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SUMMARY

Fueled by recent technological advancements in small and capable satellites, satellite

constellations are now shaping the new era of space commercialization creating new forms

of services that span from Earth observations to telecommunications and navigation. With

the mission objectives becoming increasingly complex, a new paradigm in the design and

operations of satellite constellations is necessary to make a system cheaper and more effi-

cient.

This dissertation presents a set of novel mathematical formulations and solution meth-

ods that lend themselves to various applications in the design and operations of satellite

constellation systems. The second chapter establishes the Access-Pattern-Coverage (APC)

decomposition model that relaxes the symmetry and homogeneity assumptions of the clas-

sical global-coverage constellation design methods. Based on the model, this disserta-

tion formulates an integer linear programming (ILP) problem that designs an optimal con-

stellation pattern for complex spatiotemporally-varying coverage requirements. The third

chapter examines the problem of reconfiguring satellite constellations for efficient adaptive

mission planning and presents a novel ILP formulation that combines constellation design

and transfer problems that are otherwise considered independent and serial in the state-of-

the-art. Furthermore, the third chapter proposes a Lagrangian relaxation-based heuristic

method that exploits the assignment problem structure embedded in the integrated design-

transfer model. The fourth chapter extends the third chapter by investigating the multi-

stage satellite constellation reconfiguration problem and develops two heuristic sequential

decision-making methods based on the concepts of myopic policy and the rolling horizon

procedure. This dissertation presents several illustrative examples as proofs-of-concept to

demonstrate the value of the proposed work.
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CHAPTER 1

INTRODUCTION

Satellite constellations enable a variety of applications that are otherwise considered in-

feasible with monolithic satellite systems. The unique advantage of distributed satellite

systems is their ability to deliver incomparable coverage performance both spatially (e.g.,

wide area coverage) and temporally (e.g., rapid revisit time). Fueled by technological ad-

vancements in small and capable satellites, we are witnessing a great diversification of

satellite constellation applications. Satellite constellations are not only being conceived

for applications in Earth’s vicinity (e.g., Earth observations, telecommunications, and po-

sitioning services) but also for various applications in deep space (e.g., navigation services

and space domain awareness in the cislunar regime).

Accompanying the diversification of satellite constellation applications are the mission

objectives that are becoming increasingly complex. Key examples of such complex mission

objectives include (1) spatiotemporally-varying coverage of disjointed areas and spot tar-

gets, (2) a system of multiple orbital shells (e.g., the Satellite-over-Satellite networks), (3) a

federation of heterogeneous satellites with different sizes and capabilities, and (4) adaptive

mission planning, to name a few. In the face of the increasing complexity of mission ob-

jectives, the state-of-the-art constellation architecture design methods (e.g., Walker-delta

constellation patterns) become inefficient due to the assumptions that are made to sim-

plify the problem—the symmetry in satellite distributions, and the homogeneity in orbital

characteristics and satellite specifications, and static configurations. Therefore, in order to

realize efficient next-generation satellite constellation systems, a new paradigm in design

and operations is necessary.

In light of this observation, this dissertation presents a set of novel mathematical formu-

lations and solution methods, which lend themselves to various applications in the design

1



and operations of satellite constellations. In particular, this dissertation builds upon the

classical constellation design theories by relaxing the assumptions of homogeneity, sym-

metry, and static configurations. This allows mission designers and operators to explore

larger design space and potentially discover efficient constellation pattern sets and opera-

tional procedures. Several computational studies are conducted to demonstrate the value

of the proposed work. Note that throughout this dissertation, we use the term “regional-

coverage constellations” or regional constellations, in short, to accentuate heterogeneity

and asymmetry as distinctive design philosophies in contrast to the homogeneity and sym-

metry of classical global-coverage constellations.

This dissertation comprises three distinct chapters. The following is the overview of

these chapters.

Chapter 2 establishes the Access-Pattern-Coverage (APC) decomposition model that re-

laxes the symmetry and homogeneity assumptions commonly made by the classical global-

coverage constellation design methods. To this end, the circular convolution nature of the

repeating ground track orbit and common ground track constellation is formalized. This

formulation enables a scalable constellation pattern analysis for multiple target areas and

with multiple sub-constellations. The formalized circular convolution relationship is first

used to derive a baseline constellation pattern design method with the conventional assump-

tion of symmetry. Next, a novel method based on binary integer linear programming is de-

veloped, which aims to optimally design a constellation pattern with the minimum number

of satellites. This binary integer linear programming method achieves optimal constella-

tion patterns for general problem settings that the baseline method cannot achieve. Five

illustrative examples are analyzed to demonstrate the value of the proposed new approach.

Chapter 3 investigates the problem of optimizing a satellite constellation reconfigu-

ration process against two competing mission objectives: (i) the maximization of the total

coverage reward and (ii) the minimization of the total cost of the transfer. The decision vari-

ables for the reconfiguration process include the design of the new configuration and the

2



assignment of satellites from one configuration to another. This chapter presents a novel bi-

objective integer linear programming formulation that combines constellation design and

transfer problems. The formulation lends itself to the use of generic mixed-integer linear

programming (MILP) methods such as the branch-and-bound algorithm for the compu-

tation of provably-optimal solutions; however, these approaches become computationally

prohibitive even for moderately-sized instances. In response to this challenge, this chap-

ter proposes a Lagrangian relaxation-based heuristic method that leverages the assignment

problem structure embedded in the problem. The results from the computational exper-

iments attest to the near-optimality of the Lagrangian heuristic solutions and significant

improvement in the computational runtime compared to a commercial MILP solver.

Chapter 4 extends Chapter 3 by investigating the multi-stage satellite constellation re-

configuration problem. The goal of the problem is to maximize the total system observation

throughput by actively manipulating the orbits and the relative phasing of the constituent

satellites. This chapter submits a novel integer linear programming formulation of the

problem that is constructed based on the concept of time-expanded networks. To tackle

the computational intractability arising due to the combinatorial explosion of the solution

space, this chapter proposes two computationally efficient heuristic sequential decision-

making methods based on the principles of myopic policy and the rolling horizon proce-

dure. Empirical findings show that these heuristics produce high-quality solutions relative

to optimal solutions. Computational experiments are conducted to demonstrate the value

of the proposed work.

Figure. 1.1 provides the overview of the scope of this dissertation study.

3



Chapter 2
“Design”

Config. A

Complex mission 
requirements

Change in mission 
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Figure 1.1: Dissertation overview; this dissertation study begins with the idea of “complex
regional coverage”.
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CHAPTER 2

SATELLITE CONSTELLATION PATTERN OPTIMIZATION FOR COMPLEX

REGIONAL COVERAGE

2.1 Introduction

Satellite constellations for regional coverage are increasingly being considered as com-

petent business solutions in a market dominated by global-based constellation systems.

Regional constellations, whose form varies from being standalone to augmenting existing

space-borne systems, provide flexible solutions to stakeholders as a means of circumvent-

ing geopolitical, economic, and/or technical issues associated with global constellation sys-

tems. Examples of such regional constellation systems are the Indian Regional Navigation

Satellite System (IRNSS) [1] and the Quasi-Zenith Satellite System [2].

Unlike global coverage constellations, regional coverage constellations solely focus

on the coverage over a local region and therefore generally require a smaller number of

satellites in the system to achieve the same performance per area metric compared to global-

coverage constellations. This leads to a significantly reduced system cost as the total life-

cycle cost of the system depends on the number of satellites [3]. The reduced system

cost allows for a tolerable risk of failure and facilitates a shorter payback period. These

properties allow regional constellation systems to swiftly react to uncertainties arising from

market demand and/or administrative issues. Research has also shown that a flexible option

to treat a regional constellation system as part of a larger staged deployment process can be

beneficial when market uncertainties are present [4].

Various space systems have been designed for regional coverage. Although the most

classical regional coverage method is to use geo-synchronous/-stationary equatorial orbits

(GSO/GEO), non-geostationary orbit (NGSO) systems are deemed to provide better per-
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formance for many mission-critical attributes such as latency and launch cost. Traditional

constellation design methods have investigated the problems with relatively simple cover-

age criteria, such as satisfying an f -fold continuous coverage requirement (e.g., single-fold,

double-fold, etc.) or minimizing the maximum revisit time gap over an area. However,

the problems with complex coverage requirements that are periodically time-varying and

spatially-varying have not been explored. Examples of such coverage requirements are (1)

the increased communication service needs during the daytime; and (2) the increased ser-

vice needs over urban/sub-urban areas for reliable access [5]. The design process to gener-

ate the optimal constellation for such complex coverage requirements involves determining

(1) the common orbital characteristics and (2) a constellation pattern. While conventional

constellation design methods often assume a symmetric pattern (e.g., Walker constellations

[6, 7, 8]) and optimize the common orbital characteristics (e.g., altitude, inclination) with

that assumption, the large design space of asymmetric constellation patterns is often missed

despite its importance particularly for complex time-varying and spatially-varying cover-

age requirements. Furthermore, it is reasonable to assume that such a regional coverage

constellation system can constitute multiple sub-constellations, each with different orbital

characteristics, as demonstrated in the case of IRNSS [1]; however, the concurrent design

of multiple sub-constellation patterns using NGSOs requires a sophisticated optimization

approach. Such a topic has been scarcely studied and remains an open question. Given

this background, a research question of interest arises: “How do we design a constellation

pattern (for multiple sub-constellations if needed) that is optimized (i.e., with the minimum

number of satellites) for a periodically time-varying and spatially-varying demand over the

regional area(s) of interest?” This chapter seeks to address this question by constructing an

optimal constellation pattern design approach for complex regional coverage. The result-

ing rigorous constellation pattern design approach can be integrated with existing orbital

characteristics design methods and launch/mission constraints to optimize future satellite

constellation design.
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The contribution of this chapter is as follows. First, the discovery of a circular convo-

lution phenomenon between a seed satellite access profile, a constellation pattern vector,

and a coverage timeline is formalized in this research. The resulting formulation is referred

to as the APC decomposition, following the acronyms of the seed satellite Access profile,

constellation Pattern, and Coverage timeline; each of these concepts is introduced in detail

later in this chapter. We derive a linear formulation that enables us to design a constella-

tion pattern for a system of multiple sub-constellations for multiple regions. This formu-

lation provides a foundation for general methods introduced herein. Second, we extend

the traditional definition of a time-independent f -fold coverage requirement (e.g., single-

fold, double-fold, etc.) to a time-dependent f [n]-fold coverage requirement, where n is a

discrete-time instant, such that periodically time-varying coverage demands can be handled

optimally in the constellation design. By applying this idea to multiple target points, this

approach is further extended to the case with time-varying and spatially-varying coverage

requirements. Finally, we develop a general method based on binary integer linear pro-

gramming (BILP) that finds the optimal satellite constellation pattern for complex regional

coverage, and, if needed, for multiple sub-constellations concurrently. This core concept

enables users to explore the hidden design space by breaking the symmetry in the constel-

lation design. The developed constellation pattern design approach is demonstrated with a

series of case study examples.

The rest of this chapter is organized as follows. Section 2.2 provides a summary of the

key literature relevant to this research. Section 2.3 provides an overview of the constellation

model used in this chapter. Section 2.4 introduces the ideas behind the developed approach,

including the circular convolution formulation of the problem and its pertinent definitions.

Section 2.5 then introduces two methods based on this formulation: the baseline quasi-

symmetric and the novel BILP methods. The developed methods are applied to various

illustrative examples in Section 2.6 for demonstration. Section 2.7 then concludes this

chapter.
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2.2 Literature Review

This section reviews the major literature relevant to this study. Traditional satellite constel-

lation design methods have focused on minimizing the number of satellites while providing

continuous coverage over a large area of interest such as the globe or latitudinally-bounded

zones. Classical methods such as the streets of coverage [9, 10, 11, 12], Walker and Rosette

constellations [6, 7, 8, 13], and the tetrahedron elliptical constellation [14] leveraged a geo-

metric approach to exhibit a symmetry in the constellation pattern, where satellites are uni-

formly and symmetrically arranged based on a predetermined phasing rule. The symmetry

in the constellation pattern provides a foundation for a complete design space analysis due

to finite variability [15] or for an analytical solution. However, this usually leads to redun-

dant coverage overlaps and therefore may not produce an optimal constellation design in

terms of the number of satellites over a bounded local region.

There are several prior studies that specifically dealt with the design of regional cov-

erage constellations. By fully utilizing the characteristics of the repeating ground track

orbits, Hanson et al. [16] and Ma and Hsu [17] utilized the timeline meshing method to

generate the optimal constellation with respect to minimizing the maximum time gap at the

minimum possible inclination. Similarly, Pontani and Teofilatto extended the characteris-

tics of the repeating ground track by searching for allowable time delays with respect to

minimizing the gap or maximizing coverage [18]. In addition, Crossley and Williams used

metaheuristics methods to design a satellite constellation to minimize the maximum revisit

time [19]. Although these regional constellation design algorithms show promising ability

to produce asymmetric configuration with respect to a single target point or a connected

area, these methods are not applicable to designing a constellation system for periodically

time-varying demands over multiple disjoint target points (referred to as complex coverage

requirement in this chapter) with multiple sub-constellations. Ulybyshev investigated a new

geometric approach to generate satellite constellation designs for complex coverage [20].
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The method demonstrates the use of the two-dimensional space and combined maps for the

satellite constellation and coverage functions. Nevertheless, this method cannot be applied

to asymmetric constellations. Other literature can be found in the comprehensive litera-

ture review by Dutruel-Lecohier and Mora as well as Wertz [21, 15]. Recently, Ulybyshev

presented a short historical survey of satellite constellation design for continuous coverage

[22]. However, there is no methodology that directly answers our question raised in the

introduction that considers all three aspects of the regional coverage problem: (1) multiple

target points, (2) complex coverage requirements, and (3) multiple sub-constellations.

In response to this background, this chapter attempts to construct methods to design a

satellite constellation pattern for periodically time-varying and spatially-varying coverage

requirements over multiple target points, and if demanded, for multiple sub-constellations.

Building upon the idea of repeating ground track orbits and common ground track constel-

lations (e.g., Flower Constellation set theory [23, 24, 25]) and generalizing our prior work

[26], we formalize the circular convolution nature of the constellation pattern design prob-

lem and derive two methods for it: (1) the baseline and rather traditional quasi-symmetric

method; and (2) the more general and novel BILP method. The developed approach can

design the constellation pattern that satisfies the complex coverage requirements of multi-

ple target points with the minimum number of satellites possible exploring both symmetric

and asymmetric patterns.

2.3 Satellite Constellation Model

This section introduces the ideas and assumptions on the satellite constellation model that

the proposed approach builds upon, including the repeating ground track orbit and the

common ground track constellation.
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2.3.1 Repeating Ground Track Orbit

A ground track of a satellite is defined as a trace of its sub-satellite points on the surface

of the Earth. In this chapter, we utilize a repeating ground track (RGT) orbit as a basis for

the orbital design of the constellation, which allows a ground track of a satellite to repeat

exactly and periodically. This type of orbit has been shown to provide better coverage

performance than the non-repeating ground track orbits with fewer satellites for regional

coverage [16]. Considering the Earth-centered Earth-fixed (ECEF) frame, an RGT orbit is

achieved when the nodal period of the orbit TS (the time interval between two consecutive

crossings of the orbit ascending node by a satellite) is a rational multiple of the nodal

period of Greenwich TG (the time interval between two consecutive crossings of the orbit

ascending node line by the prime meridian):

Tr = NPTS = NDTG (2.1)

where Tr represents the period of repetition. Eq. (2.1) implies that a satellite on an RGT

orbit makes NP number of revolutions in ND number of nodal periods of Greenwich [23,

27]. NP and ND are positive integer numbers.

Considering the J2 perturbation effect, the nodal period of the satellite orbit TS and the

nodal period of Greenwich TG are given in Eqs. (2.2):

TS =
2π
ω̇ + Ṁ

(2.2a)

TG =
2π
ω⊕ − Ω̇

(2.2b)

where ω⊕ is the rotation rate of the Earth, ω̇ is the rate of change in the argument of perigee

due to perturbations, Ω̇ is the rate of nodal regression of a satellite’s orbit, and Ṁ is the rate

of change in the mean anomaly due to nominal motion and perturbations. The perturbed
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orbital elements in Eqs. (2.2) are:

ω̇ =
3
2

J2

(
R⊕
p

)2 √
µ⊕
a3

[
2 −

5
2

sin2 i
]

(2.3)

Ω̇ = −
3
2

J2

(
R⊕
p

)2 √
µ⊕
a3 cos i (2.4)

Ṁ =
√
µ⊕
a3

[
1 −

3
2

J2

(
R⊕
p

)2√
1 − e2

(
3
2

sin2 i − 1
)]

(2.5)

where R⊕ = 6378.14 km is the mean radius of the Earth, p = a(1 − e2) is the semi-latus

rectum, µ⊕ = 398 600.44 km3s−2 is the standard gravitational parameter of the Earth, and

J2 = 0.00108263 is the zonal harmonic coefficient due to the equatorial bulge of the Earth

[15].

A period ratio τ is defined as a ratio of NP/ND and further can be deduced based on the

perturbed orbital elements:

τ =
NP

ND
=

TG

TS
=
ω̇ + Ṁ
ω⊕ − Ω̇

(2.6)

The period ratio is used to identify a unique RGT orbit out of an NP and ND pair [23]. That

is, a satellite orbit with τ = 10/2 and a satellite orbit with τ = 5/1 both of which share an

identical orbit and a ground track.

The semi-major axis a of an RGT orbit can be derived using the Newton-Raphson

method presented by Bruccoleri for a given set of NP, ND, e, and i [28]. Because the semi-

major axis is a function of τ, e, and i (i.e., a = a(τ, e, i)), we shall utilize the period ratio

τ = NP/ND as an independent orbital variable instead of the semi-major axis a. Henceforth,

this chapter utilizes an RGT orbital elements vector, œ = [τ, e, i, ω,Ω,M]T , to fully define

an RGT orbit of a satellite. We assume the utilization of satellite maneuvers to correct and

maintain an identical ground track throughout the satellite lifetime, negating perturbation

effects other than the J2 effect. Note that the right ascension of the ascending node (RAAN)

Ω and the mean anomaly M in the RGT orbital elements vector indicate the initial values
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in reference to a given epoch.

2.3.2 Common Ground Track Constellation

This chapter considers a constellation pattern where all satellites in the constellation are

systematically generated such that their ground tracks overlap to create a single common

ground track. In this chapter, we refer to this type of constellation as a common ground

track constellation. (If there are multiple sub-constellations, each sub-constellation has

its own common ground track.) Figure 2.1 illustrates an example of arbitrarily defined

9-satellite common ground track constellation; its system satellites, depicted in yellow

circles, are placed along a common ground track. The definitions of the terms used in

Figure 2.1 are discussed in Section 2.4. For more information about the expanded ground

track view, refer to Appendix A.1.
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Figure 2.1: Illustration of a common ground track constellation in an expanded ground
track view.

A common ground track constellation has relationships with several constellation de-

sign theories. For example, when certain conditions are satisfied (e.g., symmetric distri-

bution and ND = 1), the common ground track constellations utilizing circular RGT orbits

can be expressed as i : N/N/(N − NP) when ND = 1 [29], following the standard Walker

notation i : N/P/F. Here, N is the total number of satellites in the system, P is the number
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of orbital planes, and F is the Walker phasing factor.

A common ground track constellation with RGT orbits is a common assumption used

in the literature such as the original Flower Constellation theory [23]. The Flower Constel-

lation is defined as a set of N satellites following the same (closed) trajectory with respect

to a rotating frame. For this chapter, the ECEF frame is considered. Ref. [30] introduces

the three conditions to construct a Flower Constellation as follows:

1. The orbital period of each satellite is a rational multiple of the period of the rotating

frame.

2. The semi-major axis a, eccentricity e, inclination i, and argument of perigee ω are

identical for all the satellite orbits.

3. The right ascension of the ascending node Ωk and the mean anomaly Mk of each

satellite (k = 1, ...,N) satisfy:

NPΩk + NDMk = constant mod (2π) (2.7)

This chapter utilizes the above three conditions of the original Flower constellation set the-

ory as a basis for constellation generations. Furthermore, we restrict satellite orbits to be

either circular or critically-inclined elliptic (i = 63.4◦ or 116.6◦). This is because, in en-

gineering practice, non-critically-inclined elliptic orbits are generally avoided for periodic

coverage requirements due to heavy orbital maintenance costs incurred by negating the

precession of the argument of perigee.

2.4 Circular Convolution Formulation

Building upon the satellite constellation model in the previous section, this section intro-

duces the main ideas behind the methods developed in this chapter, including the defini-

tions and concepts of the access profile, coverage, and constellation pattern representation,
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as well as the mathematical representation of the circular convolution phenomenon.

The derivation of the circular convolution phenomenon utilizes time discretization. One

underlying assumption is that, to satisfy the periodically time-varying coverage require-

ments, the repeat period of the RGT orbit can be chosen such that it is a rational multiple of

the repeat period of the coverage requirement. This implies that we can discretize both of

these repeat periods by a common time step length tstep. The least common multiple of the

numbers of time steps for these two repeat periods would be the number of time steps for

the simulation time horizon length L needed to evaluate the coverage. If there are multiple

target points with different repeat periods for their coverage requirements, assuming that

their repeat periods can each be represented as an integer number of time steps with the

common interval tstep, then we can use the least common multiple of these time steps as

the repeat period of the “overall” coverage requirement. The circular convolution formu-

lation and its associated properties are defined over this discretized L-step simulation time

horizon length.

For simplicity, in this chapter, we consider the case in which the repeat period of RGT

is an integer multiple of the repeat period of the coverage requirement; in this case, Tsim =

Tr = Ltstep, where Tsim is the length of the simulation time horizon and Tr is the repeat period

of the orbit. This case can be easily generalized to the above more general case. Note that

the uniformly continuous coverage case can be treated as a special case, where the repeat

period of the orbit (and thus the simulation time horizon) can be arbitrarily chosen.

2.4.1 Access Profile

The relative position vector ρ pointing from a ground target point to a satellite is defined

as:

ρ = rs − rg (2.8)
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where rs is a satellite position vector from the center of the Earth and rg is a target point

position vector from the center of the Earth. Figure 2.2 illustrates this relationship.

𝜀

𝒓#

𝒓$

𝒓$ − 𝒓#

Satellite

Target 
Point

Figure 2.2: Satellite, target point, and elevation angle relationship.

An elevation angle ε of a satellite seen from a ground target point is defined as:

ε = sin−1
(
rg · ρ

∥rg∥∥ρ∥

)
= sin−1(r̂g · ρ̂) (2.9)

where ∥·∥ is the Euclidean norm.

Because the dot product between the unit target point position vector r̂g and the unit

relative position vector ρ̂ continues to change due to the rotation of the Earth and the motion

of a satellite, the elevation angle is, therefore, a function of time, ε = ε(t). An example of

a typical NGSO satellite elevation angle function is shown in the upper part of Figure 2.3.

When the elevation angle of a satellite is above the minimum elevation angle threshold

εmin, which is determined by the mission requirement [5], the satellite is said to be visible

from or to have access to the target point. Since the periods when the satellite has access

to the ground target point are of particular interest, we convert the elevation angle function

into an access profile (or a visibility profile in some literature), which is a binary vector

that indicates either access, 1, or no access, 0, at each time instant. The access profile

is visualized in the lower part of Figure 2.3. This chapter utilizes a sampling method to

generate an access profile. Note that access profiles can be derived in different ways [31,
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32, 33].

The continuous-time elevation angle function ε(t) is sampled at every time step of tstep

to create a discrete-time elevation angle function ε[n] with length L. As mentioned earlier,

L is the number of time steps of the simulation horizon, i.e., Tsim = Ltstep, where Tsim is

the simulation time horizon (which is assumed to be equal to the RGT repeat period Tr in

this chapter for simplicity as discussed above). The access profile vk, j ∈ Z
L
2 between the

kth satellite and the jth target point stores boolean information about the satellite access (or

visibility) state at each discrete-time instant n ∈ {0, ..., L − 1}. Therefore, each element of

the access profile is:

vk, j[n] B


1, if εk, j[n] ≥ εk, j,min[n]

0, otherwise
(2.10)

where n is the discrete-time instant and J is the set of target points. Throughout this chap-

ter, vectors are represented in italic boldface (e.g., vk, j) and their elements are represented

in brackets (e.g., vk, j[n]). To make the notation consistent with the circular convolution

method from the digital signal processing community, the vector index representing the

discrete-time instant n is set to take the range of [0, L − 1].

It is important to note a condition in Eq. (2.10): there must exist at least one access

interval for a given satellite-target for the methods introduced in this chapter to function;

simply stated, the access profile shall be a non-zero vector. The methods introduced in

the following sections are constructed based on the assumption that the access profile is a

non-zero vector.

One can interpret the generalized minimum elevation angle εk, j,min[n] in Eq. (2.10) as

the minimum elevation angle threshold imposed on an access between a satellite k and

a target point j at discrete-time instant n. This chapter assumes that all satellites have a

common generalized minimum elevation angle:

εk, j,min[n] = ε j,min[n], ∀k ∈ {1, ...,N} (2.11)
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Figure 2.3: Sample illustration of a satellite’s elevation angle viewed from a ground point
and corresponding access profile.

