution and
the corresponding assignment.

We remark that the Branch-and-Bound algorithm is exponential in the
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Chapter 2 Network Flows and Mathematical Optimization

worst case. However, exhaustive search is avoided by pruning nodes of the
tree, giving more acceptable running times in practice. Finally, when we
solve each node with the Column Generation method, the algorithm is called
Branch-and-Price [76].
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CHAPTER 3

Airline Scheduling Models

Mathematical optimization models for airline scheduling problems can di�er
significantly depending on the type of network, planning horizon, network
representation, uncertainties, objective function, and considered constraints.
Indeed, it does not seem surprising that depending on the assumptions made
for a problem at hand in the airline planning process that we end up with very
di�erent mathematical models for something we categorize as approximately
the same problem. Furthermore, a so-called good model depends very much
on how well the model represents reality and how fast a su�ciently good
solution can be obtained. Therefore, we must consider at least the trade-o�
between the time spent to find a solution versus the solution quality, and we
must be aware that the models typically vary for di�erent airlines, and can
change if the industry changes.

Now, since the papers discussed in Ch. 5 have only considered a variant
of Aircraft Assignment called Tail Assignment, we will restrict the coming
section to Aircraft Assignment and elaborate on Tail Assignment specifically.
Even though we disregard the details of the other problems in the airline
planning process, we note that the problems Fleet Assignment, Crew Pairing,
and Crew Rostering have, in many cases, in common with Aircraft Assignment
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Chapter 3 Airline Scheduling Models

the property that they can be modeled as networks, which we must send either
crew or aircraft through, and that the problems are large. Therefore, the
model types and solution approaches for the problems are similar.

3.1 Aircraft Assignment and its Variations

As mentioned previously, many aspects of Aircraft Assignment can vary, lead-
ing to several names being used, both in industry and academia. Four common
names are Aircraft Routing [77]–[81], Aircraft Maintenance Assignment [79],
[82]–[92], Through Assignment [93]–[97] and Tail Assignment [38], [42], [98].
The name Aircraft Assignment is the common denominator, in the sense that
Aircraft Routing, Through Assignment, Aircraft Maintenance Assignment,
and Tail Assignment can be considered to be an Aircraft Assignment problem
since we wish to assign flights, i.e., routes, to aircraft. In contrast, a gen-
eral Aircraft Assignment model does not necessarily capture all the modeling
aspects of Tail Assignment.

Having di�erent modeling considerations leads of course to the fact that
the mathematical models di�er, to varying degrees. The models can di�er
in the ultimate goal, as some airlines consider Aircraft Assignment to be a
feasibility problem, whereas others consider it to be an optimization problem.
Here, robustness, which refers to how sensitive the solution is to disruptions,
might also be more or less important to consider. A typical case of feasi-
bility is Aircraft Maintenance Assignment, where it is often only required to
find maintenance feasible routes assigned to aircraft while disregarding the
cost of the assignment. Through Assignment, on the other hand, ignores
many of the maintenance constraints, and the goal is instead to maximize the
through values. The through values are defined as the desirability of one-stop
services, i.e., multi-leg flights without aircraft changes. By maximizing this
quantity, we minimize the number of aircraft changes for desirable connec-
tions, which allows the airline to raise the ticket price and increase the profit.
Aircraft Routing refers to when we consider both maintenance requirements
and through values.

Often, these three problems are considered earlier in the planning process
than Tail Assignment as we do not always expect to obtain an executable
solution without some manual changes, whereas Tail Assignment focuses on
being able to produce a solution that can be executed without extra ma-
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3.1 Aircraft Assignment and its Variations

nipulation. For example, it can be desirable to solve Aircraft Maintenance
Assignment directly after Fleet Assignment to show that it is possible to find
at least some assignment that respects a subset of maintenance rules before
considering crew scheduling.

Regardless of what variant of Aircraft Assignment we consider, one further
example of diverging models is when we consider cyclic problems, which are
problems where the flight schedule is approximately repeated each week or
day. Here, it can be su�cient to require the aircraft to land at maintenance
stations at the end of each day. Thus complying with some maintenance con-
straints without explicitly having them in the model, but implicitly enforcing
them via the network structure [79]. With this assumption, once a solution is
obtained, the schedule can be repeated to get a solution with a longer time
horizon. The solutions are then often modified for dated problems, i.e., prob-
lems with distinct start and end dates, to consider deviations and improve
some feasibility and/or optimality issues. If, on the other hand, the flight
schedule has no such regularity, solving cyclic problems is not very useful, and
we instead consider only the dated problems. Here it is usually impossible to
model all maintenance requirements via the network structure, and we need
to have explicit constraints in our model1.

Another consideration is flexibility, meaning that the model can be adjusted
according to what priorities an airline have depending on when they solve it,
i.e., if we are several months, weeks, or days away from day-of-operation.

To reiterate, we generally wish to assign all flights to aircraft. Since this
assignment corresponds to aircraft routes, we also want these routes to be,
at the very least, maintenance feasible in some sense2. The maintenance
requirements are given by aviation authorities 3, aircraft manufacturers, and
airlines, which typically provide stricter constraints compared to the former
two sources of constraints.

Tail Assignment

In Tail Assignment, the goal is to assign each flight exactly once to aircraft
such that the operational cost is minimized and all operational constraints

1Maintenance are often modeled as restricted resources in the network.
2This means that if Through Assignment is solved, additional changes are most likely

required to comply with maintenance constraints.
3Federal Aviation Administration in case of the USA.
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such as maintenance, preassigned activities, and prohibited activities are re-
spected. One notable di�erence is that this problem considers tail (aircraft)
specific constraints, which models such as Aircraft Routing often do not con-
sider. Furthermore, even though we have spoken about flight legs so far,
Tail Assignment plan in its model something we call activities. Activities can
be flight legs, sequences of flight legs, maintenance, and other ground activi-
ties. To note, one strength of Tail Assignment is that the model can capture
aspects ranging from Aircraft Routing to Aircraft Maintenance Assignment,
Through Assignment, Fleet Assignment, and Recovery Planning. Although
Aircraft Assignment is typically separated for each fleet type, Tail Assignment
is more general and allows multiple fleets which can be required for the final
feasibility of the solution. To model all requirements, Tail Assignment only
solves dated problems but has, in principle, no limit on the time horizon. This
means that Tail Assignment does not capture cyclic problems, which can be
considered a weakness of the model. However, in terms of flexibility, scope,
and preciseness in the sense that the solution should be executable without
extra manipulation, the model is very well-suited for real-world problems.

In [38] Tail Assignment is presented for two di�erent formulations, one which
is path-flow based and exponentially large in the number of variables, or rather
feasible routes, and linear in the number of constraints, i.e., the number of
constraints are the number of flight legs given as input4. The second model
is arc-flow based where the number of variables is quadratic in the number
of activities and linear in the number of aircraft but has more constraints,
and the constraints are viewed as complex. Furthermore, although the num-
ber of variables is polynomial in the size of the input, the model becomes
for practical problems very large. The two models are related via methods
described in Ch. 2 as the latter model is classified as a resource-constrained
integer minimum cost MCNFP and given explicitly in Eq. (3.1)-(3.7). We can
consider the model below to be represented by a directed graph where each
node represents a connection between activity i and j for each aircraft. In the
network, we use five di�erent types of sets to model our problem. T is the set
of aircraft, F is the set of flight legs, Pt is the set of preassigned activities for
tail t, Rt are the forbidden activities for tail t and M is the set of maintenance
activities. The 0-1 decision variables in Eq. (3.7) represent which activities
and thus connections the aircraft should cover where each decision variable

4Here we are disregarding some vertical constraints compared to the model in practice.
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xijt is associated to a cost cijt, giving us the objective function in Eq. (3.1) to
minimize. Constraint in Eq. 3.2 is a continuity constraint that ensures that a
path is associated with an aircraft, albeit the requirement on the source and
sink for each aircraft needs to be added such that exactly one aircraft is sent
on each path. The covering constraint is given in Eq. 3.3 and ensures that
all flight legs are covered exactly once. Then, the requirement for preassigned
activities and forbidden activities for each aircraft are given in Eq. (3.4)-(3.5).

minimize
ÿ

iœF

ÿ

jœF

ÿ

tœT

cijtxijt, (3.1)

subject to
ÿ

jœF

xjit ≠

ÿ

jœF

xijt = 0, ’i œ F, ’t œ T, (3.2)

ÿ

jœF

ÿ

tœT

xijt = 1, ’i œ F, (3.3)

ÿ

jœF

xijt = 1, ’i œ Pt, ’t œ T, (3.4)

ÿ

jœF

xijt = 0, ’i œ Rt, ’t œ T, (3.5)

rim Æ lm, ’i œ F, ’m œ M, (3.6)
xijt œ {0, 1}, ’i œ F, ’j œ F, ’t œ T. (3.7)

The most complex constraints for the model are, unexpectedly, associated with
the maintenance in Eq.(3.6). These are defined recursively for each variable
xiÕit = 1 where

rim =

Y
__]

__[

r
t

m
if i is carry-in activity for aircraft t

sim if maintenance m possible between activities i
Õ and i

sim + riÕm if maintenance m not possible between activities i
Õ and i

.

Here, sim is the resource consumption of maintenance m for activity i, r
t

m
is

the initial maintenance consumption for maintenance task m and aircraft t,
rim is the total resource consumption up to activity i, and lm is the upper
bound on maintenance m.
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Notably, in [98] the constraints are clarified such that

rjmt = sjmt +
ÿ

iœF

vijmtrimtxijt Æ lmt

where vijmt is 1 if maintenance m is not possible for aircraft t between flight
leg (or activity) i and j. The consequence is that there is a constraint for
each activity, maintenance, and aircraft which can lead to some simplifica-
tions. However, the resource maintenance consumption rjmt is still defined
recursively and remains complicated.

For both versions, it is possible to decompose the problem via, e.g., Dantzig-
Wolfe decomposition discussed in Ch. 2. The decomposition method presents
us the master problem, which is an LP relaxed Set-Partitioning problem and
|T | pricing problems, where each pricing problem is a resource-constrained
shortest path problem. Explicitly, the first model we mentioned for Tail As-
signment is obtained by modifying the decision variables to path variables,
i.e., route variables xr, giving us the Set Partitioning model below

minimize
ÿ

rœR

crxr, (3.8)

subject to
ÿ

rœR

afrxr = 1, ’f œ F, (3.9)

xr œ {0, 1}, ’r œ R. (3.10)

This model associates each route with a route cost cr in Eq. (3.8) and ensures
that each flight is covered exactly once in Eq. (3.9). The number of variables
is in the worst case exponential in the size of flight legs, but since we require
that all routes must be feasible according to constraints in Eq. (3.2), (3.4),
(3.5), (3.6), and (3.7) this number is reduced. However, explicit enumeration
is typically intractable still and a well-known issue for these types of problems.

Finally, we note here that to find feasible integer solutions, via standard
methods such as Branch-and-Price, we are faced with two NP-hard optimiza-
tion problems.
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CHAPTER 4

The Model of Quantum Computation and Quantum
Optimization

The previous chapters are aimed at giving a solid understanding of classical
algorithms and modeling considerations typically considered in the airline in-
dustry. However, since this thesis is concerned with how quantum algorithms
can be employed for such problems, we now present a foundation of quantum
computing [54] in Sec. 4.1 and following that we present, in Sec. 4.2, the two
quantum algorithms that have been explored in the appended papers.

4.1 Model of Quantum Computation

Two popular models of quantum computation are the quantum circuit model [99]
and the quantum Turing machine [56], [58]. The models are equivalent since
they can simulate each other in polynomial time [100]. Here we will present
the quantum circuit model since it corresponds relatively straightforwardly
with algorithms such as QAOA.
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Quantum States and Qubits

The quantum mechanical systems we study in this thesis are of some finite
dimension N . For such a quantum system, we can express its state as a
column vector of l2 norm 1 in a N dimensional complex linear space CN ,
i.e., a Hilbert space H. We can fix an orthonormal basis |0Í , |1Í , . . . , |N ≠ 1Í,
using the Dirac notation1 and express a pure state2 as a superposition of the
basis states

|ÂÍ =
N≠1ÿ

i=0
–i |iÍ

where the l2-norm requirement means that
q

N≠1
i=0 |–i|

2 = 1. A quantum bit
is the typical building block of a quantum circuit and is the quantum analog
of the classical bit. The quantum bit is a two-dimensional quantum system
with states in C2, the orthonormal basis is most commonly chosen to be

|0Í =
3

1
0

4
and |1Í =

3
0
1

4
,

which means that a general state of a quantum bit is expressed as |ÂÍ =
–0 |0Í + –1 |1Í, where –0 and –1 are complex numbers. The vector space we
consider has the inner product

È„|ÂÍ =
N≠1ÿ

i=0
—

ú
i
–i

where È„| is the conjugate transpose of |„Í =
q

N≠1
i=0 —i |iÍ, i.e., È„| = (|„Í)†.

Suppose now that we have two distinct quantum mechanical systems in
Hilbert spaces H1 and H2 of dimensions N1 and N2 with orthonormal ba-
sis {|iÍ1}

N1≠1
i=0 and {|jÍ2}

N2≠1
j=0 , respectively. We can describe the composite

quantum system by the tensor product of the two Hilbert spaces H1 ¢H2 and
obtain an orthonormal basis via tensor products3 accordingly

|ijÍ12 = |iÍ1 ¢ |jÍ2 , ’i = 0, . . . N1 ≠ 1 , ’j = 0, . . . , N2 ≠ 1.

1In the Dirac notation we call the column vector a ket vector and the row vector a bra
vector.

2A mixed state is a probability distribution of pure states.
3Typically we abbreviate the tensor product |iÍ ¢ |jÍ as |iÍ |jÍ or |ijÍ.
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Clearly, the dimension of the composite system’s Hilbert space is N1 ◊ N2.
We can express a general quantum state for the composite system in exactly
the same manner as for a single system in the basis of the composite system

|„Í12 =
N1≠1ÿ

i=0

N2≠1ÿ

j=0
–ij |iÍ1 |jÍ2 .

If we consider qubits again, in this case two qubits, we get the orthonormal
basis |0Í = |0Í ¢ |0Í , |1Í = |0Í ¢ |1Í, |2Í = |1Í ¢ |0Í and |3Í = |1Í ¢ |1Í.

In order to describe a composite system that consists of n quantum me-
chanical systems with dimensions N1, N2, . . . , Nn we need a Hilbert space of
dimension N1 ◊ N2 ◊ · · · ◊ Nn. In the case where we consider n qubits the
Hilbert space is of dimension 2n and the states are column vectors in C2n with
orthonormal basis {|iÍ}

2n≠1
i=0 where |iÍ is a column vector where the entries are

zeros, except in position i + 1 which has entry one.

Unitary Evolution of Quantum States

Unitary transformation is one of the basic operations a closed quantum sys-
tem can undergo. This means that we describe the evolution in time of a
closed quantum system with unitary operators, where a unitary operator U

is such that U
†
U = I when we take its matrix representation. Consequently,

time evolution and any unitary transformation preserve the norm of quantum
states, and evolution is reversible. The unitary time evolution operator relates
a state |ÂÍ at time t1 to the state |Â

Õ
Í as time t2 as

|Â
Õ
Í = U |ÂÍ .

In Dirac notation, we can express the unitary operator via the outer product
of the orthonormal basis |iÍ Èj|. The unitary operator then has the following
matrix representation

U =
N≠1ÿ

i=0

N≠1ÿ

j=0
uij |iÍ Èj| , (4.1)

and each column ui describes how the operator acts on basis state |iÍ. In the
case when time is continuous, the evolution is governed by the Schrödinger
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equation
i~ˆ |ÂÍ

ˆt
= H |ÂÍ , (4.2)

where H is the Hamiltonian of the quantum system and ~ is Planck’s constant
divided by 2fi. We can relate the di�erential equation to the unitary operator
easily when the Hamiltonian is time-independent, giving us

U = e
≠iH(t2≠t1)/~

. (4.3)

Finally, we note that we can express any unitary operator as U = e
iA for some

Hermitian4 operator A.

Quantum Gates

Quantum gates constitute the second building block element of quantum cir-
cuits and are unitary operators that evolve the quantum system in time. Com-
mon one qubit gates are the Pauli-gates

‡x =
5
0 1
1 0

6
, ‡y =

5
0 ≠i

i 0

6
and ‡z =

5
1 0
0 ≠1

6
.

As well as the Hadamard-gate, phase-gate, and fi/8-gate below

H = 1
Ô

2

5
1 1
1 ≠1

6
, S =

5
1 0
0 i

6
, and T =

5
1 0
0 e

ifi/4

6
.

Common two-qubit gates are controlled-U gates that act on a control qubit
and a target qubit Q

cca

1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11

R

ddb .

This gate does not change the state if the control qubit is in the state |0Í, but
if the control bit is in state |1Í it applies a gate

U =
3

u00 u01
u10 u11

4

4A hermitian matrix A is such that A
† = A.
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to the target qubit. The CNOT-gate is a controlled-U gate where U is the
‡x-gate. A universal quantum gate set is CNOT, Hadamard (H), phase (S)
and fi/8 (T ) according to the Solovay-Kitaev theorem [54, Appendix 3], as it
is possible to approximate any other unitary gate arbitrarily well.

Quantum Measurements

Quantum mechanics prohibit us to observe a quantum state |ÂÍ =
q

N≠1
i=0 –i |iÍ

in the sense that we can determine all amplitudes –i. What quantum me-
chanics allows for instead are measurements that constitute a third element
required for a quantum computational model. If we measure the state |ÂÍ in
its orthonormal basis5 we will observe an outcome i with probability |–i|

2 and
the system will be in the state –i

|–i| |iÍ after the measurement.
Measurement is the second elementary operation a quantum system can

undergo and is not described by a unitary operator. Instead, we can describe
a measurement in the computational basis, or any other basis, with projective
operators. A projective measurement is described by an observable M , which
is a Hermitian operator with eigenvalues ⁄m, m = 1, 2, . . . , K. The observable
is related to projection operators {Pm}

K

m=1. Each projective operator Pm is a
projection onto the eigenspace corresponding to eigenvalue ⁄m. We write the
observable with respect to the di�erent outcomes m as the sum

M =
Kÿ

m=1
⁄mPm s.t.

Kÿ

m=1
Pm = 1 and PmPmÕ = ”mmÕPm.

Assuming that the system was in state |ÂÍ prior to the measurement of the
observable, we have a probability

P (m) = ÈÂ| Pm |ÂÍ

that outcome m is observed and if outcome m is observed the state collapses
to

|Â
Õ
Í = Pm |ÂÍ

ÈÂ| Pm |ÂÍ
.

A measurement in the computational basis is a projective measurement and
therefore given by the projection operators Pi = |iÍ Èi| , ’i = 0, 1, . . . , N ≠ 1.

5Usually referred to as the computational basis.

31



Chapter 4 The Model of Quantum Computation and Quantum Optimization

In the one qubit case, where we measure ‡z, this corresponds to

P0 =
3

1 0
0 0

4
and P1 =

3
0 0
0 1

4

with eigenvalues +1 and ≠1, respectively.

Quantum Circuits

A classical circuit[47] is a finite directed acyclic graph G = (E, V ) with n

input nodes that take the input bit values, m output nodes, and internal
nodes that each is one of the gates AND, OR, and NOT. The edges of the
graph, also called wires, each carry one bit. Each internal node performs
logical operations on the bits. Here, we note that the gates AND and OR
have fanin, the number of incoming edges, two and fanout, the number of
outgoing edges, one. The NOT-gate, on the other hand, has fanin one and
fanout one. We note that for classical circuits, we are permitted to copy a bit,
which is not allowed in quantum circuits due to the no-cloning theorem. Such
a circuit G implements a function f : {0, 1}

n
æ {0, 1}

m, and is a boolean
circuit in the case when there is a single output node. This is the classical
circuit model.

The quantum circuit model, see an example of a quantum circuit in Fig. 4.1,
is defined similarly to the classical circuit model. The classical bits are re-
placed by quantum bits, the edges of the graph carry qubits, and quantum
gates replace the classical gates. Moreover, fanin must be the same as fanout.
Finally, quantum measurements are required to be added in order to observe
the outcome such that we obtain the classical output bits.

|0Í
¢2

H

U

Figure 4.1: Quantum circuit with two input qubits in state |00Í where we first
apply a controlled-U gate, second the Hadamard gate, and finally both
qubits are measured giving two classical bits as output

For the classical circuit model, we can define the notion of e�ciency. We
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say that the size of the circuit is the number of nodes in the circuit, and the
circuit is considered e�cient if there exists a polynomial-sized circuit with
respect to the input size that computes a function. Similarly, for the quantum
circuit model, we use the same notion of e�ciency, and we require that the
size of the quantum circuit is polynomial in the input size, where each gate
acts on at most three qubits6.

4.2 Quantum Optimization Algorithms

As mentioned previously, various types of optimization problems frequently
appear in industry and academia. Examples beyond logistics and transporta-
tion are the kidney swap problem in health care, social network optimization
on graphs, and quantum transpilation. We, therefore, consider it valuable,
both from a theoretical standpoint and in practice, to understand if quan-
tum algorithms that can improve upon classical algorithms designed to solve
integer programs. However, since it was shown in [62], [101] that the best
speedup we can expect for NP-complete problems is quadratic in the black
box setting, we should perhaps consider approximate or heuristic quantum
algorithms rather than exact algorithms.

Nonetheless, one can roughly categorize quantum optimization algorithms
into two categories. The first category is nonheuristic algorithms. These al-
gorithms have provable complexity behavior with respect to time and space
and solution quality. In this category, we have Grover’s algorithm and ex-
tensions where Grover’s algorithm is embedded in a classical algorithm. The
second category is heuristic algorithms, such as the Quantum Annealing Al-
gorithm and the Quantum Approximate Optimization Algorithm, which we
will discuss in the coming sections.

Adiabatic Quantum Computation and Quantum Annealing

Adiabatic quantum computation[102] is a universal paradigm of quantum com-
puting proven to be as powerful as the circuit model discussed in Sec. 4.1 and
is based on the adiabatic theorem [103]. The adiabatic theorem describes what
happens to a quantum system, initialized in a non-degenerate eigenstate of
an initial Hamiltonian H0, that is changed continuously and adiabatically, or

6There exists a universal gate set that includes the To�oli gate.
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infinitely slowly, to a final Hamiltonian H1. One example of such a situation is
when an external magnetic field is changed slowly for an interacting quantum
spin system but has also been used to construct a whole separate paradigm
of computation.

We can explicitly construct a time-dependent Hamiltonian that describes
this situation as

H(t) = (T ≠ t)
T

H0 + t

T
H1, (4.4)

where T is a measure of how fast the system changes and governs the evolution
time from H0 to H1. Assuming that the two Hamiltonians H0 and H1 act
on an n qubit system, H0 and H1 do not commute, that the instantaneous
eigenenergies E0(t) < E1(t) < · · · < E2n≠1(t) of H(t) are distinct for the
evolution time and the system is initialized in the ground state |e0(0)Í of
H(0) = H0, we have the following bound on the time required to ensure that
the evolution is adiabatic

maxsœ[0,1]| Èe1(s)| ˆsH(s) |e0(s)Í |

minsœ[0,1]|E1(s) ≠ E0(s)|2 π T,

where s = t/T . The bound above tells us that as long the bound is respected,
the initial state |e0(s = 0)Í has evolved to |ÂÍ = |e0(s = 1)Í after the evolution
time t = T .

Now we direct our attention to the fact that the adiabatic theorem can
be used to construct an algorithm for solving discrete optimization prob-
lems [104], which we refer to as the Quantum Adiabatic Algorithm7 (QAA).
Solving some discrete optimization problem is achieved by encoding the prob-
lem as the final Hamiltonian H1 such that its groundstate is the optimal
solution and choosing an initial Hamiltonian H0 where the groundstate is
known, easy to construct, and does not commute with H1. Most common is
the choice H0 = ≠

q
n

i=1 ‡
x

i
with groundstate |+Í =

Ô

2≠n
q2n≠1

i=0 |iÍ, which
we can prepare easily.

The caveat with QAA is that we require the evolution time to be at most
polynomial in the input size n but knowing the instantaneous eigenenergies
of the time-dependent Hamiltonian H(t) is often as challenging as solving
the optimization problem itself. It is therefore unknown for many problems

7The quantum adiabatic algorithm is used synonymously with the term adiabatic quantum
computation.
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what kind of speedup is possible, or if there even is a speedup, over classical
algorithms.

The issue of analyzing the instantaneous eigenenergies has resulted in the
approximate version of QAA called Quantum Annealing (QA), where the
evolution time is not guaranteed to ensure adiabatic evolution. One resulting
di�erence between QA and QAA is that we now consider the overlap p =
| ÈÂ

ú
|ÂÍ |

2 between the state |ÂÍ we have obtained after evolving the system
for some time T and the desired solution |Â

ú
Í. By repeating the QA algorithm

k = ln(1 ≠ ptarget)
ln(1 ≠ p)

times, i.e., the process of initializing the system in the ground state of the
initial Hamiltonian and evolving the system for some time T to the final
Hamiltonian, the probability of finding the solution can be increased to ptarget.
To date, it is also unknown for many problems if QA can provide speedup or
any significant advantage over classical algorithms, but it remains nonetheless
an interesting heuristic to explore.

Quantum Approximate Optimization Algorithm

QAOA is a variational hybrid quantum-classical algorithm, parameterized by
the positive integer p that determines the depth of the quantum algorithm8.

Although the algorithm is capable of universal quantum computing [105]–
[108], the most common goal is to find approximate solutions to minimization
(or maximization) problems. One property of QAOA discussed in [63] is
that the solution quality is monotonically increasing with the parameter p,
assuming the angles “̨ and —̨ in Eq. (4.5) are optimal9 and an ideal quantum
computer. Furthermore, in [63] it is shown that under the assumption that
the angles are small if p æ Œ the algorithm becomes exact and finds the
optimal solution (if the QAA can find the optimal solution).

A QAOA circuit creates, in an ideal setting, the state

|“̨, —̨Í =
p≠1Ÿ

i=0
Um(—p≠i, Hm)Uc(“p≠i, Hc) |„Í

initial
(4.5)

8The algorithm depth of QAOA is also called the number of layers in literature.
9The angles are required to be the optimal solution to the problem defined in Eq.(4.7)-

(4.9). Hence for a minimization problem Mp Æ Mp≠1.
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where we, for each layer i, first apply the unitary cost operator Uc and sec-
ond the mixer operator Um that acts on n qubits. The most common choice
of operators has been Um = e

≠i—Hm and Uc = e
≠i“Hc , where we refer to

Hm and Hc as the mixer and cost Hamiltonian, respectively. Since NP-
complete problems can be encoded into an Ising spin glass Hamiltonian [109],
the cost Hamiltonian is often given explicitly in this form, that is, Hc =q

iœV
hi‡

z

i
+

q
{i,j}œE

Jij‡
z

i
‡

z

j
. Moreover, we note that the goal of finding

the solution to a minimization problem is the same as the goal of finding the
ground state of the cost Hamiltonian. Here, we view Hc as representing an
undirected graph G = (V, E) with vertex set V and edge set E. For each
edge {i, j} œ E, there exists a weight Jij , and for each vertex i œ V there is
an associated weight hi. In some ways, this makes various problems defined
on undirected graphs particularly intuitive since we must, for example, trans-
late an integer linear program to the Ising spin glass Hamiltonian, and it is
not always straightforward how properties of the integer linear program are
connected to graph properties. For example, we can state that we consider
QAOA for a MaxCut problem with three regular graphs and the underlying
graph to the cost Hamiltonian has that specified property.

Next, we will discuss the choice of mixer Hamiltonian. The choice is, in
principle, free but the mixer operator should somehow be capable of connect-
ing the initial state to states we accept as a solution. The most commonly10

seen mixer Hamiltonian is Hm =
q

n

i=1 ‡
x

i
and a natural initial state is then

|+Í =
Ô

2≠n
q2n≠1

i=0 |iÍ. However, other choices of mixer Hamiltonian and ini-
tial state can be beneficial, as discussed in [110], by restricting QAOA into
some subspace of the whole Hilbert space.

By considering the expectation value function

Ep(“̨, —̨) = È“̨—̨|Hc|“̨—̨Í (4.6)

10When choosing this mixer Hamiltonian, the algorithm is sometimes called vanilla QAOA
and refers to the paper by Farhi et al. [63]. Furthermore, the initial state chosen with
this mixer Hamiltonian is |+Í and is the ground state of ≠Hm that is typically the initial
Hamiltonian in the Adiabatic Quantum Algorithm.
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and the non-linear continuous optimization problem

Mp = minimize Ep(“̨, —̨), (4.7)
subject to “̨ œ D“ , (4.8)

—̨ œ D— , (4.9)

for some fixed p, the probability of obtaining a string that is either the op-
timum or some distance away when measuring is high provided that p is
su�ciently large and that the optimization problem in Eq. (4.7)-(4.9) can be
solved. Thus, if a measurement is performed in the computational basis, we
obtain a solution candidate string z̨ œ {≠1, +1}

n, which can be evaluated for
the cost Hamiltonian. I.e., if the process of (1) constructing the QAOA state
with optimal angles and (2) measuring the state in the computational basis
is repeated su�ciently many times, we should obtain a solution string that is
near the expectation value function for the fixed angles.

We also note that for the mixer operator Um =
r

n

i=1 e
≠i—‡

x
i the domain

defined in Eq.(4.9) becomes [0, fi]◊p and if the cost Hamiltonian has integer
eigenvalues the domain in Eq. (4.8) is [0, 2fi]◊p. A priori, what depth of the

Algorithm 1 QAOA
Input: p Ø 1

(“̨, —̨) Ω solve Eq. (4.7)-(4.9)
Construct the state |“̨, —̨Í

Measure |“̨, —̨Í in the computational basis
Repeat two former steps N times

Output: Best solution string found

algorithm is su�cient is not known for many optimization problems, which
can cause issues when noise is present in the system. In practice, we might
therefore need to increase the algorithm depth until some condition holds.
However, the QAOA algorithm can be simply stated as in Alg. 1.

The issue of solving Eq. (4.7)-(4.9) appears daunting, as this problem is
NP-hard [111] and we plan to solve it with a classical algorithm that queries
a quantum computer to get values Ep(—̨, “̨) for angles in their respective do-
mains.

We can consider a few di�erent solution approaches. One approach is to ob-
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tain a closed-form expression of the expectation value function. In that case,
we can either find good angles by numerical optimization methods without
a quantum computer or possibly determine good angles without using nu-
merical optimization techniques by analyzing the closed-form expression [63],
[112]. A second approach is to approximately simulate a quantum computer
with, for example, matrix product states and tensor networks as in [113]. A
third approach is to utilize machine learning techniques [114]–[116] and other
numerical optimization techniques where each query of the expectation value
function is obtained by using a quantum computer. Here there have been
proposals that can reduce the number of queries we require by finding good
angles for small instances and using them for larger instances and/or unseen
instances and interpolating angles [117] for larger algorithm depths. Many
of these proposals use the fact that the angles of QAOA appear to concen-
trate for certain problems and distributions, see [112], [118]. In this thesis, we
have focused on the interpolation strategy, and note that since this problem
is NP-hard, in general, we might not expect to have access to optimal angles.

