We study tilings of regions in the square lattice with L-shaped trominoes.
Deciding the existence of a tiling with L-trominoes for an arbitrary region in
general is NP-complete, nonetheless, we identify restrictions to the problem
where it either remains NP-complete or has a polynomial time algorithm. First,
we characterize the possibility of when an Aztec rectangle and an Aztec diamond
has an L-tromino tiling. Then, we study tilings of arbitrary regions where only
180∘ rotations of L-trominoes are available. For this particular case we
show that deciding the existence of a tiling remains NP-complete; yet, if a
region does not contains certain so-called "forbidden polyominoes" as
sub-regions, then there exists a polynomial time algorithm for deciding a
tiling.Comment: Full extended version of LNCS 11355:82-95 (WALCOM 2019