When designing a satellite constellation for regional coverage, a constellation must be

spatially and temporally referenced relative to the target point and the epoch. A hypothet-

ical satellite that conveys referenced orbital information, œ0 = [τ, e, i, ω,Ω0,M0]T , for the

constellation is defined as the seed satellite1 and the corresponding œ0 as the seed satel-

lite orbital elements vector. The actual satellites inherit the common orbital characteristics

defined in this seed satellite elements vector, but they independently hold (Ωk,Mk) pairs

that are determined by Eq. (2.7), resulting in the orbital elements vector for each satellite

of œk = [τ, e, i, ω,Ωk,Mk]T where k is an index of a satellite (Ω and M are initial values

referenced to a given epoch; the subscripts refer to the index of a corresponding satellite).

Note that it is not required to have an actual satellite at the seed satellite position; the seed

satellite orbital elements are used as a reference to define the actual satellites in the system.

Let us recall the main assumptions considered thus far: (1) all satellites are placed on

a common repeating ground track constellation as shown in Figure 2.1; and (2) all access

between a target point j and every member satellite in a given constellation are constrained

1The term seed satellite is credited to the software Systems Tool Kit (STK) [34].
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to the same minimum elevation angle threshold as shown in Eq. (2.11). Such assumptions

enable us to utilize a powerful property, a cyclic property, in which all access profiles of the

member satellites in a given constellation are identical, but circularly shifted. Therefore,

any access profile vk, j between the kth satellite and the jth target point can be represented

as a circularly shifted seed satellite access profile v0, j:

vk, j[n] = P nk
π v0, j[n] (2.12)

where Pπ is a permutation matrix with the dimension (L× L) as shown in Eq. (2.13) and nk

is the index representing its (temporal) location of the kth satellite with respect to the seed

satellite along the common ground track.

Pπ =



0 0 0 · · · 1

1 0 0 · · · 0

0 1 0 . . .
...

...
...
. . .
. . . 0

0 0 · · · 1 0


(2.13)

The formal definition and the physical interpretation of nk are explained in Section 2.4.3.

2.4.2 Coverage Timeline and Coverage Requirement

Because there are multiple satellites in the constellation system, the access profiles must

be meshed together to create a coverage timeline over a target point. Hence, a coverage

timeline b j ∈ Z
L
≥0 is an access profile between multiple satellites and the jth target point;

it stores information about the number of satellites in view at each discrete-time instant

n. This is illustrated in Figure 2.4. As before, n1 and n2 are the indices that represent the

temporal locations of the first (k = 1) and second (k = 2) satellite with respect to the seed

satellite (k = 0), respectively. It is important to point out that because the seed satellite

is hypothetical, its access profile is not considered in the coverage timeline. Eq. (2.14)
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provides a mathematical definition of the coverage timeline:

b j[n] =
N∑

k=1

vk, j[n] (2.14)

Note that the coverage timeline is not a binary vector, but instead, it is a non-negative

integer vector.

𝑛"
𝑛#

𝒗%,'
𝒗",'
𝒗#,'

𝒃'
Single-fold coverage
Double-fold coverage

Figure 2.4: Illustration of shifts of access profiles (2-satellite system); notice that the seed
satellite access profile (v0, j) is not part of the coverage timeline.

Next, we define the coverage requirement. A coverage requirement f j ∈ Z
L
≥0 is a vector

of non-negative integers that is created by a user per mission requirement. It is important to

distinguish the difference between the coverage timeline b j and the coverage requirement

f j. The coverage timeline is a coverage performance or a state of a constellation system,

whereas the coverage requirement indicates what a constellation system shall achieve. For

example, in order for a constellation system to achieve f -fold continuous coverage, the

coverage timeline must be greater than or equal to the coverage requirement, that is, at

least f satellite(s) must have access to or be visible by the target point throughout the

simulation time horizon. The coverage satisfactoriness indicator c j indicates the coverage

requirement satisfactoriness of the coverage timeline over a target point j:

c j B


1, if b j[n] ≥ f j[n], ∀n ∈ {0, ..., L − 1}

0, otherwise
(2.15)
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If an area of interest consists of multiple target points (e.g., due to area grid discretiza-

tion), the coverage is satisfactory if all target points are satisfactorily covered. Extending

Eq. (2.15), the satisfactory condition of the coverage over all target points in a setJ can be

expressed as

cJ B


1, if c j = 1, ∀ j ∈ J

0, otherwise
(2.16)

where J is a set of target points. Thus, designers of the constellation system must aim to

satisfy all coverage requirements on every target point as each target point may impose its

own unique coverage requirement.

2.4.3 Constellation Pattern Vector

We express the time shifts of satellites along the ground track with respect to the seed

satellite in a discrete-time binary sequence x ∈ ZL
2 and refer to it as the constellation

pattern vector:

x[n] B


1, if n = nk

0, otherwise
(2.17)

The temporal location index, nk, can be interpreted as the time-delay index for the kth

satellite. This is because the kth satellite that is delayed behind the seed satellite by the

time difference of ∆tk = tstepnk over the common ground track can be equivalently shown as

a unit impulse at time instant n = nk on a constellation pattern vector x. This is illustrated

in Figure 2.5. The left-hand side of the figure shows a snapshot of an arbitrary constellation

system: a seed satellite depicted as the green circle and an arbitrary kth satellite depicted as

the yellow circle in an expanded ground track view. The kth satellite is positioned behind

the seed satellite in a moving direction by the time unit of ∆tk. That is, the kth satellite

will occupy the current position of the seed satellite ∆tk time units later (i.e., nk time steps

later). The equivalent representation in the constellation pattern vector form is shown on
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the right-hand side of the figure. In this case, the position of the kth satellite is represented

as a red impulse, which represents the time delay with respect to the seed satellite.

Seed Satellite

𝑘th Satellite

Δ𝑡$

𝑛$

Constellation Pattern Vector

Seed Satellite 𝑘th Satellite

0 𝐿 − 1

Figure 2.5: Illustration of a satellite time shift and its representation in the constellation
pattern vector form; the direction of the motion of satellites is indicated by the arrow on
the left-hand side of the figure.

From Eq. (2.17) and because L is assumed to cover exactly one repeat period of the

RGT, we can deduce the total number of satellites in the constellation from the constellation

pattern vector as

N =
L−1∑
n=0

x[n] (2.18)

2.4.4 Circular Convolution Phenomenon

The discrete-time sequences, v0, j, x, and b j, defined in the previous sections have a finite

periodic length of L due to the cyclic property of the closed relative ground track assump-

tion. Note that, as mentioned earlier, this length of the vectors is the total number of time

steps for the simulation time horizon.

A discrete circular convolution operation between the seed satellite access profile v0, j

and the constellation pattern vector x produces a coverage timeline b j:

b j[n] = v0, j[n] ⊛ x[n] =
L−1∑
m=0

v0, j[m]x[(n − m) mod L]

= x[n] ⊛ v0, j[n] =
L−1∑
m=0

x[m]v0, j[(n − m) mod L]

(2.19)
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where ⊛ represents a circular convolution operator. (Note that the circular convolution is

commutative.) Or equivalently, this equation can be written as

V0, jx = b j (2.20)

where V0, j ∈ Z
L×L
2 is a seed satellite access profile circulant matrix that is fully specified

by a seed satellite access profile v0, j. Note that a circulant matrix is a special form of a

Toeplitz matrix [35]; each entry of the matrix [α, β] is defined as

V0, j[α, β] = v0, j[(α − β) mod L] (2.21)

where α and β are the row and column indices, respectively, for α, β ∈ {0, 1, · · · , L − 1}.

More information about the circular convolution is referred to Ref. [36]. The derivation

of the circular convolution relationship [Eq. (2.20)] from Eq. (2.14) is described in Ap-

pendix A.2.

To illustrate this relationship, consider a system with œ0 = [4/1, 0, 50◦, 0◦, 350.2◦, 0◦]T

(J2000) and uniformly spaced N = 2 satellites. The corresponding seed satellite access

profile observed from a target J = {(ϕ = 36.7◦N, λ = 137.48◦E)} (a point) with εmin = 10◦

is shown in the top part of Figure 2.6a. In this example, the length of vectors is set to L =

720 such that the corresponding time step is approximately 120 s. The constellation pattern

vector, shown in the middle part of Figure 2.6a, has two unit impulses at n = 0 and n = 360

to represent the temporal locations of two satellites with respect to the seed satellite. The

equivalent orbital elements vectors for these satellites are (refer to Section 2.5.4 for the

derivation):

œ1 = [4/1, 0, 50◦, 0◦, 350.2◦, 0◦]T

œ2 = [4/1, 0, 50◦, 0◦, 170.2◦, 0◦]T

In this case, the first satellite of the system is essentially identical to the seed satellite
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(i.e., a unit impulse at n = 0). The circular convolution between the seed satellite ac-

cess profile and the constellation pattern vector yields the coverage timeline shown in the

bottom part of Figure 2.6a. A snapshot of the corresponding configuration in the Earth-

centered inertial (ECI) and Earth-centered Earth-fixed (ECEF) frame at n = 0 is shown in

Figure 2.6b.

Seed Satellite Access Profile
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0

1

0

1

Constellation Pattern Vector (N = 2)
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Coverage Timeline

100 200 300 400 500 600 700

0

1

(a) The APC decomposition.

ECI Orbit

ECEF Orbit

Target Point(s)

Satellite(s)

(b) The corresponding configuration in the ECI
and ECEF frame at n = 0.

Figure 2.6: APC decomposition and its equivalent constellation representation in 3D space.

This formulation exhibits the satellite constellation architecture by laying out the re-

lationships between the common orbital characteristics, the satellite constellation pattern,

and the coverage performance. We shall hereafter refer to this type of satellite constel-

lation design decomposition into three vectors v0, j, x, and b j as the APC decomposition,

following the acronyms of the seed satellite Access profile, constellation Pattern, and Cov-

erage timeline. Methods that are derived based on the APC decomposition are called the

APC-based methods.
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2.5 Regional Coverage Constellation Pattern Design Methods

2.5.1 Problem Statement

Following the APC decomposition introduced herein, the satellite constellation design can

be split into defining the reference seed satellite orbital elements œ0 (which includes the

common orbital characteristics) and defining the constellation pattern vector x. Conven-

tional methods often make simple assumptions for x such as a symmetric pattern (e.g.,

Walker constellations) and optimize œ0; instead, this chapter focuses on the optimization

of the x itself without such simplifying assumptions. Mathematically, the goal of this chap-

ter is to solve for the optimal constellation pattern vector x∗ such that the coverage timeline

b∗j = v0, j ⊛ x∗ is equal to or greater than the designated f coverage threshold. The objec-

tive function is the number of satellites required N, which can be deduced from Eq. (2.18).

The seed satellite orbital elements œ0 is considered as a given input so that the devel-

oped constellation pattern design approach can be integrated with the existing established

methods for determining œ0 (e.g., brute-force methods, genetic algorithms). Appendix A.3

introduces an example approach to integrate the determination of the seed satellite orbital

elements œ0 and the design of the satellite constellation pattern design x.

This section introduces two constellation pattern optimization methods based on the

circular convolution formulation and APC decomposition. First, we derive a rather con-

ventional iterative method using a common assumption of symmetry; this method is used

as a baseline for later analysis. Next, we develop a novel and general method based on

binary integer linear programming to perform rigorous optimization of the constellation

pattern.

2.5.2 Baseline: Quasi-Symmetric Method

The baseline quasi-symmetric method aims to design the satellite constellation pattern with

uniform temporal spacing between satellites along the common closed trajectory in space.
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Given a length L of the constellation pattern vector, the uniform temporal spacing constant

η ∈ R>0 between satellites is defined as

η B
L
N

(2.22)

We first consider a special case where η is an integer. In this case and assuming n1 = 0,

we can construct a symmetric constellation pattern (i.e., a uniform distribution of satel-

lites along the common ground track of the constellation system) using the following the

constellation pattern vector form:

x̄[n] B
N∑

k=1

δ[n − η(k − 1)] (2.23)

where

δ[n] =


1, if n = 0

0, otherwise
(2.24)

A user is allowed to arbitrarily set the temporal location of the first satellite n1 (0 ≤ n1 < L).

In this case, Eq. (2.23) requires a circular shift of x̄[n]:

x[n] = x̄[n] ⊛ δ[n − n1] (2.25)

Next, we generalize this formulation into the case where η is not an integer. In this case,

we cannot achieve a strictly symmetric constellation pattern with the given discretization,

but only a near-symmetric one; we call the latter a quasi-symmetric constellation pattern

in this chapter. For this generalization, the only change we need to make is to replace

Eq. (2.23) by Eq. (2.26):

x̄[n] B
N∑

k=1

δ[nint(n − η(k − 1))] (2.26)
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where nint(·) is the nearest integer function, which is used to guarantee the integer-indexing

of a vector.

Algorithm 1 is designed to perform an iterative search about N and n1 until the coverage

requirement is satisfied and outputs the optimal constellation pattern vector x∗ given a set of

v0, j and f j. The algorithm consists of two nested iterative loops. The outer loop increments

N by one at each iteration, whereas the inner loop performs an exhaustive search about n1

to find the N-minimizing temporal location of the first satellite. (Note that the range for

the inner loop is set to 0 ≤ n1 ≤ nint(η) − 1 due to the (quasi-)symmetry of the resulting

constellation pattern vector.) These loops break when the coverage requirement is satisfied

as shown in Algorithm 1. If no quasi-symmetric constellation is found until the outer loop

for N reaches the maximum number of satellites, which is equal to L, the method would

determine the problem to be infeasible.

Algorithm 1: Quasi-symmetric method to compute x∗, b∗j, N, and n1 (point-
coverage)

Input: v0, j,f j

Output: x∗, b∗j, N, and n1

1 N = 1
2 while True do
3 if N ≤ L then
4 Generate x̄[n] based on η B L/N as outlined in Eq. (2.23)
5 for n1 = 0, ..., nint(η) − 1 do
6 Generate x[n] based on x̄[n] and n1 as outlined in Eq. (2.25)
7 Compute b j[n] = v0, j[n] ⊛ x[n] via Eq. (2.19)
8 if c j = 1 as in Eq. (2.15) then
9 Break the loops

10 return x∗, b∗j, N [Eq. (2.18)], and n1

11 N = N + 1
12 else
13 return Infeasible

For an area of interest consisting of multiple target points, a user may replace line 9 in

Algorithm 1 with “if cJ = 1 as in Eq. (2.16) then”. This guarantees the iterative search

until all target points are satisfactorily covered. Similarly, one can come up with a custom
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termination criterion and/or figure of merit, such as time percent coverage or area percent

coverage metrics. This is feasible since each iteration provides a full coverage state across

all target points.

An overview of the quasi-symmetric method is shown in Figure 2.7. The seed satel-

lite orbital elements vector, minimum elevation angle, reference epoch, and a set of target

points are the user-defined parameters, which are determined based on mission require-

ments.

Seed Satellite 
Access Profile

Coverage 
Timeline

N ? L?

n1 = 0
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n1 ? 
nint(?)-1?

Constellation 
Pattern Vector
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Cov. Req. 
Satisfied?

Yes
Constellation 

Pattern Vector

No

n1 = n1 + 1
No

N = N + 1

N = 1

Seed Satellite 
Orbital Vector

Reference 
Epoch

Min. Elevation 
Angle

Target Point 
Set

InfeasibleNo

Figure 2.7: Overview of the quasi-symmetric method.

2.5.3 New Method: Binary Integer Linear Programming (BILP) Method

This subsection introduces the new satellite constellation pattern method developed in this

chapter using BILP. The BILP method aims to optimize the constellation pattern in a more

rigorous and general way, without assuming symmetry and, if needed, concurrently con-

sidering multiple sub-constellations. Recall Eq. (2.20):

V0, jx = b j (2.27)
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where V0, j ∈ Z
L×L
2 is a circulant matrix that is fully specified by the seed satellite access

profile v0, j as shown in Eq. (2.21). This definition of V0, j can be expanded as Eq. (2.28):

V0, j =



v0, j[0] v0, j[L − 1] v0, j[L − 2] · · · v0, j[1]

v0, j[1] v0, j[0] v0, j[L − 1] · · · v0, j[2]

v0, j[2] v0, j[1] v0, j[0]
...

...
...

. . .
. . .

v0, j[L − 1] v0, j[L − 2] · · · v0, j[0]


(2.28)

Each column of a circulant matrix V0, j is identical to a circularly-shifted seed satellite

access profile v0, j. Eq. (2.27) can be shown in a matrix form:



v0, j[0] v0, j[L − 1] v0, j[L − 2] · · · v0, j[1]

v0, j[1] v0, j[0] v0, j[L − 1] · · · v0, j[2]
...

...
. . .

. . .
...

v0, j[L − 1] v0, j[L − 2] · · · v0, j[0]





x[0]

x[1]
...

x[L − 1]


=



b j[0]

b j[1]
...

b j[L − 1]


(2.29)

An interesting observation can be formalized. If we are given v0, j and x, then we

can produce b j—this is the assumption of the quasi-symmetric method at each iteration.

Likewise, if v0, j and b j are given, then we can analytically solve for x by solving the

system of linear equations in Eq. (2.27) and obtain x = V −1
0, j b j (det(V0, j) , 0). Since

b j represents the entire coverage timeline, this analysis enables us to find a constellation

pattern vector x that satisfies a given coverage requirement f j.

Although this approach provides us with a way to find the satellite constellation pattern,

the resulting x is not necessarily a binary vector, which violates the nature of the constella-

tion pattern vector. The existence of a satellite at a given instance cannot be represented in

a decimal number but only as either one or zero. Therefore, to guarantee a physical quan-

tification of satellites, we shall employ the binary integer linear programming, or BILP, to
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solve for x∗ which satisfies the inequality constraint:

V0, jx
∗ = b∗j ≥ f j (2.30)

Before we formalize the BILP problem that solves Eq. (2.30), we introduce linear prop-

erties associated with Eq. (2.27).

Multiple Target Points

Because the system is linear, we can extend Eq. (2.27) to an area of interest that consists of

multiple target points: 

V0,1

V0,2

...

V0,|J|


x =



b1

b2

...

b|J|


(2.31)

where |J| is the cardinality of a target point set J . Eq. (2.31) has the dimension of (|J|L×

L) · (L × 1) = (|J|L × 1).

The augmented circulant matrix on the left-hand side is a matrix of matrices obtained

by appending all circulant matrices V0,1, ...,V0,|J| linearly. Similarly, the augmented cover-

age timeline vector is also obtained by appending all coverage timeline vectors b1, ..., b|J|

linearly. Here, the constellation pattern vector x represents a single constellation configu-

ration that satisfies the augmented linear condition.

Multiple Sub-Constellations

Another direction of linearity regarding having multiple sub-constellations is observed. We

consider a constellation system consisting of multiple sub-constellations with different seed

satellite access profiles, v(1)
0, j, ...,v

(z)
0, j, ...,v

(|Z|)
0, j , where superscript z in parenthesis denotes the

index of a sub-constellation, Z is a set of sub-constellations, and |Z| represents its cardi-

nality. Each sub-constellation seed satellite access profile v(z)
0, j is computed based on its seed
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satellite orbital elements vector œ(z)
0 and the modified minimum elevation angle threshold

ε(z)
j,min[n], j ∈ J , z ∈ Z, n ∈ {0, ..., L − 1}, which is only applicable to the BILP method

(since the quasi-symmetric method does not define multiple sub-constellations). The goal

of the multiple sub-constellation system is to satisfy a common coverage requirement over

a single target point j. Thus, this can be incorporated by replacing Eq. (2.27) by the fol-

lowing equation:

[
V (1)

0, j V (2)
0, j · · · V (|Z|)

0, j

]


x(1)

x(2)

...

x(|Z|)


= b j (2.32)

where the dimension of the system is (L × |Z| L) · (|Z| L × 1) = (L × 1).

To guarantee the validity of this approach, we assume a synchronization condition

among the sub-constellations to guarantee synchronized repeatability of the resulting cov-

erage timeline:

T (1)
r = ... = T (z)

r = ... = T (|Z|)
r (2.33)

where T (z)
r , z ∈ Z is the period of repetition, which can be written as a function of a, e,

and i and is therefore unique to each sub-constellation. Note that this does not mean that

the individual orbital elements for each sub-constellation need to be all identical; instead,

it only means that the period of repetition, defined by Eq. (2.1), needs to be identical.
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A System of Multiple Sub-Constellations for Multiple Target Points

Combining both directions of linearity—multiple target points and multiple sub-constellations—

we get the following generalized governing relationship:



V (1)
0,1 V (2)

0,1 · · · V (|Z|)
0,1

V (1)
0,2 V (2)

0,2 · · · V (|Z|)
0,2

...
...

. . .
...

V (1)
0,|J| V (2)

0,|J| · · · V (|Z|)
0,|J|





x(1)

x(2)

...

x(|Z|)


=



b1

b2

...

b|J|


(2.34)

where the dimension of the system is (|J| L × |Z| L) · (|Z| L × 1) = (|J| L × 1).

Eq. (2.34) can be expressed in an indexed equation form:

|Z|∑
z=1

V (z)
0, j x

(z) = b j, ∀ j ∈ J (2.35)

where the subscript j is the target point index and the superscript z is the sub-constellation

index.

The physical interpretation of Eq. (2.34) is as follows: it represents a linear relationship

between the physical configuration of a system of multiple sub-constellations and the re-

sulting coverage timelines over a set of multiple target points. Here, each sub-constellation

may exhibit its own unique orbital characteristics. For example, a sub-constellation (z = 1)

may be placed on a critically-inclined elliptic orbit while a sub-constellation (z = 2) may

be placed on a circular low Earth orbit. Similarly, each target point may impose an inde-

pendent coverage requirement. For example, a target point ( j = 1) may require continuous

single-fold coverage whereas a target point ( j = 2) may require a sinusoidal-like time-

varying coverage, fluctuating between the double and triple folds. Revisiting the inequality

constraint as shown in Eq. (2.30), it is the goal of the binary integer linear programming

to determine the satellite constellation configurations x(1), ...,x(z), ...,x(|Z|) that satisfy this

complex relationship.
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Binary Integer Linear Programming (BILP) Problem Formulation

Let us assume that we want to achieve a f j-fold coverage system (∀ j ∈ J) with the given

v(1)
0, j, ...,v

(z)
0, j, ...,v

(|Z|)
0, j vectors. The BILP formulation is shown in Eq. (2.36). Solving the

most general form of the problem, Eq. (2.35), via BILP yields an optimal solution in the

form of “a system of multiple sub-constellations that simultaneously satisfies the coverage

requirements over multiple target points”:

minimize
x

|Z|∑
z=1

1Tx(z)

subject to
|Z|∑
z=1

V (z)
0, j x

(z) ≥ f j, ∀ j ∈ J

x(z) ∈ ZL
2 , ∀z ∈ Z

(2.36)

where the binary design variable constraint is imposed on the elements of the constellation

pattern vector x to reflect the physical quantification of satellites. The solution to this BILP

problem is the optimal constellation pattern vector x∗.

An overview of the BILP method is shown in Figure 2.8.
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Access Profile

Binary Integer Linear Programming
Constellation 

Pattern Vector

Seed Satellite 
Orbital Vector
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Epoch

Target Point 
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Timeline 

Requirement

Min. Elevation 
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Figure 2.8: Overview of the binary integer linear programming method.
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2.5.4 Derivation of Ω and M from the Constellation Pattern Vector

Once the aforementioned methods obtain an optimal constellation pattern vector, it must

be post-processed to extract interpretable orbital information—a set of (Ω,M)k where k is

the index of a satellite. Every impulse on a constellation pattern vector corresponds to a

point in the (Ω,M)-space. Given nk found from the constellation pattern vector, one can

find (Ω,M)k set by solving the following system of equations:

NP(Ωk −Ω0) + ND(Mk − M0) = 0 mod (2π) (2.37a)

Ωk = nk
2πND

L
+ Ω0 (2.37b)

Note that Eq. (2.37a) is rearranged from Eq. (2.7) [30]. The derivation of Eq. (2.37b) is

explained in Appendix A.4.

2.6 Illustrative Examples

This section aims to demonstrate the general applicability of and the computational ef-

ficiency associated with the proposed methods under various mission profiles. Five il-

lustrative examples are uniquely set up by varying orbital characteristics, area of interest

properties, minimum elevation angle, and coverage requirements to illustrate the APC de-

composition.

All illustrative examples are conducted on an Intel Core i9-9940X Processor @3.30

GHz platform. For BILP problems, Gurobi 9.0.0 is used with the default termination setting

[37]. The referenced ellipsoid model adopts the World Geodetic System 1984 (WGS 84).