At the time of writing this thesis, it seems that we are not sure if QAOA
is capable of solving problems better and/or faster than the best classical
algorithms. Although we have strong evidence that a classical computer can’t
simulate QAOA exactly [119], this does not say anything about what problems
QAOA can solve or how much resources, with respect to time, the algorithm
requires. Some interesting performance results have indeed shown that a
classical algorithm outperforms QAOA or achieves the same approximation
ratio for problems such as MaxCut [120]–[122] and MAX-3-XOR [123]. On
the other hand, QAOA was observed to outperform a classical algorithm for
MAX-k-XOR when k > 4 [124]. Furthermore, Farhi has been able to analyze
QAOA extensively for Maximum Independent Set [125] and the Sherrington-
Kirkpatrick model [112]. Results like these are vital for our understanding of
the algorithm, and more such results are desirable. Notably, many of these
results are restricted to constant algorithm depth or logarithmic depth in the
number of qubits n. Negative results with restricted algorithm depth and
restricted graphs are thus not excluding QAOA from outperforming classical
algorithms for greater algorithm depths and other graph structures, and the
ultimate question of whether QAOA can be advantageous is still open.

Finally, we would like to mention the issue of noise for QAOA [126]–[130].
If we indeed need to have logarithmic or polynomial algorithm depth, as we
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increase the algorithm depth noise, will be more important to consider as
shown in [131], [132] where noise deprecates QAOA’s performance. It also
seems likely that establishing error mitigation techniques can be helpful or
required [133].
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CHAPTER 5

Summary of Papers

In this chapter, we give a summary of the appended papers. Papers A, C, and
D are concerned with the algorithm QAOA. Paper B, in contrast, is related
to the algorithm Quantum Annealing.

5.1 Paper A

In this work, we proposed a hybrid quantum-classical heuristic algorithm that
augments the classical Branch-and-Price algorithm. Branch-and-Price is aug-
mented in a similar fashion as in [134] with the classical integer program solver
PAQS [135]. The main distinction here is that we propose to use a quantum
algorithm to solve the current integer program, which is the integer version of
the RMP. Although the heuristic is believed to be useful for several real-world
problems as it is tied to Branch-and-Price, we naturally explored the method
for extracted and simplified Tail Assignment RMP instances, as the focus of
this thesis is quantum algorithms for airline scheduling problems.

Consequently, the problems we considered were both Exact Cover and Set
Partitioning, and QAOA was the considered quantum algorithm. The results
were obtained for an ideal quantum computer via numerical simulations of
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QAOA circuits. It was found that balancing the objective and constraint parts
of the Hamiltonian is important to reach a better performance for QAOA when
attempting to solve Set Partitioning and that setting the penalty unnecessarily
high can lead to an increased requirement on the algorithm depth.

It was also found for Exact Cover that QAOA, in general, requires lower
algorithm depth as the number of feasible solutions increases. This coincides
with the fact that the average node degree of the underlying graph decreases.
In particular, we also observed this e�ect for the Set Partitioning problem,
where we only accepted the optimal solution. In Paper C, it was found that
a higher average node degree coincided with a worse performance of QAOA.
This means that the numerical results in both papers point to the fact that
the node degree can a�ect the performance of QAOA.

5.2 Paper B

This paper evaluated RMP instances extracted from Tail Assignment ranging
from small to intermediate size for the Quantum Annealing algorithm on the
D-wave machines Advantage and 2000Q. 2000Q and Advantage were com-
pared for instances up to 100 decision variables, which is considerably larger
than the instances we studied in Paper A. Instances with 120 decision variables
were also studied with Advantage, but not possible to solve with 2000Q. The
instances were both sparsely connected and close to fully connected, allowing
us to analyze how the graph density and instance size a�ect the performance
of both machines.

The results show that the new and larger machine Advantage solves the
integer program instances in close to half the time required by 2000Q, with
respect to programming and readout time. In Fig. 3, the annealing time
is varied from 1-2000 µs against the success rate, for which Advantage out-
performs 2000Q for most of the instances (with the exception of some of the
smaller sparse graphs), meaning that the annealing time is shorter for Ad-
vantage compared to 2000Q. The results indicate that the connectivity of the
machine’s topology, which is higher in Advantage compared to 2000Q, is one
important factor that enables Advantage to be superior to 2000Q. Thus, show-
ing that quantum annealing could be useful in practice when the hardware is
scaled up in size.
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5.3 Paper C

Here, we studied the success probability of QAOA for Exact Cover instances
with exactly one solution derived from Tail Assignment. The results were
obtained for an ideal quantum computer via numerical simulations of quantum
circuits. It was shown that the interpolation strategy presented in [117] could
be utilized for the Exact Cover instances and that QAOA could, in the ideal
case, give near unit success probability for an algorithm depth that was smaller
than the number of qubits (i.e., instance sizes). It was also found that the
performance of QAOA decreased for instances with a high average node degree
compared to instances with a lower average node degree.

5.4 Paper D

Here, we implemented QAOA on a quantum processor consisting of supercon-
ducting transmon qubits for Exact Cover instances with two decision variables.
We experimentally investigated the algorithm and processor for one and two
layers, demonstrating that the success probability increased, as expected, as
the algorithm depth increased. The maximum probability obtained was 96.6%
for algorithm depth 2, where theory predicted 96.3% when gate fidelities were
considered, compared to the ideal case, which predicted 100% success proba-
bility. Thus, the results show agreement between experiments and theory in
the energy landscapes and algorithm performance, indicating low error rates.
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CHAPTER 6

Concluding Remarks and Future Work

This chapter summarizes the conclusions, starting with Paper A and C since
they are highly connected. We then give the conclusions for Paper B and D
that consider existing devices. Finally, we discuss future opportunities related
to Multi-Commodity Network Flow problems.

6.1 Paper A and C

Although the numerical results indicate that we, in many cases, can find
feasible solutions and even the optimal solution for small instances of Set
Partitioning and Exact Cover with polynomial algorithm depth, we recognize
that these sizes are orders of magnitude smaller than the problems solved in
practice. Our results can, therefore, not be compared to classical solvers in
any meaningful way yet, nor can they arbitrarily be extrapolated to larger
instance sizes.

To understand what algorithm depth is required for larger instances, a larger
quantum device and/or constructing a mathematical proof of the required
algorithm depth is needed. This feat has been achieved in [125] and [136]
for Maximum Independent Set, for example. Such problems fall into the
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category of Ising models where all hi terms are zero and all edge terms Jij

are one. As we, and others as far as we know, have yet to be successful in
analyzing the behavior of QAOA by analytical means in a more general setting,
it would be a highly valuable result to obtain. One possible avenue to achieve
this is to find characteristics in Set Partitioning and Exact Cover that are
related to characteristics of the underlying Ising spin glass Hamiltonian graph.
Another possible method is to explore if Exact Cover and Set Partitioning
have the overlap gap property, as this is exploited in the proof for Maximum
Independent Set.

Whilst understanding the performance of QAOA for a general Ising spin
glass Hamiltonian in the ideal setting remains an important open question,
there is one important aspect that can depreciate the performance of QAOA,
and that is noise. Furthering the understanding of noise as in [126]–[130],
gives more insight into if QAOA truly is, or can be, noise resilient.

Other variants of QAOA as the Quantum Alternating Operator Ansatz [132],
warm starting QAOA or RQAOA can also be interesting to investigate. We
can, for example, view RQAOA [122] as an error mitigation technique as it
reduces the instance size in each iteration and can possibly shorten the al-
gorithm depth, beyond the fact that some evidence has been presented that
RQAOA also can outperform QAOA for a certain problem of any size. Intro-
ducing further constraints as is done in the Quantum Alternating Operator
Ansatze by fixing the Hamming weight of the solution string can also prove to
be fruitful for some problems. We believe that constructing new initial states
and mixing operators will continue to be an interesting research direction.

Finally, it would be interesting to understand the amount of entanglement
that exists in QAOA circuits, this has to some extent been studied in [137],
[138], but remains an important open question.

6.2 Paper B

The benchmark results obtained from both Advantage and 2000Q demon-
strated that Quantum Annealing machines could solve intermediate integer
program problems. The results also showed that the machines perform better
when they are scaled up in size and have improved connectivity. However, we
are still lacking knowledge regarding the instantaneous energy gap for prob-
lems such as Exact Cover. This could be a future research possibility as well
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as conducting further empirical studies for average cases of Set Partitioning,
Exact Cover, and Set Cover. In particular, if we in the future can embed
problems with nearly 1000 decision variables, more interesting and realistic
distributions are possible to study.

6.3 Paper D

The demonstration of toy problems on a superconducting quantum processor
showed the quality of the device. It does not, however, say anything about the
performance of any problem of interest. A future research possibility could be
to use larger systems available, e.g., IBM’s quantum processor, and possibly
introduce some error correcting scheme as discussed in [132].

6.4 Quantum Algorithms and Integer Network

Flows

Thus far, we have focused on the near-term gate-based algorithm QAOA and
quantum annealing to some extent. However, the nature of many airline
scheduling problems is such that there exist a vast number of constraints,
and the number of variables is large, both in a Branch-and-Price augmented
scheme and in an arc-flow formulation. It might accordingly be worthwhile
to question the usefulness of variational algorithms for such large problems
in the long-term development of quantum computers. It can therefore be
interesting to consider fault-tolerant algorithms, such as Montanari’s Branch-
and-Bound algorithm [139], or other algorithms that are based on Dürr and
Hoyer’s search algorithm [140]. Such algorithm ideas have been presented
by Ambainis for maximum flow in networks in [141], which of course is not
applicable to multi-commodity network flows at this point.

To summarize, more e�ort is required to understand simple multi-commodity
network flow problems in relation to quantum algorithms in various decom-
positions as these problems model airline scheduling problems.

47





References

[1] C. A. Floudas and P. M. Pardalos, Encyclopedia of Optimization. Springer
US, 2009, isbn: 9780387747590.

[2] G. Yu and B. Thengvall, “Airline optimization,” in Encyclopedia of
Optimization, C. A. Floudas and P. M. Pardalos, Eds. Springer US,
2009, pp. 26–30, isbn: 978-0-387-74759-0.

[3] P. Belobaba, A. Odoni, C. Barnhart, and P. Belobaba, The Global
Airline Industry (Aerospace Ser). John Wiley & Sons, Incorporated,
2015, isbn: 9781118881149.

[4] C. Barnhart and A. Cohn, “Airline schedule planning: Accomplish-
ments and opportunities,” Manufacturing & Service Operations Man-
agement, vol. 6, no. 1, pp. 3–22, 2004, issn: 15234614.

[5] A. E. E. Eltoukhy, F. T. S. Chan, and S. H. Chung, “Airline schedule
planning: A review and future directions,” Industrial Management &
Data Systems, vol. 117, no. 6, pp. 1201–1243, 2017, issn: 02635577.

[6] S. Yan and H.-F. Young, “A decision support framework for multi-
fleet routing and multi-stop flight scheduling,” Transportation Research
Part A: Policy and Practice, vol. 30, no. 5, pp. 379–398, 1996, issn:
0965-8564.

[7] K. Wei, V. Vaze, and A. Jacquillat, “Airline timetable development
and fleet assignment incorporating passenger choice,” Transportation
Science, vol. 54, no. 1, pp. 139–163, 2020, issn: 00411655.

49



References

[8] S. Yan and C.-H. Tseng, “A passenger demand model for airline flight
scheduling and fleet routing,” Computers & Operations Research, vol. 29,
no. 11, pp. 1559–1581, 2002, issn: 0305-0548.

[9] L. H. Lee, C. U. Lee, and Y. P. Tan, “A multi-objective genetic algo-
rithm for robust flight scheduling using simulation,” European Journal
of Operational Research, vol. 177, no. 3, pp. 1948–1968, 2007, issn:
0377-2217.

[10] S. Yan, C.-H. Tang, and M.-C. Lee, “A flight scheduling model for
taiwan airlines under market competitions,” Omega, vol. 35, no. 1,
pp. 61–74, 2007, issn: 0305-0483.

[11] S. Yan, C.-H. Tang, and T.-C. Fu, “An airline scheduling model and
solution algorithms under stochastic demands,” European Journal of
Operational Research, vol. 190, no. 1, pp. 22–39, 2008, issn: 0377-2217.

[12] J. Hai and C. Barnhart, “Dynamic airline scheduling,” Transportation
Science, vol. 43, no. 3, pp. 336–354, 2009, issn: 00411655.

[13] M. Sohoni, L. Yu-Ching, and D. Klabjan, “Robust airline scheduling
under block-time uncertainty,” Transportation Science, vol. 45, no. 4,
pp. 451–464, 2011, issn: 00411655.

[14] H. Jiang and C. Barnhart, “Robust airline schedule design in a dynamic
scheduling environment,” Computers and Operations Research, vol. 40,
no. 3, pp. 831–840, 2013, issn: 0305-0548.

[15] B. Kepir, Ç. Koçyi�it, I. Koyuncu, M. B. Özer, B. Y. Kara, and M. A.
Gürbüz, “Flight-scheduling optimization and automation for anadolu-
jet,” Interfaces, vol. 46, no. 4, pp. 315–325, 2016, issn: 00922102.

[16] A. Levin, “Scheduling and fleet routing models for transportation sys-
tems,” Transportation Science, vol. 5, no. 3, pp. 232–255, 1971, issn:
00411655.

[17] C. Barnhart, T. Kniker, and M. Lohatepanont, “Itinerary-based airline
fleet assignment,” Transportation Science, vol. 36, no. 2, pp. 199–217,
2002, issn: 00411655.

[18] J. Rosenberger, E. Johnson, and G. Nemhauser, “A robust fleet-assignment
model with hub isolation and short cycles,” Transportation Science,
vol. 38, no. 3, pp. 357–368, 2004, issn: 00411655.

50



References

[19] H. Sherali, E. Bish, and X. Zhu, “Polyhedral analysis and algorithms
for a demand-driven refleeting model for aircraft assignment,” Trans-
portation Science, vol. 39, no. 3, pp. 349–366, 2005, issn: 15265447.

[20] N. Bélanger, G. Desaulniers, F. Soumis, J. Desrosiers, and J. Lavigne,
“Weekly airline fleet assignment with homogeneity,” Transportation
Research Part B, vol. 40, no. 4, pp. 306–318, 2006, issn: 0191-2615.

[21] B. Smith and E. Johnson, “Robust airline fleet assignment: Imposing
station purity using station decomposition,” Transportation Science,
vol. 40, no. 4, pp. 497–516, 2006, issn: 15265447.

[22] T. Jacobs, B. Smith, and E. Johnson, “Incorporating network flow ef-
fects into the airline fleet assignment process,” Transportation Science,
vol. 42, no. 4, pp. 514–529, 2008, issn: 15265447.

[23] J. Dumas, F. Aithnard, and F. Soumis, “Improving the objective func-
tion of the fleet assignment problem,” Transportation Research Part B,
vol. 43, no. 4, pp. 466–475, 2009, issn: 0191-2615.

[24] V. L. Pilla, J. M. Rosenberger, V. Chen, N. Engsuwan, and S. Siddappa,
“A multivariate adaptive regression splines cutting plane approach for
solving a two-stage stochastic programming fleet assignment model,”
European Journal of Operational Research, vol. 216, no. 1, pp. 162–171,
2012, issn: 0377-2217.

[25] D. T. Sanchez, B. Boyacı, and K. G. Zografos, “An optimisation frame-
work for airline fleet maintenance scheduling with tail assignment con-
siderations,” Transportation Research Part B, vol. 133, pp. 142–164,
2020, issn: 0191-2615.

[26] J. Abara, “Applying integer linear programming to the fleet assignment
problem,” Interfaces, vol. 19, no. 4, pp. 20–28, 1989, issn: 00922102.

[27] M. E. Berge and C. A. Hopperstad, “Demand driven dispatch. a method
for dynamic aircraft capacity assignment, models and algorithms,” Op-
erations Research, vol. 41, no. 1, pp. 153–168, 1993, issn: 0030364X.

[28] C. A. Hane, C. Barnhart, E. L. Johnson, R. E. Marsten, G. L. Nemhauser,
and G. Sigismondi, “The fleet assignment problem: Solving a large-scale
integer program,” English, Mathematical Programming, vol. 70, no. 2,
pp. 211–232, 1995.

51



References

[29] K. Talluri, “Swapping applications in a daily airline fleet assignment,”
Transportation Science, vol. 30, no. 3, pp. 237–248, 1996, issn: 00411655.

[30] G. Desaulniers, J. Desrosiers, Y. Dumas, M. Solomon, and F. Soumis,
“Daily aircraft routing and scheduling,” Management Science, vol. 43,
no. 6, pp. 841–855, 1997, issn: 00251909.

[31] R. A. Rushmeier and S. A. Kontogiorgis, “Advances in the optimiza-
tion of airline fleet assignment,” Transportation Science, vol. 31, no. 2,
p. 159, 1997, issn: 00411655.

[32] A. Jarrah, J. Goodstein, and R. Narasimhan, “E�cient airline re-
fleeting model for the incremental modification of planned fleet as-
signments,” Transportation Science, vol. 34, no. 4, pp. 349–363, 2000,
issn: 00411655.

[33] B. Rexing, C. Barnhart, T. Kniker, A. Jarrah, and N. Krishnamurthy,
“Airline fleet assignment with time windows,” Transportation Science,
vol. 34, no. 1, pp. 1–20, 2000, issn: 00411655.

[34] J. Arabeyre, J. Fearnley, F. Steiger, and W. Teather, “The airline crew
scheduling problem: A survey.,” Transportation Science, vol. 3, no. 2,
pp. 140–163, 1969, issn: 00411655.

[35] C. Barnhart, A. M. Cohn, E. L. Johnson, D. Klabjan, G. L. Nemhauser,
and P. H. Vance, “Airline crew scheduling,” in Handbook of Transporta-
tion Science, R. W. Hall, Ed. Boston, MA: Springer US, 2003, pp. 517–
560, isbn: 978-0-306-48058-4.

[36] X. Wen, X. Sun, Y. Sun, and X. Yue, “Airline crew scheduling: Models
and algorithms,” Transportation Research Part E, vol. 149, 2021, issn:
1366-5545.

[37] M. Deveci and N. Ç. Demirel, “A survey of the literature on airline
crew scheduling,” Engineering Applications of Artificial Intelligence,
vol. 74, pp. 54–69, 2018, issn: 0952-1976.

[38] M. Grönkvist, The tail assignment problem (Ph.D. dissertation). Chalmers
tekniska högskola, 2005, isbn: 9172916451.

[39] O. Khaled, M. Minoux, V. Mousseau, S. Michel, and X. Ceugniet, “A
compact optimization model for the tail assignment problem,” Euro-
pean Journal of Operational Research, vol. 264, no. 2, pp. 548–557,
2018, issn: 0377-2217.

52



References

[40] Z. Liang, Y. Feng, X. Zhang, T. Wu, and W. A. Chaovalitwongse, “Ro-
bust weekly aircraft maintenance routing problem and the extension to
the tail assignment problem,” Transportation Research Part B, vol. 78,
pp. 238–259, 2015, issn: 0191-2615.

[41] S. J. Maher, G. Desaulniers, and F. Soumis, “The daily tail assignment
problem under operational uncertainty using look-ahead maintenance
constraints,” European Journal of Operational Research, vol. 264, no. 2,
pp. 534–547, 2018, issn: 0377-2217.

[42] M. Fuentes, L. Cadarso, V. Vaze, and C. Barnhart, “The tail assign-
ment problem: A case study at vueling airlines,” Transportation Re-
search Procedia, vol. 52, pp. 445–452, 2021, issn: 2352-1465.

[43] L. Lettovsky, “Airline operations recovery: An optimization approach,”
Ph.D. dissertation, School of Industrial Systems Engineering, Georgia
Institute of Technology, Atlanta, GA, USA, 1997.

[44] N. Kohl, A. Larsen, J. Larsen, A. Ross, and S. Tiourine, “Airline dis-
ruption management—perspectives, experiences and outlook,” Journal
of Air Transport Management, vol. 13, no. 3, pp. 149–162, 2007, issn:
0969-6997.

[45] J. Sakurai and J. Napolitano, Modern Quantum Mechanics. Sep. 2020,
isbn: 9781108473224.

[46] M. R. Garey and D. S. Johnson, Computers and intractability : a guide
to the theory of NP-completeness (A series of books in the mathemat-
ical sciences). Freeman, 1979, isbn: 0716710455.

[47] S. Arora and B. Barak, Computational complexity : a modern approach.
Cambridge University Press, 2009, isbn: 9780521424264.

[48] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi, Complexity and Approximation. : Combinatorial Op-
timization Problems and Their Approximability Properties. Springer
Berlin Heidelberg, 1999, isbn: 9783642584121.

[49] G. E. Moore, “Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114
�,” IEEE Solid-State Circuits Society Newsletter, Solid-State Circuits
Society Newsletter, IEEE, IEEE Solid-State Circuits Soc. Newsl, vol. 11,
no. 3, pp. 33–35, 2006, issn: 1098-4232.

53



References

[50] G. Moore, “Progress in digital integrated electronics [technical lit-
eraiture, copyright 1975 ieee. reprinted, with permission. technical di-
gest. international electron devices meeting, ieee, 1975, pp. 11-13.],”
IEEE Solid-State Circuits Society Newsletter, Solid-State Circuits So-
ciety Newsletter, IEEE, IEEE Solid-State Circuits Soc. Newsl, vol. 11,
no. 3, pp. 36–37, 2006, issn: 1098-4232.

[51] P. Benio�, “The computer as a physical system: A microscopic quan-
tum mechanical hamiltonian model of computers as represented by tur-
ing machines,” Journal of Statistical Physics, vol. 22, no. 5, pp. 563–
591, 1980.

[52] Y. Manin, Computable and Non-Computable (in Russian). Moscow:
Sovetskoye Radio, 1980.

[53] R. P. Feynman, “Simulating physics with computers,” International
journal of theoretical physics, vol. 21, no. 6/7, pp. 467–488, 1982.

[54] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge University Press, 2010, isbn: 9781107002173.

[55] J. D. Hidary, Quantum Computing: An Applied Approach. Springer
International Publishing, 2019, isbn: 9783030239220.

[56] D. Deutsch, “Quantum theory, the church–turing principle and the uni-
versal quantum computer,” Proceedings of the Royal Society of London.
A. Mathematical and Physical Sciences, vol. 400, pp. 117–97, 1985.

[57] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum
computation,” Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, vol. 439, pp. 553–558, 1992.

[58] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM
Journal on Computing, vol. 26, no. 5, pp. 1411–1473, 1997.

[59] D. R. Simon, “On the power of quantum computation,” SIAM Journal
on Computing, vol. 26, no. 5, pp. 1474–1483, 1997.

[60] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM Journal on Com-
puting, vol. 26, no. 5, pp. 1484–1509, Oct. 1997.

[61] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining dig-
ital signatures and public-key cryptosystems,” Commun. ACM, vol. 21,
no. 2, pp. 120–126, Feb. 1978, issn: 0001-0782.

54



References

[62] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, ser. STOC ’96, Philadelphia, Pennsylvania,
USA: Association for Computing Machinery, 1996, pp. 212–219, isbn:
0897917855.

[63] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate op-
timization algorithm, 2014. arXiv: 1411.4028.

[64] A. Peruzzo, J. McClean, P. Shadbolt, et al., “A variational eigenvalue
solver on a photonic quantum processor,” Nature Communications,
vol. 5, no. 1, Jul. 2014.

[65] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quan-
tum, vol. 2, p. 79, Aug. 2018.

[66] W. I-Lin, “Multicommodity network flows: A survey, part i: Applica-
tions and formulations,” International Journal of Operations Research,
vol. 15, no. 4, pp. 145–153, 2018, issn: 1813-713X.

[67] W. I-Lin, “Multicommodity network flows: A survey, part ii: Solution
methods,” International Journal of Operations Research, vol. 15, no. 4,
pp. 155–173, 2018, issn: 1813-713X.

[68] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows : theory,
algorithms and applications. Prentice Hall, 1993, isbn: 013617549X.

[69] R. Garfinkel and G. Nemhauser, Integer programming (Series in deci-
sion and control). John Wiley, n.d, isbn: 0-471-29195-1.

[70] G. Dantzig, A. Orden, and P. Wolfe, “The generalized simplex method
for minimizing a linear form under linear inequality restraints,” Pacific
Journal of Mathematics, vol. 5, Jun. 1955.

[71] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear pro-
grams,” Operations Research, vol. 8, no. 1, pp. 101–111, 1960, issn:
0030364X.

[72] L. S. Lasdon, Optimization theory for large systems. Dover Publica-
tions, 2002, isbn: 0486419991.

[73] M. E. Lübbecke and J. Desrosiers, “Selected topics in column genera-
tion,” Operations Research, vol. 53, no. 6, pp. 1007–1023, Nov. 2005,
issn: 0030-364X.

55

https://arxiv.org/abs/1411.4028


References

[74] A. H. Land and A. G. Doig, “An automatic method for solving discrete
programming problems,” ECONOMETRICA, vol. 28, no. 3, pp. 497–
520, 1960.

[75] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell, “Branch-
and-bound algorithms: A survey of recent advances in searching, branch-
ing, and pruning,” Discrete Optimization, vol. 19, pp. 79–102, 2016,
issn: 1572-5286.

[76] C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance,
“Branch-and-price: Column generation for solving huge integer pro-
grams,” Operations Research, vol. 46, Feb. 1970.

[77] M. Jünger, M. Elf, and V. Kaibel, “Rotation planning for the continen-
tal service of a european airline,” in Mathematics — Key Technology for
the Future: Joint Projects between Universities and Industry, W. Jäger
and H.-J. Krebs, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 675–689, isbn: 978-3-642-55753-8.

[78] M. Daskin and N. Panayotopoulos, “A lagrangian relaxation approach
to assigning aircraft to routes in hub and spoke networks,” Transporta-
tion Science, vol. 23, pp. 91–99, May 1989.

[79] G. Desaulniers, J. Desrosiers, Y. Dumas, M. Solomon, and F. Soumis,
“Daily aircraft routing and scheduling,” Management Science, vol. 43,
pp. 841–855, Jun. 1997.

[80] J.-F. Cordeau, G. Stojkovic, F. Soumis, and J. Desrosiers, “Benders
decomposition for simultaneous aircraft routing and crew scheduling,”
Transportation Science, vol. 35, pp. 375–388, Nov. 2001.

[81] M. Bartholomew-Biggs, S. Parkhurst, and S. Wilson, “Global optimiza-
tion approaches to an aircraft routing problem,” European Journal of
Operational Research, vol. 146, pp. 417–431, Apr. 2003.

[82] R. Gopalan and K. T. Talluri, “The aircraft maintenance routing prob-
lem,” Operations Research, vol. 46, pp. 260–271, 1998.

[83] A. Sarac, R. Batta, and C. M. Rump, “A branch-and-price approach
for operational aircraft maintenance routing,” European Journal of Op-
erational Research, vol. 175, pp. 1850–1869, 2006.

56



References

[84] Z. Liang, W. A. Chaovalitwongse, H. C. Huang, and E. L. Johnson, “On
a new rotation tour network model for aircraft maintenance routing
problem,” Transportation Science, vol. 45, pp. 109–120, 2011.

[85] Z. Liang and W. A. Chaovalitwongse, “A network-based model for the
integrated weekly aircraft maintenance routing and fleet assignment
problem,” Transportation Science, vol. 47, pp. 493–507, 2013.

[86] N. M. Kabbani and B. W. Patty, “Aircraft routing at american air-
lines.,” in proceedings of the agifors symposium, 1992.

[87] K. Talluri, “Swapping applications in a daily airline fleet assignment,”
Transportation Science, vol. 30, pp. 237–248, Aug. 1996.

[88] K. T. Talluri, “The four-day aircraft maintenance routing problem,”
Transportation Science, vol. 32, pp. 43–53, 1998.

[89] T. Feo and J. Bard, “Flight scheduling and maintenance base plan-
ning,” Management Science, vol. 35, pp. 1415–1432, Dec. 1989.

[90] L. Clarke, E. Johnson, G. Nemhauser, and Z. Zhu, “The aircraft rota-
tion problem,” Annals of Operations Research, vol. 69, Jan. 1997.

[91] C. Sriram and A. Haghani, “An optimization model for aircraft main-
tenance scheduling and re-assignment,” Transportation Research Part
A: Policy and Practice, vol. 37, pp. 29–48, Jan. 2003.

[92] C. Barnhart, N. Boland, L. W. Clarke, E. L. Johnson, G. L. Nemhauser,
and R. G. Shenoi, “Flight string models for aircraft fleeting and rout-
ing,” Transportation Science, vol. 32, pp. 208–220, 1998.

[93] J. Bard and I. Cunningham, “Improving through-flight schedules,” IIE
Transactions, vol. 19, pp. 242–251, Sep. 1987.

[94] A. Jarrah and J. Strehler, “An optimization model for assigning through
flights,” IIE Transactions, vol. 32, pp. 237–244, Mar. 2000.

[95] R. Ahuja, J. Goodstein, J. Orlin, and D. Sharma, “A very large-scale
neighborhood search algorithm for the combined through-fleet-assignment
model,” Massachusetts Institute of Technology (MIT), Sloan School of
Management, Working papers, vol. 19, Jan. 2003.

57



References

[96] R. K. Ahuja, J. Liu, J. Goodstein, A. Mukherjee, J. B. Orlin, and D.
Sharma, “Solving multi-criteria through-fleet assignment models,” in
Operations Research in Space and Air, T. A. Ciriani, G. Fasano, S.
Gliozzi, and R. Tadei, Eds. Boston, MA: Springer US, 2003, pp. 233–
256, isbn: 978-1-4757-3752-3.

[97] R. Ahuja, J. Liu, J. Orlin, and J. Goodstein, “A neighborhood search
algorithm for the combined through and fleet assignment model with
time windows,” Networks, vol. 44, pp. 160–171, Sep. 2004.

[98] M. Danielsson and G. Karlsson, The tail assignment problem for single
and mixed aircraft fleets: Mathematical modelling, solution, and imple-
mentation (master thesis). Chalmers tekniska högskola / Institutionen
för matematiska vetenskaper, 2018.

[99] D. Deutsch, “Quantum computational networks,” Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sci-
ences, vol. 425, no. 1868, pp. 73–90, 1989, issn: 00804630.

[100] A. Chi-Chih Yao, “Quantum circuit complexity,” in Proceedings of 1993
IEEE 34th Annual Foundations of Computer Science, 1993, pp. 352–
361.

[101] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths
and weaknesses of quantum computing,” SIAM Journal on Computing,
vol. 26, no. 5, pp. 1510–1523, Oct. 1997.

[102] T. Albash and D. A. Lidar, “Adiabatic quantum computation,” Re-
views of Modern Physics, vol. 90, no. 1, Jan. 2018.

[103] A. Messiah, Quantum mechanics. North-Holland, 1961.
[104] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum compu-

tation by adiabatic evolution, 2000. arXiv: quant-ph/0001106.
[105] S. Lloyd, Quantum approximate optimization is computationally uni-

versal, 2018. arXiv: 1812.11075.
[106] M. E. S. Morales, J. D. Biamonte, and Z. Zimborás, “On the univer-

sality of the quantum approximate optimization algorithm,” Quantum
Information Processing, vol. 19, no. 9, Aug. 2020.

[107] J. C. Aguma, An upper bound on the universality of the quantum ap-
proximate optimization algorithm, 2021. arXiv: 2104.01993.

