11,684 research outputs found

    Triangle-free geometric intersection graphs with large chromatic number

    Get PDF
    Several classical constructions illustrate the fact that the chromatic number of a graph can be arbitrarily large compared to its clique number. However, until very recently, no such construction was known for intersection graphs of geometric objects in the plane. We provide a general construction that for any arc-connected compact set XX in R2\mathbb{R}^2 that is not an axis-aligned rectangle and for any positive integer kk produces a family F\mathcal{F} of sets, each obtained by an independent horizontal and vertical scaling and translation of XX, such that no three sets in F\mathcal{F} pairwise intersect and χ(F)>k\chi(\mathcal{F})>k. This provides a negative answer to a question of Gyarfas and Lehel for L-shapes. With extra conditions, we also show how to construct a triangle-free family of homothetic (uniformly scaled) copies of a set with arbitrarily large chromatic number. This applies to many common shapes, like circles, square boundaries, and equilateral L-shapes. Additionally, we reveal a surprising connection between coloring geometric objects in the plane and on-line coloring of intervals on the line.Comment: Small corrections, bibliography updat

    Triangle-free intersection graphs of line segments with large chromatic number

    Full text link
    In the 1970s, Erdos asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer kk, we construct a triangle-free family of line segments in the plane with chromatic number greater than kk. Our construction disproves a conjecture of Scott that graphs excluding induced subdivisions of any fixed graph have chromatic number bounded by a function of their clique number.Comment: Small corrections, bibliography updat

    Coloring triangle-free rectangle overlap graphs with O(loglogn)O(\log\log n) colors

    Get PDF
    Recently, it was proved that triangle-free intersection graphs of nn line segments in the plane can have chromatic number as large as Θ(loglogn)\Theta(\log\log n). Essentially the same construction produces Θ(loglogn)\Theta(\log\log n)-chromatic triangle-free intersection graphs of a variety of other geometric shapes---those belonging to any class of compact arc-connected sets in R2\mathbb{R}^2 closed under horizontal scaling, vertical scaling, and translation, except for axis-parallel rectangles. We show that this construction is asymptotically optimal for intersection graphs of boundaries of axis-parallel rectangles, which can be alternatively described as overlap graphs of axis-parallel rectangles. That is, we prove that triangle-free rectangle overlap graphs have chromatic number O(loglogn)O(\log\log n), improving on the previous bound of O(logn)O(\log n). To this end, we exploit a relationship between off-line coloring of rectangle overlap graphs and on-line coloring of interval overlap graphs. Our coloring method decomposes the graph into a bounded number of subgraphs with a tree-like structure that "encodes" strategies of the adversary in the on-line coloring problem. Then, these subgraphs are colored with O(loglogn)O(\log\log n) colors using a combination of techniques from on-line algorithms (first-fit) and data structure design (heavy-light decomposition).Comment: Minor revisio

    Hard and Easy Instances of L-Tromino Tilings

    Get PDF
    We study tilings of regions in the square lattice with L-shaped trominoes. Deciding the existence of a tiling with L-trominoes for an arbitrary region in general is NP-complete, nonetheless, we identify restrictions to the problem where it either remains NP-complete or has a polynomial time algorithm. First, we characterize the possibility of when an Aztec rectangle and an Aztec diamond has an L-tromino tiling. Then, we study tilings of arbitrary regions where only 180180^\circ rotations of L-trominoes are available. For this particular case we show that deciding the existence of a tiling remains NP-complete; yet, if a region does not contains certain so-called "forbidden polyominoes" as sub-regions, then there exists a polynomial time algorithm for deciding a tiling.Comment: Full extended version of LNCS 11355:82-95 (WALCOM 2019
    corecore