It is assumed that all satellites point to their nadir directions. Furthermore, we assume the

utilization of satellite maneuvers to correct and maintain an identical ground track through-

out the satellite lifetime, negating the perturbation effects other than the J2 effect. Lastly,

33



we make an assumption that the minimum elevation angle threshold is time-invariant:

ε j,min[n] = ε j,min, ∀n ∈ {0, ..., L − 1}

Table 2.1 is a list of parameters used for each example study. The five examples are

chosen to test different capabilities of the methods: Example 1 for single-fold continuous

coverage over a single target point; Example 2 for time-varying coverage over a single

target point; Example 3 for single-fold continuous coverage over multiple target points;

Example 4 for time-varying and spatially-varying coverage over multiple target points;

and Example 5 for multiple sub-constellations over multiple target points. All examples

uniquely illustrate a variety of orbit (circular vs. critically-inclined elliptic, prograde vs.

retrograde, and low vs. high altitudes) and a variety of areas of interest (a single target

point vs. multiple target points and contiguous vs. discontiguous). Both the baseline quasi-

symmetric method and the BILP method are applied to all examples, with an exception of

the quasi-symmetric method for Example 5 due to its incapability of handling multiple sub-

constellations. In this section, the subscripts qs and bilp denote variables associated with

the quasi-symmetric and the BILP methods, respectively. The rest of this section discusses

the details of each illustrative case.
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2.6.1 Example 1. Single-Fold Continuous Coverage over a Single Target Point

A target point is located at {(ϕ = 34.75◦N, λ = 84.39◦W)} and requires εmin = 5◦. A

seed satellite orbital elements vector œ0 = [12/1, 0, 102.9◦, 0◦, 98.3◦, 0◦]T is assumed. The

period of repetition is 86 400 s. The length of vectors is selected, L = 720, such that the

time step is 120 s. The objective is to find the optimal constellation pattern vector x∗ that

satisfies a single-fold continuous coverage requirement (f = 1).

The results are obtained as follows:

x∗qs[n] =


1, for n =

0, 33, 65, 98, 131, 164, 196, 229, 262, 295, 327, 360, 393, 425, . . .

458, 491, 524, 556, 589, 622, 655, 687

0, otherwise

x∗bilp[n] =


1, for n =

39, 73, 79, 89, 170, 184, 234, 250, 331, 341, 347, 492, 502, . . .

542, 638, 648, 654, 663

0, otherwise

where the total number of satellites obtained for each method is Nqs = 22 and Nbilp = 18,

with the computational time 0.1 s for the quasi-symmetric method and 5937.6 s for the

BILP method. The results indicate that, although the computational cost for the BILP

method is longer, it can explore a substantially larger design space and achieve a fewer-

satellite configuration than the quasi-symmetric method by breaking the symmetry.

Figure 2.9 illustrates the (Ω,M)-space and where each of the quasi-symmetric and BILP

solution constellations lies. In this example, L = 720; therefore, there are L = 720 number

of admissible points in the (Ω,M)-space into which a satellite can be placed. Analyzing

the patterns in Figure 2.9, the quasi-symmetric set depicts a lattice-like symmetry in the

(Ω,M)-space whereas the BILP set exhibits asymmetry in the (Ω,M)-space.

The APC decomposition figures are shown in Figure 2.10. One can observe that the

single-fold continuous coverage requirement is satisfied everywhere. Again, the asymmetry
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Figure 2.9: Example 1: Admissible set, quasi-symmetric set, and binary integer linear
programming set in the (Ω,M)-space.

in the constellation pattern vector from the BILP method is contrasted with the symmetry

in that from the quasi-symmetric method. Note that the coverage timeline for the quasi-

symmetric constellation may not be strictly symmetric as η is not an integer in this case.

A snapshot of the corresponding constellation configurations at n = 0 is shown in

Figure 2.11. This figure visually shows that the BILP method is taking advantage of the

asymmetry to achieve a smaller number of satellites.

2.6.2 Example 2. Time-Varying Coverage over a Single Target Point

In this example, we execute a single variation to Example 1 such that the coverage require-

ment is now periodically time-varying with the rest of the parameters being identical (e.g.,

L = 720). The objective is to find the optimal constellation pattern vector x∗ that satisfies
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(a) Quasi-Symmetric method.
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(b) BILP method.

Figure 2.10: Example 1: the APC decomposition.

(a) Quasi-Symmetric 22-sat constella-
tion. (b) BILP 18-sat constellation.

Figure 2.11: Example 1: 3D view of generated constellations at n = 0 (ECI frame).

a specialized threshold function, namely, a square wave function:

f [n] =


2, for 240 ≤ n ≤ 480

1, otherwise

A coverage requirement is now time-dependent; the value of the square wave function

varies between values 1 and 2. This requires that some parts of the simulation period must

be continuously covered by at least two satellites (double-fold) and by at least one satellite
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(single-fold) during the other part of the simulation period. This case is an abstract illus-

tration of general time-varying constellation applications. For example, a communication

satellite constellation may require two satellites during the day for doubled-capacity and

one satellite during the night for a quiescent mode.

The results are obtained as follows:

x∗qs[n] =


1, for n =

0, 22, 44, 65, 87, 109, 131, 153, 175, 196, 218, 240, 262, 284, . . .

305, 327, 349, 371, 393, 415, 436, 458, 480, 502, 524, 545, . . .

567, 589, 611, 633, 655, 676, 698

0, otherwise

x∗bilp[n] =


1, for n =

5, 23, 39, 75, 89, 114, 124, 130, 164, 215, 230, 255, 265, 483, . . .

493, 518, 533, 584, 618, 624, 634, 659, 673, 709

0, otherwise

where the total number of satellites obtained for each method is Nqs = 33 and Nbilp = 24,

and the computational time is 0.1 s for the quasi-symmetric method and 3712.0 s for the

BILP method. Like in Example 1, although the BILP method takes longer computational

time, it can achieve a constellation pattern solution that requires a significantly smaller

number of satellites than the baseline quasi-symmetric method. The distribution of satel-

lites in the (Ω,M)-space is shown in Figure 2.12.

As shown in Figure 2.13, the BILP constellation produces a coverage timeline that

closely follows the time-varying coverage requirement. Such a coverage timeline is pos-

sible since the BILP constellation is not subject to symmetry in the satellite distribution.

This is not the case for the quasi-symmetric method due to its (quasi-)symmetrical satellite

distribution, which resulted in a conservative solution that provides a double-fold coverage

over the entire period, even when it is not needed. This leads to the superior solution from

the BILP method compared with the baseline quasi-symmetric method. As observed in Ex-
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Figure 2.12: Example 2: admissible set, quasi-symmetric set, and binary integer linear
programming set in the (Ω,M)-space.

ample 1, the BILP method already reduces the number of satellites required compared to

that of the quasi-symmetric method given the single-fold coverage requirement. Changing

only the coverage requirement to be time-varying, we further observe the additional re-

duction of the number of satellites for the BILP method. A snapshot of the corresponding

constellation configurations at n = 0 is shown in Figure 2.14.

2.6.3 Example 3. Single-Fold Continuous Coverage over Multiple Target Points

For this example, we consider a target area, Antarctica, which calls for continuous and

reliable telecommunication systems to support existing and planned scientific expeditions

[38]. The area is discretized into a set of 94 target points following the 3◦-by-3◦ resolu-

tion (latitude-by-longitude). All target points set εmin = 30◦. A seed satellite orbital ele-

ment vector œ0 = [5/1, 0.41, 63.435◦, 90◦, 0◦, 0◦]T (critically-inclined elliptic orbit with the

apogee over the southern hemisphere) is assumed. The period of repetition is 86 076 s.

The length of vectors is selected, L = 718, such that the time step is approximately
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(a) Quasi-Symmetric method.
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(b) BILP method.

Figure 2.13: Example 2: the APC decomposition.

tstep ≈ 120 s. The objective of this example is to design a satellite constellation config-

uration that achieves single-fold continuous coverage (f = 1) over all target points.

Note that this continuous polar coverage is a typical example that is often handled with a

symmetric constellation, and thus we would expect that the quasi-symmetric method would

perform well.

The results are obtained as follows:

x∗qs[n] =


1, for n = 0, 120, 239, 359, 479, 598

0, otherwise

x∗bilp[n] =


1, for n = 96, 310, 358, 562, 612

0, otherwise

where the total number of satellites obtained for each method is Nqs = 6 and Nbilp = 5, and

the computational cost was 10.7 s for the quasi-symmetric method and 748.4 s for the BILP

method. It is worth mentioning that, even for this polar-coverage example for which we

would typically just use a symmetric constellation pattern (i.e., using the baseline method),

the BILP method still achieves an asymmetric constellation pattern with fewer satellites. A
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(a) Quasi-Symmetric 33-sat constella-
tion. (b) BILP 24-sat constellation.

Figure 2.14: Example 2: 3D view of generated constellations at n = 0 (ECI frame).

snapshot of the obtained constellations is indicated in Figure 2.16.

2.6.4 Example 4. Time-Varying and Spatially-Varying Coverage over Multiple Target

Points

In this example, we design a satellite constellation system that performs remote sensing

tasks over two areas of interest: the Amazon and Nile river basins. These areas represent

two of the major river basins in the world thereby making them desirable locations for

monitoring forests, logging, soil and water managements [40, 41], and thus are of great

interest to the international community. Each area of interest is discretized into a set of

target points following the 3◦-by-3◦ resolution (latitude-by-longitude). The Amazon river

basin target point set J1 is composed of 56 target points and the Nile river basin target

point set J2 is composed of 30 target points. The target points are shown in Figure 2.17.

Each target point set is assumed to require different revisit time requirements: the Ama-

zon basin has a revisit time requirement of every twelve hours, starting six hours after the

epoch, whereas the Nile basin has a revisit time requirement of every six hours, starting at

the epoch. We assume that all target points within the same set require simultaneous access

to the system satellites at given revisit time requirements. Note that these requirements
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Figure 2.15: Example 3: Antarctica target points (3◦-by-3◦ resolution); the shapefile is
obtained from Ref. [39].

are not just constraining the revisit time interval but the exact time step for revisit; this is

referred to as the strict revisit time requirement here. Furthermore, all target points are as-

sumed to require the minimum elevation angle threshold of 20°, which corresponds to the

hypothetical sensor’s field-of-view of approximately 110° at a given altitude of satellites.

The length of vectors is chosen, L = 4200 (tstep ≈ 123.4 s), such that we can represent

the complex coverage requirements in an integer-indexed symmetrical form. Note that

this coverage requirement is both time-varying (i.e., periodic) and spatially-varying (i.e.,

different requirements for Amazon and Nile river basin target points).

f j[n] =


1, for n = 175, 525, 875, ..., 4025

0, otherwise
∀ j ∈ J1

f j[n] =


1, for n = 0, 175, 350, 525, 700, 875, ..., 4025

0, otherwise
∀ j ∈ J2

A single-subconstellation system is assumed with the corresponding seed satellite or-

bital elements vector: œ0 = [83/6, 0, 99.2◦, 0◦, 0◦, 0◦]T . This orbit corresponds to an alti-
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(a) Quasi-Symmetric 6-sat constella-
tion.

(b) BILP 5-sat constellation.

Figure 2.16: Example 3: 3D view of generated constellations at n = 0 (ECI frame).

tude of 946.7 km. The period of repetition of this orbit is Tr = 5.184 × 105 s, which is six

days. The system must satisfy: 

V0,1

V0,2

...

V0,86


x ≥



f1

f2

...

f86


where the dimension of this inequality is (361200 × 4200) · (4200 × 1) ≥ (361200 × 1).

The results show that the quasi-symmetric constellation is composed of 96 satellites,

whereas the BILP constellation is composed of 29 satellites. Comparing the computational

cost, the quasi-symmetric method took 486.7 s, whereas the BILP method took only 7.7 s.

This shows a significant improvement of the BILP method in terms of both the number

of satellites and the computational time with respect to the quasi-symmetric constellation.

The quasi-symmetric method is performing poorly because we need a large number of

satellites if the symmetric pattern is used. This factor, together with the large numbers of

target points and time steps, makes the iterative process in the quasi-symmetric method

inefficient. The BILP method, instead, identifies the asymmetric optimal solution with a

significantly smaller number of satellites. The low computational cost for the BILP method

44



-80 -60 -40 -20 0 20 40

Longitude, deg

-30

-20

-10

0

10

20

30

40

50

L
a
ti
tu

d
e
, 
d
e
g

Amazon River Basin Target Points

Nile River Basin Target Points

Figure 2.17: Example 4: Amazon and Nile river basin target points (3◦-by-3◦ resolution);
the polygon shapefiles are retrieved from the dataset provided by the World Bank [42].

is due to the BILP solver, Gurobi in our case; the problem structure allows Gurobi to

perform an efficient presolve procedure, resulting in a short optimization time.

Figure 2.18 and Figure 2.19 show the select snapshots of both the quasi-symmetric

constellation and the BILP constellation in chronological order over the Amazon and Nile

river basins, respectively. (Due to the large number of satellites, the resulting constellation

pattern vector is omitted.) As expected, both constellations provide simultaneous access

to the target points when needed (n = 175 for Amazon river basin; n = 0, 175 for the

Nile river basin), satisfying the strict revisit time requirements. It can be seen that, while

the quasi-symmetric method satisfies the coverage requirements with a (quasi-)symmetric

constellation pattern, the BILP method takes advantage of the asymmetry and satisfies the

same requirements with fewer satellites.
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2.6.5 Example 5. A System of Multiple Sub-Constellations over Multiple Target Points

We consider a most general case that only the BILP method can solve: a system of mul-

tiple sub-constellations over multiple target points. In this example, two target points are

considered in the target point set J = {(ϕ = 64.14◦N, λ = 21.94◦W), (ϕ = 19.07◦N, λ =

72.87◦E)}: Reykjavı́k, Iceland ( j = 1) and Mumbai, India ( j = 2). The minimum elevation

angle for each target point is: ε1,min = 15◦ and ε2,min = 10◦. The objective is to achieve

single-fold continuous coverage over all target points (f j = 1, ∀ j ∈ J).

Two sub-constellations are considered: œ(1)
0 = [8/1, 0, 70◦, 0◦, 0◦, 0◦]T (an altitude of

4149.2 km) and œ(2)
0 = [6/1, 0, 47.915◦, 0◦, 0◦, 0◦]T (an altitude of 6380.3 km). The length

of vectors is selected, L = 717, such that the time step is approximately tstep ≈ 120 s. The

period of repetitions for these sub-constellations are identical, T (1)
r = T (2)

r ≈ 86 024 s, hence

making two sub-constellations synchronous. Note that, even though we are using two sub-

constellations for disconnected regions of interest, the sub-constellations are not defined

one per region of interest; instead, they are used together to satisfy both demands in an

optimal way. The goal of the BILP method is to optimize x(1) and x(2) concurrently such

that the system satisfies the augmented linear condition:

V
(1)

0,1 V (2)
0,1

V (1)
0,2 V (2)

0,2


x

(1)

x(2)

 ≥
f1

f2

⇔ {V (1)
0,1 x

(1) + V (2)
0,1 x

(2) ≥ f1,V
(1)

0,2 x
(1) + V (2)

0,2 x
(2) ≥ f2}

The following optimal constellation pattern vectors are obtained:

x(1)∗[n] =


1, for n = 65, 144, 285, 361

0, otherwise

x(2)∗[n] =


1, for n = 208, 428, 523, 608, 634, 702

0, otherwise
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The number of satellites is 4 for the first sub-constellation and 6 for the second; 10 in

total. The computational time was 5298.7 s.

Figure 2.20 illustrates the benefit of the BILP method. Individually, z = 1 sub-constellation

provides 53.7 % and 37.1 % coverage over j = 1 and j = 2, respectively and z = 2 sub-

constellation provides 65.0 % and 87.0 % coverage over j = 1 and j = 2, respectively. No

individual sub-constellation alone provides complete continuous coverage over any target

point. The BILP method concurrently optimizes x(1) and x(2) such that the continuous

coverage over the whole target set J is achieved while minimizing the total number of

satellites from two sub-constellations. Note that the constellation pattern vectors, x(1)∗ and

x(2)∗, are identical in both sub-figures of Figure 2.20.

(a) Individual contribution over Reykjavı́k, Ice-
land.

(b) Individual contribution over Mumbai, India.

Figure 2.20: Example 5: the APC decomposition.

The optimized two-subconstellation system is shown in Figure 2.21. The sub-constellation

(z = 1) colored in blue (lower altitude) is composed of four satellites while the sub-

constellation (z = 2) colored in red (higher altitude) is composed of six satellites for a

total of ten satellites.

Finally, to show the effectiveness of having the sub-constellations, corner cases are

evaluated considering each individual sub-constellation separately. The results indicate
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that, under the same setting, using only the sub-constellation 1 results in 11 satellites, and

using only sub-constellation 2 also results in 11 satellites. This particular case demonstrates

that through the use of multiple sub-constellations, one can reduce the minimum satellites

required from 11 to 10 by enlarging the design space. Also, it is worth mentioning that the

BILP method can still lead to an optimal solution even for the cases where only part of the

sub-constellation sets is used in the optimal pattern.

(a) View from side.
(b) View from the North Pole.

Figure 2.21: Example 5: 3D view of generated constellation at n = 0 (ECI frame).

2.7 Conclusions

A semi-analytical approach to optimally design a regional coverage satellite constellation

pattern is proposed. By treating the seed satellite access profile and the constellation pat-

tern vector as discrete-time signals, a circular convolution between them creates the cov-

erage timeline. We refer to this formulation as the APC decomposition of the satellite

constellation system. This formulation is used to derive a set of satellite constellation pat-

tern design methods that take a seed satellite access profile and a coverage requirement

as their inputs and output the minimum number of satellites required to satisfy the cov-

erage requirement. Two satellite constellation pattern design methods are introduced: the

baseline quasi-symmetric method and the more general BILP method. The baseline quasi-

symmetric method enforces the conventional assumption of symmetry in the constellation
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pattern and solves for the minimum number of satellites required in the system by incre-

mentally increasing N until the coverage requirement is satisfied. In contrast, the new and

more general BILP method solves for constellation pattern vector x where N and their tem-

poral locations can be deduced by solving a binary integer linear programming problem.

Our analysis shows that, while the quasi-symmetric method can be efficient when we can

satisfy the coverage requirements with a small number of satellites in a symmetric pattern

(e.g., continuous polar coverage), the BILP method always outputs optimal satellite con-

stellation patterns that the baseline method may miss. Furthermore, the BILP method is

applicable to the problems that the quasi-symmetric method cannot solve (e.g., the case

with multiple sub-constellations).

Our ideas respond to the several design features that can reinforce the utility of regional

constellations: multiple target points, complex time-varying and spatially-varying require-

ments, and multiple sub-constellations. The developed circular convolution formulation

allows linearity in both the multiple target points direction and multiple sub-constellations

direction via matrix augmentation. A user can design (1) a single constellation system

that simultaneously satisfies the complex coverage requirement of area targets composed

of multiple target points, (2) a system of multiple sub-constellations that satisfies the com-

plex coverage requirement of a single target point, or (3) a combination of both. These

design features are demonstrated via a series of illustrative examples in Section 2.6. The

resulting general constellation pattern design approach can be integrated with existing or-

bital characteristics design methods and launch/mission constraints to help future satellite

constellation designers rigorously achieve optimal constellation designs.

Despite the demonstrated effectiveness of the proposed approach, there are some possi-

ble directions for future work to improve it further. The first potential direction is related to

the computational time. Due to the nature of the discretization, obtaining a high-fidelity so-

lution computed with fine time discretization would require a large-sized problem and thus

a long computational time. To make the method computationally more scalable, approxi-
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mation algorithms or heuristics methods can be developed to retrieve feasible, yet poten-

tially suboptimal, solutions in a relatively short amount of time. Furthermore, the proposed

method only considers the J2 effect as the disturbance and assumes that the spacecraft has

the maneuvering capability to cancel out other disturbances. This assumption is reasonable

for the proposed method to be used for a high-level constellation pattern design purpose,

but it can be improved for higher-fidelity modeling. Finally, this constellation pattern de-

sign method requires the seed satellite orbital elements as its input. While Appendix C

shows one example process of integrating the proposed approach into the constellation de-

sign practice, further investigation can be performed to ensure an efficient and effective

integration.

This chapter is based on the following publication:

H. Lee, S. Shimizu, S. Yoshikawa, and K. Ho, “Satellite constellation pattern optimization

for complex regional coverage,” Journal of Spacecraft and Rockets, vol. 57, no. 6, pp.

1309–1327, 2020.
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CHAPTER 3

REGIONAL CONSTELLATION RECONFIGURATION PROBLEM: INTEGER

LINEAR PROGRAMMING FORMULATION AND LAGRANGIAN HEURISTIC

METHOD

3.1 Introduction

Satellite constellation systems are often subject to varying requirements and environments

during their operations. Factors that contribute to varying requirements include the change

in an area of interest (e.g., disaster monitoring [43], temporary reconnaissance [44], and

theater situational awareness missions) and the change in required coverage (e.g., switching

from intermittent coverage to single-fold continuous coverage). In addition, the systems

themselves may also be forced to change due to the addition of new satellites (e.g., a staged

deployment [45, 46]) or the loss of existing satellites due to failures [47] and/or end-of-life

decommissions. Under such circumstances, it is logical for system operators to seek an

option to “reconfigure” an existing constellation system to maximize the utility of active

on-orbit assets instead of launching a whole new constellation.

We define constellation reconfiguration as a process of transforming an existing config-

uration into another to maintain the system in an optimal state given a set of new mission

requirements [48, 49]. The design of a reconfiguration process is nontrivial and involves

interdisciplinary fields of studies such as satellite constellation design theory, orbital trans-

fer trajectory optimization, and mathematical programming to enable a robust constellation

reconfiguration framework.

Of particular interest to this chapter is the topic of satellite constellation reconfiguration

in the context of regional coverage, which finds its applications in Earth observations (EO).

Many present-day EO satellite systems are monolithic or small-scale constellation systems
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distributed in near-polar low Earth orbits (LEO), mostly in sun-synchronous orbits to lever-

age consistent illumination conditions. Near-polar orbits enable EO satellite systems to

scan different parts of the globe in each orbit; such an attribute is ideal in detecting changes

in the Earth’s land cover, vegetation, and civil infrastructures. However, the long revisit

time for a particular target is unsuitable for missions that require rapid adaptive mission

planning and enhanced coverage such as satellite-based emergency mapping, surveillance,

and reconnaissance missions, to name a few [50, 51]. Of latest attention to the EO commu-

nity has been the concept of agile satellites that assume attitude control capability, which is

deemed to enhance the overall system responsiveness and scheduling efficiency [52]. Re-

cently, several works have explored the concept of maneuverable satellites in the domain

of EO satellite systems as a new paradigm to bolster the system observation capacity by

directly manipulating the orbits [53, 54, 43, 55]. In this chapter, we investigate the concept

of reconfiguration as a means for system adaptability and responsiveness that adds a new

dimension to the operation of next-generation EO satellite constellation systems.

The problem of satellite constellation reconfiguration consists of two different, yet cou-

pled, problems—the constellation design problem and the constellation transfer problem

[48, 56, 57]. The former deals with the optimal design of a (destination) constellation

configuration that satisfies a set of mission requirements; the latter is concerned with the

minimum-cost transportation of satellites from one configuration to another provided the

knowledge of both end states. Although we may approach these two interdependent prob-

lems independently in the sequential manner (i.e., a destination configuration is first de-

signed and followed by the optimal assignment of satellites to new orbital slots), the out-

come of such an open-loop procedure may result in a suboptimal reconfiguration process as

a whole [48, 57]. Without taking into account the satellite transportation aspect in design,

the optimized new configuration may be too costly or, in fact, infeasible to achieve. This

background motivates us to concurrently consider constellation design and transfer aspects

in satellite constellation reconfiguration.
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The problem of the concurrent constellation design and transfer optimization is highly

complex and challenging. While it is well known that the constellation transfer problem can

be formulated as an assignment problem [58], formulating the constellation design prob-

lem faces a unique mathematical programming challenge due to (i) the potentially needed

complex (time-varying) regional coverage and (ii) the reconfiguration problem with the car-

dinality constraint. First, the constellation design problem for complex regional coverage

may need to incorporate design attributes such as heterogeneity among member satellites

(e.g., different orbits and hardware specs) and asymmetry in satellite distributions. The

classical constellation patterns such as the streets-of-coverage [9, 10], Walker patterns [6,

7, 8], and the tetrahedron elliptical constellation [14] are limiting due to symmetry and

sparsity in satellite distribution, especially with a small number of satellites. Ref. [59] has

shown that, for complex regional coverage, relaxing symmetry and homogeneity assump-

tions of the classical methods enable the exploration of larger design space and hence lead

to the discovery of more efficient constellation pattern sets. How to incorporate the asym-

metric patterns into the constellation reconfiguration while considering the transfer cost

is a challenging problem that needs to be addressed. Second, in the context of satellite

constellation reconfiguration, the design of a destination configuration may be restricted

to a given number of satellites, which we refer to as the cardinality constraint. This is a

logical assumption to make because, without the enforcement of the cardinality constraint,

the optimal design of a destination configuration may require substantially more satellites

than what is readily available for orbital maneuvers. Launching a set of new satellites to

fulfill the deficit within a limited time window can be challenging both financially and

operationally. Thus, considering the satellite reconfiguration problem with the cardinality

constraint is also a challenge.