58

https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/1812.11075
https://arxiv.org/abs/2104.01993


References

[108] H. Zheng, Z. Li, J. Liu, S. Strelchuk, and R. Kondor, Speeding up learn-
ing quantum states through group equivariant convolutional quantum
ansätze, 2021. arXiv: 2112.07611.

[109] A. Lucas, “Ising formulations of many NP problems,” Frontiers in
Physics, vol. 2, 2014.

[110] S. Hadfield, Z. Wang, B. O’Gorman, E. Rie�el, D. Venturelli, and R.
Biswas, “From the quantum approximate optimization algorithm to a
quantum alternating operator ansatz,” Algorithms, vol. 12, no. 2, p. 34,
Feb. 2019.

[111] L. Bittel and M. Kliesch, “Training variational quantum algorithms is
NP-hard,” Physical Review Letters, vol. 127, no. 12, Sep. 2021.

[112] E. Farhi, J. Goldstone, S. Gutmann, and L. Zhou, “The quantum
approximate optimization algorithm and the sherrington-kirkpatrick
model at infinite size,” Quantum, vol. 6, p. 759, Jul. 2022.

[113] M. Streif and M. Leib, Training the quantum approximate optimization
algorithm without access to a quantum processing unit, 2019. arXiv:
1908.08862.

[114] S. Khairy, R. Shaydulin, L. Cincio, Y. Alexeev, and P. Balaprakash,
“Learning to optimize variational quantum circuits to solve combina-
torial problems,” Proceedings of the AAAI Conference on Artificial In-
telligence, vol. 34, no. 03, pp. 2367–2375, Apr. 2020.

[115] S. Khairy, R. Shaydulin, L. Cincio, Y. Alexeev, and P. Balaprakash,
Reinforcement-learning-based variational quantum circuits optimization
for combinatorial problems, 2019. arXiv: 1911.04574.

[116] D. Wecker, M. B. Hastings, and M. Troyer, “Training a quantum opti-
mizer,” Physical Review A, vol. 94, no. 2, Aug. 2016.

[117] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quan-
tum approximate optimization algorithm: Performance, mechanism,
and implementation on near-term devices,” Physical Review X, vol. 10,
no. 2, Jun. 2020, issn: 2160-3308.

[118] F. G. S. L. Brandao, M. Broughton, E. Farhi, S. Gutmann, and H.
Neven, For fixed control parameters the quantum approximate opti-
mization algorithm’s objective function value concentrates for typical
instances, 2018. arXiv: 1812.04170.

59

https://arxiv.org/abs/2112.07611
https://arxiv.org/abs/1908.08862
https://arxiv.org/abs/1911.04574
https://arxiv.org/abs/1812.04170


References

[119] E. Farhi and A. W. Harrow, Quantum supremacy through the quantum
approximate optimization algorithm, 2016. arXiv: 1602.07674.

[120] M. B. Hastings, Classical and quantum bounded depth approximation
algorithms, 2019. arXiv: 1905.07047.

[121] K. Marwaha, “Local classical max-cut algorithm outperforms p=2 qaoa
on high-girth regular graphs,” Quantum, vol. 5, p. 437, Apr. 2021.

[122] S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, “Obstacles to varia-
tional quantum optimization from symmetry protection,” Physical Re-
view Letters, vol. 125, no. 26, Dec. 2020.

[123] B. Barak, A. Moitra, R. O’Donnell, et al., Beating the random as-
signment on constraint satisfaction problems of bounded degree, 2015.
arXiv: 1505.03424.

[124] K. Marwaha and S. Hadfield, “Bounds on approximating max kxor
with quantum and classical local algorithms,” Quantum, vol. 6, p. 757,
Jul. 2022.

[125] E. Farhi, D. Gamarnik, and S. Gutmann, The quantum approximate
optimization algorithm needs to see the whole graph: A typical case,
2020. arXiv: 2004.09002.

[126] J. R. McClean, M. E. Kimchi-Schwartz, J. Carter, and W. A. de Jong,
“Hybrid quantum-classical hierarchy for mitigation of decoherence and
determination of excited states,” Physical Review A, vol. 95, p. 042 308,
4 Apr. 2017.

[127] C. Xue, Z.-Y. Chen, Y.-C. Wu, and G.-P. Guo, E�ects of quantum
noise on quantum approximate optimization algorithm, 2019. arXiv:
1909.02196.

[128] J. Marshall, F. Wudarski, S. Hadfield, and T. Hogg, “Characterizing
local noise in QAOA circuits,” IOP SciNotes, vol. 1, no. 2, p. 025 208,
Aug. 2020.

[129] E. Fontana, N. Fitzpatrick, D. M. Ramo, R. Duncan, and I. Rungger,
“Evaluating the noise resilience of variational quantum algorithms,”
Physical Review A, vol. 104, p. 022 403, 2 Aug. 2021.

[130] J. Kattemölle and G. Burkard, E�ects of correlated errors on the quan-
tum approximate optimization algorithm, 2022. arXiv: 2207.10622.

60

https://arxiv.org/abs/1602.07674
https://arxiv.org/abs/1905.07047
https://arxiv.org/abs/1505.03424
https://arxiv.org/abs/2004.09002
https://arxiv.org/abs/1909.02196
https://arxiv.org/abs/2207.10622


References

[131] G. Quiroz, P. Titum, P. Lotshaw, et al., Quantifying the impact of pre-
cision errors on quantum approximate optimization algorithms, 2021.
arXiv: 2109.04482.

[132] M. Streif, M. Leib, F. Wudarski, E. Rie�el, and Z. Wang, “Quantum
algorithms with local particle-number conservation: Noise e�ects and
error correction,” Physical Review A, vol. 103, no. 4, Apr. 2021.

[133] R. Shaydulin and A. Galda, “Error mitigation for deep quantum opti-
mization circuits by leveraging problem symmetries,” in 2021 IEEE In-
ternational Conference on Quantum Computing and Engineering (QCE),
IEEE, Oct. 2021.

[134] T. Gustafsson, A heuristic approach to column generation for airline
crew scheduling (Lic. dissertation). Chalmers tekniska högskola, 1999.

[135] D. Wedelin, “An algorithm for large scale 0–1 integer programming
with application to airline crew scheduling,” Annals of Operations Re-
search, vol. 57, no. 1, pp. 283–301, 1995.

[136] E. Farhi, D. Gamarnik, and S. Gutmann, The quantum approximate
optimization algorithm needs to see the whole graph: Worst case exam-
ples, 2020. arXiv: 2005.08747.

[137] R. Sreedhar, P. Vikstål, M. Svensson, A. Ask, G. Johansson, and L.
García-Álvarez, The quantum approximate optimization algorithm per-
formance with low entanglement and high circuit depth, 2022. arXiv:
2207.03404.

[138] M. Dupont, N. Didier, M. J. Hodson, J. E. Moore, and M. J. Reagor,
“Calibrating the classical hardness of the quantum approximate opti-
mization algorithm,” PRX Quantum, vol. 3, no. 4, Dec. 2022.

[139] A. Montanaro, “Quantum speedup of branch-and-bound algorithms,”
Physical Review Research, vol. 2, no. 1, Jan. 2020.

[140] C. Durr and P. Hoyer, A quantum algorithm for finding the minimum,
1996. arXiv: quant-ph/9607014.

[141] A. Ambainis and R. Spalek, Quantum algorithms for matching and
network flows, 2005. arXiv: quant-ph/0508205.

61

https://arxiv.org/abs/2109.04482
https://arxiv.org/abs/2005.08747
https://arxiv.org/abs/2207.03404
https://arxiv.org/abs/quant-ph/9607014
https://arxiv.org/abs/quant-ph/0508205




Part II

Appended Papers

63





PAPERA
A Hybrid Quantum-Classical Heuristic to solve large-scale Integer

Linear Programs

Marika Svensson, Martin Andersson, Mattias Grönkvist, Pontus Vikstål,
Devdatt Dubhashi, Giulia Ferrini, and Göran Johansson

arXiv:2103.15433 (accepted to Physical Review Applied)





A Hybrid Quantum-Classical Heuristic to solve large-scale Integer Linear Programs

Marika Svensson,1, 2, ⇤ Martin Andersson,1 Mattias Grönkvist,1 Pontus
Vikst̊al,3 Devdatt Dubhashi,2 Giulia Ferrini,3 and Göran Johansson3
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We present a method that integrates any quantum algorithm capable of finding solutions to
integer linear programs into the Branch-and-Price algorithm, which is regularly used to solve large-
scale integer linear programs with a specific structure. The role of the quantum algorithm is to
find integer solutions to subproblems appearing in Branch-and-Price. Obtaining optimal or near-
optimal integer solutions to these subproblems can increase the quality of solutions and reduce the
depth and branching factor of the Branch-and-Price algorithm and hence reduce the overall running
time. We investigate the viability of the approach by considering the Tail Assignment problem
and the Quantum Approximate Optimization Algorithm (QAOA). Here, the master problem is the
optimization problem Set Partitioning or its decision version Exact Cover and can be expressed as
finding the ground state of an Ising spin glass Hamiltonian. For Exact Cover, our numerical results
indicate that the required algorithm depth decreases with the number of feasible solutions for a
given success probability of finding a feasible solution. For Set Partitioning, on the other hand,
we find that for a given success probability of finding the optimal solution, the required algorithm
depth can increase with the number of feasible solutions if the Hamiltonian is balanced poorly,
which in the worst case is exponential in the problem size. We therefore address the importance
of properly balancing the objective and constraint parts of the Hamiltonian. We empirically find
that the approach is viable with QAOA if polynomial algorithm depth can be realized on quantum
devices.

I. INTRODUCTION

Large-scale Integer Linear Programs (ILPs) appear in
the real world frequently as they model problems such
as planning, scheduling and resource allocation. These
problems are characterized by their large size, a lin-
ear cost function, a�ne inequality and/or equality con-
straints, as well as variables required to be integers.

Airline planning problems such as Crew Rostering,
Crew Pairing [1, 2] and Tail Assignment [3, 4] fall into
this category. These problems are made more di�cult
by very complex rules and regulations imposed by avia-
tion authorities, airlines and unions [1]. These rules can
even be hard to express in mathematical optimization
models and the models can furthermore have objective
functions that are nonlinear in some optimization formu-
lations [5, 6].

One way to address these di�culties is to formulate
the optimization problem with a very large number of
variables and to separate the problem into a generation
problem and a selection problem. With this formula-
tion, standard approaches such as Branch-and-Bound or
Branch-and-Cut [7] can not be used directly to solve these
problems due to their large size, where even enumerat-
ing the legal decision variables can require exponential
time and space, see Sec. A 2 for a more detailed explana-
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tion. Instead, by starting with an empty set of variables,
the generation problem is responsible for generating new
variables (aircraft routes in the Tail Assignment problem)
to the selection problem (an ILP for the Tail Assignment
problem). The task of the selection problem is to find
the subset of the generated variables that in the most
cost-e↵ective way satisfy all the constraints in the ILP
(in the most basic Tail Assignment problem, this corre-
sponds to having each flight in the schedule covered by
exactly one aircraft). This process is generalized in the
Branch-and-Price algorithm [6] which combines Branch-
and-Bound [8] and Column Generation [9, 10] and has
generally been successful for large-scale ILPs with this
type of structure. The benefit of separating the problem
is that the complex rules only a↵ect the generation prob-
lem, whereas the selection problem is often a pure Set
Cover or Set Partitioning problem.

In the Column Generation algorithm, the generation
and selection problems are solved iteratively until opti-
mal conditions hold. In this context, the selection prob-
lem is called the Restricted Master Problem (RMP) and
the generation problem is called the Pricing Problem
(PP). The RMP, which only contains a subset of the
decision variables of the original problem, is solved as
a Linear Program (LP). Column Generation is generally
insu�cient to solve the original ILP since the solution
is most likely fractional. To remedy this, Column Gen-
eration is combined with Branch-and-Bound for finding
the integer solution. For readers unfamiliar with Branch-
and-Price, details are given in Appx. A.
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With the results for factoring with Shor’s algo-
rithm [11] and unstructured database search with
Grover’s algorithm [12], providing subexponential and
quadratic speed-up, respectively, it is natural to ask
if quantum algorithms also can provide speed-up for
ILPs even though superpolynomial speed-up for these
problems is not expected. The adiabatic quantum al-
gorithm [13] and quantum annealing [14] have subse-
quently been proposed. Other quantum algorithms for
combinatorial optimization problems [15, 16] such as
Grover’s adaptive search algorithm [17] have also been
proposed. In recent years, much interest has been
given to the Quantum Approximate Optimization Algo-
rithm (QAOA) [18] for solving combinatorial optimiza-
tion problems, as it may be a suitable algorithm to run on
near-term gate-based quantum computers and to demon-
strate quantum advantage or quantum supremacy [19].

Experiments performed in [20] have reported to
demonstrate quantum supremacy for a problem that is
not related to optimization. Such devices can be classi-
fied as Noisy Intermediate-Scale Quantum (NISQ) com-
puters, where qubits are controlled imperfectly and quan-
tum error correction is generally not considered [21].
Moreover, QAOA was demonstrated in [22] for the
Sherrington-Kirkpatrick model and MaxCut, where ex-
periments agree well with simulations. Such results fur-
ther motivate investigating QAOA for ILPs and dis-
tinctly large-scale ILPs.

Here, we address the open question of whether quan-
tum algorithms can provide any advantage for large-scale
ILPs, where we stress that these problems can require ex-
ponential time and space even to generate the full ILP or
the continuous relaxation counterpart. The large num-
ber of decision variables therefore in practice rules out
a direct application of any quantum algorithm capable
of solving an ILP, as well as standard classical algo-
rithms for ILPs and the continuous relaxation. Building
instead on the above mentioned Branch-and-Price algo-
rithm, we propose to augment it by using a quantum
co-processor to find optimal or near-optimal solutions to
RMP-instances. For real-world large-scale ILPs, optimal-
ity is often intractable and finding good bounds can be
hard. The exact definition of a near-optimal or ’good-
enough’ solution will thus be a balance between running-
time and quality of the solution. We can then ensure that
the number of decision variables does not exceed the ca-
pabilities of the quantum processor when we generate the
RMP. Here, we also would like to note that the proposed
hybrid algorithm is a heuristic and the performance for
real-world ILP problems cannot be properly evaluated
until the hardware reaches between 103 to 104 qubits,
corresponding to the same amount of decision variables
in the RMP problem. At that point, we argue that this
method has the potential to reduce the time to solution
and improve solution quality. The detailed description
of where a NISQ co-processor could first be used to test
for possible speedup in finding near-optimal solutions to
ILPs, is one of the main results of this paper. Further-

more, we investigate the method numerically by consid-
ering QAOA and the real-world problem Tail Assignment
that generalizes Set Partitioning and its decision version
Exact Cover, which are NP-hard and NP-complete prob-
lems [23]. Here, we are naturally limited to instances
with up to 20 decision variables, but we explore these
instances to learn how to balance the cost and constraint
parts of the Hamiltonian to achieve a large probability
of finding the optimal solution, when there are multi-
ple feasible solutions. The results have been obtained by
simulating ideal QAOA circuits applied to instances with
one or more feasible solutions, extracted from a heuristic
Branch-and-Price algorithm [3]. The numerical results
expand on [24], where QAOA was applied to instances
with a single feasible solution and mapped as an Exact
Cover problem (the decision version of the optimization
problem Set Partitioning), also extracted from Tail As-
signment. The Exact Cover version of this problem has
also been investigated experimentally on a quantum pro-
cessor [25] and on a quantum annealer [26]. The current
paper thus gives a broader ILP context and background
for these works as well as a first extension to cases with
multiple feasible solutions.
The paper is organized as follows. In Sec. II we

introduce the Tail Assignment problem. We present
the method for integrating a quantum algorithm with
Branch-and-Price in Sec. III. In Sec. IV we review QAOA
and the chosen mapping of Exact Cover and Set Parti-
tioning to an Ising spin glass Hamiltonian. In Sec. V the
extracted RMP instances are presented. We present and
motivate the chosen optimization strategy for studying
larger algorithm depths in Sec. VI. Results are given in
Sec. VII first for Exact Cover and second for Set Par-
titioning. Last, in Sec. VIII we summarize the findings
and discuss interesting open questions that are beyond
the scope of this work.

II. TAIL ASSIGNMENT - AN EXAMPLE OF A
REAL-WORLD LARGE-SCALE INTEGER

LINEAR PROGRAM

Airlines regularly face several large NP-hard plan-
ning problems such as Fleet Assignment, Crew Pairing,
Crew Rostering and Tail Assignment in the planning pro-
cess [3, 27]. For Tail Assignment, the task is to determine,
given a set of flights and a set of aircraft, what flights are
operated by which individual aircraft and what order un-
der the constraint that each flight is flown exactly once
such that some objective is optimized. Operational con-
straints such as minimum connection times, airport cur-
fews, maintenance, and preassigned activities must also
be respected, and can be considered part of the input to
Tail Assignment. A set of flights operated by an aircraft
is referred to as a route, where the operational constraints
distinguish legal routes from illegal routes. This means
that a solution consists of a set of legal routes that cover
all flights exactly once in the most cost-e↵ective way. As
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an example, an airline can encounter problems with one
thousand flights per day with hundreds of aircraft, where
the aircraft are of ten di↵erent types [3]. In the worst
case, this means that the number of possible routes to
determine if they are legal or illegal would be 2|F |, where
F is the set of flights. By considering restrictions such as
the arrival time must be less than the departure time of
two flights following each other in a route the combina-
torial explosion can be decreased. However, typically the
number of legal routes will be very large and too large
to solve without separating the problem into a selection
problem and a generation problem.

Tail assignment can thus be classified as a large-scale
ILP, where we refer the readers to [28] and [7] for a com-
prehensive view of established algorithms for solving ILPs
and to [6, 10, 29, 30] for large-scale ILPs. The classical
algorithm we consider here used to find optimal or near-
optimal solutions to Tail Assignment in [3] is a heuristic
Branch-and-Price. The heuristic Branch-and-Price can
be understood as the Branch-and-Price algorithm where
the branching step is replaced with a fixing step that is
better suited for Tail Assignment by diving into a branch
of the full search tree.

For consistency, we give the details of the algorithms
Branch-and-Bound, Column Generation, Branch-and-
Price and the heuristic Branch-and-Price in Appx. A.

A. The Set Partitioning problem and the Exact
Cover problem

We define a simple path-based model of Tail Assign-
ment as a Set Partitioning problem

minimize
X

r2R

crxr, (1)

subject to
X

r2R

afrxr = 1 8f 2 F, (2)

xr 2 {0, 1} 8r 2 R, (3)

where F is the set of flights and R is the set of legal
aircraft routes. In the linear objective function, Eq. (1),
cr 2 Z corresponds to the cost of using route r. The
entries afr 2 {0, 1} are elements of a constraint matrix
A indicating if flight f is part of route r. A column in
the constraint matrix is therefore a route. Furthermore,
Eq. (2) enforces the requirement that the set of routes in
a solution should contain flight f exactly once. Finally,
the decision variables xr 8r 2 R indicate which routes
are used.

The Tail Assignment problem can, in practice, also be
described by the decision problem Exact Cover, for cases
where the objective is to find any feasible solution and
not the optimal solution necessarily. The Exact Cover
problem can be modeled as an ILP where the objective
function in Eq. (1) is ignored and set to 0 for any assign-
ment of the decision variables.

We now define the set Sfeasible to be the set of feasible
solutions to the Set Partitioning problem and the Exact
Cover problem as

Sfeasible =

(
~x 2 {0, 1}|R| :

X

r2R

afrxr = 1 8f 2 F

)
. (4)

If we consider a linear system of equations modulus 2

A~x = ~b mod 2 (5)

where the matrix A is of dimension |F |⇥ |R|, ~x is a col-

umn vector with |R| unknown variables and~b is a column

vector with |F | entries. The elements of A, ~b and ~x are
either 0 or 1, respectively. The system of equations has

2|R|�rank(A) (6)

number of solutions as long as the linear system of equa-
tions in Eq. (5) has at least one solution [31]. For Set Par-
titioning 2|R|�rank(A) constitutes an upper bound on the
number of feasible solutions |Sfeasible| [32], since any feasi-
ble solution to Set Partitioning is also a solution modulus
2 to the system of equations in Eq. (5) where all entries

in ~b is set to one. It is therefore possible that the num-
ber of feasible solutions is significantly smaller than the
upper bound. Furthermore, as the counting version of
Exact Cover and Set Partitioning is #P-complete [33],
obtaining the actual number of feasible solutions for typ-
ical instances for Tail Assignment becomes intractable.
We have investigated the number of feasible solutions

for generated RMP instances of Tail Assignment with
CPLEX [34]. We find that the number of feasible solu-
tions for two sets of generated instances can be larger
than 5 · 106 for problems with 700-800 decision variables.
We can therefore not rule out that the number of feasible
solutions can be very large in practice, and the conse-
quence is to investigate if a large feasible set is a limiting
factor in the performance for QAOA.

III. INTEGRATING A QUANTUM
ALGORITHM WITH BRANCH-AND-PRICE

In this section we present the method where the
Branch-and-Price algorithm is augmented by integrat-
ing any quantum algorithm capable of finding optimal or
near-optimal integer solutions to RMP instances. The in-
tegrated Branch-and-Price algorithm is depicted in Fig. 1
where Branch-and-Price is distinguished with green and
blue colored boxes, and dotted and dashed borders. The
green boxes with dotted borders highlight the Column
Generation algorithm, and the blue boxes with dashed
borders are distinctive for the Branch-and-Bound algo-
rithm. The red boxes with solid borders give the inte-
gration of a quantum algorithm. This hybrid algorithm
is one of the main results of this paper.
The integrated method utilizes a quantum algorithm

for each Column Generation iteration if the RMP is
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deemed promising. We remind the reader that since
routes are generated dynamically by the Column Gen-
eration algorithm each iteration corresponds to a new
ILP instance, which means that each iteration provides a
possibility to find a new integer solution to the problem
via a quantum (or classical) algorithm. For example, we
might want to avoid using a quantum algorithm in the
beginning of the Column Generation process as it will, in
general, be more likely to find good integer solutions in
later iterations. However, determining how often to use a
quantum algorithm will be a trade-o↵ that depends on if
the RMP instance is expected to contain integer solutions
with reasonable quality, the run-time of the algorithm for
practical instances, the quality of solutions the quantum
algorithm can find and its potential to be used in parallel
with the Branch-and-Price algorithm. Additionally, prior
to utilizing a quantum algorithm classical preprocessing
techniques are applied to the RMP instance and the out-
put of the quantum algorithm is used as input to classical
postprocessing techniques. We note that the method is
similar to those explored in [35] and shares similarities
to the use of a quantum device for scheduling problems
in [36]. However, our proposed method is the first to our
knowledge that considers the hybrid classical and quan-
tum approach for large-scale ILPs and is inspired by the
integration of classical IP solvers for 0-1 integer programs
into a generation and selection approach for large-scale
ILPs in [5].

The addition of a quantum algorithm can improve the
classical algorithm in several ways. Firstly, the quantum
algorithm can provide a set of optimal or near-optimal
integer solutions to RMP instances, which means that
the quantum algorithm can be used as a primal heuris-
tic in the Column Generation algorithm. This technique
is sometimes referred to as the restricted master heuris-
tic [37]. In the restricted master heuristic, a subset,
which is a fixed number of columns and variables, is cho-
sen from the RMP and the resulting problem is solved as
a static Integer Program (IP). However, we do not wish
to restrict the number of variables and columns to solve
as a static IP. Instead, we propose to use the whole RMP
instance unless we are required to leave out variables due
to limitations in the size of a quantum device. Such
heuristics can improve solution quality as observed in [38]
by simply obtaining optimal or near-optimal solutions to
RMP instances. Furthermore, as primal heuristics have
been shown to be very important for solving mixed in-
teger programs, heuristics that leverage a quantum algo-
rithm seems to be a natural step for Branch-and-Price.
Moreover, by finding a set of integer solutions, some flexi-
bility is introduced as it is possible to compare the quality
of several solutions with respect to more parameters than
each solution’s cost. This is mainly an advantage for a
real-world problem, where bu↵ers occurring in solutions
can improve sensitivity to disruptions.

Secondly, the quantum algorithm can provide tighter
upper bounds in the branching step, which can be uti-
lized in pruning decisions directly without sacrificing op-

timality. When we have access to tighter upper bounds,
these bounds are compared to the lower bounds found in
the Column Generation algorithm. If the lower bound
is greater or equal to the upper bound, we can discard
the subproblem as we can prune by bound. If we do
not have access to these tighter upper bounds, more sub-
problems are created and explored. This means that the
upper bounds can reduce the search tree’s size, which
leads to a reduced running time of the algorithm. The
upper bounds can also reduce the number of iterations
required in the Column Generation algorithm as noted
in [35] by computing the Lagrangian lower bound, where
the stopping criteria is given when the Lagrangian lower
bound is greater than the best known upper bound.
We can also consider introducing heuristic pruning

rules that can reduce the running time of Branch-and-
Price. We remark that finding a good solution fast can
be preferable to finding the optimal solution for real-
world problems. Heuristic pruning rules guided by op-
timal or near-optimal solutions to RMP instances can
therefore be beneficial. However, as even optimal integer
solutions to RMP instances do not guarantee an opti-
mal solution to the subproblem in Branch-and-Price, the
pruning decisions will be heuristic and do not guaran-
tee an optimal solution. By introducing heuristic prun-
ing rules, the goal is thus to obtain high quality solu-
tions faster. The pruning decision can be determined
by comparing the solution quality for di↵erent RMP in-
stances by monitoring the iterative change in the objec-
tive and the LP lower bound gap. If the Branch-and-
Price is based on variable fixing decisions, the solutions
from a quantum algorithm can indicate if certain vari-
ables can be chosen to be fixed. The procedure of fixing
a variable is such that if a variable xi is set to 1 for a
majority of the obtained solutions, the variable can be
fixed to 1 and the Branch-and-Bound algorithm dives
into this particular branch of the search tree. Further
techniques as in RQAOA in [39] can also be utilized where
it is possible to find relations between two decision vari-
ables zi = �ijzj where �ij = sign( h~�⇤

, ~�
⇤
|�̂

z

i
�̂
z

j
|~�

⇤
, ~�

⇤
i)

and (i, j) is an edge in the graph G = (V,E) such

that (i, j) = argmax(i0,j0)2E
{| h~�

⇤
, ~�

⇤
|�̂

z

i0 �̂
z

j0 |~�
⇤
, ~�

⇤
i |} of

an Ising model that encodes an ILP. Such heuristic prun-
ing rules would be similar to the ones of diving heuris-
tics (which can be greedy, random or based on rounding
strategies) or local branching heuristics [40].
Finally, the quantum algorithm can reduce the running

time if it finds some integer solution below a given thresh-
old or su�ciently close to the lower bound of the original
problem as the algorithm, in that case, stops even though
the search tree of Branch-and-Price is not explored fully.

Since the method is heuristic, the running time can
best be evaluated by executing it on real problems and
quantum devices, which is currently intractable due to
the current size of quantum computers. We expect that
as quantum hardware matures, such experiments will be
of interest. We can, on the other hand, note that the gen-
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FIG. 1: High level depiction of the Branch-and-Price
algorithm integrated with a quantum algorithm capable

of finding solutions to ILPs. The variable c̄r is the
reduced cost of route r, ~cRMP is the cost vector of an
RMP instance, and its entries correspond to for Tail
Assignment to the entries cr for r = 1, . . . , |R| in
Eq. (1)-(3). The solution provided by a quantum

algorithm with postprocessing is the vector ~x⇤
RMP

, and
the constant C is a threshold for the accepted quality of
a solution. This hybrid algorithm is one of the main

results of this paper.

eral Branch-and-Bound algorithm has worst-case running
time O(Mb

d) where b is branching factor, d is the search
depth and M is the upper bound on the running time to
explore a subproblem fully. If we can obtain optimal or
near-optimal integer solutions to subproblems, the num-
ber of nodes we can prune is larger and thus reduces the
algorithm’s running time.

Furthermore, as the augmented algorithm is valid
for any Branch-and-Price algorithm applied to prob-
lems with Master Problems (MPs) possible to solve by
some quantum algorithm, the method can be suitable
for a large class of ILPs. In particular, this framework

can be employed for airline planning problems such as
Tail Assignment, Crew Pairing and Crew Rostering but
also other large-scale ILPs such as vehicle routing prob-
lems [41].
Whilst this approach prohibits applying a quantum al-

gorithm to the Tail Assignment problem and other large-
scale ILPs directly, it reduces the number of required de-
cision variables and qubits. In particular, the MP for
Tail Assignment, which is a Set Partitioning problem, is
mapped such that the number of decision variables cor-
responds exactly to the required number of qubits (this
is true also for other MPs that are 0-1 variable LPs with
equality constraints). We could map the Tail Assignment
problem directly to an Ising model using an arc-based for-
mulation (see in [3] Eq. (4.1)-(4.7)), but this would re-
quire 107 qubits for a problem with 103 flights and 10 air-
craft prior preprocessing. For typical RMP instances we
instead expect to require around 103 � 104 decision vari-
ables for the path-based formulation in Eq. (1)-(3). The
proposed method is thus much more suitable for NISQ
computers. The arc-based formulation has an additional
disadvantage beyond the resource requirement of qubits
for problems as Tail Assignment, which are the recursive
maintenance requirements. These are non-trivial to map
to an Ising model, and removing the constraints would
likely result in infeasible solutions.
Moreover, we expect that if RMP instances can be

solved approximately with su�ciently shallow circuit
depth, the circuits can be realized on NISQ [42] com-
puters.
As mentioned earlier in this section, we propose a pre-

processing step using classical integer programming tech-
niques [43, 44] in order to reduce the number of variables
and constraints of the problem prior to utilizing a quan-
tum computer. Reducing the number of variables (re-
quired qubits) and constraints (problem graph connec-
tivity) is important for the limited NISQ computers to
be able to address real-world problems. The level of so-
phistication can range from very basic to very advanced
techniques and the level of sophistication used will be
a trade-o↵ between the computational time of the pre-
processor and the size and performance of the quantum
computer. We also consider classical postprocessing of
the output from a quantum algorithm, where additional
local searches can be done and we can combine good
RMP solutions to obtain improved solutions with stan-
dard or specialized classical solvers. Infeasible solutions
can additionally be attempted to be corrected to feasible
solutions by heuristic classical algorithms.
We stress that the benefit in separating the original

problem with the Branch-and-Price algorithm is that the
master problem often is a pure Set Partitioning or Set
Cover problem without any additional side constraints.
The PP, on the other hand, is often a resource con-
strained shortest path problem that considers the com-
plex rules. Thus, the method is not based on being more
suitable for NISQ devices but is based on known success-
ful methods for solving complex large-scale ILPs. Fur-
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thermore, by simplifying a real-world problem to a pure
Set Cover or Set Partitioning problem we also avoid tack-
ling an ILP with potentially many complicated side con-
straints with quantum algorithms. This also means that
the intricate task of balancing multiple constraint penal-
ties is simplified.