The challenge not only resides in the integration of constellation design and transfer as-

pects of the reconfiguration problem but also in the solution approach. A solution method

that is computationally efficient and yields high-quality solutions is most desirable, es-
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pecially for mission scenarios that call for rapid system response. How we formulate the

design-transfer model dictates its mathematical property and the pool of applicable solution

algorithms, and hence the time complexity in retrieving solutions. Several satellite constel-

lation reconfiguration studies have been investigated encompassing both the constellation

design and the constellation transfer in various problem settings [47, 44, 53, 43, 60]. While

this stream of research demonstrated the value of concurrent optimization, their mathe-

matical problem formulations were generally nonlinear and often employed meta-heuristic

algorithms. Although meta-heuristic algorithms can be efficient in obtaining high-quality

solutions, they can be computationally expensive for highly-constrained problems and can-

not certify the optimality (or the optimality gap) of the obtained solutions. Therefore, the

principal challenge we face in this work is the entire streamline of mathematical modeling

and optimization that stems from the formulation of the constellation design problem to the

integration of constellation design and transfer aspects and the development of a solution

method.

The main contribution of this chapter is three-fold:

(1) Constellation design problem formulation (Section 3.3). We propose a novel for-

mulation called the maximum coverage problem to design a maximal regional coverage

constellation configuration with the cardinality constraint. The formulation features both

heterogeneity in satellite specifications (e.g., different orbits, fuel states, and sensor pro-

files) and asymmetry in constellation patterns. Moreover, the targets of interest can be of

any nature: a point target, an area, disjointed. Also, each target point can be associated

with different time-varying reward for coverage.

(2) Integrated design-transfer reconfiguration model (Section 3.4). We present an inte-

ger linear program (ILP) formulation of the design-transfer problem designated the regional

coverage constellation reconfiguration problem (RCRP). The RCRP formulation incorpo-

rates constellation design and constellation transfer aspects that are otherwise independent

and serial in the state-of-the-art [48]. The concurrent consideration of these two problems
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enables the exploration of larger design space and aid operators with the trade-off analysis

between the transportation cost and the coverage performance. The model supports various

mission concepts of operations that arise in the context of regional coverage missions.

(3) Lagrangian heuristic method for solving RCRP (Section 3.5). We develop a ded-

icated computationally-efficient solution method for the proposed RCRP. The RCRP for-

mulation enables the use of mixed-integer linear programming (MILP) methods such as the

branch-and-bound algorithm to obtain provably-optimal solutions. However, the problem

becomes intractable even for moderately-sized instances (e.g., ten satellites, a thousand or-

bital slots, and thirty target points). Responding to this challenge, we propose a Lagrangian

relaxation-based heuristic method to approach large-scale optimization. The key idea is

to relax a set of complicating constraints to reveal and exploit the special substructure of

the problem that is much easier to solve. The results of the computational experiments

attest to the near-optimality of the Lagrangian heuristic solutions compared to the solutions

obtained by a commercial solver at significantly faster runtime.

The remainder of this chapter is organized as follows. Section 3.2 overviews the back-

ground materials. Section 3.3 introduces the constellation design problem with the cardi-

nality constraint. Section 3.4 provides a mathematical formulation of the design-transfer

problem and discusses the characteristics of the problem. Then, Section 3.5 introduces the

developed Lagrangian heuristic method to solve the proposed problem formulation. Sec-

tion 3.6 introduces a possible extension of the proposed formulation and method that can

be practically important. In Section 3.7, we conduct computational experiments to demon-

strate the value of the developed method and provide an illustrative example applied to the

case of federated disaster monitoring. Finally, Section 3.8 concludes this chapter.
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3.2 Preliminaries

The primary objectives of this chapter are to (i) propose an optimization problem formula-

tion that models the constellation design problem, (ii) construct an integrated constellation

design-transfer reconfiguration model, and (iii) develop a dedicated solution method. In

this section, we discuss materials that are relevant to (i) and (ii). In Section 3.2.1, we re-

view the constellation-coverage model that serves as a building block for the mathematical

formulation of the constellation design problem. In Section 3.2.3, we review a constella-

tion transfer problem model by Ref. [58] focusing on the formulation and the mathematical

property.

Notation. We use boldface letters to represent vectors, for example, φ = (φi js ∈ {0, 1} :

i ∈ I, j ∈ Js, s ∈ S) and y = (ytp ∈ {0, 1} : t ∈ T , p ∈ P). We use the asterisk

symbol in superscript (·)∗ to denote the optimality of a variable (·). We denote Z(·) the

optimal objective function value of a given problem with parameters (·). ZLP denotes the

optimal value of a given problem with integrality constraints dropped, hence the name

linear programming (LP) relaxation bound. Co(·) denotes the convex hull of a set (·). We

let | · | denote the cardinality of a set (·).

3.2.1 Constellation-Coverage Model

We introduce the constellation-coverage model that relates the configuration of a constella-

tion system with its coverage performance. In this model, the finite time horizon of period

T is discretized into a set of time steps with time step size ∆t. Let T B {0, 1, . . . ,m − 1}

(where m∆t = T ) be the set of time step indices t such that the set {t(∆t) : t ∈ T } is the

discrete-time finite horizon. Let J be the set of orbital slot indices; each orbital slot j pos-

sesses a set of unique orbital elements œ j = (a j, e j, inc j, ω j,Ω j,M j). Here, a, e, inc, ω, Ω,

and M each represents the semi-major axis, eccentricity, inclination, argument of periapsis,

right ascension of ascending node (RAAN), and mean anomaly of an orbit, respectively.
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We let P be the set of target point indices p.

Model Definitions

For the ease of description, and without loss of generality, we consider the model for a

single target point.

Definition 1 (Visibility matrix). Let Vt j denote the Boolean visibility state that equals 1 if

a satellite on orbital slot j covers the target point at time step t. We let V = (Vt j ∈ Z
2
≥0 : t ∈

T , j ∈ J) denote a visibility matrix where Z≥0 denotes the set of non-negative integers.

To construct V , the following parameters need to be specified for each orbital slot: the

orbital elements œ j, the field-of-view of a satellite sensor, the coordinates of a target point,

and the epoch at which the finite time horizon is referenced to. With these parameters,

the orbital slot is propagated under the governing equations of motion (e.g., J2-perturbed

Keplerian motion) for the finite time horizon of period T ; at each time step t, the Boolean

visibility masking is applied to construct an element of a visibility matrix Vt j.

Definition 2 (Constellation pattern vector). A constellation pattern vector x = (x j ∈ {0, 1} :

j ∈ J) specifies the relative distribution of satellites in a given system (or simply, the

configuration of a constellation system). Each element of x is defined as:

x j B


1, if a satellite occupies orbital slot j

0, otherwise

Definition 3 (Coverage timeline). Let bt be the number of satellite(s) in view from the

target point at time step t. Then, we let b = (bt ∈ Z≥0 : t ∈ T ) denote a coverage timeline.

Here, the visibility of a satellite from a target point follows from the Boolean visibility

masking.

Remark 1 (A Linear System). We can relate visibility matrix V , constellation pattern vector
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x, and coverage timeline b as a linear system. Mathematically,

bt =
∑
j∈J

Vt jx j (3.1)

In this model, the set J can comprise orbital slots with different orbital characteristics

without any predefined rule. Because satellites on these orbital slots experience different

degrees of orbital perturbations over time, the constellation-coverage model is only valid

within the specified time horizon of period T . There will be a loss of fidelity in the constel-

lation and coverage relationship beyond the specified time horizon. Such a case is indeed

suitable for the planning of many temporary mission operations. However, some cases re-

quire persistency in coverage of a region of interest for a long-term horizon. To account for

it, we make several assumptions about the constellation-coverage model. In what follows,

we provide an overview of the special case.

Special Case: APC Decomposition

To guarantee persistent regional coverage, Ref. [59] introduced a particular constellation-

coverage model called the APC decomposition (named after the three finite discrete-time

sequences of the special case model: the visibility (Access) profile, constellation Pattern

vector, and Coverage timeline) by making two assumptions about the constellation model:

(i) the repeating ground track (RGT) orbits and (ii) the common ground track constellation.

In what follows, we review the assumptions and the definitions of APC decomposition

model by Ref. [59].

Assumption 1 (Repeating ground track orbit). All system satellites are placed on RGT

orbits.

A ground track is the trace of a satellite’s sub-satellite points on the surface of a plan-

etary body. A satellite on an RGT orbit makes NP number of revolutions in ND number

of nodal periods. There is a finite time horizon of period T (often called a period of rep-
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etition) for which a satellite repeats its closed relative trajectory exactly and periodically.

Expressing this condition, we get:

T = NPTS = NDTG

where NP and ND are positive integers. TS is the nodal period of a satellite due to both

nominal motion and perturbations and TG is the nodal period of Greenwich.

When designing a satellite constellation pattern for persistent regional coverage, it is

important to consider the resonance of a satellite orbit with respect to a region of interest.

Because an RGT orbit is resonant with the planetary body’s rotation, its satellite-to-target

coverage state can be modeled as a periodic finite-state automaton for a stationary target

on the surface of a planetary body. This logic is well supported in a quantitative study by

Hanson et al., which has shown that RGT orbits yield better partial coverage performance

than non-RGT orbits [16].

Assumption 2 (Common ground track constellation). All system satellites follow the same

trajectory in a rotating frame of reference.

All satellites in a common ground track constellation share identical semi-major axis

a, eccentricity e, inclination inc, and argument of periapsis ω but each satellite k indepen-

dently holds right ascension of ascending node (RAAN) Ωk and initial mean anomaly Mk

pairs that satisfy the following distribution rule [30]:

NPΩk + NDMk = constant mod 2π

Lastly, we comment on the orbital characteristics for a set of candidate orbits for re-

gional coverage. To provide a persistent regional coverage, it is important to consider the

long-term stability of satellite orbits under perturbation effects. Therefore, in addition to

our earlier assumption on RGT orbits, we assume a set of candidate orbits to be either circu-
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lar orbits or elliptic orbits with critical inclinations so that no high orbital maintenance costs

are required to negate perturbation effects (e.g., maintaining the argument of periapsis).

With these assumptions, we add following new definitions to the model to accommo-

date the special case.

Definition 4 (Reference visibility profile). Let vt denote the Boolean visibility state that

equals 1 if a reference satellite covers a target point at time step t (0 otherwise). Then, we

denote v = (vt ∈ {0, 1} : t ∈ T ) the reference visibility profile.

Definition 5 (Visibility circulant matrix). A visibility circulant matrix V is the m×m matrix

whose columns are the cyclic permutations of v:

V = circ(v) =



v0 vm−1 · · · v1

v1 v0 · · · v2

...
...
. . .

...

vm−1 vm−2 · · · v0


where the (t, j) entry of V is denoted with the modulo operator as Vt j = v(t− j) mod m; circ(·)

is the circulant operator that takes its argument and generates a circulant matrix as defined

above.

Remark 2 (Cyclic property [59]). Under the aforementioned assumptions, a common RGT

constellation system admits the cyclic property. The cyclic property states that a visibility

profile is a cyclic shift of the reference visibility profile. This property follows from the

fundamental assumptions of RGT orbits and common ground track constellations.

Remark 3 (Circular convolution operation). Following from Remark 2, we can relate ref-

erence visibility profile v, constellation pattern vector x, and coverage timeline b in the

manner prescribed by a circular convolution operation. Mathematically,

bt =
∑
j∈J

v(t− j) mod mx j (3.2)
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Following from the definition of the (t, j) entry of V in Definition 5, Eq. (3.2) can be

written as a linear system in terms of a reference visibility circulant matrix: bt =
∑

j∈J Vt jx j,

which is in the form of Eq. (3.1).

There are two notable benefits to this special case. One unique advantage of this special

case is that one only requires the knowledge of the reference visibility profile and the dis-

tribution of satellite along the common relative trajectory to quantify the satellite coverage

bt of a target point at time step t. The construction of V is significantly faster than the

generic case due to the use of the circulant operator. Another advantage is that, as will be

discussed later in this chapter, having V as a circulant matrix can lead to useful mathe-

matical properties. In particular, in Section 3.3, we show that the upper bound of the LP

relaxation of the maximum coverage problem can be analytically computed if V is circu-

lant. Although not directly relevant to the main contents of this chapter, circulant matrices

can be used to leverage efficient solution methods for certain class of problems (e.g., set

covering problems with circulant matrices in 3.2.2).

Illustrative Example

Example 1 (2-satellite system). We illustrate how all definitions of the model, so called

the vectors of a system, come into play in a simple example. Let œ0 = (a, e, i,Ω, u) =

(12 758.5 km, 0, 50◦, 50◦, 0◦) be the orbital elements of the reference satellite defined in

J2000 frame where u is the argument of latitude defined for circular orbits; this corresponds

to the RGT ratio of NP/ND = 6/1, that is, a satellite makes six revolutions in one nodal day.

Assume a single target point of interest p with the geodetic coordinate (40◦N, 100◦W). The

minimum elevation angle threshold ϑmin of the target is set to 10 deg. Define an arbitrary

constellation pattern vector x with length m = 500 such that x j = 1 for j ∈ {0, 250} and

0 otherwise. When transcribed, this constellation pattern vector represents a constellation

configuration consisting of two uniformly-distributed satellites along the common relative

trajectory, each with its own unique orbital elements: œ1 = (12 758.5 km, 0, 50◦, 50◦, 0◦)
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and œ2 = (12 758.5 km, 0, 50◦, 230◦, 0◦).

The vectors of the system—v, x, and b—are portrayed in Figure 3.1a. The top part

shows the reference visibility profile v which is constructed by propagating a hypothetical

satellite with œ0 for the finite time horizon of period T and applying the Boolean visibility

mask at each time step. The constellation pattern vector x is shown in the middle. Note

that in this example, œ0 = œ1 because x0 = 1; this indicates that satellite 1 is essentially

identical to the hypothetical reference satellite. The resulting coverage timeline b, which

follows directly from Eq. (3.2) of the cyclic property, for this two-satellite system is shown

in the bottom part. The corresponding system is visualized in Figure 3.1b in both the

Earth-centered inertial (ECI) and the Earth-centered, Earth-fixed (ECEF) frames. Notice

that there is a single closed trajectory in the ECEF frame as opposed to two orbital planes in

the ECI frame; each dot along the orbit in the ECEF frame (i.e., the dotted curve) represents

an orbital slot.
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(a) Illustration of v, x, and b. (b) Corresponding constellation configuration in
3-D.

Figure 3.1: Two-satellite system illustrated in Example 1.
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3.2.2 Regional Constellation Design Problem

In Example 1, we demonstrated the analysis of a known system using the vocabularies of

the regional coverage satellite constellation model from Ref. [59]. In this appendix, we

present a direct application of the model by formulating an integer linear programming

problem with its decision variables being x. Instead of pre-specifying it, the goal is to find

the optimal constellation pattern vector x∗ that meets the specified coverage requirement.

Formulation 1 (Regional constellation design problem). Let T = {0, . . . ,m − 1} be the

set of time step indices and J = {0, . . . ,m − 1} be the set of orbital slot indices. The

regional constellation design problem (RCDP) is concerned with the minimum-cost design

of constellation configuration while satisfying the coverage requirement r = (rt ∈ Z≥0 : t ∈

T ) imposed on a target point of interest. RCDP is formulated as an integer linear program

[59]:

(RCDP) Z = min
∑
j∈J

c jx j

s.t.
∑
j∈J

Vt jx j ≥ rt, ∀t ∈ T

x j ∈ {0, 1}, ∀ j ∈ J

where the decision variable x j = 1 if a satellite occupies orbit slot j (x j = 0 otherwise),

c j is the cost of deploying a satellite to orbital slot j, and Z denotes the optimal value of

RCDP.

The problem is an instance of the general class of set covering problems whose goal is to

minimize the cost of covering all elements in the universe. Particularly, when the 0-1 inte-

grality constraints are relaxed to the non-negative integrality constraints, the RCDP mimics

the cyclic staffing problem, which is concerned with the optimal sizing and scheduling of

the workforce given cyclic staffing requirements (e.g., consider a staffing requirement that
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repeats weekly). The cyclic staffing problem is of significant interest to RCDP because

it manifests that RCDP can be efficiently solved to optimality when the visibility profile

contains a block of consecutive ones [61], which is usually observable in cases with high-

altitude orbits or satellites equipped with wide field-of-view sensors. When there are mul-

tiple blocks of consecutive ones (e.g., the reference visibility profile depicted in Example 1

consists of four blocks of consecutive ones), a guaranteed-accuracy heuristic approach is

available [62] with the bound: Zh − Z ≤ ⌈(q − 1)m/k⌉ where Zh denotes the heuristic value,

q denotes the number of blocks of consecutive ones, and k denotes the total number of ones

in the reference visibility profile. Let us demonstrate RCDP in action.

Example 2 (Minimum-satellite RCDP). Consider the case illustrated in Example 1. For

the RCDP-specific parameters, we let rt = 1,∀t ∈ T (single-fold continuous coverage

requirement) and c j = 1,∀ j ∈ J (minimization of the number of satellites). Solving the

RCDP to optimality, we get the optimal constellation pattern vector x∗ that consists of Z =

8 satellites (see the middle part of Figure 3.2a). The corresponding optimal constellation

configuration is pictured in Figure 3.2b.
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(a) Illustration of v, x, and b. (b) Corresponding constellation configuration in
3-D.

Figure 3.2: RCDP solution for Example 2.
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3.2.3 Constellation Transfer Problem

A constellation reconfiguration process incurs costs. In this subsection, we discuss an ILP

formulation that models the constellation transfer aspect of the regional coverage constel-

lation reconfiguration problem. Note that the notations of decision variables and sets used

in this model are only valid in the context of the said problem.

Typically, the transfer problem is considered over a bipartite graph G = (I ∪ J ,E), in

which the nodes of the set I describe the locations of the satellites while the nodes of the

set J describe the locations of the orbital slots. Each edge (i, j) ∈ E is associated with the

weight, or the cost ci j of transferring satellite i to orbital slot j. In this domain, the cost

commonly refers to ∆v or the time-of-flight. Within this framework, the transfer problem

further breaks down into two main components: (i) the combinatorial optimization to find

the minimum-cost assignment of satellites from one configuration to another and (ii) the

orbital transfer trajectory design between a given (satellite, orbital slot) pair. The first com-

ponent is concerned with the minimum-cost bipartite matching, which can be formulated as

an assignment problem [58]; see Formulation 2. The second component deals with the con-

struction of the cost matrix by evaluating the weights of edges in the bipartite graph setting.

One can quantify each weight of the edges by solving the orbital boundary value problem.

Because enumerating every edge can be time-consuming, several studies proposed a rapid

closed-form approximation of the true cost matrices [63, 48]. In this chapter, we limit the

scope of our work to the high-thrust systems due to its benefit of timely reconfiguration,

although the low-thrust systems can also be considered as an alternative option.

Formulation 2 (Assignment problem). Let I = {1, . . . , n} be the set of workers and J =

{1, . . . ,m} be the set of projects. The cost of assigning worker i to project j is denoted

with ci j. In the case of an unbalanced (a rectangular) assignment problem (AP), the goal is

to find the minimum-cost assignment of n workers to m projects such that all workers are

assigned to projects, but not all projects are assigned with workers (i.e., when n < m). AP
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can be formulated as an integer linear program:

(AP) min
∑
i∈I

∑
j∈J

ci jφi j

s.t.
∑
j∈J

φi j = 1, ∀i ∈ I

∑
i∈I

φi j ≤ 1, ∀ j ∈ J

φi j ∈ {0, 1}, ∀i ∈ I,∀ j ∈ J

where the decision variable φi j = 1 if worker i is assigned to project j (φi j = 0 otherwise).

We briefly discuss the concepts of totally unimodular (TU) matrices and the integral

polyhedron, which are useful in leading to the discussion of the assignment problem. These

concepts will come in handy later in this chapter.

Definition 6 (Total unimodularity). An integral matrix A is TU if every square sub-matrix

of A has determinant equal to 0, 1, or -1.

Theorem 1 (Hoffman-Kruskal [64]). Let A be an integral matrix. The polyhedron {x :

Ax ≤ b,x ≥ 0} is integral for all integral vector b if and only if A is TU.

One special feature of AP is that the problem satisfies Theorem 1. That is, the constraint

matrix of AP (also known as the incidence matrix of a bipartite graph) is totally unimod-

ular and the right-hand vector is integral; hence, the extreme points of the corresponding

polytope are integral. We say that such a problem possesses the integrality property. Con-

sequently, the problem can be efficiently solved as a linear program (e.g., the simplex or

the interior-point methods) by relaxing the integrality constraints, also known as the linear

programming relaxation, and yet obtain integral optimal solutions. Many other specialized

algorithms are also available such as the polynomial-time Hungarian algorithm [65] (also

known as the Kuhn-Munkres algorithm; the asymptotic complexity known to be O(m3) for
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a square m ×m matrix) or the auction algorithm (a pseudopolynomial complexity [66] and

a polynomial complexity with ϵ-scaling [67]).

Assignment problem has attracted much attention in the field of satellite constellation

reconfiguration research as an optimization model for a constellation transfer problem.

Introduced in a study by de Weck et al. [58], a constellation transfer problem may be

intuitively modeled as AP using the following analogy: the satellites as the workers and

the orbital slots as the projects; the coefficient ci j as the cost (e.g., the fuel consumption)

of transferring satellite i to orbital slot j. The goal is to find the minimum-cost assignment

of n satellites to m orbital slots. In this chapter, we adopt this transcription of the AP

formulation in the modeling of a constellation transfer problem. For more information

about the particular cost matrix generation used in this chapter, refer to Ref. [68].

3.3 Constellation Design: Maximum Coverage Problem

In this section, we introduce an ILP formulation, the maximum coverage problem (MCP),

that models the constellation design aspect of the regional coverage constellation reconfigu-

ration problem building upon the constellation-coverage model introduced in Section 3.2.1.

This MCP formulation is used as a foundation for the proposed satellite constellation re-

configuration problem formulation, introduced in Section 3.4, although MCP itself is not

strictly restricted to the context of constellation reconfiguration. We then illuminate on

some of the interesting properties of this MCP formulation.

Consider the following problem setting. Let T be the set of time step indices and J

be the set of orbital slot indices. Without loss of generality, we consider the problem for a

single target point of interest. Given a finite time horizon of period T , the time-dependent

observation reward π = (πt ∈ R≥0 : t ∈ T ) is defined on a target point of interest. The goal

is to locate n satellites in J such that the total observation reward obtained by covering the

target point is maximized.

In order to obtain the reward πt at time step t, the target point should be covered then.
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We say that the target point is covered if there is at least rt satellite(s) in view; here, the

positive time-dependent coverage threshold r = (rt ∈ Z≥0 : t ∈ T ) is a user-supplied

parameter vector. We can model this system by defining two sets of decision variables—the

constellation pattern variables x and coverage state variables y = (yt ∈ {0, 1} : t ∈ T )—and

a set of inequalities that links x and y. The decision variable x j = 1 if a satellite occupies

orbital slot j (x j = 0 otherwise; see Definition 2). Each element yt of the coverage state

variables takes the value of unity if and only if the coverage threshold of the target point is

satisfied at time step t (yt = 0 otherwise). Mathematically,

yt =


1, if bt =

∑
j∈J Vt jx j ≥ rt

0, otherwise
(3.3)

As can be seen in Eq. (3.3), the coverage state of the target point is conditionally de-

pendent on the configuration of a constellation system. We can linearize this relationship

by introducing a set of inequalities that links x and y for all t ∈ T :

∑
j∈J

Vt jx j ≥ rtyt, ∀t ∈ T

With these conditions as constraints, MCP aims to maximize the coverage reward of

a satellite configuration with a given number of satellites n. The preliminary version of

the mathematical formulation of MCP is introduced in our earlier work [69], which em-

ploys the big-M method to linearize the conditional constraints. We present an improved

formulation of MCP that achieves a tighter integrality gap.

Formulation 3 (Maximum coverage problem). MCP is formulated as an integer linear
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program:

(MCP) Z = max
∑
t∈T

πtyt (3.4a)

s.t.
∑
j∈J

Vt jx j ≥ rtyt, ∀t ∈ T (3.4b)

∑
j∈J

x j = n (3.4c)

x j ∈ {0, 1}, ∀ j ∈ J (3.4d)

yt ∈ {0, 1}, ∀t ∈ T (3.4e)

where Z denotes the optimal value of MCP.

The objective function (3.4a) maximizes the total reward earned by covering a given

target point. Constraints (3.4b) couples the configuration of a system to its coverage state

of the target point. Constraint (3.4c) is the cardinality constraint that restricts the number of

satellites to a fixed value of n. Constraints (3.4d) and (3.4e) define the domains of decision

variables.

The 0-1 integrality constraint on yt can be relaxed to 0 ≤ yt ≤ 1 when rt = 1. This avoids

the use of unnecessary integer definitions, and could potentially facilitate the branch-and-

bound alogrithm necessary to find the optimal solution [70]. Note that for rt > 1, yt may

take a fractional value (take for instance, if rt = 2 and
∑

j∈J Vt jx j = 1, then yt can take 0.5),

therefore the integrality constraints on yt must be enforced.

Remark 4. Note that for rt = 1,∀t ∈ T , the MCP can be shown equivalent to the max-

imal covering location problem (MCLP) that emerges in many problem contexts such as

the facility location problem (see Figure 3.3 for an example illustration of MCLP). MCLP

seeks to locate a number of facilities such that the weighted coverage of demand nodes is

maximized; each facility is pre-specified with a service radius to which it can provide cov-

erage. We have the following analogy: the satellites as the facilities and the time steps as
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the demand nodes. (Conversely, this suggests the general varying-radius r-fold coverage

formulation of MCLP.) Unfortunately, the equivalence in the formulations informs us that

MCP is NP-hard because of the NP-hardness of MCLP [71], which can be deduced using

the argument of the reduction from MCLP to MCP. For more information on the mathe-

matical formulation and the applications of MCLP, readers are encouraged to refer to the

original study by Church and ReVelle [72].

Demand node
Facility
Service radius

Figure 3.3: Illustration of a 5-facility MCLP; the service radius for MCP would be a visi-
bility profile.

Expressing ZLP in terms of an optimal LP solution (x∗,y∗), we get:

ZLP =
∑
t∈T

πty∗t (3.5)

where y∗t is determined from x∗j as

y∗t = min
(

1
rt

∑
j∈J

Vt jx∗j, 1
)

(3.6)

Equation (3.6) follows from the fact that MCP is a maximization problem—yt variables

will take their maximum values as bounded by Constraints (3.4b). The second argument in

the min(·) operator bounds the maximum of yt to one, conforming with Eq. (3.3).

The discussion on the LP relaxation bound of MCP will be revisited later in this chapter
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for the proposed solution method (Section 3.5), therefore we provide additional implica-

tions on ZLP in this subsection for completeness. First, we notice that y∗t in Eq. (3.5) requires

the knowledge of the optimal LP solution x∗j. However, under special conditions, we can

closely approximate ZLP by computing the upper bound ẐLP such that no knowledge of x∗j

is needed. To show this, we derive ẐLP from Eq. (3.5) by moving the summation inside

the min(·) function. Expanding the first argument further such that the first column of V is

separated, we get Eq. (3.7):

ẐLP B min
(

n
∑
t∈T

ξtVt1︸      ︷︷      ︸
(1)

+
∑

j∈J\{1}

x∗j

[∑
t∈T

ξtVt j −
∑
t∈T

ξtVt1

]
︸                                 ︷︷                                 ︸

(2)

,
∑
t∈T

πt

)
(3.7)

≥ ZLP

where ξt B πt/rt. We group the first argument of the min(·) function into two terms.

If ξt = ξ,∀t ∈ T and V is a circulant matrix, then the terms within the bracket

in Term (2) cancel out. Most problem instances we deal with in this chapter assume

rt = r,∀t ∈ T (time-invariant r-fold continuous coverage) and πt = π,∀t ∈ T (uniform

coverage reward) such that Term (2) vanishes. Therefore, we can conveniently express

ẐLP = min(n
∑

t∈T ξtvt,
∑

t∈T πt) as a function of known parameters n, ξ, and v and without

the needing to run LP.

Example 3 (Single-fold MCP). Consider the case illustrated in Example 1. Suppose we

now want to maximize the coverage over the same target point p with only five satellites.

For the MCP-specific parameters, we let rt = 1,∀t ∈ T and πt = 1,∀t ∈ T (maximization

of the coverage percentage). Solving the MCP to optimality, we get the optimum of Z =

398, which translates into 79.6% temporal coverage of target point p by the optimal five-

satellite configuration during the given repeat period T . Because r and π are time-invariant,

we can easily approximate ZLP by computing Term (1) of Eq. (3.7): we get ẐLP = 410. In

fact, by directly solving the LP relaxation problem, we obtain ZLP = 410, which is identical
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to ẐLP. The results are visualized in Figure 3.4.
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(a) Illustration of v, x, and b. (b) Corresponding constellation configuration in
3-D.

Figure 3.4: MCP solution for Example 3.

3.4 Regional Coverage Constellation Reconfiguration Problem

3.4.1 Problem Description

Suppose a group of heterogeneous1 satellites undertakes a reconfiguration process to form

a new configuration to maximize the observation reward of a newly emerged set of spot

targets P. Each target p in P is associated with the time-dependent observation reward

πtp,∀t ∈ T where T is the set of time step indices. The reconfiguration process involves

(i) the design of the maximum-reward destination configuration and (ii) the minimum-cost

assignment of satellites between the initial and destination configurations. The goal of the

problem is to identify a set of non-dominated solutions in the objective space spanned by

these two competing objectives (i) and (ii).

We shall refer to this problem as the regional coverage constellation reconfiguration

problem or RCRP in short. We use the vocabulary regional coverage constellations to

1The term heterogeneity embodies a general mission scenario of a federated system of satellites with
different hardware specifications, orbital elements, and fuel states.
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accentuate heterogeneity and asymmetry as distinctive design philosophies from the ho-

mogeneity and symmetry of classical global coverage constellations.

3.4.2 Mathematical Formulation

In this subsection, we propose a mathematical formulation of the regional coverage constel-

lation reconfiguration problem. We define following sets, indices, parameters, and decision

variables:
Sets and indices

I Set of satellite indices (index i)

J Set of orbital slot indices (index j)

P Set of target point indices (index p)

S Set of subconstellation indices (index s)

T Set of time step indices (index t)

Parameters

ci js Cost of assigning satellite i to orbital slot j of subconstellation s (ci js ≥ 0)

πtp Reward for covering target point p at time step t (πtp ≥ 0)

Vt jps


1,

if a satellite on orbital slot j of subconstellation s covers target point p

at time step t

0, otherwise

rtp Coverage threshold of target point p at time step t (rtp ≥ 1)

Decision variables

φi js


1, if satellite i is allocated to orbital slot j of subconstellation s

0, otherwise

ytp


1, if target point p is covered at time step t (btp ≥ rtp)

0, otherwise

We generalize the formulations to accommodate multiple target points (index p) and

75



multiple subconstellations (index s). The concept of subconstellation is applied [59]. A

subconstellation is a group of satellites in a given constellation system that share common

orbital characteristics such as the semi-major axis, eccentricity, inclination, and argument

of periapsis. Consequently, a constellation system can therefore consist of multiple sub-

constellations (an example would be a multi-layered constellation). Extending this concept

to orbital slots, the set of all orbital slot indices J can be partitioned into |S| subsets such

that

J =
⋃
s∈S

Js

where Js ⊆ J denotes the set of orbital slot indices of subconstellation s ∈ S, and S is the

index set of Js. For the case with the RGT orbit assumption, we enforce the synchronous

condition to guarantee identical periods of repetition for all subconstellations: Ts = T,∀s ∈

S where Ts is the period of repetition for subconstellation s.

The mathematical formulation of RCRP is as follows

(RCRP) min


∑
s∈S

∑
j∈Js

∑
i∈I

ci jsφi js

−
∑
p∈P

∑
t∈T

πtpytp

 (3.8a)

s.t.
∑
s∈S

∑
j∈Js

φi js = 1, ∀i ∈ I (3.8b)

∑
i∈I

φi js ≤ 1, ∀ j ∈ Js,∀s ∈ S (3.8c)

∑
s∈S

∑
j∈Js

∑
i∈I

Vt jpsφi js ≥ rtpytp, ∀t ∈ T ,∀p ∈ P (3.8d)

φi js ∈ {0, 1}, ∀i ∈ I,∀ j ∈ Js,∀s ∈ S (3.8e)

ytp ∈ {0, 1}, ∀t ∈ T ,∀p ∈ P (3.8f)

RCRP is formulated as a bi-objective ILP. The first objective function in (3.8a) mini-

mizes the total cost of a constellation reconfiguration process; the second objective func-
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tion in (3.8a) maximizes the total reward earned by covering a set of target points. Con-

straints (3.8b) and (3.8c) are the AP-based constraints; Constraints (3.8b) ensure that every

satellite is assigned to an orbital slot and Constraints (3.8c) restrict at most one satellite

is to be occupied per orbital slot. Constraints (3.8d) are the MCP-based constraints; these

constraints ensure that the target point p is covered at time step t only if there exists at least

rtp satellite(s) in view. Note that the cardinality constraint of MCP [i.e., Constraint (3.4c)

of Formulation 3] is omitted in this formulation because it is implied by the satellite indices

set I = {1, . . . , n} and the AP constraints. Constraints (3.8e) and (3.8f) define the domains

of decision variables.

Notice the decision variables of RCRP—they are in the form of the AP decision vari-

ables; the reasoning behind this choice is explained. The decision variable φi js of AP in-

dicates an assignment of satellite i to orbital slot j of subconstellation s while the decision

variable x js of MCP indicates whether a satellite occupies orbital slot j of subconstellation

s. Therefore, it follows naturally that φi js are the elemental decision variables because we

can deduce x js from φi js (see Figure 3.5). The following relationship couples these two

different sets of decision variables along with Constraints (3.8b) and (3.8c):

x js =
∑
i∈I

φi js, ∀ j ∈ J ,∀s ∈ S (3.9)

where both φi js and x js are binary variables. This coupled relationship in Eq. (3.9) enables

an integrated ILP formulation that simultaneously considers both the constellation transfer

problem and the constellation design problem.

3.4.3 Model Characteristics

Remark 5. The RCRP formulation possesses following characteristics:

(i) RCRP is NP-hard because of the embedded MCP structure (cf. Formulation 3). This

deduction follows from the NP-hardness of MCLP [71], which has shown to be a
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Figure 3.5: Decision variables of AP and MCP and their relationship.

particular case of MCP (see discussion in Section 3.3).

(ii) The AP structure [Constraints (3.8b),(3.8c), and (3.8e)] is preserved in RCRP with

the decision variables being AP-based. In this perspective, the complicating con-

straints are Constraints (3.8d).

The RCRP formulation couples constellation transfer problem with the AP formulation

and constellation design problem with the MCP formulation. The former exhibits a spe-

cial structure that allows an efficient solution approach. The latter, on the other hand, is a

combinatorial optimization problem, and consequently, the use of exact methods such as

the branch-and-bound algorithm can be computationally expensive. In light of this obser-

vation, we construct a heuristic method in Section 3.5 that leverages the characteristics of

the problem formalized in Remark 5.

3.5 Lagrangian Heuristic Solution Method

This section develops a heuristic solution method to RCRP, which is a bi-objective com-

binatorial optimization problem. To approach the bi-objective formulation, we use the

ε-constraint method [73] to transform RCRP into a single-objective optimization problem,

which is then solved in series by varying ε value. The transformed single-objective problem
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can be solved using a commercial MILP solver, but this approach can become computa-

tionally challenging even for moderately-sized instances. Motivated by this background,

we propose a computationally-efficient Lagrangian relaxation-based heuristic method that

leverages the unique structure of the model.

3.5.1 ε-constraint Reformulation

The goal of RCRP, as implied by its bi-objective formulation, is to identify non-dominated

solutions. To solve this problem, we reformulate RCRP as a single-objective optimization

problem via the ε-constraint method by casting one of the two objective functions into a

constraint with an upper (or a lower) bound ε. Solving a succession of single-objective

ε-constrained problems to optimality given the sequence of ε values yields the set of non-

dominated solutions, that is, the Pareto front, of the original problem. Algorithm 2 outlines

the procedure based on the ε-constraint method.

Applying the ε-constraint method to RCRP, we transform the cost minimization objec-

tive function into a constraint that is bounded from above by ε [Constraint (3.10)]. Select-

ing an appropriate objective function for the constraint transformation is important because

the choice made in this step affects the downstream algorithmic efforts; we will revisit this

discussion in Section 3.5.6. In a physical sense, ε represents the maximum allowable ag-

gregated cost of reconfiguration, hence the name aggregated resource constraint (ARC) for

Constraint (3.10). The following is the single-objective model with the ARC:

(RCRP-ARC) Z(ε) = min −
∑
p∈P

∑
t∈T

πtpytp

s.t.
∑
s∈S

∑
j∈Js

∑
i∈I

ci jsφi js ≤ ε (3.10)

Constraints (3.8b)–(3.8f)

where Z(ε) denotes the optimal value of RCRP-ARC with parameter ε. The goal of RCRP-
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ARC is to maximize the total coverage reward while being subjected to the aggregated

resource constraint.

Algorithm 2: ε-constraint method
Input: c,π, r,v
Output: List of Z(ε) values

1 Initialize ε0

2 repeat
3 Z(ε)← RCRP-ARC
4 ε← ε + εstep

5 until termination flag is triggered

3.5.2 Lagrangian Relaxation

The Lagrangian relaxation is a decomposition-based optimization technique to approach a

complex problem by dualizing complicating constraints such that the remaining “relatively

easy” structure is exposed and thus efficiently solved (see Ref. [74] for a general overview

of the topic). Specifically, in our case, the complicating constraints can be viewed as those

of MCP, Constraints (3.8d), primarily due to the intact AP structure (Remark 5) in the

relaxed problem along with Constraint (3.10).

To retrieve the Lagrangian problem (LR) of RCRP-ARC, we dualize Constraints (3.8d):

(LR) ZD(ε,λ) = min −
∑
p∈P

∑
t∈T

πtpytp +
∑
p∈P

∑
t∈T

λtp

[
rtpytp −

∑
s∈S

∑
j∈Js

∑
i∈I

Vt jpsφi js

]
s.t.

∑
s∈S

∑
j∈Js

φi js = 1, ∀i ∈ I

∑
i∈I

φi js ≤ 1, ∀ j ∈ Js,∀s ∈ S

∑
s∈S

∑
j∈Js

∑
i∈I

ci jsφi js ≤ ε

φi js ∈ {0, 1}, ∀i ∈ I,∀ j ∈ Js,∀s ∈ S

ytp ∈ {0, 1}, ∀t ∈ T ,∀p ∈ P
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where λ = (λtp ∈ R≥0 : t ∈ T , p ∈ P) is a vector of Lagrange multipliers associated with

Constraints (3.8d), and ZD(ε,λ) denotes the optimal value of LR.

Remark 6. For all non-negative λ, we have ZD(ε,λ) ≤ Z(ε). It is easy to see this because

for a given optimal solution (φ∗,y∗) to RCRP-ARC, we observe that the following series

of inequalities hold:

Z(ε) ≥ −
∑
p∈P

∑
t∈T

πtpy∗tp +
∑
p∈P

∑
t∈T

λtp

[
rtpy∗tp −

∑
s∈S

∑
j∈Js

∑
i∈I

Vt jpsφ
∗
i js

]
≥ ZD(ε,λ)

where the first inequality follows from adding the non-positive term to Z(ε). The second

inequality follows from the fact that relaxing Constraint (3.8d) potentially enlarges the

feasible region, and therefore an improving solution can be found to further reduce the

objective function value.

3.5.3 Lagrangian Dual Problem and Subgradient Method

Following from Remark 6, we observe that the lower bound ZD(ε,λ) can be tightened up

(i.e., maximized) by solving for the optimal λ∗. Such a problem is called the Lagrangian

dual problem (D) and is formulated as follows:

(D) ZD(ε) = max
λ

ZD(ε,λ)

The Lagrangian dual problem is a non-differentiable optimization problem because

ZD(ε,λ) is a piecewise linear concave function of λ. To solve this problem, we use the

subgradient method [75], which has shown to be an effective method for non-differentiable

optimization problems [76]. The subgradient method is an iterative algorithm in the spirit

of the gradient ascent method for finding the maximum solution of a continuous differen-

tiable function. Algorithm 3 provides the pseudo-code for the subgradient optimization.
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Algorithm 3: Subgradient optimization
Input: ε, c,π, r,v
Output: ZD(ε), Ẑ(ε), (φ∗, ỹ∗)

1 k ← 0 and initialize λ0

2 repeat
3 Solve LRk: compute ZD(ε,λk) and obtain optimal solution (φk,yk) ▷ LB;

See Remark 8

4 Compute Ẑ(ε) and (φ∗, ỹ∗) via local search in the neighborhood N(φk) of φk

▷ UB; See Algorithm 4
5 Compute the subgradient gk of ZD(ε,λk) at λk

6 Compute the step size θk
7 Update Lagrange multipliers: λk+1 ← max(0,λk + θkg

k)
8 k ← k + 1
9 until termination flag is triggered

The subgradient method begins with the initialization of Lagrange multipliers, λ0. At

iteration k, and given parameters, ε, λk, c, π, r, and v, the Lagrangian problem LRk is

solved. With the optimal solution (φk,yk) to LRk, we apply a heuristic method to obtain an

estimate Ẑ(ε) of Z(ε). Because we wish to retain the best estimate of the optimal value not

only for the feasible primal solution but also to facilitate the convergence of the subgradient

method, the best Ẑ(ε) up to iteration k is stored in memory as an incumbent optimum.

Next, the subgradient gk of ZD(ε,λk) at λk is computed:

gk =

(
rtpyk

tp −
∑
s∈S

∑
j∈Js

∑
i∈I

Vt jpsφ
k
i js : t ∈ T , p ∈ P

)

If the subgradient of ZD(ε,λk) at λk is 0, then λk is an optimal Lagrange multiplier vector,

and the algorithm terminates. The algorithm may terminate with suboptimal Lagrangian

multipliers if it triggers one or more of the following termination criteria: the maximum

iteration count, the gap tolerance between Ẑ(ε) and ZD(ε,λk), and the step size tolerance.

With λ0 = 0, the Lagrangian relaxation bound starts with ZD(ε,λ0) = −
∑

p∈P
∑

t∈T πtp and

improves as the subgradient method progresses. In case of premature termination due to

reaching the maximum iteration limit, the obtained λ may end up suboptimal, and hence
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ZD(ε,λ) < ZD(ε). With the knowledge of the optimal dual variables of the LP relaxation

problem, one can use them for λ0. However, this approach is not ideal because the LP

relaxation problem needs to be run beforehand, which can be computationally expensive

for large instances.

Unless the termination flag is triggered, the algorithm reiterates the procedure with

the new set of Lagrange multipliers. The following is the rule for updating the Lagrange

multipliers:

λk+1 B max(0,λk + θkg
k)

where max(·) is the element-wise maximum to guarantee the non-negativity of λtp. Un-

less the dualized constraints are equality constraints, which can have associated multipliers

unrestricted in sign, the multipliers need to be non-negative to penalize the violated con-

straints correctly [77].

The step size θk commonly used in practice is:

θk B
Ẑ(ε) − ZD(ε,λk)

∥gk∥2
αk (3.11)

where ∥·∥ is the Euclidean norm and αk is a scalar satisfying 0 < αk ≤ 2. The proof

of convergence of the above step size formula is referred to Ref. [76]. Recommended by

Fisher [74], the starting value of αk is set to α0 = 2 and is halved if ZD(ε,λ) fails to increase

in a number of iterations. While there are different types of θk proposed in literature, the

step size formula in Eq. (3.11) has performed particularly well in our problem settings.

The subgradient method suffers from several drawbacks such as the zigzagging phe-

nomenon and slow convergence to the optimal multipliers λ∗. Many studies have proposed

variants of the subgradient method such as the surrogate Lagrangian relaxation method and

the bundle method to alleviate such issues. Interested readers are referred to Ref. [78] for

additional materials on methods for non-differentiable problems.

There exist two computational bottlenecks in this algorithm. One at computing the
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lower bound ZD(ε,λk) and another at computing the upper bound Ẑ(ε), both of which occur

at every iteration. To solve each iteration of the subgradient method efficiently, we provide

efficient ways to compute ZD(ε,λk) and Ẑ(ε).

3.5.4 Lower Bound: Lagrangian Problem Decomposition

At each iteration of the subgradient optimization, ZD(ε,λk) is computed. By relaxing the

complicating constraints [Constraints (3.8d)], which are also the linking constraints, we

observe that Problem (LR) can be decomposed into two subproblems based on the variable

type, φ and y.

Remark 7. Problem (LR) can be decomposed into two subproblems: (i) an assignment

problem with a side constraint and (ii) an unconstrained binary integer linear program.

(LR1) ZD1(ε,λ) = min −
∑
p∈P

∑
t∈T

λtp

[∑
s∈S

∑
j∈Js

∑
i∈I

Vt jpsφi js

]
s.t.

∑
s∈S

∑
j∈Js

φi js = 1, ∀i ∈ I

∑
i∈I

φi js ≤ 1, ∀ j ∈ Js,∀s ∈ S

∑
s∈S

∑
j∈Js

∑
i∈I

ci jsφi js ≤ ε

φi js ∈ {0, 1}, ∀i ∈ I,∀ j ∈ Js,∀s ∈ S

(LR2) ZD2(λ) = min
∑
p∈P

∑
t∈T

(
λtprtp − πtp

)
ytp

s.t. ytp ∈ {0, 1}, ∀t ∈ T ,∀p ∈ P

For convenience, we denote Φ B {φ ∈ {0, 1}|I||J| : Constraints (3.8b), (3.8c), (3.10)}

the set of assignments φ satisfying the AP and ARC constraints.
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Remark 8. Problem (LR) is characterized as follows:

(i) Let εr denote the critical value of ε at which Constraint (3.10) becomes redundant in

Co(Φ), the convex hull of the feasible region of Problem (LR1). From inspection, it

is evident that no total cost of assignments exceeds the value of

εr B
∑
i∈I

max
j∈Js,s∈S

ci js

If ε ≥ εr, then Constraint (3.10) is redundant and can be removed while leaving the

convex hull unchanged; this reveals the intact AP structure [Constraints (3.8b),(3.8c),

and (3.8e)], which possesses the integrality property (cf. Formulation 2). In this

case, Problem (LR1) can be efficiently solved using a specialized AP algorithm or

via linear programming. Otherwise, Problem (LR1) does not possess the integrality

property, and therefore the problem cannot be solved by means of LP. Based on our

experience, the problem can be considered a relatively easy ILP and thus be expected

to solve in a reasonable amount of time in many instances, albeit there are instances

where guaranteeing the solution optimality takes a long time.

(ii) Problem (LR2) can be solved trivially. For fixed multipliers, the optimal solution is

generated by inspecting the coefficients of the objective function:

y∗tp =


1, if (λtprtp − πtp) < 0

0, otherwise

(iii) The optimal value of Problem (LR) is the sum of the optimal values of its subprob-

lems: ZD(ε,λ) = ZD1(ε,λ) + ZD2(λ).

Using the argument of LP duality [79], one can deduce that the Lagrangian relaxation

bound is at least as good as the LP relaxation bound: ZLP(ε) ≤ ZD(ε). Based on observations

made in Remark 8, we provide a discussion on the tightness of these two bounds and a
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sufficient condition at which they are equal.

Remark 9. The relative strength of ZD(ε) with respect to ZLP(ε) depends on the redundancy

of Constraint (3.10) in Problem LR1 discussed in Remark 8 (i).

(i) If Constraint (3.10) is not redundant, the Lagrangian relaxation may provide a tighter

bound than the LP relaxation bound: ZLP(ε) ≤ ZD(ε). The value of ε dictates the

tightness of these bounds.

(ii) If Constraint (3.10) is redundant, Problem (LR) possesses the integrality property,

which is a sufficient condition for ZLP(ε) = ZD(ε) [79].

Reiterating Remark 9 (ii), Constraint (3.10) being redundant is only a sufficient condi-

tion for the equal bounds, and therefore it does not necessarily imply ZLP(ε) < ZD(ε) for

all ε < εr. In some instances, we observe that there exists εc < εr such that ZLP(ε) < ZD(ε)

for ε < εc (and ZLP(ε) = ZD(ε) for ε ≥ εc). Note that if ZLP = ZD, then the optimal La-

grange multipliers are equal to the dual variables associated with Constraints (3.8d) of the

LP relaxation of RCRP-ARC.

Revisit the earlier discussion on the LP relaxation bound for MCP discussed in Sec-

tion 3.3. There is a special case, that is, ξt = ξ,∀t ∈ T and V being a circulant matrix, for

which the value of ẐLP is independent of optimal LP solution x∗. This analysis is readily

extensible to the RCRP-ARC formulation. Consequently, for ε ≥ εr, ξtp = ξp,∀t ∈ T , and

all relevant V matrices being circulant, the approximated LP relaxation bound for RCRP-

ARC is simply [cf. Eq. (3.7)]:

ẐLP B max
(
− |I|

∑
p∈P

∑
t∈T

ξtpvtp,−
∑
p∈P

∑
t∈T

πtp

)

where ξtp B πtp/rtp.

The value of ẐLP provides the conservative lower bound for both ZLP and ZD that re-

quires no knowledge of the optimal LP solution φ∗. As will be discussed later with the
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computational experiments in Section 3.7, we can actually see that ẐLP outperforms ZD for

suboptimal Lagrange multipliers. However, its usefulness is limited to instances triggering

the first argument of the max function.

3.5.5 Upper Bound: Lagrangian Heuristic via Combinatorial Neighborhood Local Search

To evaluate the duality gap over the convergence (e.g., to be used for the definition of the

step size), we need a method to find a feasible solution to the primal problem (RCRP-ARC)

at each iteration step k of the subgradient method. While it is theoretically possible for a

solution to LRk to be discovered to be feasible to the primal problem in the course of solving

the Lagrangian dual problem, this happens rarely [74]; instead, we attempt to convert the

solution to LRk into a feasible solution to the primal problem. To this end, we note that

the reason for solution infeasibility is due to the inconsistency between weakly coupled

φk and yk solutions; the coupling comes from the fact that Problems LR1k and LR2k are

linked only through λk in their objective functions. Intuitively speaking, the coverage state

of the obtained constellation configuration, which is computed from the assignments using

Eq. (3.12), does not match with the obtained coverage state. The key idea to find a feasible

solution is to drive the solution obtained at each iteration of the subgradient method to

feasibility by employing a heuristic approach. Such an approach that exploits a solution

produced in the course of solving the Lagrangian dual problem is called the Lagrangian

heuristic in literature.