If the method is favorable for large-scale ILPs depends
on how complicated the constraints are and the resource
requirements of various formulations. The method pro-
posed here can be expected to provide constant speed-up
and improve the quality of the solutions. However, it
is unclear if the method can provide polynomial speed-
up as the addition of a quantum algorithm provides no
guarantee for a speed-up and is tied to the Column Gen-
eration algorithm, which limits the possible speed-up we
can expect. If it is possible to use an alternate formula-
tion that is not required to be separated into a generation
problem and a selection problem, it might be beneficial
to map the problem directly to an Ising spin glass Hamil-
tonian. However, as we have pointed out, this often re-
quires significantly more decision variables and qubits to
be applicable to real problems and will be more challeng-
ing for NISQ devices.

IV. THE QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM

Farhi, Goldstone and Gutmann presented in [18]
QAOA, which is a hybrid classical and quantum varia-
tional algorithm capable of finding approximate solutions
to combinatorial optimization problems. The algorithm
is inspired by the adiabatic quantum algorithm but is
designed for gate-based quantum computers. Further-
more, evidence that a classical computer can not simulate
a QAOA circuit without exponential overhead was pre-
sented later in [19]. The algorithm consists of alternating

the operators e
�i�kĤf and e

�i�kĤM for k = 1, 2, . . . , p,
where p is the depth of the algorithm. An ideal QAOA
circuit applied to the initial state |+i = 1p

2n

P
2
n�1

i=0
|ii

gives the QAOA state for depth p

|~�, ~�i = e
�i�pĤM e

�i�pĤf . . . e
�i�1ĤM e

�i�1Ĥf |+i

where ĤM =
P

n

i=1
�̂
x

i
is the mixing Hamiltonian and

Ĥf =
P

~x2{0,1}n f(~x) |~xi h~x| is a diagonal cost Hamilto-
nian with respect to the computational basis. The cost
Hamiltonian encodes an objective function f(~x) which
represents a combinatorial optimization problem. With
optimal angles ~�⇤ and ~�

⇤ and su�ciently large algorithm
depth, the QAOA state should have a large proportion
in states that are close to the ground state and equal
to the ground state. By repeating the process of con-
structing the state and performing measurements in the
computational basis, a solution that is equal or close to
the ground state of the cost Hamiltonian can be found.

The total running time to execute the quantum circuit,
as well as the implementation of the gates associated to

the cost Hamiltonian is both graph and hardware archi-
tecture dependent. If we let the algorithm depth go to
infinity and restrict the angles to be small, the algorithm
becomes exact [18].
For an ILP problem Ĥf will consist of one partial

Hamiltonian that corresponds to the objective function
and another that corresponds to constraints, not unlike
common penalty methods [45]. If f(~x) represents a min-

imization problem the optimal angles ~�⇤ and ~�
⇤ can be

found by solving the classical optimization problem

argmin h~�, ~�|Ĥf |~�,
~�i , (7)

subject to �i 2 [0, 2⇡] 8i = 1, .., p, (8)

�i 2 [0,⇡] 8i = 1, .., p (9)

as h~�, ~�|Ĥf |~�,
~�i = f(~x⇤) if |~�, ~�i = |~x

⇤
i where ~x

⇤ is the
optimal solution to the problem f(~x) represents. The
function in Eq. (7) is the expectation value function and
can be referred to as the energy landscape. The domain
in Eq. (8) and (9) holds for Hamiltonian Ĥf with integer
eigenvalues [24].
As far as we know, instances extracted from the real-

world problem Tail Assignment has previously only been
studied for QAOA in the context of Exact Cover in [24]
where success probabilities close to unity for instances
up to 25 qubits with one feasible solution could be ob-
tained for p  20 for ideal QAOA circuits. Recently,
the vehicle routing problem was also studied up to 20
qubits [46] where a clear dependency was established be-
tween the problem size and the performance of QAOA.
On the other hand, real-world problems have been stud-
ied for quantum annealing, such as for flight gate assign-
ment in [47], where the authors address the issue of bin
packing the cost vector of the objective function. How-
ever, the complication of degenerate problem instances
have not been discussed to a large extent in the context
of QAOA, nor has much focus been given to how suit-
able weights are found to balance the constraints and
the objective part of the Hamiltonian Ĥf . In Sec. VII,
we focus on the e↵ect of choosing suitable weights on the
required algorithm depth given a success probability and
if having a large feasible space is a limiting factor for the
performance.

A. Mapping Set Partitioning and Exact Cover

It is possible to map the Set Partitioning and Exact
Cover problem to the Ising spin glass Hamiltonian with
an underlying graph G = (V,E) with nodes given by
the set V and the edges given by the set E, where the
Hamiltonian is Ĥ =

P|V |
i=1

hi�̂
z

i
+
P

(i,j)2E
Jij �̂

z

i
�̂
z

j
as

presented in [48]. In this case, the Hamiltonian has at
most two spin interaction terms �̂z

i
⌦�̂

z

j
and is 2-local [49],

albeit this does not correspond to a geometric locality
with respect to hardware architecture.
By introducing a quadratic penalty on the constraints

in Eq. (2) a nonlinear integer optimization problem is ob-
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tained. The quadratic penalty results in a Hamiltonian
which has two parts (when ignoring a constant energy
shift), a Hamiltonian which is related to the objective
function and a Hamiltonian related to the constraints.
These parts are weighted with constants µ1 and µ2 ac-
cordingly

Ĥ
Set Partitioning =

X

r2R

[µ1 · h
Objective

r

+ µ2 · h
Exact Cover

r
]�̂z

r

+ µ2 ·

X

r0>r

J
Exact Cover

rr0 �̂
z

r
�̂
z

r0 ,

where

h
Objective

r
=

cr

2
,

h
Exact Cover

r
=
X

f2F

afr

 
X

r02R

afr0

2
� 1

!

and

J
Exact Cover

rr0 =
X

f2F

afrafr0

2
.

We observe that the terms hObjective
r

are given by the ob-
jective function in Eq. (1) and therefore indicate the cost
of an assignment of the decision variables ~x 2 {0, 1}|R|.
The terms h

Exact Cover
r

and J
Exact Cover

rr0 are due to the
constraints in Eq. (2), where J

Exact Cover

rr0 gives a penalty
for each overlapping flight in route r and r

0 and with the
terms h

Exact Cover
r

gives a penalty if the combination of
routes in an assignment does not cover all flights.

The problem graph G = (V,E) is given by the co-
e�cients h

Exact Cover
r

, h
Objective
r

and J
Exact Cover

rr0 in the
Hamiltonian where the graph itself can be thought also
as a conflict graph of the variables. Finally, the detailed
mapping of Exact Cover to an Ising spin glass model was
presented in [24] and further expanded for the mapping
of the Set Partitioning problem in Appx. B. Mappings
for other minimization problems common for large-scale
ILPs such as Set Cover can also be found in [48].

V. PROBLEM INSTANCES

The instances [50] have been extracted from the real-
world problem Tail Assignment by finding a set of dif-
ferent integer solutions when executing the heuristic
Branch-and-Price algorithm. The di↵erent solutions are
found by permuting the cost of routes randomly during
the execution of the algorithm. From this set, 35 in-
stances have been constructed with varying number of
routes and number of feasible solutions by combining
complete and partial solutions.

Typically, the instances have very large costs and can
be as large as 106, making the energy landscape numeri-
cally hard to search. The objective function has therefore

been further simplified to study qualitative di↵erences in
the performance of RMP instances for QAOA. The costs
have been simplified such that the smallest cost c

min
r

is
set to 1, larger costs have been modified such that each
cost cr has a unique value and that the optimal solu-
tion is unique. For real instances this is not a proposed
methodology, as it can disturb the order of the solutions
with respect to quality significantly. An option for real
instances is to either increase the weight for the penalty
of the constraints, which results in a numerically chal-
lenging energy landscape to optimize or we can disturb
the costs such that they are easier to handle but preserves
the objective function with some accuracy.
We can modify the costs by subtracting all costs with a

constant and dividing all costs with another constant, fi-
nally the costs are rounded to integers. There is a limit to
how much we can disturb the costs such that the order of
solutions with respect to cost is not changed significantly.
One should choose to divide by a constant that separates
the costs cr by at least a constant integer, which results
in a better preservation of the objective function com-
pared to choosing a larger constant to divide the costs
by. Here we have assumed a simple objective function to
study the performance of QAOA.
The instances are identified by the number of deci-

sion variables |R| and the number of feasible solutions
|Sfeasible|. The number of decision variables are 6, 8, 10,
12, 14 and 20. The number of feasible solutions vary from
1 to |R|/2. We denote a problem graph associated to an

instance G
s=|Sfeasible|
r=|R| which gives the set of graphs as

{G
s

r
}
s=[r/2]

r=6�20
.

Additionally, in [24] it was observed that the average
node degree of the problem graphs a↵ects the perfor-
mance of QAOA, in that obtaining near unity success
probability require greater algorithm depth as the av-
erage node degree, hdG(v)i, of the problem graphs in-
creases. The e↵ect of the average node degree was found

5 10
|Sfeasible|

5

10

15

h
d G

(v
)i

6

8

10

12

14

20

(a) Average node degree of problem graphs for
generated instances

(b) Problem
graphs

FIG. 2: Average node degree of the problem graphs are
shown in Fig. 2a. Problem graphs {Gs

r
}
s=1,2,3

r=6
are

depicted in Fig. 2b

to dominate over the problem size such that for a given
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success probability, the required algorithm depth was
greater for instances with 15 qubits compared to in-
stances with 25 qubits. We have extracted the average
node degree of each problem graph, depicted in Fig. 2.
It can be noted that the average node degree increases
with the problem size and decreases as the number of
feasible solutions increases. We further noted that the
problem graphs are close to being complete graphs, i.e.,
each node’s degree is |R| � 1 or |R| � 2. It is thus ex-
pected that such instances are hard for QAOA to solve
with respect to problem size.

VI. OPTIMIZATION STRATEGY

Finding the solution to the optimization problem in
Eq. (7)-(9) is NP-hard [51, 52] in itself. Furthermore,
each query of the function in Eq. (7) requires either exe-
cuting the QAOA circuit on a quantum device or a sim-
ulation on a classical computer. As we are currently pro-
hibited from executing QAOA for the problem instances
with su�cient algorithm depths on a quantum device the
remaining option is to simulate the algorithm with a clas-
sical computer. Moreover, since simulating the quantum
circuits is exponential in the number of qubits, the con-
sequence is that a function evaluation is computationally
expensive. Furthermore, in order to study the perfor-
mance of QAOA more accurately, we wish to study in-
termediate to large algorithm depths, which makes the
simulations even more expensive as the dimension of the
expectation value function in Eq. (7) is 2 times the algo-
rithm depth.

Compared to problems as MaxCut with uniform
weights set to 1 or versions thereof [18, 53, 54] the Set
Partitioning problem and Exact Cover problem have co-
e�cients in the Hamiltonian hi and Jij that are governed
by the constraint matrix and objective function that grow
with the chosen weights. These coe�cients are thus not
constrained to 0,1 or -1 and can be large. The di↵er-
ence in coe�cients results in complicated energy land-
scapes, that oscillate rapidly, to optimize with multiple
local minima. Moreover, we can see this from the closed
form expression of the energy landscape for p = 1 for
an Ising spin glass Hamiltonian, associated to a graph
G = (V,E) with edge weights Jij and node weights hi,

which is given by

h��| Ĥ |��i =
nX

i=1

hisin(2�)sin(2�hi)
Y

j:(i,j)2E

cos(2�Jij)

+
X

(i,j)2E

Jij

2
(sin2(2�)Y

(i,k)2E

(j,k)/2E

cos(2�Jik)
Y

(j,k)2E

(i,k)/2E

cos(2�Jjk)

⇥[cos(2�(hi � hj))
Y

(i,k)2E

(j,k)2E

cos(2�(Jik � Jjk))

�cos(2�(hi + hj))
Y

(j,k)2E

(i,k)2E

cos(2�(Jik + Jjk))]

+sin(4�)sin(2�Jij)[cos(2�hi)
Y

k 6=j:(i,k)2E

cos(2�Jik)

+ cos(2�hj)
Y

l 6=i:(j,l)2E

cos(2�Jjl)]), (10)

as presented in [55]. We derive the expression for consis-
tency in Appx. C.

The complicated energy landscape underlies our moti-
vation to focus on obtaining good locally optimal angles
via the interpolation strategy presented by Zhou, in [56],
in order to study the success probability for QAOA with
intermediate to large algorithm depth p. The first step
in the interpolation algorithm is to perform global op-
timization for algorithm depth k = 1 and for algorithm
depth k > 1 locally optimal angles (~�L

⇤
, ~�

L
⇤
) angles are

found by providing a good starting point (~�L
, ~�

L) to a lo-
cal search algorithm. The starting point for local search
is determined by interpolating previously found locally
optimal angles. The algorithm iterates for k = 2, . . . , p.
The following definition gives the interpolation in each
step

⌘
L

k+1,i
=

8
><

>:

⌘
L

⇤

k,1
if i = 1

i�1

k
⌘
L

⇤

k,i�1
+ k�i+1

k
⌘
L

⇤

k,i
if i = 2, . . . , k

⌘
L

⇤

k,k
if i = k + 1

where ⌘ is � or �. The index i denotes the i:th element
of locally optimal angles found for algorithm depth k and
index k denotes the best found angles of algorithm depth
k. The distinction between L and L

⇤ is the separation of
the starting point and angles found after a local search.
In our case, the global optimization was performed with
python’s di↵erential evolution routine. The local opti-
mization was performed with L-BFGS-B, which is also a
standard solver in python.
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VII. NUMERICAL RESULTS FOR
RESTRICTED MASTER PROBLEM INSTANCES

We present the numerical results obtained for ideal
QAOA circuits where the variational parameters have
been obtained via the interpolation strategy first for Ex-
act Cover in Sec. VIIA and second for Set Partitioning
in Sec. VIIB.

A. Solving the Exact Cover problem

For Exact Cover, we only require to obtain a feasible
solution ~xi 2 Sfeasible. For such purpose, the most natu-
ral choice of mapping is by ignoring the objective part of
the Hamiltonian, i.e., the cost Hamiltonian is expressed
as

Ĥf = Ĥ
Exact Cover

.

Furthermore, it is straightforward to define the success
probability as the probability of obtaining any of the fea-
sible solutions

P
Exact Cover

success
=

X

~xi2Sfeasible

|h~xi|~�
L

⇤
, ~�

L
⇤
i|
2
.

The success probabilities for QAOA applied to the Ex-
act Cover instances are plotted in Fig. 3. We remark
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FIG. 3: Success probabilities for Exact Cover. The
colors and markers indicate |Sfeasible|

that the required algorithm depth decreases for a given
success probability as the number of feasible solutions
increases in general, albeit increases when the problem
size increases. These results correspond to results found
in [24], wherein Fig. 2 we presented the average node de-
gree of the instances, that decreases with the number of

feasible solutions whilst increasing more significantly as
the problem size increases.
As the most challenging cases are those where the num-

ber of feasible solutions is small, we observe that obtain-
ing a success probability above 50% can require an algo-
rithm depth that is more than |R| by at least a constant,
where |R| is the number of decision variables and qubits
of the instance. Therefore, it is unknown how well QAOA
can perform for instances with 103 � 104 decision vari-
ables when executed on a NISQ device as decoherence is
a limiting factor currently.

B. Solving the Set Partitioning problem

When we consider applying QAOA to the Set Par-
titioning problem, two additional aspects are of inter-
est. The first aspect is how one should choose good
weights that balance the objective part of the Hamil-
tonian and the Exact Cover (constraints given by a
quadratic penalty) part of the Hamiltonian. The sec-
ond aspect is a consequence of the first, namely how the
chosen weights a↵ect the required algorithm depth for a
given success probability. The total cost Hamiltonian is a
combination of the two partial Hamiltonians accordingly

Ĥf = Ĥ
Set Partitioning = µ1Ĥ

Objective + µ2Ĥ
Exact Cover

.

We have chosen the weight µ1 2 {Z+
[ {0}} depending

on a factor f

µ1 =

(
0 if f = 1

1 otherwise
,

and µ2 2 Z+ depending on the largest eigenvalues of
the partial objective and Exact Cover Hamiltonians, and
factor f

µ2 =

(
1 if f = 1j
f ·

�
max

Objective

�
max

Exact Cover

m
otherwise

.

By choosing the weights to be integers, the domain is
preserved in the optimization problem defined in Eq. (7)-
(9). Thus, f=1 corresponds to the mapping where
Ĥ

Set Partitioning = Ĥ
Exact Cover. We then define the suc-

cess probability as the probability of finding the optimal
solution

P
Set Partitioning

success
= |h~x

⇤
|~�

L
⇤
, ~�

L
⇤
i|
2

where ~x⇤ is the solution to the Set Partitioning problem,
i.e the binary vector that corresponds the minimal value
of Eq. (1) such that ~x⇤

2 Sfeasible.
The success probabilities of Set Partitioning are plot-

ted in Fig. 4 for ideal QAOA circuits. Dashed lines dis-
tinguish the lines for factor f = 1 and the best found
factors f

⇤ are distinguished by the solid lines. Further-
more, success probabilities are tabulated for additional
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factors for a given algorithm depth in Appx. D, where
the factors have been chosen to construct cost Hamiltoni-
ans with the constraint that the ground state corresponds
to the optimal solution ~x

⇤.
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FIG. 4: Success probability for solving the Set
Partitioning problem depending on the choice of
weights µ1 and µ2, the dashed lines correspond to
f = 1 and solid lines correspond to the best found
factors f = f

⇤. The colors and markers of the lines
indicate the value of |Sfeasible|

It is clear from the results of the numerical simula-
tions in Fig. 4 and Table I that the success probability
of solving Set Partitioning can be increased (and thus
reducing the required algorithm depth) with a suitable
choice of weights µ1 and µ2 for 22 instances of the 29
instances with more than one feasible solution. We also
observe that a good choice of weights for instances with
a single feasible solution corresponds to f = 1 for all
problem sizes. We observe that the success probabil-
ity can decrease with the number of feasible solutions
to P

Set Partitioning
success

⇡
1

|Sfeasible| if the weights are chosen
poorly, which in the worst case is exponential in the prob-
lem size. To avoid requiring a considerable algorithm
depth, finding good weights is thus required to solve the
optimization problem with NISQ devices.

Moreover, the regret (the di↵erence between the min-
imum expectation value found during the optimization
procedure and the optimal solution) of the expectation
value function is depicted in Fig. 5 for instances with
6 routes with varying weights. We observe for f = 1

that the regret is reduced to near zero, whilst failing
to increase the success probability significantly above

1

|Sfeasible| . For factors 10 and 100, the regret is greater
compared to the best found factor for a given algorithm
depth. The di↵erence in regret corresponds to decreased
required algorithm depth for the best found factor com-
pared to factors 10 and 100 to achieve near unity success
probability for Set Partitioning, see Table I.
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FIG. 5: Regret of the expectation value function for
instances corresponding to problem graphs G1,2,3

6
for

factors 1, 10, 100 and 1. The regret is defined as the
di↵erence between E = h~�

L
⇤
, ~�

L
⇤
|Ĥf |~�

L
⇤
, ~�

L
⇤
i where

(~�L
⇤
, ~�

L
⇤
) are the locally optimal angles found by the

interpolation strategy and Emin = h~x
⇤
| Ĥf |~x

⇤
i

Since we observed that choosing a factor other than
1 fails to increase the success probability for 7 instances
with more than one feasible solution, we have extracted
the smallest nonzero energy gap ratio with respect to the
maximum eigenvalue. Fig. 6 shows the ratio for instances
with 6 and 20 routes. The graphs show for instances
with 6 routes that the ratio can be increased for G1

6
but

not for G2,3

6
by choosing a factor that considers the cost

function. The lack of increased ratio corresponds to the
increased required algorithm depth to obtain near unity
success probability for G

2,3

6
compared to G

1
6
. Further-

more, the choice f = 10 compared to f = 1 results for
instances G1�3

20
in decreased ratios. Whereas the ratio is

increased for G
4�7

20
and more distinctly for G

8,9,10

20
. We

note that as the ratio increases for the choice of factor
f , the required algorithm depth is decreased for a given
success probability here as well. We conclude from these
results that a suitable choice for weights is such that the
nonzero energy gap is as large as possible as a ratio of the
maximum eigenvalue of the cost Hamiltonian. Moreover,
when we attempt to balance the objective and constraint
parts of the cost Hamiltonian the smallest eigenvalues are
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Hamiltonian Ĥ

Set Partitioning depending on the factor f ,
as a ratio of the maximum eigenvalue

not guaranteed to correspond to feasible solutions. This
means that in the pursuit of finding the optimal solution,
we can decrease the probability of finding a feasible solu-
tion. However, if we find weights such that the smallest
eigenvalues correspond to feasible solutions, we do not
sacrifice the probability of finding good feasible solutions
for finding the optimal solution.

These results indicate that if NISQ devices are lim-
ited in algorithm depth, finding suitable weights will be
crucial, requiring more computational e↵ort. The task
of finding suitable weights for Set Partitioning via the
quadratic penalty method typically requires that sev-
eral subproblems are solved, where each subproblem cor-
responds to a choice of weights. Typically, with the
quadratic penalty method, the weight for the objective
part is set to 1 and the weight for the quadratic penalty
is set to be small initially. The weight of the quadratic
penalty is then increased for a number of iterations or
until convergence is reached. The quadratic penalty
method could be executed with QAOA. We could also
consider solving the problem with a classical computer,
where the integer requirement could be relaxed to pro-
vide a good guess for the weights. An initial starting
point for the weights can also be chosen as µ1 = 1 and
µ2 > max(i,j)2E{|ci � cj |} if we assume that the small-
est penalty is 1 for exchanging variables xi and xj or

µ2 >
P|R|

r=1
|cr| [57] where µ2 is bounded from above. An

alternative method to obtain suitable weights can be to
initially attempt to solve Exact Cover where the weight
is zero for the objective part and one for the constraint
part. For the second iteration, QAOA with equal penal-
ties set to one for the objective and constraint part of the
Hamiltonian is then executed. If the solution degrades to
be infeasible compared to the first solution we can assume
that the objective part of the Hamiltonian dominates the
constraint part. In that case, we need to increase the
penalty for the constraint part for a number of iterations
or until we reach a convergence. If we, on the other hand,

find that we obtain a solution of similar cost as when
we attempted to solve Exact Cover, we can increase the
penalty for the objective part of the Hamiltonian for a
number of iterations until we observe convergence for the
solutions or until the solution degrades again such that
it is infeasible. Since each choice of weights corresponds
to a subproblem to be solved with QAOA it implies a
computational overhead. However, if QAOA itself is exe-
cuted in polynomial time the overhead should not change
the overall complexity of the algorithm.
Finally, we conclude that the required algorithm depth

of QAOA can be expected to grow with the problem
size and increase as the number of feasible solutions
decreases (assuming that we have identified suitable
weights). Fig. 4 shows that we can expect to require
at least |R| in algorithm depth to achieve success proba-
bility above 50%.

VIII. CONCLUSIONS

We have proposed a method that can leverage quan-
tum algorithms for large-scale ILPs and investigated the
method by considering the quantum algorithm QAOA
and the problem Tail Assignment. The method is useful
for problems that are typically solved via Column Gener-
ation techniques, where a direct application to the prob-
lem (typically in a path-based formulation) requires in
the worst case exponentially many qubits. The method
can also be useful for NISQ devices as our method require
less quantum resources compared to the arc-based formu-
lations for problems as vehicle routing and Tail Assign-
ment (defined in [3] as model TAS in Eq. (4.1)-(4.7)). For
Crew Pairing and Crew Rostering, in particular, some
constraints are not suited to be expressed in mathemat-
ical terms as noted in [5], utilizing a quantum algorithm
in the Branch-and-Price framework for solving RMP in-
stances can thus be the only viable option. Furthermore,
for Tail Assignment, some constraints are recursive and
non-trivial to express as an Ising model, limiting the po-
tential to apply a quantum algorithm to the arc-based
formulation directly.
The numerical results expand on the results in [24] by

considering more diverse and realistic, albeit small in-
stances. The results indicate that the required algorithm
depth decreases for a given success probability as the
number of feasible solutions increases for Exact Cover,
where we find the opposite results for Set Partitioning if
the cost Hamiltonian is weighted poorly. Moreover, the
reduction in success probability for Set Partitioning can
be significant as the number of feasible solutions can be
very large. However, we also found that it is possible for
most instances to find a suitable choice of weights such
that the algorithm depth is significantly reduced to ob-
tain a success probability above 50%, in particular for
instances where the number of solutions is larger. Even
with suitable weights, we expect that instances can re-
quire an algorithm depth that grows with the problem
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size and node degree, where harder instances are those
with few feasible solutions for QAOA with respect to
both Set Partitioning and Exact Cover. Especially hard
Set Partitioning instances for QAOA are expected to be
those where the minimum nonzero energy gap is small
with respect to the largest eigenvalue for any weights
we choose and where the minimum eigenvalues no longer
correspond to the feasible solutions (whilst the ground
state is still the optimal solution). These instances are
more di�cult because the probability of finding a feasi-
ble solution degrades in these cases whilst favoring the
optimal solution.

Moreover, we have chosen to follow the mapping for
both problems as presented in [48]. Since there exists
no evidence that suggests that this particular mapping,
although obvious, is optimal there can exist some other
more suitable mapping. Since it was observed that the
node degree of the graphs a↵ects the required algorithm
depth, there might exist some more suitable mapping to
be explored where the average node degree of the prob-
lem graphs can be reduced. However, exploring alterna-
tive mappings for Exact Cover and Set Partitioning has
been omitted in this work and left as a potential future
challenge to consider.

It can further be observed that common sizes of RMP
instances of Tail Assignment require approximately 103-
104 for practical problems. As NISQ computers were
suggested to typically have 50-100 qubits initially, we
would like to address this discrepancy. We remark that
the quantum hardware is improving and new promises of
NISQ devises with 1000 qubits by companies as IBM in
2023 [58] implies that the method will become applica-
ble on NISQ devices in the near future. For future work,
it would therefore be interesting to run QAOA on such
devices for larger instances. Instances of interest to con-
sider are generated RMP instances in Branch-and-Price
frameworks for real-world problems and other hard ILP
instances publicly available in operational research and
mathematical optimization libraries. A remaining chal-
lenge for NISQ devices will be to realize QAOA circuits
with the desired number of qubits for polynomial algo-
rithm depths.

For future work, it could also be interesting to study
if it is possible to reduce the RMP instance to be better

suited for NISQ devices. For example, one could attempt
to choose a subset of decision variables in RMP instances
to construct smaller RMPs. However, such a reduction
corresponds to options with a combinatorial behavior.
Reducing the size of RMP instances can therefore re-
quire more advanced preprocessing techniques. Further
techniques as those explored in [59] can also be valuable
to consider.
We note that whilst our method provides a possibil-

ity to leverage quantum algorithms to an advantage for
large-scale ILPs, any quantum algorithm under consid-
eration must be capable of either providing significant
speed-up in finding solutions of similar quality as the
best classical solvers or capable of finding solutions of
improved quality compared to classical solvers during
the same execution time. The numerical experiments we
have considered in this paper for QAOA can not answer
these open questions fully. However, it should be ob-
served that as the average node degree of the generated
instances are large, we can therefore consider that the re-
sults in Sec. VIIA-VIIB to correspond to hard instances
for QAOA with respect to problem size. Larger instances
that are sparse can therefore have a reduced requirement
on the algorithm depth, which further motivates study-
ing instances with lower node degrees by both numerical
simulations and executions on quantum devices.
Finally, we conclude that it is possible to integrate

QAOA with a Branch-and-Price algorithm, where we
achieve reasonably high success probabilities for RMP
instances with a polynomial algorithm depth. In obtain-
ing high quality integer solutions to RMP instances, the
run-time of the general and heuristic Branch-and-Price
algorithms can therefore be reduced and improve solu-
tion quality.
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Appendix A: The heuristic Branch-and-Price
algorithm for solving Tail Assignment

The Branch-and-Price algorithm is designed to solve
large-scale Integer Linear Programs (ILPs) and com-
bines the algorithms Column Generation and Branch-
and-Bound. In this section, we review first Branch-and-
Bound and second the Column Generation algorithm.
Last, we review the Branch-and-Price algorithm and the
fixing heuristic presented in [3] subject to be integrated
with a quantum algorithm.

1. Branch-and-Bound

The Branch-and-Bound algorithm, given in [8] and sur-
veyed in [60] more recently, provides a framework for find-
ing the optimal solution to ILPs. As the feasible region
is restricted to integer points and not convex, algorithms
applicable for Linear Programs (LPs) can not solve ILPs
generally. The distinction here is that LPs can be solved
e�ciently, whereas ILPs are NP-hard problems.
The algorithm, given in pseudo code in Alg. 1, de-

composes the original ILP into subproblems recursively
that can be visualized with a tree structure. Exhaus-
tive search is avoided by pruning nodes of the tree giving
more acceptable running times in practice. Each node
in the tree represents a subproblem which is the origi-
nal ILP with a reduced feasible space. Each subproblem
can be relaxed, i.e., the decision variables are not dis-
crete but continuous, yielding either a lower bound (if a
minimization problem), an integer solution, or that the
subproblem is infeasible.
Consider here that we are applying Branch-and-Bound

to an integer linear program

ILP = min

(
nX

i=1

cixi : ~x 2 S

)

where S =
�
~x 2 Zn

+
:
P

n

i=1
ajixi � bj 8j = 1, . . . ,m

 
.

The Linear Programming (LP) relaxation of the ILP is

LP = min

(
nX

i=1

cixi : ~x 2 P

)
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where P = {~x 2 Rn

+
:
P

n

i=1
ajixi � bj 8j = 1, . . . ,m}.

We know from linear programming theory that the LP
relaxation of an ILP gives the relation LP  ILP. A par-
tition of the ILPs feasible space S yields two subproblems

ILP1 = min

(
nX

i=1

cixi : ~x 2 S1

)
,

ILP2 = min

(
nX

i=1

cixi : ~x 2 S2

)

where S1 and S2 are disjoint sets that partition S by
a constraint on variable xj such that S1 = {~x 2 S :
xj  bx

0

j
c} and S2 = {~x 2 S : xj � dx

0

j
e}. The variable

x
0

j
2 ~x

0 has some fractional value and ~x
0 is an optimal so-

lution to LP. We further know from linear programming
theory that either ILP1 or ILP2 has the optimal solution
to ILP. Similarly, the two subproblems can be related to
new problems that correspond to the LP relaxation of
ILP1 and ILP2 which provides lower bounds, can show
that there exists no feasible integer point or can find an
optimal integer solution. The three problems ILP, ILP1

and ILP2 can be visualized as a tree with a parent node
and two child nodes, see Fig. 7. Clearly, ILP1 and ILP2

can be partitioned further into subproblems giving the
tree structure rooted in a node representing the original
ILP. If an LP relaxed subproblem is found to be infeasi-

ILP

ILP1

ILP11
. . . ILP1k

ILP2

ILP21
. . . ILP2k

FIG. 7: Conceptual search tree of Branch-and-Bound

ble, the node is pruned, i.e., the branch is not explored
further and we say that the node is pruned by infeasibil-
ity.

When the algorithm recursively explores subproblems,
an incumbent, z

⇤, is maintained which is the current
best feasible solution found to the ILP. Whenever a sub-
problem yields a solution greater or equal to the incum-
bent, this region cannot contain any integer solutions
that would improve upon the one we already have and
this particular node is pruned. We say that the node is
pruned by bound.