A simple and straightforward way is to accept the subgradient assignment φk as the

valid primal solution and obtain the conforming coverage state ỹk(φk) (note that we distin-

guish it from yk, without a tilde), which is simply the coverage state of the constellation

configuration obtained from the set of assignments φk:

ỹk
tp(φk

i js) =


1, if

∑
s∈S

∑
j∈Js

∑
i∈I

Vt jpsφ
k
i js ≥ rtp

0, otherwise

(3.12)
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This approach always yields feasible solutions to the primal problem because it circum-

vents the inconsistency between φk and yk. The other way around, obtaining φ̃k(yk) from

given yk, is infeasible in most cases or requires a combinatorial optimization approach in

otherwise rarely feasible cases.

A more sophisticated approach is to employ a local search in the neighborhood of φk to

improve the quality of the initial primal solution at the cost of additional computation time.

In this chapter, we propose the following definition of the 1-exchange neighborhood:

N(φ) B {φ′ ∈ Φ : φ′ obtained from φ by exchanging at most

one (satellite, orbital slot) pair} (3.13)

Figure 3.6 illustrates the 1-exchange operation. Two sets of assignments φ and φ′

are neighbors because at most a single (satellite, orbital slot) assignment pair is different

(the dashed line in the figure). Orbital slots that are occupied by other satellites are not

part of the neighborhood because it violates the definition of the feasible set Φ. Not all

unfilled orbital slots are valid candidates because all candidate orbital slots must conform

with Constraint (3.10).

𝝋 𝝋′
Neighbors

Assigned node(s)
1-exchange operation

Candidate orbital slot node(s)

Satellite nodes

Orbital slot nodes

Figure 3.6: Illustration of the 1-exchange operation.
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The 1-exchange neighborhood local search algorithm is presented in Algorithm 4.

Given φ, the 1-exchange neighborhood N(φ) is defined as in Eq. (3.13). The best can-

didate solution φ∗ is found from an exhaustive evaluation of all candidate solutions in

N(φ). Here, the figure of merit is Ẑ(ε). If the best candidate solution φ∗ outperforms

the incumbent solution, then φ∗ is accepted as the new incumbent solution, and Ẑ(ε) and

the neighborhood are updated accordingly. The search process reiterates with the new

neighborhood. Otherwise, the local search halts and the local optimum is obtained. The

algorithm returns the local optimal solution φ∗, its conforming ỹ∗(φ∗) [Eq. (3.12)], and the

corresponding upper bound value Ẑ(ε).

Algorithm 4: 1-exchange neighborhood local search (full-scale)
Input: ε, c,π, r,v,λ,φ
Output: Ẑ(ε), (φ∗, ỹ∗(φ∗))

1 Initialize N(φ)
2 repeat
3 Compute Ẑ(ε) and φ∗ from N(φ)
4 Update φ← φ∗

5 Update the neighborhood N(φ)
6 until termination flag is triggered
7 Compute ỹ∗(φ∗) from φ∗

The trade-off between the solution quality and the computational effort exists in Line 3

of Algorithm 4 at deciding the local optimum of the current neighborhood. The brute-force

evaluation of all candidate solutions can be costly for large instances, hence it is practical

to search only within the subset of a neighborhood N ′ ⊆ N , which can be randomly

generated or via a pre-defined rule. Moreover, the first-come-first-served scheme can be

applied to select the first local solution that improves the incumbent solution, which can

reduce the dimension of the search space. Noting that the radius of a neighborhood can

play a significant role in the trade-off, leveraging more general κ-exchange neighborhood

local search (κ > 1) could improve the quality of the heuristic solution for large instances

at the expense of an increased computational effort.

89



3.5.6 Selecting between Competing Relaxations

There exist different types of Lagrangian relaxations for RCRP, and a choice of ε-constraint

transformation influences the complexity of the downstream algorithmic efforts and the

mathematical properties. At a glance, one may observe that the coverage reward maxi-

mization objective function can recast as an ε-constraint. Similar to the one proposed in

this chapter, the Lagrangian relaxation problem would be separable into two subproblems

based on the type of variables. In such a case, the φ subproblem can be solved as an LP,

and the y subproblem would be a relatively easy constrained ILP. Therefore, the lower

bound calculation would still be computationally efficient. However, the main difference

lies in the computation of Ẑ(ε): unlike the one discussed earlier, ỹk(φk) computed from

φk would not necessarily satisfy the ε-constraint. Hence, additional considerations must

come into play in obtaining the feasible primal solution. One viable approach is to solve

the reduced formulation of RCRP, which fixes and parameterizes a subset of assignments

from φk while optimizing the complement set. However, this approach becomes compu-

tationally expensive for instances with high ε values. This approach was explored in our

preliminary work [80].

One could attempt to relax an alternative set of constraints that may yield a tighter La-

grangian relaxation bound than the one proposed in this subsection. However, Lagrangian

relaxation problems with Constraints (3.8d) retained may be unsuitable for embedding into

an algorithm of iterative nature due to computational complexity. The rationale for the

relaxation of Constraints (3.8d) can also be found in a study by Galvao and ReVelle [81],

which reported a successful application of the Lagrangian relaxation of the linking con-

straints for MCLP; in their problem context, the Lagrangian relaxation problem possesses

the integrality property.
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3.6 Extension: RCRP with Individual Resource Constraints

Various extensions can be made to the proposed formulation and method. One example that

is practically important is shown here. Constraint (3.10) in the RCRP-ARC formulation

limits the aggregated resource consumed by all system satellites. Along a similar line, but

instead, we can formulate a variant of RCRP to enforce the maximum individual resource

consumption on each satellite. Such modeling possesses significant practical implications

because not all satellites have identical resource states prior to a reconfiguration. As an

example, one can envisage a realistic scenario of bringing a group of satellites with different

fuel states together to form a federation for a new Earth observation mission [82].

We formulate the RCRP with individual resource constraints (RCRP-IRC) as follows:

(RCRP-IRC) min −
∑
p∈P

∑
t∈T

πtpytp

s.t.
∑
s∈S

∑
j∈Js

ci jsφi js ≤ εi, ∀i ∈ I′ (3.14)

Constraints (3.8b)–(3.8f)

where I′ ⊆ I is the subset of satellites with IRC; Constraints (3.14) define the reachable

domain of orbital slots by satellite i given the maximum allowance εi.

The proposed solution procedure based on the Lagrangian relaxation method for RCRP-

ARC is readily applicable to RCRP-IRC. This is true because the Lagrangian problem for

RCRP-IRC is also separable into two subproblems based on the variable type, and the

primal heuristic can be readily applied with the modified definition of Φ. Note that the

analyses made in Remarks 8 and 9 can be extended to RCRP-IRC with the appropriate

values of εr,i.
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3.7 Computational Experiments

We perform computational experiments to evaluate the performance of the proposed La-

grangian heuristic method. In particular, we are interested in analyzing the solution quality

and the computational efficiency of the Lagrangian heuristic compared to the results ob-

tained by a commercial off-the-shelf MIP solver. We first perform the design of experi-

ments in Section 3.7.1 and then compare the results obtained by the Lagrangian heuristic

and commercial software package in Section 3.7.2. The primary computational experi-

ments are performed using RCRP-ARC for RGT orbits. In Section 3.7.4, we provide an

illustrative example to demonstrate the versatility of the proposed framework by extending

it to non-RGT orbits and RCRP-IRC.

3.7.1 Test Instances

We generate test instances by varying |I|, |J|, |T |, and |P|. For each size dimension, we take

the following value: |I| ∈ {10, 20}, |J| ∈ {500, 1000, 2000}, and |P| ∈ {10, 20, 30}. Without

loss of generality we let |T | = |J|. Table 3.1 shows the sizes of the randomly generated

18 test instances for RCRP; the number of constraints exclude the domain definitions of

decision variables. The size of the instance pool varies from the smallest containing 10,000

decision variables and 5,511 constraints to the largest containing 100,000 decision variables

and 62,021 constraints. Note that there are |I||J| number of φ decision variables and

|T ||P| number of y decision variables for both RCRP-ARC and RCRP-IRC. There are

|I| + |J| + |T ||P| + 1 constraints for RCRP-ARC and |I| + |J| + |T ||P| + |I′| constraints

for RCRP-IRC excluding the domain definitions of decision variables. For each RCRP test

instance, there are 10 RCRP-ARC sub-instances with varying ε. Without loss of generality,

we set εmax = max ci js and create a sequence of 10 steps in [0, εmax]. Consequently, we test

18 instances for RCRP, which is equivalent to testing 180 instances of RCRP-ARC.

For each RCRP instance, we specify different parameter values. Our goal is to capture
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Table 3.1: Test instances for RCRP-ARC and their sizes.

Instance |I| |J|, |T | |P| Size of RCRP-ARC
φ variables y variables Total variables Total constraints

1 10 500 10 5,000 5,000 10,000 5,511
2 20 500 10 10,000 5,000 15,000 5,521
3 10 500 20 5,000 10,000 15,000 10,511
4 20 500 20 10,000 10,000 20,000 10,521
5 10 1,000 10 10,000 10,000 20,000 11,011
6 20 1,000 10 20,000 10,000 30,000 11,021
7 10 500 30 5,000 15,000 20,000 15,511
8 20 500 30 10,000 15,000 25,000 15,521
9 10 1,000 20 10,000 20,000 30,000 21,011

10 20 1,000 20 20,000 20,000 40,000 21,021
11 10 2,000 10 20,000 20,000 40,000 22,011
12 20 2,000 10 40,000 20,000 60,000 22,021
13 10 1,000 30 10,000 30,000 40,000 31,011
14 20 1,000 30 20,000 30,000 50,000 31,021
15 10 2,000 20 20,000 40,000 60,000 42,011
16 20 2,000 20 40,000 40,000 80,000 42,021
17 10 2,000 30 20,000 60,000 80,000 62,011
18 20 2,000 30 40,000 60,000 100,000 62,021

a wide spectrum of orbital characteristics of orbital slot nodes and ϑmin. We randomly

generate 18 parameter sets from the parameter space {NP ∈ Z≥0 : 30 ≤ NP ≤ 45} ×

{inc ∈ R≥0 : 0◦ ≤ inc ≤ 120◦} × {ϑmin ∈ R≥0 : 5◦ ≤ ϑmin ≤ 20◦}. Along with the

fixed parameters shown in Table 3.2, we can characterize the orbital slot nodes as circular,

prograde/retrograde low Earth orbits (specifically, the altitude ranges between 478.86 km

and 2729.95 km). The sensor field-of-views range from medium to wide. In addition,

we randomly generate the initial positions of |I| satellites in J from a discrete uniform

distribution between 0 and |J| − 1. The target points are randomly distributed in a region

latitudinally bounded by the inclination of a given test instance; the longitude and latitude

each take a value from a uniform distribution.

We compare the results of the Lagrangian heuristic and the commercial MIP solver,

Gurobi 9.1.1. All computational experiments are coded in MATLAB and performed on a

platform with Intel Core i7-9700 3.00 GHz CPU processor (8 cores and 8 threads) and 32

GB memory. In all cases, we let the Gurobi optimizer to utilize all 8 cores. The default
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Table 3.2: Fixed parameters.

Parameter Generation scheme
Orbital characteristics of J ND = 3, e = 0 (circular orbits), Ω = 0◦, u = 0◦

Coverage threshold rtp = 1 for all t and p
Cost matrix Combined plane change and the Hohmann transfer maneuvers

and phasing maneuvers [68]

Gurobi parameters are used except for the duality gap tolerance of 0.5 % (for both the base-

line Gurobi case and (LR1)) and the runtime limit of 3600 s. For the Lagrangian heuristic,

we limit the 1-exchange neighborhood local search with the size |N ′| ≤ 10|I| for the pri-

mal heuristic and the Gurobi optimizer for solving Problem (LR1). In generic terms lower

bound (LB) and upper bound (UB), we define the duality gap as DG = |LB − UB|/|UB|.

To assess the quality of Ẑ obtained by the Lagrangian heuristic relative to ZG obtained by

the Gurobi optimizer, we define the relative performance metric, RP = (Ẑ − ZG)/ZG, unre-

stricted in sign. If RP > 0, the optimum obtained by the Lagrangian heuristic outperforms

that of the Gurobi optimizer. If RP < 0, the optimum obtained by the Gurobi optimizer

outperforms that of the Lagrangian heuristic. If RP = 0, the obtained optimums of both

methods are the same.

3.7.2 Computational Experiment Results

Out of 180 RCRP-ARC test instances, we present detailed analyses for 36 instances. Ta-

ble 3.3 reports the computational results for test instances with ε/εmax = 0.3. For 9 “small”

instances, the baseline Gurobi optimizer successfully identified optimal solutions, or those

within the specified duality gap tolerance of 0.5 %, within the specified time limit of 3600 s.

However, as the size of instances grows, we start to observe the Gurobi optimizer trigger-

ing the time limit. Particularly, for instances 17 and 18, we see a significant duality gap

of 11.03 % and 70.15 %, respectively. Examining the results of the Lagrangian heuristic,

we observe that all 18 instances are solved in less than 462.24 s. Comparing the feasible

primal solutions to RCRP-ARC, there are 10 instances in which Gurobi solutions perform
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better than the Lagrangian heuristic solutions. However, the differences are at most 1.77 %.

The Lagrangian heuristic outperforms the Gurobi optimizer for 6 instances with the largest

recorded margin of 26.21 % (instance 18) and obtains optimal solutions for 2 instances.

Table 3.4 shows the results for ε/εmax = 0.8 cases. All parameters are the same as those

we have shown previously in Table 3.3 except the ε value; an increase in the value of ε/εmax

leads to the enlargement of the feasible solution set. Out of 18 instances, the Gurobi opti-

mizer solves only one instance (instance 5) to the optimality within the time limit and one

instance (instance 13) to the tolerance-optimality by the time limit. The Lagrangian heuris-

tic solves all instances with the maximum runtime of 810.97 s. The duality gaps obtained

by the Lagrangian heuristic are comparably larger than those with the lower ε because ZD

converges to ZLP. However, it is important to note that the Lagrangian relaxation bound

is theoretically no worse than the LP relaxation bound (assuming converged multipliers),

which in turn hints that the integrality gap of the problem is significant. For 12 out of 18

instances, the primal solutions obtained by the Lagrangian heuristic outperform those of

the Gurobi optimizer. The out-performance of the Lagrangian heuristic over the Gurobi

optimizer is noticeably significant for instances 14–18; the relative performance metric

ranges from 11.68 % to 25.84 %. The under-performance of the Lagrangian heuristic is

also observable with the relative performance metric ranging up to 1.36 %.
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We show the results of all 180 test instances graphically. Figures 3.7 and 3.8 visualize

the computational results. In these figures, all metrics, ẐLP, ZD, ZG, and Ẑ, are normal-

ized and flipped in sign for convenience of physical interpretation of the results. Note

that, to generate the true Pareto front of a given RCRP instance, all associated RCRP-

ARC instances need to be solved to optimality.2 Without the optimality certificate (which

are typically proven by the duality gap), the results, ZD and ZG, in Figs. 3.7 and 3.8 are

deemed the approximations of Pareto fronts; the dominated solutions are still included for

completeness. Figure 3.8 corroborates the out-performance of the Lagrangian heuristic for

large instances. For instances 1, 5, and 13, we observe that ẐLP do a good job in certifying

that ZD is either converged or not optimal, albeit its usefulness seems to be limited. Fig-

ures 3.9 and 3.10 compare the computation runtime between the 8-core Gurobi optimizer

and the Lagrangian heuristic with no parallel computing implementation (except that we

solve (LR1) using the 8-core Gurobi optimizer). For almost all cases, we observe that the

Gurobi optimizer reached the time limit of 3600 s. A notable case is instance 5. In this case,

we see that the initial solution is near-optimal and that no significant maneuver is needed

to maximize the total coverage reward.

3.7.3 Post-Lagrangian Heuristic Refinement

In this section, we examine a post-processing heuristic to refine the obtained (final) La-

grangian heuristic solution with the goal of further improving the solution quality. The

idea to be explored is called the post-Lagrangian heuristic refinement procedure, which

performs the full-scale 1-exchange neighborhood local search with the final Lagrangian

heuristic solution. Note that the 1-exchange neighborhood implemented within the subgra-

dient method is limited to a small size (e.g., |N ′| ≤ 10|I| in Section 3.7.1), instead of a full

scale, to facilitate the overall computational process of an iterative algorithm.

To evaluate the performance of the post-Lagrangian heuristic refinement procedure, we

2Strictly speaking, the Pareto front in the discrete-time domain is also the approximation of the true Pareto
front in the continuous-time domain.
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Figure 3.7: Computational results for instances 1–9. Note that all metrics are normalized
and flipped in sign.
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Figure 3.8: Computational results for instances 10–18. Note that all metrics are normalized
and flipped in sign.
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Figure 3.9: Runtime results for instances 1–9. The time limit of 3600 s is enforced.
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Figure 3.10: Runtime results for instances 10–18. The time limit of 3600 s is enforced.
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applied it on all 180 instances of the computational experiments in Section 3.7.2. The

results of the post-refinement procedure present that the maximum performance improve-

ment provided by the post-refinement procedure is only 0.55 % for all 180 instances (see

Figure 3.11). Thus, while the idea of the post-Lagrangian heuristic refinement procedure

seems attractive, the results indicate the limited efficacy in improvements.
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Figure 3.11: Improvements by the post-Lagrangian heuristic refinement.

3.7.4 Illustrative Example: Federated Disaster Monitoring

In this illustrative example, we focus on demonstrating three aspects: (i) the RCRP-IRC

formulation in action, (ii) the Lagrangian heuristic method applied to RCRP-IRC, and (iii)

non-RGT orbits.

Suppose a group of 7 satellites with different fuel states and heterogeneous orbits (pa-

rameters shown in the left half portion of Table 3.5) is tasked with a reconfiguration process

to form a federation for satellite-based emergency mapping to monitor active disaster events

and support post-disaster relief operations. The spot targets of interest are Getty, Califor-

nia (34.09◦N, 118.47◦S), Asheikri, Nigeria (11.96◦N, 12.93◦E), and Hunga Tonga–Hunga

Ha’apai, Tonga (21.18◦S, 175.19◦W). We randomly generate the following parameters for

this scenario. The size of the RCRP-IRC instance is |I| = 7, |J| = 10, 000, |T | = 5, 000,

and |P| = 3. All 10,000 orbital slots are circular non-RGT orbits and have parameters

a ∈ [R⊕ + 500,R⊕ + 2500] where R⊕ is the mean radius of Earth, e = 0, inc ∈ [20◦, 85◦],
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Ω ∈ [0◦, 360◦), and u ∈ [0◦, 360◦). Figure 3.12a shows the positions of the satellites and

the orbital slots at the epoch (J2000). We also add |I| additional slots to J to allow no ma-

neuvering option for each satellite. Consequently, there are 70,049 assignment variables,

15,000 coverage state variables, and 25,021 constraints (excluding the decision variable

domain definitions). To accommodate non-RGT orbits as candidate orbital slots in our

framework, we need to define the time horizon for which the visibility profiles are consid-

ered valid (revisiting the generic case of the constellation-coverage model). For this, we

set T = 7 days. It is important to note that due to the drifts of the orbital elements, the

coverage persistency is not guaranteed beyond the specified simulation duration. The cov-

erage rewards are randomly generated following the standard uniform distribution in the

range of [0, 1]. For the cost matrix, we use the combined plane change and the Hohmann

transfer maneuvers as outlined in Ref. [68]. The phasing angle is set to β = π as the worst-

case value; the corresponding ∆v for the phasing serves as an upper value for the actual ∆v

required.

The initial configuration has the score of Z = −1661.94, which is 22.12 % of the total

coverage reward possible. Solving RCRP-IRC using the Lagrangian heuristic method with

the neighborhood size of |N ′| ≤ 50|I|, we obtain Ẑ = −4017.70, which is 53.48 % of the

total coverage reward. The final configuration specification is shown in the right half of

Table 3.5. The results indicate that all satellites raise their altitude to the maximum value,

9378.14 km, to maximize the coverage. All maneuvers are within the specified maximum

∆v values. Figure 3.12 visualizes the initial and final configurations.

Solving the same instance of RCRP-IRC with the Gurobi optimizer (same setting as in

Section 3.7.1), we obtain ZG = −4077.03, which is 54.27 % of the total coverage reward.

The Lagrangian heuristic method terminates after 141.04 s while the Gurobi optimizer trig-

gers the time limit of 3600 s. Out of 7 satellites, both the Lagrangian heuristic and the

Gurobi optimizer return identical destination orbital slots for 5 satellites.
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Table 3.5: Problem setting (left-half) and obtained Lagrangian heuristic solution (right-
half) for the illustrative example.

Satellite εi, km/s Initial configuration Final configuration (Solution)
∆v, km/s

a, km inc, deg. Ω, deg. u, deg. a, km inc, deg. Ω, deg. u, deg.
1 2.79 8,236.65 73.68 79.09 338.41 9,375.47 63.14 81.27 130.46 2.19
2 2.60 7,574.06 28.89 352.30 294.35 9,363.32 26.52 17.60 19.53 2.46
3 2.06 7,939.43 57.38 292.21 121.00 9,371.60 58.18 301.59 274.92 1.97
4 4.80 8,990.08 77.94 61.90 63.15 9,369.90 45.11 53.49 328.51 4.65
5 4.12 6,889.94 33.60 293.84 134.22 9,374.35 22.78 249.93 29.86 3.76
6 3.40 7,182.06 32.05 98.67 2.05 9,373.86 27.04 75.66 67.33 2.61
7 3.67 8,555.01 27.04 155.41 90.87 9,369.79 32.87 196.13 140.21 3.26

(a) Initial configuration; shown in the figure are
initial satellite orbits and orbital slots.

(b) Final configuration obtained by the La-
grangian heuristic.

Figure 3.12: Initial and final configurations.
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3.8 Conclusions

This chapter proposes an integrated constellation design and transfer model for regional

coverage constellation reconfiguration problem. Given a set of target points each associ-

ated with the time-varying coverage reward and the time-varying coverage threshold, the

problem seeks to maximize the total reward obtained during the specified time horizon and

to minimize the total cost of satellite transfers. The bi-objective formulation leads to the

trade-off analysis (potentially the Pareto front analysis if all ε instances are solved to opti-

mality) in the objective space spanned by the aggregated cost and the total coverage reward.

Furthermore, as demonstrated in the illustrative example, the formulation is capable of ac-

commodating different types of orbits, not necessarily restricting orbital slots to be RGT

orbits. The use of non-RGT orbits require a user-specification of the time horizon T for

which the formulation is valid for.

The ILP formulation of RCRP-ARC enables users to utilize the commercial software

packages for convenient handling and tolerance-optimal solutions. However, for large-

scale real-world instances, the problem suffers from the combinatorial explosion. To over-

come this challenge and to produce high-quality feasible primal solutions, we developed

the Lagrangian relaxation-based heuristic method that combines the subgradient method

with the 1-exchange neighborhood local search, exploiting the special substructure of the

problem. The computational experiments in Section 3.7 demonstrate the effectiveness of

the proposed method particularly for large-scale instances, producing near-optimal solu-

tions at significantly reduced computational runtime than the reference solver.

There are several interesting directions for future work in terms of modeling extensions

and improvements in the solution approach. First regarding the modeling extensions, the

assignment φi j of satellite i to orbit slot j can accommodate an additional path index to

enable multi-path consideration. That is, a satellite can choose one from a set of paths to

traverse to an orbital slot. Several different orbital transfer strategies can be considered
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concurrently and hence lead to more flexible operations. A multi-stage reconfiguration can

also be indeed studied with an appropriate set of assumptions, especially with regard to

time constraints. Some of these interesting future research directions do not necessarily

compromise the structure of the proposed problem but can significantly increase the size of

problems. Inspired by this, the column generation (CG) approach can be applied based on

the Dantzig-Wolfe decomposition (DWD) principle. The DWD-CG framework possesses

several promising directions for future work, for example, lending itself to potentially ef-

ficient solution methods such as the restricted master heuristic (a CG-based heuristic), a

combined LR-CG framework, and the branch-and-price algorithm. In addition, because

the integrality gap is large for many instances, one can strengthen the Lagrangian relax-

ation bound by adding a set of valid inequalities.

We believe that the developed method provides an important step toward the realization

of the concept of reconfiguration as a means for system adaptability and responsiveness,

adding a new dimension to the operation of the next-generation satellite constellation sys-

tems.

This chapter is based on the following publication:

H. Lee and K. Ho, “Regional Constellation Reconfiguration Problem: Integer Linear Pro-

gramming Formulation and Lagrangian Heuristic Method,” Journal of Guidance, Control,

and Dynamics (Submitted).
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CHAPTER 4

MAXIMIZING OBSERVATION THROUGHPUT VIA MULTI-STAGE

SATELLITE CONSTELLATION RECONFIGURATION

4.1 Introduction

Satellite constellation reconfiguration provides a space-borne system with flexibility and

responsiveness in response to dynamic changes in mission requirements and environments.