If we find that a solution to a subproblem is integral,
we also prune this node as we have found an optimal
partial solution or candidate incumbent zi for this specific
region. We say that the node is pruned by integrality. If
zi < z

⇤ the incumbent is updated.
Finally, if a subproblem can not be pruned by infeasi-

bility, bound or integrality the subproblem is partitioned
into k � 2 nodes representing k subproblems, which are
children to the current subproblem we are exploring in
the tree. The k subproblems are then added to a list of

unexplored subproblems and a new subproblem is cho-
sen to be explored. When there are no unexplored sub-
problems left the algorithm terminates and returns the
incumbent solution and the corresponding assignment.

Algorithm 1 Branch-and-Bound(S)

1: ~x⇤  ;
2: z⇤  1
3: z⇤U  1
4: L {S}
5: while |L| > 0 do
6: Si  chooseSubProblem(L)
7: L L\{Si}
8: if Si has feasible solution to LP relaxation then
9: (zL, ~xL) solveLPrelaxation(Si)

10: if zL < z⇤U then
11: if ~xL feasible to ILP then
12: . Prune by integrality
13: if zL < z⇤ then
14: ~x⇤  ~xL

15: z⇤  zL
16: z⇤U  z⇤

17: end if
18: else
19: (zU , ~xU ) getFeasibleSolution(Si)
20: z⇤U  min(z⇤U , zU )
21: {Si1 , . . . , Sik} partition(Si)
22: L L [ {Si1 , . . . , Sik}
23: end if
24: else
25: . Prune by bound
26: end if
27: else
28: . Prune by infeasibility
29: end if
30: end while
31: return (z⇤, ~x⇤)

2. Column Generation

In the previous section we mentioned that the LP re-
laxation of an ILP could be e�ciently solved. However,
consider the case where the number of variables is ex-
ponentially large so that even generating the LP would
take exponential time and space. This is exactly the case
for large-scale ILPs as the Tail Assignment formulation
in [3], which has an exponential number of possible routes
in the worst case.

The Column Generation algorithm [10], depicted with
green colored boxes with dotted borders in Fig. 1 and
presented in pseudo code in Alg. 2, is based on well
known duality concepts from linear programming theory.
It has been proved successful for both linear programs
and ILPs, particularly when the number of decision vari-
ables is very large. Instead of attempting to construct
and solve the complete problem it is decomposed into a



16

Master Problem (MP)

z
⇤
MP

= minimize
X

j2J

cjxj ,

subject to
X

j2J

aijxj � bi 8i 2 I

xj � 0 8j 2 J

and a Pricing Problem (PP)

argmin

(
c̄j = cj �

X

i2I

aij⇡i : j 2 J

)
,

here ⇡i are the dual variables that correspond to the pri-
mal variables, xj , found by solving the MP. The PP of-
ten encapsulates most of the problem specific details and
di�cult constraints and generates new columns, also re-
ferred to as entering variables.

Since the number of decision variables is very large,
the MP is further reduced to a restricted version, de-
noted the Restricted Master Problem (RMP), meaning
that the number of decision variables is smaller, often
much smaller, than the original problem. The reduced
size of the RMP is tractable to solve with some LP solver
such as the dual simplex [61] or primal simplex [62] algo-
rithm, compared to the MP.

The decomposition results in an iterative algorithm
where the RMP and the PP are solved for a number
of iterations or until optimal conditions hold. For each
iteration, we attempt to find entering and exiting vari-
ables where the exiting variables are removed from the
RMP and the entering variables are added to the RMP,
resulting in new RMP and PP instances.

The PP is thus some problem that when solved can
generate improving columns and decision variables to the
RMP, based on given input of the dual variables from the
RMP, such that the cost of the new solution, which at
this point is not guaranteed to be integral, is improved.
Improving columns are identified by having a negative re-
duced cost c̄j and optimal conditions hold when no vari-
ables with negative reduced cost can be found, which is
the same condition as in the simplex algorithm.

If the original problem is an ILP, the MP is the LP
relaxation of the ILP. In the case of Tail Assignment the
RMP corresponds to a restricted and LP relaxed Set Par-
titioning or Exact Cover problem, see Sec. II A, where the
decision variables are continuous real variables. The PP
can thus be defined as

argmin

8
<

:c̄r = cr �

X

f2F

afr⇡f : r 2 R

9
=

; . (A1)

for Tail Assignment, where ⇡f is the dual variable of flight
f obtained when solving the RMP.

To be noted, the first step of Column Generation is to
construct an initial RMP, which for Tail Assignment can
be A = 1|F |⇥|F | where the costs cr are set to some large

number and thus unlikely to be part of a solution. Vari-
ables can be chosen as exiting variables when the value
of the reduced cost is above a given threshold, however,
removing variables from the RMP does not necessarily
as improve convergence as removing variables also re-
moves dual information. Further investigations in delet-
ing columns can be found in [3], in Sec. 6.4.
Furthermore, solving the PP at first glance appears

intractable as the number of reduced costs can be ex-
ponentially large. By formulating the problem as a Re-
source Constrained Shortest Path Problem (RCSPP) we
avoid to explicitly construct all routes. The RCSPP is
described by a connection network, depicted in Fig. 8
with a unique sink vertex and other vertices represent-
ing flights with edges that represent legal connections
where the nodes are associated with a flight cost cf and
a dual variable ⇡f found by solving the RMP. The prob-

f1, c1,⇡1

f10, c10,⇡10

f2, c2,⇡2

f9, c9,⇡9

f6, c6,⇡6

f7, c7,⇡7

f3, c3,⇡3

f4, c4,⇡4

f8, c8,⇡8

f5, c5,⇡5

sink

FIG. 8: Pricing problem

lem depicted in Fig. 8 is a shortest path problem, where
the objective is given by Eq. (A1) and additional costs
for each edge, i.e., flight connection. The problem be-
comes an RCSPP problem when we introduce cumula-
tive constraints as resources, where a resource is a value
accumulated throughout the route and is required to not
go above some limit, hence giving a resource constraint.
Resources and subsequently resource constraints are in-
troduced for each maintenance type where a requirement
can be given by the maximum flying hours that are al-
lowed prior to a check or the maximum number of land-
ings an aircraft is allowed to make prior to a check.

The task is then to find the shortest path with respect
to the reduced costs in the network and the resource con-
straints. The PP is NP-hard where for example a label-
setting algorithm [63] can be applied to solve instances.

Algorithm 2 ColumnGeneration (F, T )

1: RMP  FindInitialSolution(F, T )
2: ~⇡, ~x SolveRestrictedMasterProblem(RMP )
3: negativeReducedCosts solvePricingProblem(~⇡)
4: exitingV ariables findExitingV ariables(RMP )
5: while negativeReducedCosts 6= ; do
6: RMP  RMP [ {negativeReducedCosts}
7: RMP  RMP\{exitingV ariables}
8: ~⇡, ~x SolveRestrictedMasterProblem(RMP )
9: negativeReducedCosts solvePricingProblem(~⇡)

10: exitingV ariables findExitingV ariables(RMP )
11: end while
12: return z = ~cT~x, ~x
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3. Branch-and-Price and fixing heuristics

Since only integral solutions are accepted for ILPs
(and the original formulation of Tail Assignment), the
Column Generation algorithm is typically augmented to
Branch-and-Price [6], by combining Column Generation
and Branch-and-Bound. In Branch-and-Price, we add an
additional branching step, which occurs when no columns
with a negative reduced cost can be found via solving the
PP and the optimal solution is not integral. The frac-
tional solution from the Column Generation provides a
lower bound, if we are considering a minimization prob-
lem, as the algorithm solves the LP relaxed subprob-
lem in Branch-and-Bound. In the branching step the
search space is partitioned, where the Column Genera-
tion algorithm is executed for each subproblem created.
Therefore, we point out that Branch-and-Price can be
thought of as Branch-and-Bound where Column Genera-
tion is utilized as a subroutine to compute bounds, show
infeasibility or find an integer solution.

Moreover, Grönkvist [3] noticed that Branch-and-Price
might be unnecessarily slow when applied to Tail Assign-
ment and introduced a fixing heuristic where the branch-
ing step is replaced. The fixing heuristic finds the vari-
able xi closest to 1 and fixes it to 1, which forces the
corresponding route to be part of the solution. It can
be noted that the di↵erence between the fixing heuris-
tic and the typical branching is that the search space is
restricted and not partitioned, meaning that the fixing
heuristic is a dive into a specific branch of the search
tree. Additional backtracking methods are utilized but
are beyond this section’s scope where such further in-
formation can be found in [3]. We denote the modified
Branch-and-Price algorithm as the heuristic Branch-and-
Price and depict the algorithm with the blue and green
colored boxes with dotted and dashed borders in Fig. 1
subject to be integrated with a quantum algorithm in
Sec. III.

Appendix B: Mapping problems to the Ising spin
glass model

If we consider the Set Partitioning problem in Eq. (1)-
(3) and apply a quadratic penalty on the constraints we
obtain a nonlinear integer optimization problem. If we
further assume constants µ1 2 {Z+

[ {0}}, µ2 2 Z+

that balance the objective function and the constraints
we obtain a new optimization problem

min. µ1

X

r2R

crxr + µ2

X

f2F

 "
X

r2R

afrxr

#
� 1

!2

, (B1)

s.t. xr 2 {0, 1} 8r 2 R. (B2)

The new optimization problem in Eq. (B1)-(B2) can sub-
sequently be modified to have variables sr 2 {�1, 1} by
replacing the variables xr = 1+sr

2
, as presented by Lu-

cas for several combinatorial optimization problems [48].

The variable change results in the following classical
Hamiltonian

H(s1, . . . , s|R|) = µ1 ·

X

r2R

cr
1 + sr

2

+ µ2 ·

X

f2F

 "
X

r2R

afr
1 + sr

2

#
� 1

!2

= µ1H
Objective(s1, . . . , s|R|)

+ µ2H
Exact Cover(s1, . . . , s|R|)

which we expand separately for the objective Hamilto-
nian and the Exact Cover Hamiltonian, where the Exact
Cover Hamiltonian can be referred to as the constraint
Hamiltonian. For the objective part we obtain

H
Objective(s1, . . . , s|R|) =X

r2R

h
Objective

r
sr +

X

r0>r

J
Objective

rr0 srsr0

=
X

r2R

cr

2
sr +

X

r2R

cr

2
=
X

r2R

cr

2
sr,

by ignoring the constant energy shift. Thus

h
Objective

r
=

cr

2
,

J
Objective

rr0 = 0.

For the constraints, i.e., the Exact Cover Hamiltonian, it
was showed in [24] that the classical Hamiltonian takes
the form

H
Exact Cover(s1, . . . , s|R|) =

X

r2R

h
Exact Cover

r
sr

+
X

r0>r

J
Exact Cover

rr0 srsr0

where

h
Exact Cover

r
=
X

f2F

afr

 
X

r02R

afr0

2
� 1

!
,

J
Exact Cover

rr0 =
X

f2F

afrafr0

2
.

For the Set Partitioning problem we then obtain the fol-
lowing Hamiltonian

H
Set Partitioning(s1, . . . , s|R|) =X

r2R

⇥
µ1 · h

Objective

r
+ µ2 · h

Exact Cover

r

⇤
sr+

µ2 ·

X

r0>r

J
Exact Cover

rr0 srsr0 .
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Finally, the quantum Hamiltonian is obtained by pro-
moting sr to �̂

z

r

Ĥ
Set Partitioning(�̂z

1
, . . . , �̂

z

|R|) =X

r2R

[µ1 · h
Objective

r
+ µ2 · h

Exact Cover

r
]�̂z

r

+µ2 ·

X

r0>r

J
Exact Cover

rr0 �̂
z

r
�̂
z

r0 .

It can be noted that the mapping holds for any ILP of
the form

minimize
X

r2R

crxr,

subject to
X

r2R

afrxr = bf 8f 2 F,

xr 2 {0, 1} 8r 2 R,

if hExact Cover
r

is modified to

h
Exact Cover

r
=
X

f2F

afr

 
X

r02R

afr0

2
� bf

!
.

Appendix C: Expectation value for algorithm depth
one

In this section we derive the expression of the expec-
tation value in Eq. (10) for algorithm depth p = 1 of
QAOA. The expectation value of a general Ising spin
glass Hamiltonian Ĥ =

P
n

i=1
hi�̂

z

i
+
P

(i,j)2E
Jij �̂

z

i
�̂
z

j
as-

sociated to an undirected graph G = (V,E) with n = |V |

nodes and |E| edges can be computed accordingly

hEi = Tr[⇢Ĥ] =
nX

i=1

hiTr[⇢�̂
z

i
] +

X

(i,j)2E

JijTr[⇢�̂
z

i
�̂
z

j
].

The undirected graph G has no self loops, which means
that no edge (i, i) is present in the graph. We fur-
thermore consider the edge (i, j) as identical to edge
(j, i) and the sum over edges thus include the edge be-
tween node i and j exactly once. In other words, the
edges are unordered pairs that connect the two nodes
without a particular direction, hence in graph G that
we consider (j, i) is simply another way of referring to
edge (i, j) which means that Jij = Jji. The density
matrix in the expression for the expectation value is
⇢ = UM (�)Uc(�) |+i h+|U

†
c
(�)U †

M
(�), where QAOA op-

erators are defined as

UM (�) =
nY

i=1

e
�i��̂

x
i

Uc(�) =
nY

i=1

e
�i�hi�̂

z
i

Y

(i,j)2E

e
�i�Jij �̂

z
i �̂

z
j = U

1

c
(�)U2

c
(�).

We can rewrite the expectation value as

hEi =
nX

i=1

hiTr
h
|+i h+|U

†
c
(�)U †

M
(�)�̂z

i
UM (�)Uc(�)

i

+
X

(i,j)2E

JijTr
h
|+i h+|U

†
c
(�)U †

M
(�)�̂z

i
�̂
z

j
UM (�)Uc(�)

i

=
nX

i=1

hihEii+
X

(i,j)2E

JijhEiji

by the cyclic property of the trace. We remark that
partial terms Tr[|+i h+| â] of the expectation value con-
tribute if â is a combination of �̂x and/or 1. The result-
ing value for terms hEii and hEiji have been derived for
triangle free graphs in [53]. However, the resulting value
for a graph with triangles was shown via Mathematica
in [55]. In this section we show the same general form of
hEiji by analytical means.
We begin by considering some edge (i, j), clearly all

terms in UM (�) commute with �̂
z

i
�̂
z

j
except for e

�i��̂
x
i

and e
�i��̂

x
j . We use the following relation

F (â, ⌘b̂) = e
i⌘b̂

âe
�i⌘b̂

= c
2

⌘
â+ s

2

⌘
b̂âb̂+ i

s2⌘

2
[b̂, â] (C1)

where c
y

x
= cosy(x) and s

y

x
= siny(x) for convenience.

The terms resulting from the mixing operator UM (�) are
therefore

U
†
M
(�)�̂z

i
�̂
z

j
UM (�) = F (�̂z

i
,��̂

x

i
)F (�̂z

j
,��̂

x

j
)

= c
2

2�
�̂
z

i
�̂
z

j

+ c2�s2� [�̂
z

i
�̂
y

j
+ �̂

y

i
�̂
z

j
]

+ s
2

2�
�̂
y

i
�̂
y

j

by evaluating Eq. (C1). For the ease of future de-
rivitions, we separate these parts as hEiji = hE

zz

ij
i +

hE
zy

ij
i+ hE

yz

ij
i+ hE

yy

ij
i where the sinus and cosinus terms

are temporarily ignored. To clarify, here we defined
hE

ab

ij
i = Tr

⇥
|+i h+|U

†
c
(�)�̂a

i
�̂
b

j
Uc(�)

⇤
.

We note that [Uc(�), �̂z

i
�̂
z

j
] = 0 and hence hE

zz

ij
i

does not contribute to the overall expectation value
hEi. However, for �̂

y

i
�̂
z

j
all terms in U

2
c
(�) with oper-

ators corresponding to edges with node i contribute, i.e.,
[e�i�Jkp�̂

z
k�̂

z
p , �̂

y

i
�̂
z

j
] 6= 0 8p : (k = i, p) 2 E and only

[e�i�hi�̂
z
i , �̂

y

i
�̂
z

j
] 6= 0 of all operator terms correspond-

ing to nodes in U
1
c
(�). Similarly for �̂

z

i
�̂
y

j
, all operator

terms in U
2
c
(�) corresponding to edges that include node

j and the term e
�i�hj �̂

z
j in U

1
c
(�) contribute. For �̂

y

i
�̂
y

j

we note that all operator terms in U
2
c
(�) for edges that

include node i or j contributes as [e�i�Jkp�̂
z
k�̂

z
p , �̂

y

i
�̂
y

j
] 6= 0

8p 6= i : (k = j, p) 2 E and 8p 6= j : (k = i, p) 2 E. Fur-
thermore, both terms in U

1
c
(�) that correspond to node

i and j contribute to the expectation value as well.
We now wish to evaluate the terms hE

yy

ij
i, hE

zy

ij
i and

hE
yz

ij
i. We begin with the most complex case, hE

yy

ij
i,
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which is the only term that changes if triangles are
present in the graph compared to the expression given
in [53]. Since the only terms in U

1
c
(�) that do not com-

mute with �̂
y

i
�̂
y

j
are e�i�hi�̂

z
i and e

�i�hj �̂
z
j , the terms that

we obtain from U
1
c
(�) are thus

U
1†
c
(�)�̂y

i
�̂
y

j
U

1

c
(�) = F (�̂y

i
, �hi�̂

z

i
)F (�̂y

j
, �hj �̂

z

j
)

= c2hi�c2hj� �̂
y

i
�̂
y

j
+ s2hi�c2hj� �̂

x

i
�̂
y

j

+ c2hi�s2hj� �̂
y

i
�̂
x

j
+ s2hi�s2hj� �̂

x

i
�̂
x

j

which gives us four terms to consider. We will now use
the following relation

G(ĉ, ⌘aâ, ⌘bb̂) = e
i⌘aâe

i⌘bb̂ĉe
�i⌘bb̂e

�i⌘aâ

= e
i⌘aâ(c2

⌘b
ĉ+ s

2

⌘b
b̂ĉb̂+ i

s2⌘b

2
[b̂, ĉ])e�i⌘aâ

= c
2

⌘b
[c2

⌘a
ĉ+ s

2

⌘a
âĉâ+ i

s2⌘a

2
[â, ĉ]]

+ s
2

⌘b
[c2

⌘a
b̂ĉb̂+ s

2

⌘a
â(b̂ĉb̂)â+ i

s2⌘a

2
[â, b̂ĉb̂]]

+i
s2⌘b

2
[c2

⌘a
[b̂, ĉ] + s

2

⌘a
â[b̂, ĉ]â+ i

s2⌘a

2
[â, [b̂, ĉ]]] (C2)

to evaluate the contributing terms when U
2
c
(�) is applied.

It then becomes clear that the operators �̂x

i
�̂
y

j
and �̂

y

i
�̂
x

j

do not contribute to hE
yy

ij
i as there are no terms that can

result in a pure �̂x and/or 1 combination when evaluating
Eq. (C2). We explicitly give the expressions for all terms
below for the case of �̂x

i
�̂
y

j
(which by symmetry also allow

us to throw away �̂
y

i
�̂
x

j
):

â = �̂
z

i
�̂
z

k
, b̂ = �̂

z

j
�̂
z

p
, ĉ = �̂

x

i
�̂
y

j
,

âĉâ / �̂
x

i
�̂
y

j
, [â, ĉ] / �̂

y

i
�̂
y

j
�̂
z

k
, b̂ĉb̂ / �̂

x

i
�̂
y

j
,

â(b̂ĉb̂)â / �̂
x

i
�̂
y

j
, [â, b̂ĉb̂] / �̂

y

i
�̂
y

j
�̂
z

k
, [b̂, ĉ] / �̂

x

i
�̂
x

j
�̂
z

p
,

â[b̂, ĉ]â /

(
�̂
x

i
�̂
x

j
�̂
z

k
if k = p

�̂
x

i
�̂
x

j
�̂
z

p
else

,

[â, [b̂, ĉ]] /

(
�̂
y

i
�̂
x

j
if k = p

�̂
y

i
�̂
x

j
�̂
z

k
�̂
z

p
else

.

This means that we only need to consider �̂y

i
�̂
y

j
and �̂

x

i
�̂
x

j
.

We can rewrite the contributing terms as

1

2

�
c2(hi�hj)�

[�̂y

i
�̂
y

j
+ �̂

x

i
�̂
x

j
]� c2(hi+hj)�

[�̂x

i
�̂
x

j
� �̂

y

i
�̂
y

j
]
�

by using the relations

s2hi�s2hj� =
1

2

⇥
c2(hi�hj)�

� c2(hi+hj)�

⇤
, (C3)

c2hi�c2hj� =
1

2

⇥
c2(hi�hj)�

+ c2(hi+hj)�

⇤
. (C4)

For the contributing terms we now consider how terms
in U

2
c
(�) corresponding to a triangle (i, j, p) act on �̂

y

i
�̂
y

j

and �̂
x

i
�̂
x

j
. By evaluating the function in Eq. (C2) for

�̂
x

i
�̂
x

j
we get the following contributing terms

G(�̂x

i
�̂
x

j
, �Jip�̂

z

i
�̂
z

p
, �Jjp�̂

z

j
�̂
z

p
) = c2�Jjpc2�Jip �̂

x

i
�̂
x

j

+ s2�Jjps2�Jip �̂
y

i
�̂
y

j

since

â = �̂
z

i
�̂
z

p
, b̂ = �̂

z

j
�̂
z

p
, ĉ = �̂

x

i
�̂
x

j
,

âĉâ = ��̂
x

i
�̂
x

j
, [â, ĉ] = 2i�̂y

i
�̂
x

j
�̂
z

p
, b̂ĉb̂ = ��̂

x

i
�̂
x

j
,

â(b̂ĉb̂)â = �̂
x

i
�̂
x

j
, [â, b̂ĉb̂] = �2i�̂y

i
�̂
x

j
�̂
z

p
, [b̂, ĉ] = 2i�̂x

i
�̂
y

j
�̂
z

p
,

â[b̂, ĉ]â = �2i�̂x

i
�̂
y

j
�̂
z

p
, [â, [b̂, ĉ]] = �4�̂y

i
�̂
y

j
.

The final expression for �̂
x

i
�̂
x

i
is found by the relation

c2a = (c2
a
� s

2
a
). For �̂y

i
�̂
y

j
we get the following contribut-

ing terms

G(�̂y

i
�̂
y

j
, �Jip�̂

z

i
�̂
z

p
, �Jjp�̂

z

j
�̂
z

p
) = c2�Jjpc2�Jip �̂

y

i
�̂
y

j

+ s2�Jjps2�Jip �̂
x

i
�̂
x

j
.

by inspecting the partial terms we obtain by considering
Eq. (C2):

â = �̂
z

i
�̂
z

p
, b̂ = �̂

z

j
�̂
z

p
, ĉ = �̂

y

i
�̂
y

j
,

âĉâ = ��̂
y

i
�̂
y

j
, [â, ĉ] = �2i�̂x

i
�̂
y

j
�̂
z

p
, b̂ĉb̂ = ��̂

y

i
�̂
y

j
,

â(b̂ĉb̂)â = �̂
y

i
�̂
y

j
, [â, b̂ĉb̂] = 2i�̂x

i
�̂
y

j
�̂
z

p
, [b̂, ĉ] = �2i�̂y

i
�̂
x

j
�̂
z

p
,

â[b̂, ĉ]â = 2i�̂y

i
�̂
x

j
�̂
z

p
, [â, [b̂, ĉ]] = �4�̂x

i
�̂
x

j
.

By using trigonometric relations

ca+b = cacb � sasb, (C5)

ca�b = cacb + sasb. (C6)

it is clear that the operators corresponding to a triangle
(i, j, p) act on �̂

y

i
�̂
y

j
+ �̂

x

i
�̂
x

j
and �̂

x

i
�̂
x

j
� �̂

y

i
�̂
y

j
as

G(�̂y

i
�̂
y

j
+ �̂

x

i
�̂
x

j
, �Jip�̂

z

i
�̂
z

p
,�Jjp�̂

z

j
�̂
z

p
) =

c2�(Jjp�Jip)
[�̂y

i
�̂
y

j
+ �̂

x

i
�̂
x

j
],

G(�̂x

i
�̂
x

j
� �̂

y

i
�̂
y

j
, �Jip�̂

z

i
�̂
z

p
,�Jjp�̂

z

j
�̂
z

p
) =

c2�(Jjp+Jip)
[�̂x

i
�̂
x

j
� �̂

y

i
�̂
y

j
].

Furthermore, other terms in U
2
c
(�) corresponding to

edges (i, k) and (j, l) that are not part of a triangle will
give rise to the following expressions for �̂x

i
�̂
x

j

F (�̂x

i
�̂
x

j
, �Jik�̂

z

i
�̂
z

k
) = c2�Jik �̂

x

i
�̂
x

j
� s2�Jik �̂

y

i
�̂
x

j
�̂
z

k
,

F (�̂x

i
�̂
x

j
, �Jjl�̂

z

j
�̂
z

l
) = c2�Jjl �̂

x

i
�̂
x

j
� s2�Jjl �̂

x

i
�̂
y

j
�̂
z

l
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and for �̂y

i
�̂
y

j
we get

F (�̂y

i
�̂
y

j
, �Jik�̂

z

i
�̂
z

k
) = c2�Jik �̂

y

i
�̂
y

j
+ s2�Jik �̂

x

i
�̂
y

j
�̂
z

k
,

F (�̂y

i
�̂
y

j
, �Jjl�̂

z

j
�̂
z

l
) = c2�Jjl �̂

y

i
�̂
y

j
+ s2�Jjl �̂

y

i
�̂
x

j
�̂
z

l
.

Thus, for hE
yy

ij
i we get the following contributing parts

to the expectation value

hE
yy

ij
i =

1

2
s
2

2�

Y

(i,k)2E

(j,k)/2E

c2�Jik

Y

(j,l)2E

(i,l)/2E

c2�Jjl⇥

[c2(hi�hj)�

Y

(i,p)2E

(j,p)2E

c2(Jip�Jjp)�

� c2(hi+hj)�

Y

(j,p)2E

(i,p)2E

c2(Jip+Jjp)�
] (C7)

since only the �̂
x

i
�̂
x

j
terms are nonzero when the trace is

taken.
For hEyz

ij
i on the other hand, the only non commuting

term of U1
c
(�) with �̂

y

i
�̂
z

j
is e�i�hi�̂

z
i , which results in

F (�̂y

i
�̂
z

j
, �hi�̂

z

i
) = c2�hi �̂

y

i
�̂
z

j
+ s2�hi �̂

x

i
�̂
z

j
.

For the operator, e
�iJij��̂

z
i �̂

z
j , corresponding to edge

(i, j), we have that

F (�̂y

i
�̂
z

j
, �Jij �̂

z

i
�̂
z

j
) = c2�Jij �̂

y

i
�̂
z

j
+ s2�Jij �̂

x

i
,

F (�̂x

i
�̂
z

j
, �Jij �̂

z

i
�̂
z

j
) = c2�Jij �̂

x

i
�̂
z

j
� s2�Jij �̂

y

i
.

Other operators of U
2
c
(�) corresponding to edges that

include node i further gives the expressions

F (�̂y

i
�̂
z

j
, �Jip�̂

z

i
�̂
z

p
) = c2�Jip �̂

y

i
�̂
z

j
+ s2�Jip �̂

x

i
�̂
z

j
�̂
z

p
,

F (�̂x

i
, �Jip�̂

z

i
�̂
z

p
) = c2�Jip �̂

x

i
� s2�Jip �̂

y

i
�̂
z

p
,

F (�̂x

i
�̂
z

j
, �Jip�̂

z

i
�̂
z

p
) = c2�Jip �̂

x

i
�̂
z

j
� s2�Jip �̂

y

i
�̂
z

j
�̂
z

p
,

F (�̂y

i
, �Jip�̂

z

i
�̂
z

p
) = c2�Jip �̂

y

i
+ s2�Jip �̂

x

i
�̂
z

p
.

We can again conclude that since only the �̂
x

i
term con-

tributes here, the final contribution to the expectation
value is

hE
yz

ij
i =

s4�

2
c2�his2�Jij

Y

p 6=j:(i,p)2E

c2�Jip (C8)

and

hE
zy

ij
i =

s4�

2
c2�hjs2�Jij

Y

p 6=i:(j,p)2E

c2�Jjp (C9)

by exchanging index i and j.

Finally, for hEii the only non commuting term of
UM (�) is e�i��̂

x
i , which results in

F (�̂z

i
, e

�i��̂
x
i ) = c2� �̂

z

i
+ s2� �̂

y

i
.

We can exclude �̂
z

i
as it commutes with Uc(�). On the

other hand �̂
y

i
does not commute with e

�i�hi�̂
z
i . The

operator U
1
c
(�) therefore gives rise to the following ex-

pression

F (�̂y

i
, �hi�̂

z

i
) = c2�hi �̂

y

i
+ s2�hi �̂

x

i
.

When we act with e
�i�Jip�̂

z
i �̂

z
p for an edge p : (i, p) 2 E

we get

F (�̂y

i
, �Jip�̂

z

i
�̂
z

p
) = c2�Jip �̂

y

i
+ s2�Jip �̂

x

i
�̂
z

p
,

F (�̂x

i
, �Jip�̂

z

i
�̂
z

p
) = c2�Jip �̂

x

i
� s2�Jip �̂

y

i
�̂
z

p

which only contributes with c2�Jip �̂
x

i
. The resulting con-

tribution of hEii to the overall expectation value is there-
fore

hEii = s2�s2�hi

Y

p:(i,p)2E

c2�Jip . (C10)

We conclude by noting that if we add all the terms in
Eq. (C10), (C9), (C8) and (C7) with their coe�cients hi

and Jij we get the expression in Eq. (10).