The concept of constellation reconfiguration has been explored in different application do-

mains including the Earth observations (EO) [44, 53, 43], telecommunications [58], and

navigation and positioning systems [47] for various reasons, spanning from the staged de-

ployment to disaster monitoring. In this chapter, in the domain of Earth observations, we

investigate the problem of reconfiguring a fleet of (potentially) heterogeneous satellites

through multiple stages to maximize the observation rewards by achieving the coverage on

targets of interest requested by clients.

One primary goal of Earth observations satellite systems is to maximize the system

observational throughput. Prior studies have investigated the EO satellite scheduling prob-

lems (EOSSP) whose goal is to maximize the observation profit during a specified mission

planning horizon while satisfying the complex operational constraints (e.g., solar panel

charging, downlinking raw images) [83, 84]. In the classical EOSSP context, one of the

underyling assumptions is that satellites point to their nadir directions without any attitude

or maneuver controllability. Due to this assumption, the visible time windows (VTWs),

which define the periods of satellite-to-target visibility, are considered fixed parameters to

the scheduling problems. To improve the observational throughput, recent studies have ex-

plored the concept of “agile satellites” with attitude control capability [52, 85]. The agile

satellites can control the orientation of their spacecraft body and directly manipulate the
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VTWs within an EO scheduler. Therefore, the longer duration of the VTWs can be ob-

tained, which in turn has the potential to enhance the overall observational throughput and

scheduling efficiency.

We draw on the concept of satellite orbital transfer maneuverability as one of the most

prominent notions of system flexibility along with satellite agility. Existing literature on

satellite constellation reconfiguration has extensively focused on single-stage reconfigura-

tion problem [69, 80] or without the consideration of optimizing a long mission planning

horizon. However, constellation systems often face a series of reconfiguration opportunities

arising due to satellite failures or change in mission objectives. Moreover, with the recent

developments in on-orbit servicing, there is a greater potential to equip satellites with en-

hanced mobility for active orbital maneuvers [86]. Albeit these opportunities, several chal-

lenges also emerge. In practicing multi-stage reconfiguration, one of the main challenges

that we confront is the excessive fuel consumption, particularly for high-thrust maneuvers

in the low Earth orbit (LEO) regime. Therefore, it is critical to optimally lay out a set of

orbital transfer paths of satellites through stages to maximize the profit of reconfiguration

over a long-term mission planning horizon considering the fuel constraints.

In response to this background, we propose a novel integer linear (ILP) programming

formulation for the multi-stage constellation reconfiguration problem (MCRP). MCRP is

an extension to our prior work on single-stage reconfiguration problem [87]. Therefore,

the formulation inherently features the heterogeneity in satellite hardware specifications

and orbital characteristics and asymmetry in satellite distribution. The consideration of the

heterogeneity is especially useful in modeling a cooperative EO missions such as disaster

monitoring [50, 51]. The asymmetric satellite distribution can lead to efficient constellation

pattern sets for EO applications as demonstrated in Ref. [59]. The problem can be solved

using a state-of-the-art branch-and-bound algorithm for provably-optimal solutions.

The contribution of this chapter is two-fold:

1. Multi-stage constellation reconfiguration problem. We extend our prior work
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on single-stage constellation reconfiguration problems using the basis of a time-

expanded network. This modeling allows us to better understand the hidden design

space that is otherwise overlooked with zero or single reconfiguration stage. The

proposed model aims to concurrently optimize the design and transfer aspects of

multiple reconfigurations over the entire mission planning horizon.

2. Heuristic solution methods and empirical analysis. We propose two sequential

decision-making heuristic solution methods based on the principles of myopic policy

and rolling horizon procedure to address the issue of computational intractability in

solving large-scale problems. We empirically show that the myopic policy heuristic

can be beneficial for instances with uniform observation rewards, and the rolling

horizon procedure can be efficient for instances with dynamic environments.

The remainder of this chapter is organized as follows. In Section 4.2, we provide the

formal description of the problem of multi-stage constellation reconfiguration and propose

a novel ILP formulation. Section 4.3 discusses two heuristic solution methods. Section 4.4

then conducts computational experiments to compare the performances of the proposed

methods on two sets of randomly-generated test instances. Lastly, in Section 4.5, we pro-

vide several interesting future work directions to enhance the applicability of the proposed

work and conclude this chapter.

4.2 Multi-Stage Constellation Reconfiguration Problem

In this section, we describe and propose a mathematical optimization formulation of MCRP.

4.2.1 Problem Description

Given a finite discrete-time mission planning horizon T = {1, 2, . . . ,T }, the objective of

MCRP is to find a set of orbital transfer maneuver sequences of K heterogeneous satellites

that maximizes the total obtained observation reward imposed on a set of target points P.

110



Each satellite k ∈ K is associated with different hardware specifications (e.g., sensor field-

of-view and propellant capacities) and orbital characteristics. In addition, each target point

p ∈ P is associated with the non-negative time-dependent observation reward πp = (πtp ≥

0 : t ∈ T )1 and the minimum elevation angle threshold εmin. The observation reward πtp

is earned if at least rtp number of satellites simultaneously cover target p at time step t.

The concept of time-dependent observation reward models the “value” of the sensory data

taken at a different time of day. One motivating example is the remote sensing application

with visible spectral sensors; images taken under the Sun illumination may possess greater

value than otherwise.

Time-Expanded Network

During the specified mission planning horizon, there are N stages at which a constellation

can undergo reconfiguration processes. Denoting S = {0, 1, . . . ,N} by the set of stages (we

let s = 0 indicate the initial state), we associate stage s ∈ S with the time-stamp ts ∈ T

and the stage planning horizon Ts = {t : ts ≤ t < ts+1, t ∈ T }. We say that satellites

simultaneously arrive at their new destination orbital slots at ts to form a new constellation

configuration. Without loss of generality, we assume that stage planning horizons evenly

distribute the mission planning horizon.

The flows of satellites through stages are defined by a set of directed graphs {G1, . . . ,GK}

where we associate each satellite k with its own time-expanded graph (TEG)Gk = (Jk,Ak)

as shown in the top part of Figure 4.1. Here, Jk = {Jk
0 ,J

k
1 , . . . ,J

k
N} is the set of the source

node Jk
0 and the time-expanded nodes {Jk

1 , . . . ,J
k
N} and Ak = {Ak

1, . . . ,A
k
N} is the set of

arcs that connect the nodes of two adjacent stages. Here, each node set Jk
s , s ≥ 1 is a copy

ofJk
1 and has the cardinality J. The concept of TEGs allows us to model the time evolution

of satellite states through stages over a set of identical nodes by associating each node with

1Note that our problem differs from the conventional problem settings considered in the EOSSP literature.
In classical EOSSP, the images requested by the clients only need to be acquired once. The problem we are
considering is the imaging of the same target points for a longer duration.
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time-stamps. At each stage s, satellite k has options to either stay in its orbit or perform an

active orbital maneuver to transfer from a prior stage’s orbit i ∈ Jk
s−1 to a new orbit j ∈ Jk

s

with the non-negative cost of transfer ci j ≥ 0, which is deducted from the available resource

ck
s,max. The source node of satellite k is included as an element of Jk

s ,∀s ∈ S to enable the

option to stay in orbit; consequently, ∃ci j = 0 for (i, j) ∈ Ak
s,∀s ∈ S \ {0},∀k ∈ K .
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Figure 4.1: Mission planning horizon, reconfiguration graphs, constellation configurations,
and observation rewards.
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Observation Reward Mechanism

Each node is an orbital slot with the fixed coordinate in the Earth-centered inertial frame

and is associated with the visibility profile per target point. Letting x j = 1 to indicate the

occupancy of orbital slot j ∈ Jk
s by satellite k at stage s (x j = 0, otherwise), a set of

newly occupied orbital slots forms a new constellation configuration Cs := { j : x j = 1, j ∈

Jk
s , k ∈ K} that is valid for the time interval [ts, ts+1) (see the middle part of Figure 4.1).

We denote yp = (ytp ∈ {0, 1} : t ∈ T ) by the VTW of target p where ytp = 1 if target

p is covered simultaneously by at least rtp satellites (ytp = 0, otherwise). The VTWs

are the function of constellation configuration Cs during the stage planning horizon Ts.

Observation rewards are realized when VTWs are aligned with the periods of the non-

negative observation rewards (see the bottom part of Figure 4.1). To obtain the maximal

sum
∑

p∈P
∑

t∈Ts
πtpytp, the alignments of VTWs and the periods of high observation rewards

need to be maximized.

Remarks

Each stage involves the optimization of (i) the design of a maximum-reward destination

configuration and (ii) the minimum-cost transfer of satellites from one configuration to

another. MCRP is an extension to the single-stage design-transfer problem explored in

Ref. [87] by expanding it in the time dimension. In MCRP, all stages are coupled through

the resource budget constraints. Therefore, no stage can be individually solved to obtain the

true optimal solution to MCRP. If configuration designs in the early stages are aggressive in

terms of resource consumption, then there will be no (or low) flexibility in designing good

configurations in later stages. MCRP is about determining the optimal balance between

the cost and the performance over the entire mission planning horizon. By increasing the

degrees of freedom for reconfiguration throughout the mission planning horizon, the goal

is to infuse more flexibility into the system and identify an optimal reconfiguration process

that is otherwise overlooked with zero or single reconfiguration stage.
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4.2.2 Mathematical Formulation

MCRP is a deterministic multi-period decision-making problem with the basis of network

flows. However, the problem is not fully defined in a graph-theoretic setting because the

reward set on a node is not a scalar value but involves conditional evaluation due to the

linking between the constellation configuration and its coverage state [Constraints (4.2d)].

Therefore, the use of efficient algorithms for network flow problems such as the longest

path problem cannot be applied.

To this end, we formulate MCRP as an ILP optimization problem. First, we define sets,

parameters, and decision variables. Then, we introduce the mathematical formulation of

MCRP.
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Sets and indices

S Set of stage indices (index s; cardinality N + 1)

K Set of satellite indices (index k; cardinality K)

Jk
s Set of orbital slot indices of stage s for satellite k (indices i, j; cardinality J)

P Set of target point indices (index p; cardinality P)

Ts Planning horizon for stage s (index t)

T Mission planning horizon (index t; cardinality T )

Parameters

ci j Cost of transferring satellite k from orbital slot i ∈ Jk
s−1 to orbital slot j ∈ Jk

s (ci j ∈ R≥0)

ck
max Resource availability for satellite k

πtp Coverage reward for target point p at time step t (πtp ∈ R≥0)

rtp Minimum coverage threshold to receive the reward of target point p

at time step t (rtp ∈ Z≥1)

Vt jp


1, if orbital slot j is visible from target point p at time step t

0, otherwise

Decision variables

φi j


1, if satellite k transfers from orbital slot i ∈ Jk

s−1 to orbital slot j ∈ Jk
s

0, otherwise

ytp


1, if target point p is covered at time step t

0, otherwise
We denote R≥0 by the set of non-negative real numbers and Z≥1 by the set of integer

numbers greater than or equal to one. We can describe the relationship between a flow on

(i, j) with the destination node j as:

x j =
∑

i∈Jk
s−1

φi j, ∀ j ∈ Jk
s ,∀s ∈ S \ {0},∀k ∈ K (4.1)
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The mathematical formulation of MCRP for maximum observation throughput is as

follows:

(MCRP) max
∑
p∈P

∑
t∈T

πtpytp (4.2a)

s.t.
∑
j∈Jk

1

φi j = 1, ∀i ∈ Jk
0 ,∀k ∈ K (4.2b)

∑
j∈Jk

s+1

φi j −
∑

q∈Jk
s−1

φqi = 0, ∀i ∈ Jk
s ,∀s ∈ S \ {0,N},∀k ∈ K (4.2c)

∑
k∈K

∑
j∈Jk

s

∑
i∈Jk

s−1

Vt jpφi j ≥ rtpytp, ∀t ∈ Ts,∀s ∈ S \ {0},∀p ∈ P (4.2d)

∑
s∈S\{0}

∑
j∈Jk

s

∑
i∈Jk

s−1

ci jφi j ≤ ck
max, ∀k ∈ K ′ ⊆ K (4.2e)

φi j = {0, 1}, ∀i ∈ Jk
s−1,∀ j ∈ Jk

s ,∀s ∈ S \ {0},∀k ∈ K (4.2f)

ytp = {0, 1}, ∀t ∈ T ,∀p ∈ P (4.2g)

The objective function (4.2a) maximizes the total reward (i.e., the total observation

throughput) obtained by covering a set of target points of interest. Constraints (4.2b) are

the initial stage outflow constraints. Constraints (4.2c) balances the outflow (the first term)

and inflow (the second term) of the nodes of intermediate stages. Constraints (4.2d) are

the configuration-coverage linking constraints that ensure that target point p is covered at

time step t only if there exists at least rtp satellite(s) in view. Constraints (4.2d) couples

the flow of satellites at every stage. Constraints (4.2e) are the resource availability con-

straints that restrict the maximum allowable ∆v of satellite k to ck
max. The set K ′ ⊆ K is

used to denote the subset of satellites that impose such resource availability constraints.

Constraints (4.2f)–(4.2g) define the domain of decision variables.
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4.3 Heuristic Methods

In Section 4.2, we formulated MCRP as an integer linear program. Consequently, we can

utilize generic mixed-integer linear programming (MILP) methods such as the branch-and-

bound algorithm to solve the problem. However, MCRP is a combinatorial optimization

problem that suffers from the curse of dimensionality as the total number of potentially

feasible plans grows exponentially with the linear increase in J, N, and K (e.g., there are at

most JNK plans to consider). For example, an instance I of MCRP with 3 reconfiguration

stages, 5 satellites, and 50 candidate orbital slots per satellite has up to 3.05×1025 poten-

tially feasible plans. The enumeration of these plans for feasibility and optimality checks

can be computationally prohibitive.

To address the computational intractability in solving MCRP, we construct two se-

quential decision-making heuristic methods based on the principles of myopic policy and

the rolling horizon procedure [88]. Feasible solutions obtained by the heuristic methods

are feasible solutions to MCRP.

4.3.1 Myopic Policy Heuristic

To circumvent the challenge of combinatorial explosion, we develop a divide-and-conquer

sequential decision-making framework called the Myopic Policy Heuristic (MPH). The

principal idea is to partition MCRP by stages into N smaller subproblems with manage-

able sizes and solve subproblems in a successive manner. With the knowledge of the satel-

lite states from the precedent stage, which we denote with J̃s−1, the number of potentially

feasible plans effectively reduces to JK per subproblem. Considering the same instance I

of MCRP, we can partition the problem into 3 subproblems; each subproblem has up to

3.13×108 potentially feasible plans. Small subproblems can be efficiently solved using a

commercial software package. Nevertheless, additional algorithmic efforts can be applied

on the basis of MPH to further improve the performance such as the solution quality and
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the time complexity. It is important to note that MPH is an algorithmic framework with a

myopic policy. That is, no impacts on the future stages are considered in the current-stage

decision-making. Figure 4.2 illustrate the scope of a subproblem.

SP(𝑠)

𝒥'!"#

𝑡!"# 𝑡!

𝒥!

𝑡!$#
𝒞!

Figure 4.2: MPH subproblem for stage s.
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Subproblem Formulation

A subproblem is parameterized with the stage index s and is denoted with SP(s). The

mathematical formulation of SP(s) is as follows:

(SP(s)) zs = max
∑
p∈P

∑
t∈Ts

πtpytp (4.3a)

s.t.
∑
j∈Jk

s

φi j = 1, ∀i ∈ J̃k
s−1,∀k ∈ K (4.3b)

∑
i∈J̃k

s−1

φi j ≤ 1, ∀ j ∈ Jk
s ,∀k ∈ K (4.3c)

∑
k∈K

∑
j∈Jk

s

∑
i∈J̃k

s−1

Vt jpφi j ≥ rtpytp, ∀t ∈ Ts,∀p ∈ P (4.3d)

∑
j∈Jk

s

∑
i∈J̃k

s−1

ci jφi j ≤ ck
s,max, ∀k ∈ K ′ ⊆ K (4.3e)

φi j = {0, 1}, ∀i ∈ J̃k
s−1,∀ j ∈ Jk

s ,∀k ∈ K (4.3f)

ytp = {0, 1}, ∀t ∈ Ts,∀p ∈ P (4.3g)

The objective function (4.3a) maximizes the total observation reward for stage s. Con-

straints (4.3b) and (4.3c) are the usual assignment problem constraints. Constraints (4.3d)

are the configuration-coverage linking constraints for stage s. Constraints (4.3e) are the

individual resource availability constraints; unlike Constraints (4.2e), the resource avail-

ability constraints reflect the resource consumptions from the prior stages {1, . . . , s−1} and

parameterize them; it is computed as follows:

ck
s,max = ck

max −

s−1∑
q=1

∑
j∈Jk

q

∑
i∈J̃k

q−1

ci jφi j (4.4)

Constraints (4.3f) and (4.3g) define the domain of decision variables.

Algorithm 5 outlines the overall solution procedure of MPH. SP(s) outputs the optimum

zs and the optimal assignment solution φ∗s = (φ∗i j = {0, 1}, i ∈ J̃
k
s−1, j ∈ Jk

s , k ∈ K) and the
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optimal coverage state solution y∗s = (y∗tp ∈ {0, 1} : t ∈ Ts, p ∈ P). (Notice that the term

optimality is with respect to SP(s)). The algorithm stores the results from each stage and

returns the heuristic solution objective value zmph, which is the sum of all zs, and a feasible

solution (φ∗,y∗), which is the collection of all (φ∗s,y
∗
s ), to MCRP.

Algorithm 5: Myopic policy heuristic
Input: c, π, V , r
Output: zmph, (φ∗,y∗)

1 Initialize s← 1
2 Compute SP(s) and store: z1 and (φ∗1,y

∗
1)

3 s← s + 1
4 while s ≤ N do
5 Update J̃k

s−1 ← { j : φi j = 1, i ∈ Jk
s−2, j ∈ Jk

s−1}

6 Compute SP(s) and store: zs and (φ∗s,y
∗
s )

7 s← s + 1

8 zmph ←
∑

s∈S\{0} zs

9 (φ∗,y∗)←
(
(φ∗s,y

∗
s ) : s ∈ S \ {0}

)
The formulation of SP(s) is identical to the regional constellation reconfiguration prob-

lem with individual resource constraints (RCRP-IRC) as outlined in Ref. [87]. The problem

embeds a budgeted assignment problem and a maximal covering location problem. As dis-

cussed previously, any dedicated algorithm can be applied to solve SP(s). In our case, we

can exploit the established Lagrangian-relaxation based heuristic method for RCRP-IRC.

4.3.2 Rolling Horizon Procedure

The Rolling Horizon Procedure (RHP) uses the impact of the current-stage decisions on

future stages to make informed decisions at the current stage [89]. In this chapter, we use

the deterministic 1-stage lookahead policy. This allows us to partition MCRP into N − 1

smaller subproblems; the last iteration at s = N − 1 deterministically optimizes the entire

remaining mission planning horizon. Due to the lookahead policy, each subproblem is

larger than the subproblem SP(s) of MPH. Considering the same instance I of MCRP,

we can partition the problem into 2 subproblems; each subproblem has up to 9.76×1016
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potentially feasible plans. Figure 4.3 illustrates the scope of a subproblem with the 1-stage

lookahead policy.

𝒥"!"#

𝑡!"# 𝑡!

𝒥!

𝑡!$#
𝒞!

𝑡!$%
𝒞!$#

𝒥!$#

1-SP(𝑠)

Figure 4.3: RHP subproblem for stage s with the 1-stage lookahead policy.
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Subproblem Formulation

We denote 1-SP(s) by a subproblem parameterized with the stage index s and the 1-stage

lookahead policy. The mathematical formulation of 1-SP(s) is as follows:

(1-SP(s)) zs + zs+1 = max
∑
p∈P

∑
t∈{Ts,Ts+1}

πtpytp (4.5a)

s.t.
∑
j∈Jk

s

φi j = 1, ∀i ∈ J̃k
s−1,∀k ∈ K (4.5b)

∑
j∈Jk

s+1

φi j −
∑

q∈J̃k
s−1

φqi = 0, ∀i ∈ Jk
s ,∀k ∈ K (4.5c)

∑
k∈K

∑
j∈Jk

s

∑
i∈J̃k

s−1

Vt jpφi j ≥ rtpytp, ∀t ∈ Ts,∀p ∈ P (4.5d)

∑
k∈K

∑
j∈Jk

s+1

∑
i∈Jk

s

Vt jpφi j ≥ rtpytp, ∀t ∈ Ts+1,∀p ∈ P (4.5e)

∑
j∈Jk

s

∑
i∈J̃k

s−1

ci jφi j +
∑

j∈Jk
s+1

∑
i∈Jk

s

ci jφi j ≤ ck
s,max, ∀k ∈ K ′ ⊆ K

(4.5f)

φqi, φi j = {0, 1}, ∀q ∈ J̃k
s−1,∀i ∈ Jk

s ,∀ j ∈ Jk
s+1,∀k ∈ K

(4.5g)

ytp = {0, 1}, ∀t ∈ {Ts,Ts+1},∀p ∈ P (4.5h)

The objective function (4.5a) maximizes the sum of observation rewards for stages s

and s+1. Constraints (4.5b) and (4.5c) are the usual network flow conservation constraints.

Constraints (4.5d) and (4.5e) are the configuration-coverage linking constraints for stages s

and s+1, respectively. Constraints (4.5f) are the individual resource availability constraints;

ck
s,max is defined in Eq. (4.4). Constraints (4.5g) and (4.5h) define the domain of decision

variables.

Algorithm 6 overviews RHP. In essence, the structure of this algorithm is very similar

to that of Algorithm 5 but it possesses one distinct characteristic. The arguments of 1-
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SP(s) are (φ∗s,y
∗
s ) and (φ∗s+1,y

∗
s+1). However, we do not skip stage +1 and proceed directly

to stage s + 2. Instead, we only make decisions for the stage s using the deterministic

forecast of the next immediate stage and proceed to stage s + 1. As discussed previously,

no decisions are made for stage s + 1 except if the current stage is at N − 1.

Algorithm 6: Rolling horizon procedure
Input: c, π, V , r
Output: zrhp, (φ∗,y∗)

1 Initialize s← 1
2 Compute 1-SP(s) and store: z1 and (φ∗1,y

∗
1)

3 s← s + 1
4 while s ≤ N − 1 do
5 Update J̃k

s−1 ← { j : φi j = 1, i ∈ Jk
s−2, j ∈ Jk

s−1}

6 if s < N − 1 then
7 Compute 1-SP(s) and store: zs and (φ∗s,y

∗
s )

8 else
9 Compute 1-SP(s) and store: {zs, zs+1} and

(
(φ∗s,y

∗
s ), (φ∗s+1,y

∗
s+1)

)
10 s← s + 1

11 zrhp ←
∑

s∈S\{0} zs

12 (φ∗,y∗)←
(
(φ∗s,y

∗
s ) : s ∈ S \ {0}

)

4.3.3 Upper Bound of MCRP for Heuristic Solution Gap Analysis

The principal motivation for us to consider MPH and RHP is to address the issue of the

curse of dimensionality in solving MCRP. While these heuristic methods can compute

feasible solutions to MCRP relatively faster than concurrently solving for the entire mission

planning horizon, there is no guarantee of the optimality of the obtained solutions.

To analyze the quality of a generic heuristic solution zh without the knowledge of the

optimal solution z, we identify an upper bound ẑ to MCRP that can be used to compute

the duality gap (DG), that is, the difference between the upper bound of MCRP and the

heuristic solution. Ensuring that the optimal solution is always bounded between the upper

bound and the heuristic solution, we can use such information to infer the quality of the

heuristic solution with respect to the unknown optimal solution. One typical upper bound
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for this purpose is the solution to the LP relaxation problem of MCRP. However, obtaining

the LP relaxation bound can also be computationally challenging in large-scale instances.

In what follows, we describe one upper bound metric that can be computed with a given

set of parameters.

To find an upper bound ẑ of MCRP, we begin by relaxing Constraints (4.2e). This

decouples the coupling between stages. Also, this proves that any upper bound metric

derived beyond this point will always satisfy ẑ ≥ z, and hence proves the boundness of the

optimum.

Solving the resource availability-relaxed MCRP can be still challenging because the

problem now consists of N maximum coverage problems, which are shown to be NP-hard

[87, 71]. In what follows, we present a computationally-efficient upper bound metric.

We begin by examining Constraints (4.2d) for stage s and aggregating t ∈ Ts and p ∈ P:

∑
p∈P

∑
t∈Ts

πtp

rtp

∑
k∈K

∑
j∈Jk

s

∑
i∈Jk

s−1

Vt jpφi j ≥
∑
p∈P

∑
t∈Ts

πtpytp

With this, we wish to maximize the left-hand side. We can do so by casting it as a maxi-

mization problem:

ẑs = max
x j∈{0,1}, j∈Jk

s ,k∈K

{∑
p∈P

∑
t∈Ts

πtp

rtp

∑
k∈K

∑
j∈Jk

s

Vt jpx j :
∑
j∈Jk

s

x j = 1, k ∈ K
}

where we use Eq. (4.1) to change variables. This problem can be further decomposed into

K subproblems, each with the satellite index k ∈ K as a parameter:

ẑk
s = max

x j∈{0,1}, j∈Jk
s

{∑
p∈P

∑
t∈Ts

πtp

rtp

∑
j∈Jk

s

Vt jpx j :
∑
j∈Jk

s

x j = 1
}
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By aggregating ẑs for all stages, we obtain an upper bound of MCRP:

ẑ =
∑

s∈S\{0}

ẑs

4.4 Computational Experiments

In the first part of this section, we conduct computational experiments to evaluate the impact

of the problem size on the quality of the heuristic solutions obtained by MPH and RHP

compared to the baseline MCRP. All problems are solved using a commercial MILP solver.