Appendix D: Success probabilities of Set
Partitioning

In this section, a summary is given of the results
of ideal simulations of QAOA circuits for all instances
applied to the Set Partitioning problem. Table I shows
success probabilities for Hamiltonians constructed for
factors f = 1, f

⇤ and intermediate choices. As a
shorthand, P

f denotes P
Set Partitioning
success

given a Set
Partitioning Hamiltonian with weights µ1 and µ2 for a
factor f .
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TABLE I: Success probabilities for QAOA applied to
Set Partitioning for problem sizes 6-20, given algorithm

depth p for multiple choices of factor f

|R| p |Sfeasible| P f=1 P f=100 P f=10 P f=1

6 40 1 99.55 99.52 99.96 99.98
2 50. 51.36 59.93 72.67
3 32.39 36. 67.43 99.71

|R| p |Sfeasible| P f=1 P f=100 P f=10 P f=1

8 40 1 99.68 99.54 99.83 99.83
2 52.47 57.29 95.46 99.33
3 27.62 38.48 99.22 99.99
4 26.69 96.68 99.75 99.4

|R| p |Sfeasible| P f=1 P f=100 P f=10 P f=33.33

10 40 1 96.75 5.19
2 51.15 0.28 47.18
3 33.37 38.33 99.03
4 25.38 39.52 99.95
5 18.89 89.3 99.91

|R| p |Sfeasible| P f=1 P f=100 P f=10 P f=20 P f=25

12 40 1 82.72 45.85
2 60.41 64.52 87.83
3 23.78 27.19 40.21
4 31.35 37.62 70.46
5 13.06 20.15 99.5
6 16.54 24.31 99.53

|R| p |Sfeasible| P f=1 P f=100 P f=10

14 40 1 67.07 38.76
2 47.59 63.63 21.06
3 34.73 43.78 52.09
4 19.94 42.91 99.92
5 20.99 31.98 97.46
6 20.06 36.09 99.63
7 12.25 25.68 99.22

|R| p |Sfeasible| P f=1 P f=10

20 20 1 12.71 12.79
2 14.42 12.8
3 10.27 12.64
4 15.84 12.68
5 16.34 17.26
6 13.23 17.53
7 12.44 19.09
8 11.32 86.52
9 8.19 77.11
10 7.75 86.39
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We benchmark the quantum processing units of the largest quantum annealers to date, the 5000+
qubit quantum annealer Advantage and its 2000+ qubit predecessor D-Wave 2000Q, using tail
assignment and exact cover problems from aircraft scheduling scenarios. The benchmark set contains
small, intermediate, and large problems with both sparsely connected and almost fully connected
instances. We find that Advantage outperforms D-Wave 2000Q for almost all problems, with a
notable increase in success rate and problem size. In particular, Advantage is also able to solve the
largest problems with 120 logical qubits that D-Wave 2000Q cannot solve anymore. Furthermore,
problems that can still be solved by D-Wave 2000Q are solved faster by Advantage. We find that
D-Wave 2000Q can only achieve better success rates for a few very sparsely connected problems.
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I. INTRODUCTION

Quantum annealing is a quantum computing paradigm
that relies on quantum fluctuations to solve optimization
problems [1–9]. In September 2020, D-Wave Systems has
released a quantum annealer with a 5000+ qubit quan-
tum processing unit (QPU) called Advantage [10]. This
system has more than twice as many qubits as its prede-
cessor D-Wave 2000Q and an increase in qubit connectiv-
ity from 6 to 15 by using the Pegasus topology [11–14].
High expectations have been placed on its computational
power, and first independent studies have become avail-
able [15–21]. For such a rapidly developing technology, it
is an important task for independent researchers to study
progress and test new developments.

Conceptually, there are three classes of benchmarks for
quantum annealers:

(1) Comparison with detailed real-time simulations of
quantum annealing systems based on solving the
time-dependent Schrödinger equation [22, 23] or
the time-dependent master equation [5, 6, 24–28].

(2) Direct QPU benchmarks (including comparison
with other quantum annealing systems and opti-
mization problem solvers) for problems of interme-
diate size that may or may not need embeddings
and solve either real-world or artificial problems
[10, 29–38].

⇤
Corresponding author: Dennis Willsch; d.willsch@fz-juelich.de

(3) Benchmarks of hybrid solvers that use a combina-
tion of QPUs and CPUs or GPUs to solve large-
scale application problems [11, 17, 39].

The experiments reported in this paper focus on bench-
marking the bare QPU performance, thus belonging to
benchmarking class (2).
We assess the progress in quantum annealing tech-

nology by benchmarking both Advantage and D-Wave
2000Q with exact cover problems. The exact cover prob-
lem is an NP-complete problem [40] that has become
a prominent application to study quantum annealing
[41–45] and gate-based quantum computing [46–50]. In
our case, the exact cover problems are derived from the
tail assignment problem [51] (see [49] for more informa-
tion) and represent simplified aircraft scheduling scenar-
ios. Related aircraft assignment problems on quantum
annealers have been studied in [52–54].
The essence of the present exact cover problems is

shown in Fig. 1(a). In this case, we are given 40 flight
routes. Each route contains several out of 472 flights.
The task is to find a selection of flight routes such that
all 472 flights are covered exactly once. On the quan-
tum annealer, each route is represented by a qubit. If a
route is to be selected, the corresponding qubit ends up
in the state |1i after the measurement. Eventually, each
selected route shall be assigned to one airplane. We re-
mark that solving the problem with a given set of routes
is a simplification of the general case.
The di�culty of the problem for a quantum computer

can be seen by the following counting argument: For 40
routes (i.e. 40 qubits), the number of possible selections
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FIG. 1. Visualization of the exact cover problem with 40 logical qubits (instance 0). (a) Boolean matrix A
defining the exact cover problem instance (see Eq. (13)). For each of the 40 routes, the matrix A indicates all flights that
are covered by this route. The exact cover problem is to find a selection of routes (i.e., a subset of rows of the matrix
A) such that all 472 flights are covered exactly once (meaning that the sum of the selected rows contains only ones). For
this problem, rows belonging to this solution are indicated with blue boxes. The full solution is given by the ground state
|0100001010010101000000101000100000000000i (the rightmost qubit corresponds to route 0). (b) Coupler graph of the Ising
formulation of this problem (cf. Eq. (2)), where each non-zero Jij corresponds to a black line between the 40 qubits. With 711
out of all

�
40
2

�
= 780 couplers being non-zero, this problem is almost fully connected (see also Appendix B). A distribution of

the values of the Ising parameters of this problem is shown in (c) for the qubit biases hi given by Eq. (10) and (d) for the
couplers Jij given by Eq. (11)).

is 240 ⇡ 1012. For 120 routes (i.e. 120 qubits), which
are the largest problems that are solved in the present
benchmark set, the number of selections already grows
to 1036. Hence, exact cover problems are well suited for
benchmarking the Advantage and D-Wave 2000Q QPUs.

We find that Advantage outperforms D-Wave 2000Q
on almost all problems in the present benchmark set up
to 120 logical qubits. Advantage can embed and solve
larger problems. Furthermore, the time-to-solution on
Advantage is at least roughly a factor of two shorter. Ad-
vantage scores better success rates for all problems with
almost all-to-all connectivity. Only some problems with
a very sparse qubit connectivity have sometimes higher
success rates on D-Wave 2000Q.

The remainder of this paper is structured as follows. In
Sec. II, we describe the mathematical details associated
with the exact cover problems under investigation. In
Sec. III, we present and discuss the results that Advan-
tage and D-Wave 2000Q have produced for both small-
scale and large-scale exact cover problems. Section IV
contains our conclusions.

II. METHODS

This section presents the mathematical details behind
the problems under investigation and how they are solved
on the quantum annealers. We first outline the type
of optimization problems that Advantage and D-Wave
2000Q can solve, including the important distinction be-
tween physical and logical qubits. Then, we describe the
tail assignment and exact cover problems under investiga-
tion, along with their formulation on the D-Wave 2000Q
and Advantage QPUs.

A. QUBO and Ising problems

The QPUs produced by D-Wave Systems are designed
to solve binary quadratic models (BQMs), i.e., quadratic
optimization problems over discrete variables that can
each take two di↵erent values. BQMs are typically for-
mulated as quadratic unconstrained binary optimization
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(QUBO) models or Ising models:

QUBO : min
xi=0,1

0

@
X

ij

xiQijxj + C1

1

A , (1)

Ising : min
si=±1

0

@
X

i

hisi +
X

i<j

Jijsisj + C2

1

A , (2)

where the indices i and j range over all qubits. In the
QUBO model in Eq. (1), the problem is defined by the
QUBO matrix Q with values Qij 2 R, and the binary
problem variables are xi = 0, 1. In the Ising model in
Eq. (2), the problem is defined by the biases hi 2 R
and the couplers Jij 2 R, and the problem variables are
si = ±1. An example distribution of hi and Jij of the
problems under investigation is shown in Figs. 1(c) and
(d), respectively.

It is worth mentioning that on the D-Wave QPUs, all
problems are internally converted into Ising models and
(if the autoscaling feature is on) rescaled by a constant
factor such that hi 2 [�2, 2] and Jij 2 [�1, 1] [55] (note
that these ranges might be di↵erent for future QPUs). To
convert between QUBO and Ising formulation, we use the
quantum annealing convention (see also [56])

xi =
1 + si

2
, (3)

so that xi = 0 (xi = 1) maps to si = �1 (si = 1). Note
that in the literature on gate-based quantum computing,
also the alternative xi = (1 � si)/2 is often used [57]
(which would result in a change of sign for the qubit
biases, hi 7! �hi)

The constants C1 and C2 in Eqs. (1) and (2) do not
a↵ect the solution of the problem. However, they can be
used to shift the energy (i.e., the value of the objective
function at the solution). We use it to shift the energy
of the ground state to zero so that we can conveniently
determine the success rate by counting all solutions with
energy zero.

B. Physical and logical qubits

Many problems may require non-zero couplers Qij or
Jij between di↵erent qubits i and j that do not physically
exist on the QPUs. For instance, the 40 qubit problem
sketched in Fig. 1(b) has almost all-to-all connectivity.
In this case, solving the problem on a QPU requires the
concept of embedding the problem on a QPU.

Conventionally, the qubits that physically exist on a
QPU are called physical qubits. On a D-Wave 2000Q
QPU, the 2000+ physical qubits are connected in a
Chimera topology [7]. This means that each physical
qubit is connected to 6 other physical qubits on average.
On an Advantage QPU, the Chimera topology has been
upgraded to the Pegasus topology [10]. This means that
nearly all of the 5000+ physical qubits are connected to

15 other physical qubits, increasing the connectivity by a
factor of 2.5. Note that the Pegasus topology is an exten-
sion of the Chimera topology, so that a Chimera graph
can be natively embedded in a Pegasus graph (see also
[17]).
To increase the e↵ective connectivity between qubits,

several physical qubits can be combined into a logical
qubit. The QUBO and Ising models in Eqs. (1) and
(2) are typically formulated in terms of such logical
qubits, and not the underlying physical qubits. The
physical qubits that form a logical qubit are called a
chain. To ensure that physical qubits within a chain
function as a single logical qubit, the couplers Jij between
them are set to a reasonably large, negative value called
chain strength. If a chain between two qubits breaks
(i.e., if the product of the Ising variables is sisj = �1), a
penalty of 2⇥ chain strength is added to the energy.
We define the chain strength in terms of the relative

chain strength RCS 2 [0, 1] according to

chain strength = RCS⇥ max strength, (4)

where max strength = max ({|hi|} [ {|Jij |}) is the max-
imum absolute value of all hi and Jij . For instance, for
the problem sketched in Fig. 1, max strength would be
119.5.
An embedding is a mapping from each logical qubit

to a chain of physical qubits. An important property of
embeddings are the chain lengths. In our experience, em-
beddings with too large chains may result in a poor qual-
ity of the solutions produced by a QPU. In Appendix B,
we provide more details on the specific chains encoun-
tered in the embeddings (see Fig. 6).
The D-Wave Ocean SDK [58] provides algorithms to

automatically generate qubit embeddings with a given
value for chain strength. Still, when using a QPU,
finding and characterizing embeddings is an important
step and may considerably a↵ect the quality of the solu-
tion. For this reason, as part of the present benchmark,
we systematically investigate di↵erent embeddings and
relative chain strengths in Sec. IIIA.

C. Tail assignment problem

The problem instances considered in this work are de-
rived from the tail assignment problem [51]. The tail as-
signment problem is a fundamental component of aircraft
assignment problems, i.e., the problem of assigning flights
to individual airplanes, identified by their tail number.
The objective is to minimize the overall cost subject to
certain constraints such as minimum connection times,
airport curfews, maintenance, and preassigned activities.
The general role of tail assignment problems in aircraft
scheduling and their relation to the column generation
technique [59] and the branch-and-price algorithm [60] is
described in detail in [49].
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We consider a simple form of the tail assignment prob-
lem given by

minimize
R�1X

r=0

crxr, (5)

subject to
R�1X

r=0

Arfxr = 1 8f = 0, . . . , F � 1, (6)

where r = 0, . . . , R � 1 enumerates all flight routes, f =
0, . . . , F � 1 enumerates the flights, xr 2 {0, 1} are the
Boolean problem variables with xr = 1 if route r is to
be selected, cr is the cost of selecting route r, and A 2

{0, 1}R⇥F is the Boolean problem matrix with Arf = 1
if flight f is contained in route r (see Fig. 1(a) for an
example of the matrix A). Further models for the tail
assignment problem can be found in [47, 49, 51, 54].

A BQM version of the tail assignment problem given
by Eqs. (5) and (6) is

min
~x2{0,1}N

✓
�~c

T
~x+

⇣
A

T
~x�~b

⌘2◆
, (7)

where the number of qubits N = R is given by the num-
ber of flight routes, ~c = (c0, . . . , cR�1)T contains the

costs, ~b = (1, . . . , 1)T is an F -dimensional vector of ones.
Note that the scaling factor � in Eq. (7) is the inverse of
the penalty multiplier that would determine the scale of
the constraint A~x = ~b in Eq. (6). It was put in front of
the cost function ~c

T
~x so that the exact cover version of

the problem corresponds to � = 0 (see Sec. IID).

We obtain the QUBO formulation of the tail assign-
ment problem by multiplying out the square in Eq. (7)
and collecting all terms into the general QUBO model
Eq. (1). An outline of the calculation is given in Ap-
pendix A. After doing this, we can read o↵ the entries of
the QUBO matrix as

Qij =

(
(2AA

T )ij (i < j)

(AA
T )ii � (2A~b)i + �ci (i = j)

, (8)

C1 = ~b
T~b. (9)

Note that the qubit indices i, j 2 {0, . . . , N � 1} corre-
spond to the previous route index r 2 {0, . . . , R� 1}.

Finally, the Ising formulation of the tail assignment
problem is found by using Eq. (3) to replace the qubit
variables xi by spin variables si in the QUBO model
Eq. (1). After collecting linear, quadratic, and constant
terms, we find the expressions for the coe�cients of the

Ising model Eq. (2),

hi =
X

j

1

2
(AA

T )ij � (A~b)i +
1

2
�ci, (10)

Jij =
1

2
(AA

T )ij , (11)

C2 = C1 +
X

i<j

1

2
(AAT )ij

+
X

i

1

2
((AA

T )ii � (2A~b)i + �ci). (12)

These expressions hold for general values of A and ~b (de-
tails on the calculation can also be found in Appendix A).
A characteristic distribution of the biases hi and the cou-
plers Jij is shown in Figs. 1(c) and (d), respectively.

D. Exact cover problem

The exact cover problem is an NP-complete set parti-
tioning problem [40]. In matrix form, it can be written
as

min
xr=0,1

F�1X

f=0

 
R�1X

r=0

Arfxr � 1

!2

, (13)

and its purpose can be directly understood from
Fig. 1(a): The selection of routes (i.e., rows) with xr = 1
has to be such that each flight f in the problem matrix
A is covered exactly once.
The exact cover problem corresponds to the feasibil-

ity version of the tail assignment problem given by the
sole constraints in Eq. (6), without the cost function in
Eq. (5). Formally, the exact cover problems are obtained
by setting � = 0 in Eq. (7), which yields Eq. (13).
Hence, the QUBO (Ising) coe�cients of the exact cover

problem are given by Eq. (8) (Eqs. (10) and (11)) for
� = 0 (see also [43]). Note that the explicit expressions
for the constants in Eqs. (9) and (12) are not relevant
for the solution of the problem on the quantum annealer.
However, it is convenient to add them to the resulting
energies to ensure that the energy minimum is zero, be-
cause then we can determine the success rate by counting
the occurrences of samples with energy zero.
Further details on the the exact cover problems, includ-

ing the number of logical couplers and physical qubits
used in the generated embeddings, can be found in Ap-
pendix B.

III. RESULTS

In this section, we present the benchmark results for
Advantage and D-Wave 2000Q. We first consider small
and intermediate exact cover problems with 30–40 logical
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FIG. 2. Success rates for exact cover problems with
30–40 qubits (instance 0) as a function of the relative
chain strength (bottom axis) on (a) D-Wave 2000Q
and (b) Advantage with default annealing time 20µs.
Each run is repeated for 10 di↵erent embeddings (represented
by di↵erent colors) and with 10 repetitions to gather statis-
tics. Markers indicate the corresponding standard deviation
above and below the mean. Filled areas between the markers
are guides to the eye. The curves for the success rates as a
function of the RCS are representative of the other problem
instances 1, 2, and 3 characterized in Appendix B.

qubits and almost full connectivity, with a focus on com-
paring di↵erent embeddings and annealing times. Then,
we proceed to large exact cover problems with up to 120
logical qubits, with a focus on the success rate and the
time that it takes the QPUs to solve the problems. For
the sake of completeness, we also present results for tail
assignment problems with � 6= 0 (cf. Eq. (7)) in Ap-
pendix C.

The experiments reported in this section were per-
formed in August and September 2020 using the solver
DW 2000Q VFYC 6 for D-Wave 2000Q and the solvers
Advantage beta and Advantage system1.1 for Advan-
tage.
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FIG. 3. Success rates as a function of the annealing
time on (a) D-Wave 2000Q and (b) Advantage, av-
eraged over 10 repetitions. Di↵erent markers indicate
di↵erent problem instances: 0 (markers with error bars), 1
(pluses), 2 (crosses), 3 (circles). For each instance, the runs
in each panel are performed with the same embeddings and
relative chain strengths, characterized in Fig. 6 in App. B.
For instance 0 (highlighted in color), these parameters cor-
respond to the best configuration of the corresponding panel
in Fig. 2. Additionally, for instance 0, the standard deviation
from the 10 repetitions is indicated by the filled areas between
the error bars.

A. Densely connected problems with 30–40 qubits

The problems with N = 30, 32, 34, 36, 38, 40 qubits
and almost full connectivity (cf. Appendix B) are exact
cover problems from aircraft scheduling scenarios with
472 flights. Each qubit represents a flight route that con-
tains some of the 472 flights (cf. Fig. 1). We remark that
by construction, the ground state of each problem in-
stance is unique and contains 9 qubits in state |1i. We
obtain the success rate by counting the number of sam-
ples with energy zero (note that the value of the constant
Eq. (12) can be used to shift the energy accordingly).
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1. Characterizing embeddings and chain strengths

For each problem with N = 30, 32, 34, 36, 38, 40 qubits,
we generate 10 di↵erent embeddings on both D-Wave
2000Q and Advantage. For each embedding, we scan
the RCS (cf. Eq. (4)). The results are shown in Fig. 2.

We see that the results on Advantage (Fig. 2(b)) are
generally much better than on D-Wave 2000Q, especially
for larger problems. The reason for this is that the 30–40
qubit problems are almost fully connected (cf. Figs. 1(b)
and 5). Hence, in such cases, the user can clearly profit
from the much larger connectivity between qubits on the
Pegasus topology.

This observation is in line with the fact that the chains
on Advantage for the same problem are much shorter
(see Fig. 6(b)). We also see that for increasing prob-
lem size, generating multiple embeddings and tuning the
chain strengths is crucial to obtain good results when
using the bare QPUs.

2. Scanning the annealing time

Next, we study the influence of the annealing time on
the success rate. For this, we first select the best embed-
ding and relative chain strength for each problem, based
on the results from the previous section. For problem
instance 0, for example, this configuration corresponds
to the position of the peaks in each panel in Fig. 2. For
the selected configuration, we then replace the default
annealing time of 20µs by 20 di↵erent, logarithmically
spaced annealing times in the QPU annealing time range
[1µs, 2000µs]. The results for the 30–40 qubit problems
and all four problem instances are shown in Fig. 3.

Comparing D-Wave 2000Q and Advantage, we can
make the following observations: First, Advantage
reaches higher maximum success rates, typically for the
longest annealing time. Second, the success rates on Ad-
vantage are already reasonable for short annealing times.
This means that Advantage is typically faster than D-
Wave 2000Q (see also the comparison of QPU access
times in Fig. 4(b) the following section). Finally, the
fluctuations over 10 repetitions are smaller on Advantage
(see the filled areas in Fig. 3). We note that this obser-
vation also holds for the three instances whose statistics
are not indicated in Fig. 3 (gray markers). Thus we con-
clude that Advantage shows a demonstrable advantage
over D-Wave 2000Q.

B. Large problems with 50–120 qubits

In this section, we scale up the problem size to exact
cover problems with 50 to 120 logical qubits. The goal
is to assess the scaling potential of the QPUs. For each
problem size, we consider six problem instances. Each
corresponds to an aircraft scheduling problem of the type
sketched in Fig. 1(a) with 535 flights. As before, the
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FIG. 4. Solution of exact cover problems with 50–
120 logical qubits on both D-Wave 2000Q (yellow)
and Advantage (blue). Shown are (a) the success rate
as a function of the number of logical qubits and (b) the
QPU access time (which mainly consists of programming, an-
nealing, and readout times [61]) . Di↵erent markers indicate
di↵erent problem instances: 0 (crosses), 1 (squares), 2 (cir-
cles), 3 (up-pointing triangles), 4 (down-pointing triangles), 5
(diamonds). The embedding and the relative chain strength
for these runs was selected using the same procedure as in
Sec. III A.

ground state of these exact cover problems is unique and
known. It has 40 qubits in state |1i.
These large problems require many more physical

qubits so that their embedded versions can occupy a large
part of the QPUs. For this reason, the success rates may
be smaller, and especially D-Wave 2000Q may be not
able to solve the largest problems anymore.
Indeed, as Fig. 4(a) shows, only Advantage can solve

five out of the six 120 qubit instances. The success rates
for the 80 and 100 qubit instances are comparable for
D-Wave 2000Q and Advantage. Only for the 50 and 60
qubit instances, we see that D-Wave 2000Q yields some-
times better success rates than Advantage.
The reason for this can be understood by studying

the number of couplers required for these problems: As
shown in Fig. 5 in Appendix B, the 50 and 60 qubit
problems need comparably little couplers, so they have
a sparser connectivity. Therefore, many of the physical
couplers present in the Pegasus topology on Advantage
are not required. In other words, the problems can al-
ready be embedded well enough on the Chimera topol-
ogy. We suspect that in this case, the additional unused
connections between qubits on Advantage may disturb
the annealing process, because even if they are not used,
they still exist physically. This observation is in line with
a similar observation for Advantage reported in [17]. It
can also be observed for superconducting qubits that im-
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plement the gate-based quantum computer model; see
e.g. the crosstalk experiment in [62].

Finally, the large problems may require more time on
the QPUs, so that they are well suited to compare QPU
run times between D-Wave 2000Q and Advantage. Un-
less mentioned otherwise, the same number of reads and
annealing times have been used for D-Wave 2000Q and
Advantage to ensure a fair comparison. The timing re-
sults are shown in Fig. 4(b).

For 50–80 qubits, the annealing time is less than or
equal to 20µs, so for 1000 reads it does not make up a
significant fraction of the QPU access time. Under these
conditions, we see that D-Wave 2000Q still needs at least
twice as long to solve the problem. Thus, we infer that
it is a speedup in programming and readout times [61]
that make Advantage faster than D-Wave 2000Q.

For problems with 100 and 120, the annealing time
needs to be significantly increased to find the ground
state, which is visible in the QPU access times. For in-
stance, problem instance 5 for 100 qubits on D-Wave
2000Q (the single yellow diamond at 100 qubits in
Fig. 4(b)) corresponds to an annealing time of 200µs.
The same annealing time is required for problem in-
stances 1, 2, 3, and 5 for 120 qubits on Advantage (the
blue cluster at 120 qubits in Fig. 4(b)). Still, Advantage
solves these problems faster than D-Wave 2000Q solves
the corresponding 100 qubit problem. Only instance 4
for 120 qubits stands out (the blue down-pointing trian-
gle in Fig. 4(b)): Here, an annealing time of 2000µs was
required to find a solution. In order not to exceed the
maximum run time on Advantage, the number of reads
was reduced to 400. Thus, 400 ⇥ 2000µs = 0.8 s makes
up the largest part of the QPU access time in this case.

IV. CONCLUSION

In this paper, we have benchmarked the performance
of the 2000+ qubit quantum annealer D-Wave 2000Q
and the 5000+ qubit quantum annealer Advantage. The
benchmark suite consists of intermediate and large exact
cover problems from aircraft scheduling scenarios with
both sparse and dense logical qubit connectivity.

We observed a considerable increase in performance
on Advantage. First, Advantage was able to solve ex-
act cover problems with up to 120 logical qubits that
were unsolvable on D-Wave 2000Q. Second, the success
rates produced by Advantage were almost always higher.
Third, Advantage is approximately twice as fast as D-
Wave 2000Q in terms of both programming and readout
times. Additionally, the required annealing times to solve
a problem on Advantage are often shorter. Finally, the
fluctuations in success rates over several repetitions on
Advantage were smaller.

A large part of the increase in performance can be

attributed not only to the larger number of physical
qubits, but rather to the increase in qubit connectiv-
ity: Every qubit in the Pegasus topology is connected
to 15 other qubits, as compared to 6 other qubits in
the Chimera topology used in D-Wave 2000Q. We ob-
served chain lengths in the embeddings that were roughly
smaller by a factor of two. We could only observe slightly
better performance on D-Wave 2000Q for problems with
very sparse qubit connectivity. These problems could al-
ready be well embedded on the Chimera topology. We
conjecture that for these problems, the presence of the
additional couplers in the Pegasus topology may slightly
disturb the results (see also [17]).
When using the bare QPUs, it is essential to scan sev-

eral embeddings and chain strengths to find optimal re-
sults. Furthermore, it is important to tune the annealing
time. We note that besides the bare QPUs, we have also
submitted all exact cover problems of our benchmark set
to D-Wave’s hybrid solver services, which use a combina-
tion of QPUs and classical solvers to solve much larger
problems [11]. All exact cover problems could be solved
by the hybrid solvers hybrid v1 (using D-Wave 2000Q)
and hybrid binary quadratic model version2 (using
Advantage) on September 14, 2020. See [17] for more
detailed benchmarks of the hybrid solvers with problems
of up to 12000 variables.
Our benchmark study confirms the consistent increase

in both size and performance of quantum annealers over
the past years. For the future, it is an interesting question
whether D-Wave Systems will prove capable of keeping
up the steep progress of doubling qubit numbers and in-
creasing performance and qubit connectivity at the same
time.
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Appendix A: Derivation of QUBO and Ising models

In this appendix, we outline the derivation of the QUBO and Ising coe�cients from the BQM in Eq. (7) for the
tail assignment and exact cover problems under investigation.

To obtain the QUBO formulation, we first multiply out the square in Eq. (7),
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After splitting the first sum into three parts,
P
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+
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i
, and exchanging i $ j in the second part (since

the matrix AA
T is symmetric), we obtain the upper triangular coe�cients of the QUBO matrix, Qij = (2AAT )ij for

i < j, and the first part of the diagonal coe�cients (AAT )ii. The second sum in Eq. (A3) yields, after using xi = xixi,
the remaining part of the diagonal coe�cients. The last term yields the constant contribution to the QUBO model.
Combining this with the linear term �~c
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~x in Eq. (7), we obtain all coe�cients of the QUBO model
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To obtain the coe�cients hi and Jij of the corresponding Ising model, we replace the qubit variables by spin
variables, xi = (1 + si)/2 (cf. Eq. (3)),
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where we used that the matrix AA
T is symmetric and that s2

i
= 1. Note that this calculation does not make use of

prior knowledge about the values of A and ~b.
We can then identify the coe�cients of the Ising model
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FIG. 5. Number of logical couplers required for the exact cover problems in the present benchmark set. The
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and couplers required on the QPUs may be much larger (cf. Fig. 6(a)).

Appendix B: Exact cover problem details

In this appendix, we provide details on the exact cover problems used in the present benchmark set. For each
problem instance, Fig. 5 shows the number of couplers required between the qubits. Note that the 30–40 qubit
problems require almost all-to-all connectivity.

In Fig. 6, we provide details on the generated embeddings for the intermediate 30–40 qubit problems. In Fig. 6(a),
we list the number of physical qubits required in the embeddings on D-Wave 2000Q and Advantage. As these
problems require almost full connectivity, the number of physical qubits is much larger than the number of logical
qubits, especially on D-Wave 2000Q. We see that D-Wave 2000Q needs more than twice as many physical qubits, but
also the slope as a function of the logical qubits is steeper. This is reasonable as also the number of logical couplers
increases (cf. Fig. 5), and with sparser connectivity on the Chimera topology, more physical qubits need to be chained
into a logical qubit.

This trend is also visible when looking at the chain lengths shown in Fig. 6(b): While the chains on Advantage
stay almost constant for increasing problem sizes, the chains on D-Wave 2000Q grow longer on average. Especially
for 40 qubits, chains on D-Wave 2000Q can be up to 19 physical qubits long. Such chains are almost always broken
and may lead to a wrong value for the logical qubit that they represent (cf. Sec. II B).

In Fig. 6(c), we plot the relative chain strengths that produced the best results. For each N = 30, 32, 34, 36, 38, 40,
the first point (instance 0) corresponds to the peak with the optimal success rate in the corresponding panel in Fig. 2.

Appendix C: Tail assignment problems with � 6= 0

The tail assignment problem introduced in Sec. II C contains an objective function that represents the cost associated
with each flight route (cf. Eq. (5)). Depending on the magnitude of these cost terms, the multiplier � in the BQM
version of the problem (see Eq. (7)) has to be adjusted to put a reasonable weight on the cost function with respect to
the constraints. Therefore, we test several values of � for a 25 qubit problem. For each �, we generate 10 embeddings
(cf. Sec. II B) and evaluate the success rate on D-Wave 2000Q and Advantage. The unique ground state was found
using both a linear program solver and exact enumeration of all 225 states on a GPU. We remark that the 25 qubit tail
assignment problem solved in this section is the same problem that was investigated as the largest problem instance
in [47].

The results as a function of the embedding are shown in Fig. 7. We see that for relatively large �, the success
rates for D-Wave 2000Q fluctuate strongly as a function of the embedding. In such cases, it may become possible to
violate some of the constraints to obtain a better value of the cost function (cf. Eq. (7)). However, as � approaches
zero (Figs. 7(b)–(d)) and the problem approaches its exact cover version, most embeddings yield the optimal solution
with unit probability, especially on Advantage (unfilled markers).
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FIG. 6. Details on the optimal embeddings found for the intermediate exact cover problems with N =
30, 32, 34, 36, 38, 40 logical qubits on D-Wave 2000Q (yellow) and Advantage (blue). For each N , the four prob-
lem instances 0, 1, 2, and 3 are shown from left to right on the bottom axes. (a) Number of physical qubits needed for the best
embeddings; (b) lengths of the corresponding physical qubit chains (cf. Sec. II B), where the markers with error bars indicate
the mean and the standard deviation, and crosses indicate the maximum chain lengths; (c) optimal relative chain strengths,
taken from the positions of the corresponding peaks in Fig. 2.
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Airlines today are faced with a number of large scale scheduling problems. One such problem
is the Tail Assignment problem, which is the task of assigning individual aircraft to a given set of
flights, minimizing the overall cost. Each aircraft is identified by the registration number on its
tail fin. In this article, we simulate the Quantum Approximate Optimization Algorithm (QAOA)
applied to instances of this problem derived from real world data. The QAOA is a variational
hybrid quantum-classical algorithm recently introduced and likely to run on near-term quantum
devices. The instances are reduced to fit on quantum devices with 8, 15 and 25 qubits. The
reduction procedure leaves only one feasible solution per instance, which allows us to map the
Tail Assignment problem onto the Exact Cover problem. We find that repeated runs of the QAOA
identify the feasible solution with close to unit probability for all instances. Furthermore, we observe
patterns in the variational parameters such that an interpolation strategy can be employed which
significantly simplifies the classical optimization part of the QAOA. Finally, we empirically find a
relation between the connectivity of the problem graph and the single-shot success probability of
the algorithm.

I. INTRODUCTION

Real world planning and scheduling problems typically
require heuristic algorithms, which is also the case for the
Tail Assignment problem. The problem is to assign a set
of flights to a set of aircraft in order to create a feasible
flight schedule for an airline, while minimizing the overall
cost [1].

Recently, quantum computing hardware has reached
the regime where it is possible to run quantum algo-
rithms which are hard to simulate on classical hardware,
even considering the world’s largest supercomputer [2].
This motivates the search for a heuristic quantum al-
gorithm for solving the Tail Assignment problem. A
promising approach for this is the Quantum Approximate
Optimization Algorithm (QAOA) [3], which is a heuris-
tic hybrid quantum-classical algorithm designed for solv-
ing combinatorial optimization problems. Since the algo-
rithm was first proposed by Farhi et al. [3] it has been an
active area of research interest [4–10], mainly because of
its promising possibility to run on a near term Noisy In-
termediate Scale Quantum (NISQ) device. An important
open question is whether a quantum computer in gen-
eral can provide advantages with regards to such classi-
cally hard combinatorial optimization problems. Recent
studies have indicated that QAOA can have a quadratic
Grover type speed up for state transfer and unstruc-
tured search problems [11, 12]. Although these results
are promising, the performance is largely unknown for
QAOA with respect to real world optimization problems.

⇤
e-mail: vikstal@chalmers.se

Here we present, to our knowledge, the first results
for QAOA when applied to a real world aircraft assign-
ment problem. We perform numerical simulations of an
ideal quantum computer to investigate the performance
of QAOA for solving the simplified case of the Tail As-
signment problem where all costs are equal to zero. This
simplified case can be mapped onto the Exact Cover
problem [13]. In this context, we note that the solu-
tion of random instances of the Exact Cover and of its
restricted version Exact Cover by 3-sets on a quantum
annealer has been considered in Refs. [14–19]. QAOA
for Exact Cover has recently been executed on a 2-qubit
quantum computer in a proof-of-principle experiment by
some of the authors of the present paper, and collabora-
tors [20].
The paper is organized as follows. In Sec. II, we intro-

duce the Tail Assignment problem, and we explain how
we extract the Exact Cover instances that we analyze in
this work. In Sec. III, we review the QAOA and explain
how it can be utilized to solve the Exact Cover prob-
lem. Then, in Sec. IV we present numerical results of
the performance of QAOA with respect to the Tail As-
signment problem-extracted instances of Exact Cover for
three di↵erent problem sizes. Specifically, we look at the
dependence of the success probability as a function of the
algorithm iteration level p and of the problem size. Fi-
nally, in Sec. V we present what implications these results
might have for solving the Tail Assignment problem.

II. THE TAIL ASSIGNMENT PROBLEM

Airlines are daily confronted with several complicated
large-scale planning problems involving many di↵erent
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resource types such as passengers, crew, aircraft, mainte-
nance and ground sta↵. The typical airline planning pro-
cess [21] is a sequential process which starts with the con-
struction of a timetable, followed by a number of aircraft
and crew planning steps. These steps are all large scale
optimization problems and have di↵erent objectives, but
the overall goal is to maximize profit, safety and crew sat-
isfaction while minimizing the potential for disruptions.
At the same time a large number of complex regulatory,
operational and quality constraints must be satisfied.

The Tail Assignment problem [1] is one of the fleet
planning problems where the goal is to decide which indi-
vidual aircraft (or tail, from the aircraft tail identification
number) should operate each flight. A set of flights op-
erated in sequence by the same aircraft is called a route.
In order for a route to be considered legal to operate, it
needs to satisfy a number of constraints. For example,
the bu↵er time between the arrival of a flight and the
departure of the next flight in the route (the turn time)
must be above a certain threshold, called the minimum
turn time. The minimum turn time can depend on the
type of flights involved (domestic/international), the air-
port, the time of day and possibly even the individual
aircraft characteristics. Another type of constraint is a
destination restriction, which prohibits specific aircraft
from visiting certain airports, for example due to limited
engine thrust combined with short runways. Curfew re-
strictions are timed restrictions, typically limiting noisy
aircraft from operating during night hours at centrally
placed airports. Finally, routes must satisfy a number of
long and short term maintenance constraints. This typ-
ically means that the aircraft must regularly visit some
airport with a maintenance facility for long enough to
perform maintenance.

Now, let F denote the set of flights, T the set of tails
and R the set of all legal routes. Denote by cr the cost
of route r 2 R and by Cf the cost of leaving flight f

unassigned. The route cost can for example indicate how
robust the route is with respect to disruptions, what the
fuel cost is for the route, or a combination of several
di↵erent criteria. Let afr be 1 if flight f is covered by
route r and 0 otherwise, and let btr be 1 if route r uses
tail t and 0 otherwise. The decision variable xr is 1 if
route r should be used in the solution, and 0 otherwise.
The variables uf and vt are 1 if flight f is left unassigned
or tail t is unused, respectively, and 0 otherwise. The
Tail Assignment problem can now be formulated as

minimize
X

r2R

crxr +
X

f2F

Cfuf , (1)

subject to
X

r2R

afrxr + uf = 1, 8f 2 F, (2)

X

r2R

btrxr + vt = 1, 8t 2 T, (3)

xr, uf , vt 2 {0, 1} (4)

The objective (1) is to minimize the total cost of the se-
lected routes, subject to constraints (2) ensuring that

each flight is assigned to exactly one route and con-
straints (3) ensuring that each tail is used at most once.
Flights can be left unassigned at a cost Cf , but that cost
is typically very high compared to the route costs. Not
using an aircraft does not come with any penalty cost.
The model is an example of a Set Partitioning problem,
which is NP-hard [22].

A. Solving the Tail Assignment Problem

Clearly, the number of legal routes for a Tail Assign-
ment instance increases exponentially with the number of
flights. Since the model presented above requires all the
legal routes to be enumerated, it only works for small
instances. The solution method traditionally used for
these types of models is column generation [1]. Column
generation starts from some initial solution and uses in-
formation from the linear programming dual problem to
dynamically generate new variables (columns in the con-
straint matrix) which are known to potentially improve
the current solution. In the Tail Assignment case, the
problem of generating improving variables turns out to
be a resource constrained shortest path problem. Given
mild conditions on the variable generation step, the col-
umn generation process can be shown to guarantee opti-
mality for the LP relaxation of the problem, i.e. without
the integrality conditions Eq. (4). To find an optimal so-
lution for the full problem including the integrality con-
ditions, column generation must be combined with tree
search. The combination of tree search and column gen-
eration is often called branch-and-price [23].

B. Instances extraction

For the purposes of this article, given the current ca-
pability of quantum computers, we will focus on Tail As-
signment instances where we have artificially limited the
number of routes. The instances have originally been
solved using a branch-and-price heuristic, and we have
randomly selected a number of routes from the set of
all generated routes to create instances of specific sizes.
The solution found by the branch-and-price heuristic is
always included, so we know that all instances have a
solution with all flights assigned. This means that we
can skip the uf variables in the model. We also have
uniquely assigned start flights for each aircraft, which
means that constraints Eq. (3) can be omitted. Finally,
in the remainder of this article we will focus on the de-
cision version of the Tail Assignment problem where the
goal is to find any solution satisfying all the constraints,
disregarding the costs cr. This decision version of the Set
Partitioning problem is called the Exact Cover problem,
it is know to be NP-complete [24], and can be expressed
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as the following optimization problem:

minimize 0 (5)

subject to
X

r2R

afrxr = 1, 8f 2 F, (6)

xr 2 {0, 1}, (7)

where the minimization on 0 is left to recall that this for-
mulation stems from the Tail Assignment problem, where
we neglect the costs in Eq.(1). Despite the simplification
introduced, the Exact Cover problem is still very relevant
for the study of Tail Assignment as many airlines, includ-
ing for example Air France, consider the Tail Assignment
problem to be a pure feasibility problem [25].

III. QAOA APPLIED TO THE TAIL
ASSIGNMENT PROBLEM

A large class of NP-complete optimization problems in-
cluding the Exact Cover (and even many NP-hard prob-
lems) can naturally be expressed as the problem of find-
ing the ground state, or minimum energy configuration,
of a quantum Ising Hamiltonian [26]

ĤC =
X

i<j

Jij �̂
z

i
�̂
z

j
+

nX

i=1

hi�̂
z

i
. (8)

We will refer to this quantum Ising Hamiltonian as a
cost Hamiltonian. In this section, we derive explicitly
the cost Hamiltonian corresponding to the Exact Cover
problem expressed by Eq. (6) and (7). Later, we recall
the QAOA algorithm, and in particular how it makes use
of the cost Hamiltonian for finding its minimum energy
configuration.

A. Ising formulation of the Exact Cover problem

Consider the formulation of the Exact Cover problem
presented in Eq. (6) and (7). By subtracting 1 from both
sides of Eq. (6) and squaring the expression an energy
function formulation is obtained:

E(s1, . . . , s|R|) =

|F |X

f=1

0

@
|R|X

r=1

afrxr � 1

1

A
2

. (9)

Here |R| and |F | denote the cardinality of R and F , re-
spectively. We see that all constraints are satisfied if the
energy (9) is equal to zero.

By replacing the binary variables xr 2 {0, 1} with spin
variables sr 2 {�1, 1} as

xr =
sr + 1

2
, (10)

and expanding the square of Eq. (9) we obtain the Ising
energy function for the Exact Cover problem

E(s1, . . . , s|R|) =

|F |X

f=1

0

@
|R|X

r=1

afr
sr + 1

2
� 1

1

A
2

=

+
1

4

|F |X

f=1

|R|X

r=1

|R|X

r0=1

afrafr0srsr0

+
1

2

|F |X

f=1

|R|X

r=1

afrsr

0

@
|R|X

r0=1

afr0 � 2

1

A

+
1

4

|F |X

f=1

0

@
|R|X

r=1

afr � 2

1

A
2

. (11)

By defining Jrr0 as

Jrr0 ⌘
1

2

|F |X

f=1

afrafr0 , (12)

and hr as

hr ⌘
1

2

|F |X

f=1

afr

0

@
|R|X

r0=1

afr0 � 2

1

A , (13)

the Ising energy function becomes

1

2

|R|X

r=1

|R|X

r0=1

Jrr0srsr0 +

|R|X

r=1

hrsr + const. (14)

where the constant is equal to 1

4

P|F |
f=1

⇣P|R|
r=1

afr � 2
⌘2

.

The sum of all the diagonal terms (i = j) in the first sum
is equal to Tr(J) since s

2

i
= 1; because Jij is symmetric

i.e. Jij = Jji, we can further simplify the expression and
write the Ising energy function as

E(s1, . . . , s|R|) =
X

r<r0

Jrr0srsr0 +

|R|X

r=1

hrsr + const, (15)

where we have absorbed 1

2
Tr(J) into the constant. Fi-

nally, by promoting the spin variables to Pauli spin ma-
trices si ! �̂

z

i
, a cost Hamiltonian in the form of Eq. (8)

is obtained.

B. The Quantum Approximate Optimization
Algorithm

The QAOA starts from an initial quantum state which
is taken as a superposition of all possible computational
basis states |+i

⌦n. The second step of QAOA is to ap-
ply in an alternating sequence two parametrized non-
commuting quantum gates, Û(�) and V̂ (�), that are de-
fined as:

Û(�) ⌘ e
�i�ĤC , V̂ (�) ⌘ e

�i�ĤM , (16)
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FIG. 1. Schematic representation of the QAOA. The quan-
tum processor prepares the variational state, depending on
variational parameters. The variational parameters (~�, ~�) are
optimized in a closed loop using a classical optimizer.

where ĤC is the cost Hamiltonian given by Eq. (8), and
ĤM ⌘

P
n

i=1
�̂
x

i
is a so called mixing Hamiltonian. The

alternating sequence continues for a total of p times with
di↵erent variational parameters ~� = (�1, . . . , �p) with

�i 2 [0, 2⇡] if ĤC has integer-valued eigenvalues, and
~� = (�1, . . . ,�p) with �i 2 [0,⇡], such that the final vari-
ational state obtained is:

| p(~�, ~�)i ⌘ V̂ (�p)Û(�p) . . . V̂ (�1)Û(�1) |+i
⌦n

. (17)

The parametrized quantum gates are then optimized in
a closed loop using a classical optimizer, see Fig. 1. The
objective of the classical optimizer is to find the opti-
mal variational parameters that minimize the expecta-
tion value of the cost Hamiltonian

(~�⇤, ~�⇤) = argmin
~�,~�

Ep(~�, ~�), (18)

where

Ep(~�, ~�) ⌘ h p(~�, ~�)|ĤC | p(~�, ~�)i . (19)

Note that this requires in principle multiple state prepa-
rations and measurements. Once the best possible varia-
tional parameters are found, they are used to create the
state | p(~�⇤, ~�⇤)i, using the quantum processor for the
state preparation. Then, one samples from this state by
measuring in the computational basis, and the cost of
the configuration obtained in the measurement, given by
Eq. (8), is evaluated. The latter step is classically e�-
cient.

The success probability is defined as the probability
of finding the qubits in their ground state configuration
|xsoli when performing a single shot measurement of the

| p(~�, ~�)i state, i.e.

Fp(~�, ~�) ⌘ | hxsol| p(~�, ~�)i |
2
, (20)

where xsol = x1x2 . . . xn is the bit string corresponding to
the solution. Given this success probability we can ask:
what is the probability of having observed the solution at
least once after m repeated measurements? The answer
is given by:

1� (1� Fp(~�, ~�))
m
. (21)

Thus to have the probability (1 � ") of observing the
solution, m has to be

m >
log "

log (1� Fp(~�, ~�))
. (22)

To fix the ideas, consider a fair coin. In order to have a
probability higher than 99.9 % of observing Head at least
once, one has to flip and “measure” the coin 10 times.
In what follows, we are going to apply this paradigm to

solve the Exact Cover problem, by using the correspond-
ing cost Hamiltonian, expressed by Eq. (8) with Jij and
hi given by Eq. (12) and (13) respectively.

IV. RESULTS

We will examine instances for three di↵erent problem
sizes of the Tail Assignment problem given in Table I, cor-
responding to 8, 15 and 25 routes. As clear from Eq. (8),
this requires quantum processors with 8, 15 and 25 qubits
respectively.

TABLE I. Information about the problem instances.

Routes Flights No. of instances No. of sol. per instance
8 77 10 1
15 77 9 1
25 278 10 1

A. Energy landscape

Firstly, we can reduce the search space by noting that
the eigenvalues of both Hamiltonians ĤC and ĤM are
integer-valued. As a consequence, the expectation value
Eq. (19) has even-symmetry, i.e. Ep(~�, ~�) = Ep(�~�,�~�).
This symmetry allow us to restrict the domain of each �i
to �i 2 [0,⇡].
To highlight the di�culty of finding the best varia-

tional parameters we can visualize the landscape of the
expectation value E1(�,�), as well as the corresponding
success probability F1(�,�), as a function of � and �, for
p = 1, by evaluating them on a fine grid [0,⇡] ⇥ [0,⇡].
Fig. 2 shows the simulation result for one of the 25 route
instances. The variational parameters resulting in the
lowest expectation value, (�exp,�exp), and those result-
ing in the highest success probability, (�succ,�succ), are
approximately the same. In fact |�exp � �succ| ' 0 and
|�exp��succ| ' 0.047. Note that this is not obvious, since
QAOA only minimizes the expectation value, and does
not explicitly maximize the success probability; a low
expectation value does not necessarily translates onto a
high success probability. For example, consider a vari-
ational state that is a linear combination of low energy
excited eigenstates of the cost Hamiltonian. This state
could potentially have a low expectation value while the
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success probability is zero. Similarly, a variational state
that is a linear combination of the ground state with
high energy eigenstates could have a high success prob-
ability, while the cost Hamiltonian expectation value is
large. However, in the limit p ! 1, 100 % success prob-
ability is always achieved [3]. For our problem, it is clear
from Eq. (9) that the minimum energy of the first excited
state is at least 1, so if we find an average cost which is
lower than 1 for our variational state, we know that the
ground state is a part of this state. The corresponding
plots for one of the 8 and 15 route instances are shown in
Appendix A. We note that all figures have qualitatively
similar shape and that the optimal variational parame-
ters for p = 1 are located in the same region.

(d)

(b)(a)

(c)

FIG. 2. (color online) Simulation results for one of the 25
route instances as a function of � and � for p = 1. (a) and (b)
Expectation value E1(�,�); (c) and (d) Success probability
F1(�,�).

B. Low iteration levels: Patterns in optimal
variational parameters

Before we look at the performance of QAOA, we will
search for patterns in the optimal variational parameters
for low iteration levels of the QAOA algorithm, namely
up to p = 5. Patterns in the optimal variational parame-
ters have been observed before in the context of Max-Cut
in Ref. [27], where it was shown that if a pattern exist
it is possible to use di↵erent heuristics that can drasti-
cally speed up the classical optimization part of QAOA.
This can potentially help us simulate the solution of our
instances for intermediate p-level beyond p = 5, namely
for 5 < p  20.

In order to find the optimal variational parameters, one
possible approach would consist of a grid search method.

However, evaluation of the cost Hamiltonian expectation
value on a fine grid for higher dimensions quickly becomes
computational expensive due to the large search space
[0,⇡]p ⇥ [0,⇡]p. Therefore, we discard the grid search
method and resort to another optimization routine for
finding good variational parameters for 1  p  5. This
optimization routine is still exhaustive but more com-
putational e�cient. It distributes several random start
points in the variational parameter landscape, and runs
the gradient based BFGS algorithm [28] for every start
point from which it records the global optimum. We pro-
vide relevant details in Appendix B. In Fig. 3 we present
the optimal variational parameters (~�⇤, ~�⇤) from p = 3
up to p = 5 for the 8 route instances. We observe that
a persistent pattern shows up, and that both �i and �i

tend to increase slowly with i = 1, 2, . . . , p. An analo-
gous analysis for the 15 route instances, shown in the
Appendix in Fig. 7, yields a qualitatively similar result.
For the 25 route instances, it was not possible to perform
this analysis, because for p > 1 performing an exhaustive
search becomes too computationally expensive.
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FIG. 3. The optimal QAOA variational parameters (~�⇤, ~�⇤)
for the 8 route instances, for 3  p  5. The pattern is visu-
alized by plotting the optimal variational parameters where
each gray dashed line connects the variational parameters for
one 8 route instance.

C. Intermediate iteration levels: Analysis of
success probability

Based on the patterns found in the previous section,
we now use an interpolation-based strategy, introduced
in [27], in order to study the performance of intermedi-
ate p-level QAOA. This strategy consists in predicting a
good starting point for the variational parameters search
at level p + 1 for each individual instance based on the
best variational parameters found at level p for the same
instance. From the produced starting-point we run the
gradient-free Nelder-Mead method [29, 30], which is re-
ported in Ref. [27] to work equally well as the BFGS
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(d)(c) 25 Routes8 Routes 15 Routes

FIG. 4. (color online) (a) Average success probability as a function of the iteration level p using the best found variational
parameters for the three di↵erent problem sizes. The error-bars in the figure represent the standard deviation of the average
success probability. (b) Success probability Fp(~�

⇤, ~�⇤) as a function of p for one selected instance from each problem size. (c)

Graph representation of the three instances shown in (b). (d) Probability that a measurement of the state | p(~�
⇤, ~�⇤)i will

yield a certain cost (or equivalently, eigenvalue of the cost Hamiltonian) for the iteration levels p = 0, 1, 2, where p = 0 is the
initial or “random” state |+i⌦n.

method, for this heuristic strategy. The Nelder-Mead al-
gorithm was implemented in MATLAB version R2019b
using the fminsearch function. Furthermore, in order to
force the Nelder-Mead algorithm to terminate after su�-
ciently many iterations, we set the two stopping criteria -
maximum number of function evaluations and iterations
- both to 60p. We furthermore make the assumption
that a pattern in the variational parameters also exists
in each of the 25 route instances, and we therefore use
the interpolation strategy mentioned above for each of
these instances as well, as an educated guess. We base
this assumption on the qualitatively similar shape of the
expectation value landscape that the three di↵erent prob-
lems sizes investigated had for p = 1.

We use the aforementioned interpolation-strategy for
finding good local optimal variational parameters up to
p = 10 for all the instances. The success probability
as a function of iteration level p averaged over all the
instances for the three di↵erent problem sizes is plotted
in Fig. 4(a). Moreover, we select one instance from each
problem size, for which we perform simulations up to
p = 20. In Fig. 4(b) we plot the success probability
for these three instances. The corresponding variational
parameters ~�⇤ and ~�⇤ are provided in Appendix A, Fig. 8.
It is observed that the success probability increases with
the parameter p in both the averaged and the single-
instance cases, reaching almost 100 % for the instances

where we have used high iteration level p = 20.
From the results in Figs. 4(a) and 4(b) we also note

that the 25 route instances are easier to solve than the
15 route instances, in the sense that the success prob-
ability is higher for the former instances at any given
iteration level p of the algorithm. This fact can seem
counter-intuitive, as one could naively think that larger
instances correspond to harder problems. We perform
further analysis in order to explain this apparent contra-
diction.
We start by representing each instance as a graph, by

identifying Jij in Eq. (12) with an adjacency matrix. In
this way, each vertex in the graph represents a route and
two vertices are connected by an edge if they share a
flight. The valency of a vertex, i.e. the number of inci-
dent edges to the vertex, indicates how many “clauses”
the vertex is contained in, or in other words how many
other vertices it has to compete with. In Table II we
list the average valency of each vertex for the three prob-
lem sizes. We note that the 15 instances have more than
twice the average valency compared to the 25 route in-
stances. This is also visualized in Fig. 4(c), where the
graph connectivity for one instance of each problem size
is represented. It is clear that the connectivity for the 15
instance is the most dense. Establishing a general con-
nection between the hardness of the instances and their
valency is beyond the scope of our paper. However, such
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TABLE II. Valency of the graphs. The first column in the ta-
ble is the number of routes. The second column is the average
valency of a vertex taken as an average over all the instances.
The corresponding standard deviation is given in the third
column.

Routes Mean Standard deviation
8 5.15 0.24
15 12.62 0.42
25 5.54 0.77

a connection is known to exists in some specific contexts,
e.g. for Exact Cover by 3-sets [31, 32]. This hints to the
fact that such a connection might exist also for our in-
stances, despite they are not in the form of Exact Cover
by 3-sets. To elucidate further why denser graphs are
more di�cult to solve with the QAOA we recall, follow-
ing Refs. [3, 9], that the expectation value Eq. (19) can
be expressed as a sum of expectation values involving all
possible subgraphs. Subgraphs are obtained by starting
from an edge hiji of a graph, e.g. the type of graph given
in Fig. 4(c), and “walking” along the graph at most p

steps away from that edge, for a given iteration level p.
Indicating with fg(~�, ~�) the contribution to the expecta-
tion value from subgraph g, and with wg the correspond-
ing subgraph occurrence, it is possible to re-write the
expectation value as Ep(~�, ~�) =

P
g
wgfg(~�, ~�). Since

the contribution to the expectation value is di↵erent for
each subgraph, the higher the number of important sub-
graphs (with a significant wg) is, the harder it will be
to make the cost close to zero for a given iteration level
p, since the QAOA need to make each individual term
in the sum small. Since the average valency of a graph
contributes to the number of subgraphs, this results in
a lower success probability for the 15 route instances, as
(as we have shown in Fig. 4(c) and Table II) those possess
higher average valency.

Finally, in Fig. 4(d) we visualize how the probability
of measuring a certain cost, or equivalently an eigenvalue
of the cost Hamiltonian, given the state | p(~�⇤, ~�⇤)i,
changes for each iteration p = 0, 1, 2 of QAOA using the
best found variational parameters for one of the 25 route
instances. It is clear that the e↵ect of iterating QAOA
is that the probability of configurations with lower cost
increases. This validates the e↵ectiveness of QAOA in
producing output configurations corresponding to low en-
ergy states of the cost Hamiltonian, when the iteration
level p is increased. In particular, for p = 2 a peak at
the zero-cost configuration appears clearly, correspond-
ing to a success probability of 8.97 %. This results in
only 74 measurements needed, in order to have a prob-
ability greater than 99.9 % of measuring the solution at
least once.

In order to benchmark the e↵ectiveness of QAOA in
solving this problem against other quantum algorithms,
in Appendix C we compare the time to solution of QAOA
with that of quantum annealing, and find that QAOA

outperforms quantum annealing for all the 8 and 15 route
instances.
Finally, noise and imperfection in practical experimen-

tal implementations on a quantum computer will induce
departures from the obtained success probabilities, and
it is an open question whether realistic hardware will still
be able to produce the good solution, with satisfactory
success probability. Although a complete study of the
e↵ect of noise is beyond the scope of the present paper,
in Appendix D we characterize the e↵ect of a simple de-
polarizing noise model, to study how noise a↵ects the
performance of QAOA. As expected, we find that with
noise an optimal value of p exists. Beyond that value of
p, the success probability starts to decrease, due to the
larger e↵ect of decoherence when the gate sequence be-
comes longer. However, for the optimal p, the success
probability is only halved, still pointing to relevance of
the use of QAOA for solving this problem even in realistic
experimental conditions.

V. CONCLUSIONS

In conclusions, we have simulated the solution of in-
stances of the Exact Cover problem that stem as a reduc-
tion of the Tail Assignment problem to the case where the
goal is to find any solution satisfying all the constraints,
using the QAOA.
Our results indicate that these instances can be solved

satisfactorily by means of QAOA, yielding relative high
success probabilities even for low iteration level of the al-
gorithm. For instance, for the 25 qubits case we obtain a
success probability of 8.97 % for p = 2 in the single mea-
surement scenario. This corresponds to a success proba-
bility of 99.9 % for 74 repeated measurements. This low
iteration level translates into a low circuit depth needed
for the implementation of this algorithm, corroborating
feasibility on a near-term quantum device.
Moreover, we observed patterns for the variational pa-

rameters (~�, ~�) which allowed for a substantial simpli-
fication of the classical optimization problem of finding
the best variational parameters, despite the fact that the
problem instances have been extracted from a real world
problem.
Our analysis has revealed non-trivial properties in the

connectivity of the instances considered. I.e., the 15
qubit instances were more connected than the 25 qubit
ones. A thorough study of the connectivity and graph-
type that are relevant for the Tail Assignment problem
in the context of complex quantum networks [33, 34] is
beyond the scope of the present paper, but stems as an
interesting perspective. Another interesting question is
whether the implementation of the QAOA algorithm on
hardware with restricted connectivity would still yield
non-trivial success probabilities, as shown in Ref. [35] for
Max-Cut on three-regular graphs.
Our successful solution with QAOA of small-size in-

stances of Exact Cover extracted from Tail Assignment
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motivates further studies, such as the use of QAOA for
solving instances with multiple feasible solutions, where
costs are re-introduced, and where the number of con-
sidered routes is larger, towards tackling real-world in-
stances.

It remains an open question how the performance
of QAOA compares with existing classical algorithms
for solving large instances of the Exact Cover problem
extracted from the Tail Assignment problem.However,
we expect that current known methods as Branch-and-
Bound, Cutting planes or Branch-and-Cut [36] will per-
form well on these small instances. Further investigations
are needed in order to compare the scaling in terms of
time complexity of QAOA fixing a target success prob-
ability (i.e. the required iteration level p) and standard
classical methods, when the size of the problem increases.

While finalizing this work, we became aware of an al-
ternative method for the optimization of the variational

parameters, that makes use of the Gibbs objective func-
tion, defined as � log he

�⌘ĤC i, where ⌘ > 0, instead of
the expectation value Eq. (8) [37]. This approach is ex-
pected to be superior because the Gibbs objective func-
tion rewards lower energy states, which increases the suc-
cess probability. We leave the use of this approach for op-
timization of the variational parameters in our problem
to further study.
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Appendix A: Additional figures

FIG. 5. (color online) Simulation results for one of the 8
route instances as a function of � and � for p = 1. (a) and (b)
Expectation value E1(�,�); (c) and (d) Success probability
F1(�,�).

(d)

(b)(a)

(c)

FIG. 6. (color online) Simulation results for one of the 15
route instances as a function of � and � for p = 1. (a) and (b)
Expectation value E1(�,�); (c) and (d) Success probability
F1(�,�).
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FIG. 7. The optimal QAOA variational parameters (~�⇤, ~�⇤)
for the 15 route instances, for 3  p  5. The pattern is
visualized by plotting the optimal parameters where each grey
dashed line connects the optimal variational parameters of one
particular instance.
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FIG. 8. The best found ~�⇤ and ~�⇤ for the three instances
shown in Fig. 4 (b).

Appendix B: Numerical simulations

The numerical simulations for the exhaustive search
method was done in MATLAB version R2019b where
the MultiStart function was used to search thoroughly
for the optimal variational parameters. MultiStart at-
tempts to find multiple local minimums to the objec-
tive function by starting from various points in the vari-
ational parameter landscape. When run, it distributes
start points to multiple processors (cpus) that run in
parallel. From a start point it runs a local solver and

when the solver reaches a stopping criterion it termi-
nates and the obtained minima from the solver is stored
in an array. When MultiStart runs out of start points
it stops, and the array with minimums from the solver
is sorted by the objective function value in ascending
order. The parameters where the objective function is
the lowest is then returned as output. As local solver
we used the BFGS algorithm [28] which is implemented
as fmincon in MATLAB. The number of random start
points was chosen to be 4 ⇥ 103. This number was em-
pirically determined by running the simulations a few
times for this value and observing that the minimum
of the objective function always converged to the same
value and gave the same parameters. As mentioned the
solver stops when the solver’s stopping criteria is met.
Two examples of such criterion’s are the function tol-
erance and the step tolerance. The first one, the func-
tion tolerance, is a lower bound on the change in the
value of the objective function during a step, that is if
|Fp(~�, ~�) � Fp(~�0, ~�0)| < FunctionTolerance, the itera-
tion ends. The second one, the step tolerance, is such
that if the solver attempts to take a step that is smaller
than |~��~�

0
|
2+ |~�� ~�

0
|
2
< StepTolerance, the iteration

ends. Both StepTolerance and FunctionTolerance
were set to their default values which was 10�6.

Appendix C: Comparison: Time to solution of
Quantum Annealing versus QAOA

In this section we compare the time to solution of
the quantum annealing (QA) algorithm with that of the
QAOA. In quantum annealing we start from the same
initial state as the QAOA, which is in fact the ground
state of the mixing Hamiltonian that we use in QAOA,
but with a minus sign in front, ĤQA

M
⌘ �ĤM = �

P
�̂
x

i
.

By adiabatically changing from the mixing Hamiltonian
to the cost Hamiltonian the system will remain in its in-
stantaneous ground state throughout the evolution, and
end up in the ground state of the cost Hamiltonian. For
a linear time dependence, the quantum annealing Hamil-
tonian is given by

Ĥ(t) =
t

T
ĤC +

✓
1�

t

T

◆
Ĥ

QA

M
, 0  t  T, (C1)

where ĤC is the cost Hamiltonian, Ĥ
QA

M
is the quan-

tum annealing starting Hamiltonian, and T is the total
annealing time. It is known that rather than running
the algorithm adiabatically, it can be advantageous to
run the algorithm for a shorter time (non fully adiabati-
cally). On the one hand, this yields to a finite probability
to excite higher energy states and decreases the success
probability on a single run; on the other hand, since the
annealing time T is shorter, one can then increase the
number of repetitions, yielding an increase of the total
success probability, on several runs. Therefore, one can
define the time to solution, which is a measure of how



11

0 50 100 150
0

20

40

60

80

100

120

140

FIG. 9. The optimal time to solution for QAOA and QA.
The fact that the markers are below the dotted line means
that QAOA outperforms QA in the time required to achieve
a 99% success probability.

quickly the algorithm can find the optimal solution. The
time to solution for QA is defined by [38]

TTSQA(T ) = T
log(1� pd)

log(1� Fgs(T ))
,

where pd is the target success probability that we fix to
99 %, and Fgs(T ) is the single shot success probability
after running the algorithm for a time T . The optimal
TTSQA(T ) is thus given by the time T that minimize

TTSOPT

QA
= min

T>0

TTSQA(T ).