The second part of this section conducts a detailed analysis to investigate the impact of

having multiple stages on the system observational throughput.

4.4.1 Comparative Analysis

Experimental Setup

We have two sets of uniquely-generated test instances. Each set consists of 12 test in-

stances, and each test instance draws one parameter value from each of the following sets:

N ∈ {3, 4, 5}, J ∈ {50, 150}, and K ∈ {3, 5}. The smallest instance has at most 1.96×1015

feasible plans, and the largest instance has at most 2.53×1054 feasible plans. The goal is

to investigate the impact of the problem size on the solution quality and the computational

runtime. For each set of test instances, we apply a different parameter generation rule; no

two instances with the same problem dimension have identical parameters.

For the first set, we set following parameter values. We assume a group of K homo-

geneous satellites in inclined circular orbits following the Walker-δ constellation pattern

rule of 80◦ : K/K/0. This indicates that each satellite occupies its own orbital plane and

the relative phasing between satellites in adjacent orbital planes is zero. The altitude of

the constellation system is randomly selected in the range [700 km, 2000 km]. The set of

P = 10 spot targets are randomly generated in the latitude interval [−80◦, 80◦] and no
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restriction is set on the longitudes; all spot targets are set with εmin = 5◦. We assume

πtp = 1,∀t ∈ T , p ∈ P and rtp = 1,∀t ∈ T , p ∈ P. This models that all targets have

identical weights for imaging. We let the resource availability to ck
max = 600 m/s,∀k ∈ K .

The considered mission planning horizon is for 5 days and it is discretized with the time

step size of tstep = 100 s; consequently, we have T = 4320. Each Jk
s = {1, . . . , J} is gen-

erated such that each orbital slot is associated with identical orbital elements but different

true anomaly; the true anomalies of orbital slots within the orbital plane of satellite k is

uniformly spaced.

For the second set, we focus on analyzing the impacts of the spatiotemporally-varying

observation rewards on the quality of solutions. We keep every parameter generation rules

the same as the first set, but we vary the following parameter values. We assume that there

are different sets of targets {P1, . . . ,PN} that are valid during the period of a particular

stage, and each target p ∈ Ps is associated with the temporally-varying reward following

the rule:

πtp =


∼ U(0, 1), if t ∈ Ts

0, otherwise

where U(0, 1) is the uniform distribution in [0, 1]. We set no observation rewards on targets

beyond or before the periods of the assigned stages. We intend to simulate dynamically-

changing environments such that a constellation configuration optimized for one stage

would be drastically unfit for another. This setting is in contrast to that of the first set

because all targets have uniform rewards throughout the entire mission planning horizon

and no targets are dynamically generated or removed.

An arc (i, j) is associated with the cost of transfer ci j. In our problem domain, the cost

is the ∆v required to transfer a satellite from one orbital slot to another. Given the many-

maneuver opportunistic nature of multi-stage reconfiguration, it is logical to assume only

co-planar maneuvers in this chapter. More specifically, we restrict the co-planar maneu-

vers to phasings only. Out-of-plane impulsive maneuvers are especially costly in the LEO
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regime; therefore, such maneuvers are not ideal for a series of orbital transfers. We ap-

proximate the cost of transferring satellite k from orbital slot i ∈ Jk
s−1 to orbital slot j ∈ Jk

s

at stage s by taking these two nodes as the boundary conditions of a circular co-planar

phasing problem as outlined in Ref. [68].

We utilize a commercial software package, the Gurobi optimizer (version 9.1.1.), to

solve MCRP and the subproblems of MPH and RHP. All computational experiments are

coded and conducted on a platform with the Intel Core i-9700 3.00 GHz CPU processor (8

cores and 8 threads) and 32 GB of memory. In all cases, we allow the Gurobi optimizer to

utilize all available cores. We use the default parameters of the Gurobi optimizer except that

we impose the runtime limit of 3600 s. No early termination is enforced on the heuristic

methods even if the runtime aggregated thus far exceeds 3600 s.

To gauge the quality of heuristic solutions relative to the MCRP solution obtained by

the Gurobi optimizer, we define the relative performance metric (RP): (zh − z)/zh unre-

stricted in sign where zh denotes the generic heuristic solution objective function value.

The positive sign of RP indicates the outperformance of a heuristic method relative to the

Gurobi optimizer for MCRP. In cases where computing the optimal solutions of MCRP is

computationally prohibitive, we can infer the quality of the heuristic solutions by comput-

ing the duality gap that bounds the optimal solution. We define DG as follows: |ẑ − zh|/zh.

Note that the LP relaxation solution of MCRP can be used in place of ẑ, but quantifying it

can be computationally challenging.

Numerical Results

The top part of Table 4.1 (instances 1–12) reports the results of the computational exper-

iments on the first set of test instances. Out of 12 MCRP instances, the Gurobi optimizer

triggers the time limit of 3600 s on 9 instances and optimally solves 3 instances. For in-

stance 11, the Gurobi optimizer forcefully terminates due to the out-of-memory issue. For

the same instance, however, both MPH and RHP manage to obtain feasible solutions. In
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particular, MPH solves instance 11 with the duality gap of 2.98 % in 370.26 s whereas RHP

solves the same instance with the duality gap of 11.27 % in 4770.89 s (the first stage sub-

problem triggers the time limit). Overall, solving MCRP, MPH, and RHP using the Gurobi

optimizer led to finding 4, 4, and 6 best solutions, respectively (see boldface entries). In

instances in which MPH underperforms relative to MCRP, the relative under-performance

is at most 0.76 %. A similar analysis extends to RHP with the relative underperformance

with at most 0.31 %. RHP found more high-quality solutions than others, however, RHP

comes at the price of additional computational runtime. For instances 11 and 12, which

represent “large-scale” problems, RHP achieves solutions with relatively larger DG than

other instances, and we can observe that MPH performs better than RHP with much lower

DGs.

The bottom part of Table 4.1 (instances 13–24) reports the results of the computational

experiments on the second set of test instances. Out of 12 instances, MCRP formulation

led to finding the best solutions on 8 instances. As described previously, the test instances

of the second set have drastic changes in the targets of interest that vary stage by stage.

Therefore, the ability to concurrently optimize the entire stage is highly desired. In addi-

tion to this empirical result, we wish to see how MPH and RHP would perform in such

scenarios by comparing the metrics such as RPs and DGs. MPH and RHP found 0 and 6

best solutions, respectively. In general, the duality gaps of heuristic methods are poorer

than those we computed in the first set. Examining the relative performance metrics, we

can see that the worst underperformance of MPH and RHP relative to MCRP are 4.68 %

and 1.37 %, respectively. These values are poorer than what we found in the first set of

instances, however, we believe that these numbers indicate the high-quality solutions of the

heuristic methods, especially considering the computational runtime required to produce

such results. In cases we cannot quantify z, we need to resort to duality gaps to infer the

solution quality. We observe that the metric ẑ provides a good upper bound estimate of the

optimum to MCRP.
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4.4.2 Case Study: Impacts of Stages and Solution Methods on System Observational

Throughput

In this section, we conduct a case study to analyze the impact of having multiple stages on

the system observation throughput. To do so, we vary N ∈ {1, 2, 3, 4, 5, 6} on an identical

problem with fixed parameters.

Case Study Setup

Following are the fixed parameters:

• Mission. Mission planning horizon is referenced to the J2000 epoch, and the duration

is 5 days. We set tstep = 100 s and T = 4320.

• Satellites. A fleet of 5 heterogeneous satellites with different orbits (but all are cir-

cular) and fuel availabilities. Each satellite has 50 candidate orbital slots that are

uniformly distributed within the orbital plane. Table 4.2 shows the key specifications

of satellites.

Table 4.2: Key satellite specification parameters.

k Altitude, km Inclination, deg. RAAN, deg. ck
max, m/s

1 926.16 85.02 196.82 687.40
2 787.89 71.28 159.59 587.85
3 724.69 78.64 12.98 796.70
4 846.24 77.28 296.24 696.53
5 733.40 73.04 98.39 701.13

• Targets. A set of 10 spot targets randomly distributed between the latitude interval

[−80◦, 80◦] and the longitude interval [−180◦, 180◦]. Figure 4.4 visualizes the co-

ordinates of the targets. The rewards are target-dependent. Each target p has the

time-dependent reward πp where we assume πtp ∈ {0, 1}; we randomly generate a

random number of blocks of contiguous ones. Figure 4.5 visualizes the observation

rewards imposed on each target. Also, we let εmin = 5◦ and rtp = 1,∀t ∈ T , p ∈ P.
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Figure 4.4: Coordinates of the randomly generated targets.
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Numerical Results

All instances are solved by MCRP, MPH (for s ≥ 1), and RHP (for s ≥ 2), and the

Gurobi optimizer solves MCRP and the subproblems of MPH and RHP. We set the runtime

limit of 3600 s. Figure 4.6 reports the results of the total observation rewards obtained

by all methods per stage. The bottom dashed line shows the reference case without any

reconfiguration, which has the score of 4054. By employing reconfiguration, even with

only a single stage, the system enhances the observational throughput.

The results conform with our intuitive expectation that, in general, increasing the num-

ber of stages increases the total observation rewards by allowing more degrees of freedom

for flexibility. (This is not always true because we have resource availability that compli-

cates the problem of multi-stage reconfiguration.) However, in a case with s = 3, both RHP

and MPH outperform MCRP with the scores of zrhp = 4293, zmph = 4281, and z = 4278,

respectively. This result is primarily due to the fact that the Gurobi optimizer terminates

MCRP early because it triggers the runtime limit of 3600 s and returns the best feasible

incumbent solution found thus far. Furthermore, this result implies that unless we solve

MCRP to optimality (or with more runtime limit), the heuristic methods can achieve better

solutions. To validate this remark, we test again case s = 3 of MCRP with a longer runtime

limit of 7200 s. In this setting, we obtain z = 4302 with the duality gap of 2.09 % that trig-

gers the new runtime limit (hence the solution is still suboptimal); however, the obtained

value is greater than the previous one with the runtime limit of 3600 s and those of the

heuristic methods. The worst underperformances relative to MCRP are at most 3.62 % for

MPH (case s = 5) and 2.26 % for RHP (case s = 5). These values attest to the high-quality

solutions of the heuristic methods.

We also report the computational runtimes for each instance.2 We observe that MCRP

triggers the runtime limit for s ≥ 2 cases owing to the problem scales while no heuristic

2In this analysis, we exclude results of s = 1 for MPH and s = 2 for RHP because they are identical to
MCRP.
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Figure 4.6: Total observation rewards by varying the number of stages.

methods trigger the runtime limit. MPH maintains its runtime less than 14 s (case s = 2)

for all s ≥ 2 cases, which is significantly faster than MCRP.
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4.5 Conclusions

This chapter proposes a novel mathematical model to solve the problem of reconfiguring

a fleet of satellites to maximize the observation rewards obtained by covering a set of tar-

gets over the mission planning horizon while satisfying the individual resource availability

constraints. To model stage transitions and the fuel consumption by satellites, we adopt

the concept of time-expanded graphs by expanding the nodes (the orbital slots) forward in

time and constructing weighted arcs between the nodes of any two adjacent stages. Based

on this model, we propose an ILP formulation, which enables the use of commercial MILP

solvers for convenience-handling and provably-optimal solutions.

To address the issue of the computational intractability in solving large-scale MCRP,

we propose the use of two sequential decision-making approaches: the myopic policy and

the rolling horizon procedure. Through the computational experiments, we empirically

show that both MPH and RHP provide high-quality solutions in a reasonable computational

runtime for instances with uniform observation rewards. In the case of spatiotemporally-

varying observation rewards and dynamically-generated targets, RHP outperforms MPH by

making informed decisions exploiting the deterministic forecast of the impact of current-

stage decisions on an immediate subsequent stage. However, there is no guaranteed outper-

formance of RHP relative to MPH as the remaining periods are not fully taken into account

in the decision-making. We show in the case study that having more stages can increase the

total observation rewards, but the quality of actual solutions depends on the performance

of an algorithm.

There are two fruitful directions for future research. The first is to improve the fi-

delity and the applicability of the model. This chapter only considers an ideal case with

orbital transfers as decision variables (i.e., the flows). To accurately assess the impact of

multi-stage reconfiguration on the scheduling of Earth observation systems, the proposed

problem ought to be integrated with a scheduler with various satellite tasks and opera-
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tional constraints. Such integration would require modeling efforts in the mapping of com-

plex interactions between various tasks and requirements. The second is to challenge the

curse of dimensionality. As shown previously, SP(s) of MPH is RCRP-IRC of Ref. [87],

which itself is a combinatorial optimization problem that suffers from the explosion of a

solution space in largely-sized instances. Several algorithmic efforts such as asymptotic

analysis, node aggregation, approximate dynamic programming, and decomposition-based

techniques can reduce the time complexity.
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CHAPTER 5

CONCLUSION

The contributions of this dissertation are summarized below.

1. Constellation design for persistent complex regional coverage (Chapter 2)

• The Access-Pattern-Coverage (APC) decomposition model is developed based

on the assumptions of repeating ground track orbits and common ground track

constellations motivated by the need to provide persistent regional coverage.

The findings show that the relationship between a constellation configuration

and its coverage state with respect to a ground target exhibits a circular convo-

lution phenomenon. Using the property of circulant matrices, the APC decom-

position model is shown to possess linear properties.

• Based on the configuration-coverage model, a binary integer linear programming-

based constellation design problem is formulated to design a minimum-satellite

constellation pattern that satisfies the complex spatiotemporally-varying cover-

age requirements. The optimized constellation pattern features heterogeneity

in satellite specifications and common orbital characteristics and asymmetry

in satellite distributions. One key practical implication of this research is that

for non-geostationary systems, an optimal constellation pattern dedicated to

regional coverage would be an asymmetric constellation in contrast to the sym-

metric constellation for global coverage.

2. Constellation reconfiguration for adaptive mission planning (Chapter 3)

• The constellation design problem introduced in Chapter 2, which is in the form

of a set covering problem, is not suitable to model the constellation design
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aspect in the satellite constellation reconfiguration context. In response to this

challenge, this research introduces a new constellation design problem, called

the maximum coverage problem (MCP) that enforces the cardinality constraint.

• An integer linear programming formulation of the reconfiguration problem is

proposed that integrates the constellation design problem (MCP) and the con-

stellation transfer problem (AP) which are otherwise considered independent

and serial in the state-of-the-art. The integrated model enables the exploration

of larger design space and a trade-off analysis between the transportation cost

and the coverage performance. A variant problem is also introduced that en-

forces individual resource constraints.

• A dedicated computationally-efficient Lagrangian relaxation-based heuristic

method is developed that leverages the assignment problem structure embed-

ded in the problem. Computational experiments attest to the near-optimality of

the Lagrangian heuristic solutions and significant improvement in the compu-

tational runtime compared to a commercial mixed-integer linear programming

solver.

• The developed formulation and the solution method are not restricted to the

domain of satellite constellation reconfiguration. For example, the proposed

model may be adopted to model the problem of locating a set of first responders

(e.g., fire trucks) that maximizes the weighted coverage of demand nodes (e.g.,

wildfires) while minimizing the cost of deploying first responders from a set of

initial locations (e.g, fire stations).

3. Multi-stage constellation reconfiguration problem (Chapter 4)

• A novel integer linear programming formulation of the multi-stage constellation

reconfiguration problem is proposed. This modeling allows us to better under-

stand the hidden design space that is otherwise overlooked with zero or single
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reconfiguration stage. The proposed model aims to concurrently optimize the

process of reconfigurations over the specified mission planning horizon, thereby

incorporating the cost consideration aspect in the long mission horizon.

• Two heuristic solution methods based on the concepts of myopic policy and

the rolling horizon procedure are developed to address the issue of computa-

tional intractability in solving large-scale problems. This research empirically

shows that the myopic policy heuristic can be beneficial for instances with uni-

form observation rewards, and the rolling horizon procedure can be efficient for

instances with dynamic environments owing to the lookahead policy.
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APPENDIX A

CHAPTER 2 APPENDIX

This chapter lists all appendices for Chapter 2.

A.1 Expanded Ground Track View

The expanded ground track view spatially expands an ordinary ground track of a satellite

and visualizes its ground track relative to the area of interest throughout the simulation

period Tsim. The area of interest and its mirrored images are positioned throughout the plot

(the red squares in Figure A.1) to provide spatial references. The expanded ground track

view is especially useful when visualizing and correlating the access profile and the actual

satellite ground track.

The following properties of the expanded ground track view are formalized for the

repeating ground track with the period ratio of τ = NP/ND.

1. The magnitude of the longitudinal angular displacement of the expanded ground

track is 360|NP − ND| degrees for prograde orbits or 360(NP + ND) degrees for ret-

rograde orbits [90]. Here, the longitudinal angular displacement of the expanded

ground track is defined as the total angular displacement required to repeat the ground

track, measured along the axis of longitude in the direction of the satellite’s motion.

2. The mirrored images of the area of interest are separated by 360 degrees.

A.2 Derivation of the Coverage Timeline

To prove the circular convolution phenomenon, show that Eq. (2.14) is identical to Eq. (2.20).

Begin by expanding Eq. (2.14), which is the summation of all access profiles:
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Figure A.1: Full expansion of a ground track of œ0 = [4/1, 0, 50◦, 0◦, 350.2◦, 0◦] (J2000).

b j[n] = v1, j[n] + v2, j[n] + · · · + vN, j[n] (A.1)

Each term of Eq. (A.1) can be represented as a multiple of v0, j[n] and permutation

matrix P nk
π due to the cyclic property of the assumed formulation. Recalling the definition

from Eq. (2.12):

vk, j[n] = P nk
π v0, j[n]

where Pπ is a permutation matrix with the dimension (L × L) shown below. Note that

I = P 0
π = P L

π .

Pπ =



0 0 0 · · · 1

1 0 0 · · · 0

0 1 0 . . .
...

...
...
. . .
. . . 0

0 0 · · · 1 0


Substituting Eq. (2.12) into Eq. (A.1), we get the following equation:

b j[n] = (P n1
π + P

n2
π + · · · + P

nN
π )v0, j[n] (A.2)

Eq. (A.2) is a superposition of cyclically shifted access profiles referenced to a seed

satellite access profile. Here, nk denotes the index of the relative time shift of the kth access
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profile with respect to the seed satellite access profile. Instead of only indicating the indices

where only access profiles exist, one can generalize this to all time steps n ∈ {0, ..., L − 1}

following the definition of the constellation pattern vector in Eq. (2.17). Hence, Eq. (A.2)

can be further deduced as:

b j[n] =
(
x[0]P 0

π + x[1]P 1
π + · · · + x[L − 1]P L−1

π

)
v0, j[n] (A.3)

The terms within parentheses in Eq. (A.3) is identical to the alternative analytical defi-

nition of the circulant matrix:

X ≜ x[0]I + x[1]P 1
π + · · · + x[L − 1]P L−1

π (A.4)

Finally, substituting Eq. (A.4) into Eq. (A.3), we get:

b j =Xv0, j (A.5)

Using the commutative property of the circular convolution operator, Eq. (A.5):

b j = V0, jx

where

V0, j[α, β] = v0, j[(α − β) mod L]

as defined in Eq. (2.21).

This is identical to the definition of the circular convolution in Eq. (2.20), thereby prov-

ing the circular convolutional nature of the formulation under the aforementioned assump-

tions.
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A.3 Integrating the Developed Method into Constellation Design Process

This appendix introduces an example approach to integrate the developed method into the

satellite constellation design process. As discussed earlier, the developed satellite constel-

lation pattern design method needs the seed satellite orbital elements as its input. In this

appendix, we introduce an approach to efficiently integrate the determination of the seed

satellite orbital elements œ0 and the determination of the constellation pattern x (i.e., the

developed method).

First, note that although œ0 contains six orbital elements (τ, e, i, ω,Ω0,M0), we only

have five degrees of freedom. The initial mean anomaly of the seed satellite M0 can be set

to zero without loss of generality. This is because, as shown in Eq. (2.37), Ω0 and nk can

be chosen such that any solution with an arbitrarily chosen M0 can be converted into an

equivalent solution with M0 = 0◦1.

The design space of the remaining five orbital elements can be narrowed down even

further by considering the launch and mission requirements. As an example, we consider

the case used in Example 2 in Section 2.6 and provide a walk-through process.

1. Suppose there is demand for increased communications capacity (i.e., increased

satellite diversity) during a particular time interval of a day that repeats daily (e.g.,

Internet rush hour) over Atlanta, Georgia ({(ϕ = 34.75◦N, λ = 84.39◦W)}). Translat-

ing this demand, the time-varying coverage requirement f is derived (see Example

2). The communications quality-of-service requirement further enforces consistency

in data round-trip latency throughout the mission duration; hence, a circular orbit is

desired. The period ratio and the minimum elevation angle are assumed to be derived

a priori based on mission-related requirements: τ = 12/1 and εmin = 5◦.

2. Based on the set of mission requirements and parameters (Tr = 86 400 s, e = 0, and

τ = 12/1), the inclination of the orbit is readily derived, which is approximately
1Strictly speaking, there are only a finite number of possible discrete values for M0 due to the discretiza-

tion used in this problem.
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102.9◦. Note that since the repeat period Tr is exactly given together with τ and e,

there is no degree of freedom for trading off the altitude and the inclination. In this

case, since the repeat period is exactly 86 400 s, the orbit needs to be a repeating

sun-synchronous orbit.

3. At this point, the only leftover variable is Ω0, which dictates the shift of the common

ground track along the longitudinal direction. The RAAN of the seed satelliteΩ0 can

be determined either by an analytical heuristic method or by a numerical optimiza-

tion.

a) An analytical heuristic approach can determineΩ0 such that the common ground

track is symmetric about the longitude of the target point (see Figure A.2). Solv-

ing for the corresponding RAAN value yields Ω0 = 98.3◦. Note that another

symmetry exists further offsetting Ω0 value.

b) A single-variable optimization can be performed to determine the value of Ω0.

Ideally, we prefer to use the number of satellites as the metric, but this cannot

be evaluated without x. Instead, an effective metric can be the coverage over

the area of interest. Note that the values of œ0 maximizing the coverage does

not necessarily lead to a minimum number of satellites, but as shown later, it is

a good approximation to use.

4. Using the obtained seed satellite orbital elements, the optimization of the constella-

tion pattern vector can be performed following the APC-based methods developed in

Chapter 2.

As we evaluate the efficiency of the developed integrated heuristics and BILP methods,

we compare them against a more straightforward approach, where both œ0 and x are opti-

mized as variables simultaneously against the objective function of the number of satellites.

In fact, this formulation is the most direct representation of our goal; however, since it is a
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Figure A.2: Alignment of the ground track such that it is symmetric about the longitude of
the target.

mixed-integer nonlinear optimization problem, we cannot leverage the developed method

and therefore can only use generic solvers (e.g., genetic algorithm). Here, we aim to show

that, by incorporating the developed method into this process, we can achieve a much better

performance than this classical integrated method.

In Table A.1, Method 1 refers to the heuristics approach that finds Ω0 using symmetry,

which is the actual method used in Example 2. Method 2 refers to the two-stage optimiza-

tion where the first stage is the meta-heuristic optimization of Ω0 and the second stage is

the BILP optimization of x. Lastly, Method 3 is the simultaneous optimization of both

Ω0 and x via meta-heuristic optimization. For Methods 2 and 3, a genetic algorithm by

MATLAB is used with the default settings.

Table A.1: Comparison of different methods for integrated optimization.

Method Number of Satellites Computational Time, s
1 24 3712.0

2 25 Stage 1: 477.1
Stage 2: 2086.0

3

75 2482.1 (Population: 100)
36 5854.7 (Population: 200)
32 10635.1 (Population: 300)

The results show that both Methods 1 and 2 are effective in finding the optimal solution;

the only difference in these two methods is in the optimization of Ω0. On the other hand,
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Method 3 requires longer computational time, while only showing poor results. These

results demonstrate the utility of the developed method when integrated into the satellite

constellation design process.

A.4 Derivation of the RAAN phasing

This appendix derives

Ωk = nk
2πND

L
+ Ω0

in Eq. (2.37b). Define ∆Ω = (Ωk −Ω0)/nk. Our goal is to prove ∆Ω = 2πND/L.

This expression comes from Figure 2.5. In order to achieve a constellation that sepa-

rates away from each other by tstep over a common ground track, ∆Ω needs to be defined

as the difference between Earth’s rotation and the angular displacement due to the RAAN

precession during a time interval [0, tstep]. More specifically,

∆Ω = (ω⊕ − Ω̇)tstep (A.6)

Since tstep = Tr/L, substituting in Eq. (2.1) yields tstep = NDTG/L. Plugging this into

Eq. (A.6), we get:

∆Ω = (ω⊕ − Ω̇)
NDTG

L

Since, TG = 2π/(ω⊕ − Ω̇) (Eq. (2.2b)), we get:

∆Ω =
2πND

L
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