Following the spirit of Ref. [27], it is possible interpret the
sum of the optimal variational parameters of the QAOA
as the total “annealing” time that is used, in order to
sequentially evolve the system under the action of each
of the two Hamiltonians, Tp =

P
p

i=1
(|�⇤

i
| + |�

⇤
i
|). Thus,

the time to solution for QAOA is

TTSQAOA(p) = Tp

log(1� pd)

log
⇣
1� Fp(~�⇤, ~�⇤)

⌘ ,

where Fp(~�⇤, ~�⇤) is given by Eq. (20). Analogously as for
QA, the optimal TTSQAOA(p) is given by

TTSOPT

QAOA
= min

p>0

TTSQAOA(p).

We would of course like Tp to be as small as possible,
therefore we subtract all the optimal �⇤ values by ⇡.
We can do this since  p(~�, ~�) is ⇡-periodic in � up to
a global phase. This ⇡-shifted value of � is the value
that one would obtain, if one would choose to use the
quantum annealing mixer Hamiltonian (i.e. the one with

a minus in front of the summation), instead of the mixer
commonly used for the QAOA.
We run the QA algorithm for all the 8 and 15 route

instances for di↵erent total annealing times T and record
the optimal TTS that we find. In Fig. 9 we plot
the TTSOPT for both algorithms, and find that the
TTSOPT

QAOA
is smaller than TTSOPT

QA
for all the instances.

For the 15 route instances, QAOA is one order of mag-
nitude faster in achieving 99 % success probability.

Appendix D: Depolarizing noise

In this Appendix we perform a simple study of how
depolarizing noise a↵ects the performance of QAOA. We
model the depolarizing noise as random uncorrelated
Pauli-X, Y or Z operations using the error gate

E = (1� ⌘)I +
⌘

3
(X + Y + Z), (D1)

where ⌘ is the probability that an error occurs, that we
fix to 1 %. This error gate acts on each individual qubit
between the applications of the cost and mixing Hamil-
tonian, see Fig. 10(a). We then repeat the circuit su�-
ciently many times to get a statistical average over the
noise. In Fig. 10(b) we plot the success probability with
noise for the same 8 and 15 route instances as shown in
Fig. 4(b). A trade-o↵ appears between the level of iter-
ation of the algorithm p, and the success probability. In
particular, we observe that for p > 6 the success prob-
ability starts to decrease for the 8 route instance, while
for the 15 route instance it levels o↵, indicating that the
gain of increasing one level p equals the decrease due to
the noise. This is expected, as faulty gates decrease the
fidelity of the prepared state with the best theoretically
found variational state. However, the resulting success
probabilities at p = 6 are roughly halved with respect to
the noiseless case.level p

...
...

(a) (b)

FIG. 10. (a) After each application of the cost and mixing
Hamiltonian of the QAOA an error gate E given by Eq. (D1) is
independently applied to every qubit. (b) Success probability
with noise for one of the 8 and 15 route instances.
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Present-day, noisy, small or intermediate-scale quantum processors—although far from fault-
tolerant—support the execution of heuristic quantum algorithms, which might enable a quantum
advantage, for example, when applied to combinatorial optimization problems. On small-scale
quantum processors, validations of such algorithms serve as important technology demonstrators.
We implement the quantum approximate optimization algorithm (QAOA) on our hardware platform,
consisting of two superconducting transmon qubits and one parametrically modulated coupler. We
solve small instances of the NP-complete exact-cover problem, with 96.6% success probability, by
iterating the algorithm up to level two.

I. INTRODUCTION

Quantum computing promises exponential computa-
tional speedup in a number of fields, such as cryptography,
quantum simulation, and linear algebra [1]. Even though
a large, fault-tolerant quantum computer is still many
years away, impressive progress has been made over the
last decade using superconducting circuits [2–4], leading
to the noisy intermediate-scale quantum (NISQ) era [5].
It was predicted that NISQ devices should allow for “quan-
tum supremacy” [6], that is, solving a problem that is
intractable on a classical computer in a reasonable time.
This was recently demonstrated on a 53-qubit processor by
sampling the output distributions of random circuits [7].

Two of the most prominent NISQ algorithms are the
quantum approximate optimization algorithm (QAOA),
for combinatorial optimization problems [8–10], and the
variational quantum eigensolver (VQE), for the calcula-
tion of molecular energies [11–13]. QAOA is a heuristic
algorithm that could bring a polynomial speedup to the
solution of specific problems encoded in a quantum Hamil-
tonian [14, 15]. Moreover, QAOA should produce output
distributions that cannot be e�ciently calculated on a
classical computer [16].

QAOA is a hybrid algorithm, as it is executed on both
a classical and a quantum computer. The quantum part
consists of a circuit with p levels, where better approxima-
tions to the solution of the encoded problem are generally
achieved with higher p. In this work, we report on using
our superconducting quantum processor to demonstrate
QAOA with up to p = 2, enabled by adequately high gate
fidelities. We solve small toy instances of the NP-complete
exact-cover problem with 96.6% success probability. For
p > 1, the QAOA solution cannot be e�ciently calculated

ú bylander@chalmers.se

on a classical computer, as the computational complexity
scales doubly exponentially in p [8].

Our interest in solving the exact-cover problem orig-
inates from its use in many real-world applications, for
instance, the exact-cover problem can provide feasible
solutions to airline planning problems such as tail assign-
ment [17]. Currently, this is solved by well-developed op-
timization techniques in combination with heuristics. By
leveraging heuristic quantum algorithms such as QAOA,
the current approach can be augmented and might provide
high-quality solutions while reducing the running time.
Applying QAOA to instances of the exact-cover problem
extracted from real-world data in the context of the tail
assignment has been numerically studied with 25 qubits,
corresponding to 25 routes and 278 flights [18]. Other
quantum algorithms for solving the exact-cover problem,
specifically quantum annealing, have been considered in
Refs. [19–21].

II. QAOA

All NP-complete problems can be formulated in terms
of finding the ground state of an Ising Hamiltonian [22].
QAOA aims at finding this state by applying two non-
commuting Hamiltonians, B̂ and Ĉ, in an alternating
sequence (with length p) to an equal superposition state
of n qubits [visualized in Fig. 1(a)],

|“̨, —̨Í =
pŸ

i=1

5
e

≠i—iB̂
e

≠i“iĈ

63
|0Í + |1Í

2

4¢n

, (1)

where “i and —i are (real) variational angles. The first
Hamiltonian in the sequence is the Ising (cost) Hamilto-
nian specifying the problem,

Ĉ =
nÿ

i=1
hi‡̂

z

i
+

ÿ

i<j

Jij ‡̂
z

i
‡̂

z

j
, (2)
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FIG. 1. (a) The quantum approximate optimization algorithm
(QAOA) for a problem specified by the Ising Hamiltonian
Ĉ. An alternating sequence of two Hamiltonians (Ĉ and
B̂) is applied to an equal superposition of n qubits. After
measurement of the qubit states, a cost is calculated, which
a classical optimization algorithm minimizes by varying the
angles “̨, —̨. (b) Our implementation of one QAOA level with
n = 2 using controlled-phase and single-qubit gates. The
background color of each gate identifies which part in (a) it
implements.

and the second is a transverse field (mixing) Hamiltonian
defined by

B̂ =
nÿ

i=1
‡̂

x

i
, (3)

where hi and Jij are real coe�cients, and ‡̂
x(z)
i

are the
Pauli X (Z) operators applied to the i

th qubit.
The ground state of Eq. (2) corresponds to the lowest-

energy state. We therefore define the energy expectation
value of Eq. (1) as a cost function

F (“̨, —̨) = È“̨, —̨|Ĉ|“̨, —̨Í =
nÿ

i=1
hiÈ‡̂

z

i
Í +

ÿ

i<j

JijÈ‡̂
z

i
‡̂

z

j
Í.

(4)
This cost function is evaluated by repeatedly preparing
and measuring |“̨, —̨Í on a quantum processor. To find
the state that minimizes Eq. (4), a classical optimizer is
used to find the optimal variational angles “̨

ú
, —̨

ú. For
a high enough p, |“̨

ú
, —̨

ú
Í is equal to the ground state

of Ĉ and hence yields the answer to the optimization
problem [8]. However, for algorithms executed on real
hardware without error correction, noise will inevitably
limit the circuit depth, implying that there is a trade-o�
between algorithmic errors (too low p) and gate errors
(too high p). Note that, in order to find the solution to
the optimization problem, it is not necessary for |“̨

ú
, —̨

ú
Í

to be equal to the ground state: as long as the ground-
state probability is high enough, the quantum processor
can be used to generate a shortlist of potential solutions
that can be checked e�ciently (in polynomial time) on
a classical computer. For instance, even if the success
probability of measuring the ground state is only 5%, we

could measure 100 instances and still attain a probability
greater than 99% of finding the correct state. Moreover,
the angles “̨

ú
, —̨

ú themselves are not interesting, as long
as they yield the lowest-energy state. This gives some
robustness against coherent gate errors, since any over-
or under-rotations can be compensated for by a change
in the variational angles [12].

We apply QAOA to the exact-cover problem, which
reads: given a set X and several subsets Si containing
parts of X, which combination of subsets include all
elements of X just once? Mathematically speaking, this
combination of subsets should be disjoint, and their union
should be X. This problem can be mapped onto an
Ising Hamiltonian, where the number of spins equals the
number of subsets, while the size of X can be arbitrary.

Let us consider n = 2, for which the two-spin Ising
Hamiltonian is

Ĉ = h1‡̂
z

1 + h2‡̂
z

2 + J ‡̂
z

1 ‡̂
z

2 . (5)

The exact-cover problem is mapped onto this Hamiltonian
by choosing hi and J as follows [23]:

J > min(c1, c2), (6)
h1 = J ≠ 2c1,

h2 = J ≠ 2c2,

where ci is the number of elements in subset i, and J > 0
if the two subsets share at least one element. We are
free to choose J , as long as it fulfills the criterion in
Eq. (6). For example, consider X = {x1, x2} and two
subsets S1 = {x1, x2} and S2 = {x1}. This gives c1 = 2
and c2 = 1, and we could choose J = 2, yielding h1 = ≠2
and h2 = 0. It is easy to check that the corresponding
ground state is |10Í (i.e., S1 is the solution). Finally, we
normalize J and hi such that the Ising Hamiltonian has
integer eigenvalues, allowing us to restrict “i and —i to
the interval [0, fi[.

For two subsets, four di�erent problems exist, which
all yield di�erent sets of hi and J . These are summarized
in Table I. Problem A is the example given above; it is
the most interesting, as the other problems are trivial.
Problems B and C are trivial since they do not contain
any qubit-qubit interaction (J = 0). Problem D is also
trivial since both subsets are equal. Additionally, the
ground states are degenerate for problems B and D.

III. REALIZATION ON QUANTUM
HARDWARE

We implement Eq. (1) on our quantum processor using
the circuit in Fig. 1(b). The circuit can be somewhat
compiled by simple identities (e.g., two Hadamard gates
equal identity). We stress that our implementation of
QAOA is scalable in that we do not use any exponentially
costly pre-compilation (e.g., calculating the final circuit
unitary and using Cartan decomposition to minimize the
number of two-qubit gates).
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TABLE I. The four di�erent exact-cover problems available
with two subsets, and their solutions and respective sets of
coe�cients in the Ising Hamiltonian Ĉ = h1‡̂z

1 +h2‡̂z
1 +J ‡̂z

1 ‡̂z
2 .

# Subsets h1 h2 J Solution
A S1 = {x1, x2},

S2 = {x1}
-1/2 0 1/2 |10Í

B S1 = {x1, x2},
S2 = {}

-1 0 0 |10Í or |11Í

C S1 = {x1},
S2 = {x2}

-1/2 -1/2 0 |11Í

D S1 = {x1, x2},
S2 = {x1, x2}

0 0 1 |10Í or |01Í

Our quantum processor is fabricated using the same pro-
cesses as in Ref. [24] and consists of two fixed-frequency
transmon qubits with individual control and readout.
Both qubits are coupled to a common frequency-tunable
coupler used to mediate a controlled-phase gate (CZ)
between the qubits. The CZ gate is realized by a full
coherent oscillation between the |11Í and |02Í states. The
interaction is achieved by parametrically modulating the
resonant frequency of the coupler at a frequency close to
the di�erence frequency between the |0Í≠ |1Í and |1Í≠ |2Í

transitions of qubit 1 and 2, respectively [25, 26]. We have
benchmarked such a gate on the same device during the
same cooldown to above 99%; however, the benchmark
performed closest in time to the experiments presented
here showed a fidelity of 98.6%. These kinds of fidelity
fluctuations might be related to fluctuations in the qubits’
coherence times [24]. Single-qubit X rotations are driven
by microwave pulses at the qubit transition frequencies
with fidelities of 99.86% and 99.93% for the respective
qubits. Z-rotations are implemented in software as a shift
in drive phase and thus have unity fidelity [27]. All the
reported gate fidelities were measured by (interleaved)
randomized benchmarking [28]. More experimental de-
tails, a measurement setup along with a device schematic,
and benchmarking results are found in Appendix A and
Appendix B.

IV. APPLYING QAOA TO FOUR PROBLEMS

For p = 1, we apply a simple grid (61 ◊ 61) search of
—1, “1 œ [0, fi[ while recording 5000 measurements of each
qubit. From these, we calculate È‡

z

i
Í, È‡

z

1‡
z

2Í, the cost
function F , and the occupation probability for each of
the four possible states, while accounting for the limited,
but calibrated, readout fidelity (86 % and 95 % for the
two qubits). By collecting su�ciently many samples, the
statistical error on the estimated quantities can be made
small.

The grid search allows us to explore the shape of the
optimization landscape, which may bring important un-
derstanding in the di�culty of finding global minima
for black-box optimizers. In Fig. 2, we show measured
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FIG. 2. Cost functions F (“̨, —̨) for QAOA applied to four
instances of the exact-cover problem with p = 1 and n = 2. (a-
d) correspond to problems A-D in Table I. Each experimental
data point is evaluated from the average of 5000 measurements
on our quantum processor. The dashed lines indicate the
positions of the linecuts in Fig. 3.

cost functions for the four problems in Table I. Due to
the normalization of hi and J , the ground state for each
problem corresponds to F = ≠1. In Fig. 2(a), the cost
function for problem A never reaches below ≠0.5. To
achieve costs approaching -1, additional levels (p > 1)
are needed. Moreover, the existence of a local minimum
around “1 ¥ —1 ¥ 3fi/4 could cause di�culties for opti-
mizers trying to find the global minimum. For problems
B-D [Fig. 2(b-d)], we see clear minima where F ¥ ≠1,
indicating that we have found the optimal variational
angles |“̨

ú
, —̨

ú
Í corresponding to the ground state.

In Fig. 3, we take linecuts along the dashed lines in
Fig. 2 and benchmark our measured cost functions and
state probabilities against those of an ideal quantum
computer without any noise. We see excellent agreement
between measurement and theory: the measured positions
of each minimum and maximum are aligned with those
of the theory, consistent with low coherent-error rates.
In addition, we observe excellent agreement between the
absolute values at the minima and maxima, indicating
low incoherent-error rates as well. Even with high gate
fidelities, a high algorithmic fidelity is not guaranteed.
Randomized benchmarking gives the average fidelity over
a large number of random gates, which transforms any
coherent errors into incoherent ones. For real quantum
algorithm circuits, the gates are generally not random.
Therefore, any coherent errors can quickly add up and
yield algorithmic performance far lower than expected
from randomized benchmarking fidelities alone [29, 30].

To quantify the performance of QAOA with p = 1, we
compare the highest-probability state at the minima of
F with the solutions in Table I. Problem A [Fig. 3(a)]
does not reach its ground state (F ¥ ≠0.5); however,
the probability of measuring the correct state (|10Í) is
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FIG. 3. A comparison between experiment (open circles) and
theory (solid lines) for four exact-cover problems using QAOA
with p = 1. Each color (given at the top) corresponds to
either a state probability or the value of the cost function
F . The four panels (a-d) correspond to the four problems
(A-D) in Table I. The linecuts are taken at the vertical dashed
lines in Fig. 2. The theory curves are calculated assuming
an ideal quantum processor, whereas each experimental data
point is derived from the average of 5000 measurements on
our quantum processor.

approximately 50%, which is still better than random
guessing. For problem C [Fig. 3(c)], we see that F ¥ ≠1
does indeed correspond to a probability close to unity
of measuring the ground state (|11Í). Problems B and
D [Fig. 3(b) and (d)] have degenerate ground states, in-
dicated by two state probabilities close to 50% each at
F ¥ ≠1.

V. INCREASING THE SUCCESS
PROBABILITY

To increase the success probability for problem A, we
add an additional level (p = 2). For p > 1, a grid search
to map out the full landscape becomes unfeasible due to
the many parameters (equal to 2p). Therefore, we instead
use black-box optimizers to find the optimal variational
angles. We try three di�erent gradient-free optimizers:
Bayesian optimization with Gaussian processes (BGP),
Nelder-Mead, and covariance matrix adaptation evolution
strategy (CMA-ES). We choose BGP due to its ability to
find global minima, Nelder-Mead due to it being common
and simple, and CMA-ES due to its favorable scaling with
the number of optimization parameters.

We evaluate the optimizer performances by running 200
independent optimizations with random starting values
(“̨, —̨ œ [0, fi[) for each optimizer. For each set of vari-
ational angles, we repeat the circuit and measure 5000

TABLE II. Comparison between di�erent optimizers. We
run QAOA for problem A over 200 iterations with random
starting parameters. We extract the convergence probability
for reaching a cost below -0.95, the average number of function
calls required to reach that level, and the highest achieved
probability of measuring the problem solution (P|10Í).

Optimizer Convergence Function calls P|10Í
BGP 61.5% 44 ± 16 96.5%
Nelder-Mead 20.0% 38 ± 13 96.3%
CMA-ES 49.5% 121 ± 46 96.6%

samples to accurately estimate the expectation values. We
set a threshold for convergence at F < ≠0.95 and count
the number of converged optimization runs as well as the
number of calls to the quantum processor (function calls)
required to converge. We also record the success probabil-
ity of measuring the problem solution (P|10Í). The results
are summarized in Table II.

We observe that the success probabilities after con-
vergence are similar for all three optimizers. However,
there is a di�erence in convergence probability, of which
BGP has the highest and Nelder-Mead has the lowest.
The lower performance of Nelder-Mead is most likely due
to its sensitivity to local minima, a well-known problem
for most optimizers. In contrast, one of the strengths of
Bayesian optimization is its ability to find global min-
ima, which could explain why it performs better than
Nelder-Mead and CMA-ES. Additionally, Bayesian opti-
mization is designed to handle optimization where the
time of each function call is high (costly), such that the
number of call is kept low. However, for more optimiza-
tion parameters (higher p), the performance of BGP is
generally decreased due to an increasing need for classical
computation. CMA-ES, on the other hand, excels when
the number of parameters are high, and thus might be a
good optimizer for QAOA with tens or hundreds of pa-
rameters. Here, with just four parameters, CMA-ES has a
convergence-probability similar to that of BGP, although
with a greater number of function calls on average.

To quantify the optimization further, we study the tra-
jectories of each optimization run (Fig. 4). For each run,
we plot the costs F . The trajectories for BGP and Nelder-
Mead [Fig. 4(a-b)] corroborate the indications about local
minima. We see groups of horizontal lines corresponding
to di�erent local minima, especially clear at F ¥ ≠0.55 for
both BGP and Nelder-Mead. We also see that BGP tries,
and sometimes succeeds, to escape these local minima,
which is one of the advantages of Bayesian optimization.
In comparison, Nelder-Mead rarely gets out of a local
minimum once it has found it. For the third optimizer,
CMA-ES [Fig. 4(c)], it is hard to draw any conclusions
from the trajectories other than that the convergence
is slower than for the other optimizers. However, we
include the CMA-ES trajectories for completeness. For
each optimizer, we also plot the averaged (over all the con-
verged) trajectories for F and the probability of finding
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FIG. 4. Optimization of variational angles for problem A using
p = 2 iterations of the algorithm and three di�erent black-
box and gradient-free optimizers: (a) Bayesian optimization
with Gaussian processes, (b) Nelder-Mead, and (c) covariance
matrix adaptation evolution strategy. We run the optimization
200 times with random starting parameters. Plotted as blue
lines are the individual optimization trajectories for F , where
each data-point is the average of 5000 measurements. In
orange and green are the cost (F ) and success probability
(P|10Í) averaged over the converged runs.

the solution state P|10Í.
At the end of the optimization, the highest recorded

probability of generating the correct state is 96.6%. The
success probability is limited by imperfect gates (we have
verified that an ideal quantum computer and p = 2 can
achieve P|10Í = 1). We compare our measured success
probability to what we would expect from the randomized-
benchmarking fidelities. The quantum circuit for p = 2
consists of 6 X, 4 Hadamard, 4 Z, and 3 CZ gates, which,
when multiplied together with the fidelities for each gate,
predicts a total fidelity of 96.3%, in good agreement with
the measured fidelity considering experimental uncertain-
ties (e.g., fluctuations in qubit coherence and gate fideli-
ties). Note that p = 3 would not yield a higher success
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FIG. 5. Histogram of the final success probabilities (P|10Í) for
three di�erent optimizers on problem A using p = 2 iterations
of the algorithm. Each optimizer was run 200 times. The bars
are vertically o�set for clarity.

probability, since adding more gates would lower the total
fidelity further (predicted to be 94.2%).

Finally, we examine histograms over the success proba-
bilities at the end of each optimization run for the three
di�erent optimizers, see Fig. 5. Again, we observe that
BGP has the most converged runs out of the three. We
see clusters around 55 and 95 % success probability for all
three optimizers, possibly corresponding to one local and
the global minima. For CMA-ES the success probabilities
are more scattered, where some runs even have below
40 % success. All in all, Bayesian optimization performs
the best; however, further studies will be needed on which
classical optimizer is the most suitable for variational
quantum algorithms, such as QAOA and VQE.

VI. CONCLUSION

In conclusion, we have implemented the quantum ap-
proximate optimization algorithm with up to p = 2 levels.
Using a superconducting quantum processor with state-
of-the-art performance, we successfully optimized four
instances of the exact-cover problem. For the non-trivial
instance (problem A), we used p = 2 and black-box opti-
mization to reach a success probability to 96.6% (up from
50% with p = 1), in good agreement with a prediction
from our gate fidelities. Even if many more qubits are
needed to solve problems that are intractable for classical
computers, algorithmic performance serves as a critical
quantum-processor benchmark since performance can be
much lower than what individual gate fidelities predicts.
Although further experiments with larger devices are
needed to explore if QAOA can have an advantage over
classical algorithms, our results show that QAOA can be
used to solve the exact-cover problem.
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Appendix A: Measurement setup

The experimental measurement setup used here is a
standard circuit-QED setup, see schematic in Fig. 6. The
quantum processor consists of two xmon-style transmon
qubits coupled via a frequency-tunable anharmonic os-
cillator. The tunability is provided by two Josephson
junctions in a SQUID configuration. The two qubits
are capacitively coupled to individual control lines and
quarter-wavelength resonators for readout. There is also
a readout resonator for the coupler, which is only used
as a debugging tool (i.e., it is not involved during any
algorithm execution). The SQUID for the tunable coupler
is inductively coupled to a waveguide to allow for both
static and fast modulation of the resonant frequency.

The processor is fabricated on a high-resistivity intrin-
sic silicon substrate. After initial chemical cleaning, an
aluminium film is evaporated. All features except the
Josephson junctions are patterned by direct-write laser
lithography and etched with a warm mixture of acids.
The Josephson junctions are patterned by electron-beam
lithography, and evaporated from the same target as pre-
viously. A third lithography and evaporation step (with
in-situ ion milling) is performed to connect the Josephson
junctions to the rest of the circuit. Finally, the wafer is
diced into individual dies and subsequently cleaned by a
combination of wet and dry chemistry.

Then, a die is selected and packaged in a copper box
and wire bonded to a palladium- and gold-plated printed
circuit board with 16 non-magnetic coaxial connectors.
For the present device, we use 5 of these connectors, 2
for readout, 2 for single-qubit control, and 1 for control
of the magnetic flux through the SQUID loop of the
coupler. These are connected to filtered and attenuated
coaxial lines leading up to room temperature. We point
out that the DC current for the static flux bias is also
provided through the coaxial line. Finally, the processor is
attached to the mixing chamber of a Bluefors LD250 cryo-
free dilution refrigerator. There, it is shielded from stray
magnetic fields by two shields of cryoperm/mu-metal and
two shields of superconductors.

We perform multiplexed readout by using a Zurich In-
struments UHFQA for generating and detecting the read-
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FIG. 6. (a) Cryogenic setup and electrical circuit of the
quantum processor. All lines are attenuated and filtered to
minimize the amount of noise reaching the qubits. The readout
output contains cryogenic isolators and a high electron mobility
transistor amplifier. (b) False-colored micro-graph of the
processor. The colors match the circuit elements in (a). The
three waveguides at the bottom are for control over the qubits
and the coupler.
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TABLE III. Device parameters. Readout-resonator frequency
fR and qubit transition frequencies fij . g is the coupling
between qubit and resonator, and j is the coupling between
qubit and coupler. T1 and T ú

2 are the relaxation and free
induction decay times measured over 14 hours. F1q, Fm, and
FCZ are the single-qubit, measurement, and CZ fidelities,
respectively.

Parameter Qubit 1 Qubit 2
fR 6.17 GHz 6.04 GHz
f01 3.82 GHz 4.30 GHz
f12 ≠ f01 -229 MHz -225 MHz
j 29.1 MHz 33.0 MHz
g 53.2 MHz 56.9 MHz
T1 77 µs 55 µs
T ú

2 49 µs 82 µs
F1q 0.9986 0.9993
Fm 0.86 0.95
FCZ 0.986

out signals, together with a Rohde & Schwarz SGS100A
continuous-wave signal generator and two Marki IQ mix-
ers for up- and down-conversion. The single-qubit pulses
are synthesized by a Zurich Instruments HDAWG and
upconverted using Rohde & Schwarz SGS100A vector
signal generators. The flux drive is generated directly by
the HDAWG since the modulation frequency is within the
bandwidth of the instrument. Finally, all instruments are
controlled and orchestrated by the measurement and au-
tomation software Labber. Labber also does cost-function
evaluations and calls external Python packages for the
three di�erent optimizers. All three optimizers were run
using publicly available packages: Scikit-Optimize for
BGP, scipy for Nelder-Mead, and pycma for CMA-ES.

Appendix B: Characterization and tune-up

Initially, we perform basic spectroscopy and decoher-
ence benchmarking of each qubit individually. This allows
us to extract readout frequencies, qubit frequencies and
anharmonicities, relaxation and dephasing times, and
static couplings between qubit and resonator, as well as
between qubit and coupler. The extracted parameters are
found in Table III.

After the initial characterization, we tune up high-
fidelity single-qubit gates. The drive pulses have cosine
envelopes together with first-order DRAG components
to compensate for the qubit frequency shift due to the
driving. Our rather long (50 ns) pulses makes leakage
from |1Í to |2Í minimal even without DRAG. To find
optimal pulse amplitudes and DRAG coe�cients, we use
error amplification by applying varying lengths of trains of
fi pulses. Qubit drive frequencies are measured accurately
by detuned Ramsey fringes.

Next, we calibrate our readout fidelities. By collecting
raw voltages of the readout signals (as measured by the

digitizer in the UHFQA), with and without a calibrated pi-
pulse applied to the qubit (|0Í and |1Í states, respectively),
and as a function of readout frequency and amplitude,
we can find the optimal readout parameters. Due to
our rather low coupling strengths, we cannot achieve
short readout times in this device. However, QAOA
does not require any measurement feedback, so a long
readout time is not an issue as long as the time is shorter
than the relaxation times of the qubits. Also, longer
readout times give greater signal-to-noise ratios, which
allows us to achieve high readout fidelities even in the
absence of a quantum-limited amplifier. Here, the readout
is 2.3 µs long, well below our relaxation times (several
tens of microseconds). After finding the optimal readout
parameters, a voltage threshold is used to di�erentiate
between |0Í or |1Í of the measured qubit.

To accurately extract state probabilities in the pres-
ence of limited readout fidelity, we collect statistics of
the measured qubit population as a function of qubit
drive amplitude (Rabi oscillations). Since the measured
population increases monotonically with the expected pop-
ulation, we can renormalize the populations, similarly to
Ref. [31]. This calibration allows us to accurately measure
the average quantities È‡

z

i
Í, È‡

1
i
‡

2
i
Í and state probabilities

even in the presence of limited readout fidelities.
Our two-qubit gate of choice is the controlled phase

(CZ). This interaction is induced by parametrically modu-
lating the resonant frequency of the coupler at a frequency
close to the di�erence of |11Í and |02Í. For our device,
this frequency is 255 MHz. However, due to the frequency
modulation and the non-linear relationship between flux
and frequency, the transition frequencies are slightly low-
ered. This frequency shift will also induce deterministic
phase shifts on the individual qubits, which we compen-
sate for by applying Z gates on both qubits after each CZ
gate. We choose a static bias point and a modulation am-
plitude that yield a moderate e�ective coupling strength
of 5 MHz between the two states. From here, we find the
modulation frequency and time that yield a full oscillation
between the |11Í and |02Í states. We then fine-tune the
frequency and time such that the controlled phase is fi

and the leakage to |02Í is minimal. Here, the final gate
frequency and duration were 253 MHz and 271 ns.

We benchmark our single and two-qubit fidelities using
randomized benchmarking. A sequence of random gates
drawn from the Cli�ord group is applied together with
a final recovery gate which should take the system back
to the ground state. The number of random gates is
varied and the probability of measuring the ground state
is recorded. In Fig. 7, we plot these probabilities for
each qubit individually and for the two-qubit case. In
the single-qubit case, it is important to note that it was
done simultaneously for both qubits. Generally, the gate
fidelities are higher if they are done in isolation. However,
to reduce the total run time of algorithms, we usually run
single-qubit gates in parallel. Therefore, simultaneous
randomized benchmarking fidelities are more relevant
metrics than isolated ones.
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FIG. 7. Randomized benchmarking of single- and two-qubit
gates. Plotted are the probability of measuring the ground
state as a function of number of Cli�ord gates applied. Circles
are data, and lines are fits to extract the gate fidelity. For
qubit 1 and 2, the extracted single-qubit fidelities (averaged
over all possible single-qubit Cli�ords) are 0.9986 and 0.9993.
For benchmarking of the two-qubit gate, we take a reference
(random Cli�ord gates) and an interleaved (a CZ gate between
each Cli�ord) trace to extract the CZ fidelity (0.986).
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