145,572 research outputs found

    Pre-Reduction Graph Products: Hardnesses of Properly Learning DFAs and Approximating EDP on DAGs

    Full text link
    The study of graph products is a major research topic and typically concerns the term f(GH)f(G*H), e.g., to show that f(GH)=f(G)f(H)f(G*H)=f(G)f(H). In this paper, we study graph products in a non-standard form f(R[GH]f(R[G*H] where RR is a "reduction", a transformation of any graph into an instance of an intended optimization problem. We resolve some open problems as applications. (1) A tight n1ϵn^{1-\epsilon}-approximation hardness for the minimum consistent deterministic finite automaton (DFA) problem, where nn is the sample size. Due to Board and Pitt [Theoretical Computer Science 1992], this implies the hardness of properly learning DFAs assuming NPRPNP\neq RP (the weakest possible assumption). (2) A tight n1/2ϵn^{1/2-\epsilon} hardness for the edge-disjoint paths (EDP) problem on directed acyclic graphs (DAGs), where nn denotes the number of vertices. (3) A tight hardness of packing vertex-disjoint kk-cycles for large kk. (4) An alternative (and perhaps simpler) proof for the hardness of properly learning DNF, CNF and intersection of halfspaces [Alekhnovich et al., FOCS 2004 and J. Comput.Syst.Sci. 2008]

    Nice labeling problem for event structures: a counterexample

    Full text link
    In this note, we present a counterexample to a conjecture of Rozoy and Thiagarajan from 1991 (called also the nice labeling problem) asserting that any (coherent) event structure with finite degree admits a labeling with a finite number of labels, or equivalently, that there exists a function f:NNf: \mathbb{N} \mapsto \mathbb{N} such that an event structure with degree n\le n admits a labeling with at most f(n)f(n) labels. Our counterexample is based on the Burling's construction from 1965 of 3-dimensional box hypergraphs with clique number 2 and arbitrarily large chromatic numbers and the bijection between domains of event structures and median graphs established by Barth\'elemy and Constantin in 1993

    On the phase transitions of graph coloring and independent sets

    Full text link
    We study combinatorial indicators related to the characteristic phase transitions associated with coloring a graph optimally and finding a maximum independent set. In particular, we investigate the role of the acyclic orientations of the graph in the hardness of finding the graph's chromatic number and independence number. We provide empirical evidence that, along a sequence of increasingly denser random graphs, the fraction of acyclic orientations that are `shortest' peaks when the chromatic number increases, and that such maxima tend to coincide with locally easiest instances of the problem. Similar evidence is provided concerning the `widest' acyclic orientations and the independence number

    Cubicity of interval graphs and the claw number

    Full text link
    Let G(V,E)G(V,E) be a simple, undirected graph where VV is the set of vertices and EE is the set of edges. A bb-dimensional cube is a Cartesian product I1×I2×...×IbI_1\times I_2\times...\times I_b, where each IiI_i is a closed interval of unit length on the real line. The \emph{cubicity} of GG, denoted by \cub(G) is the minimum positive integer bb such that the vertices in GG can be mapped to axis parallel bb-dimensional cubes in such a way that two vertices are adjacent in GG if and only if their assigned cubes intersect. Suppose S(m)S(m) denotes a star graph on m+1m+1 nodes. We define \emph{claw number} ψ(G)\psi(G) of the graph to be the largest positive integer mm such that S(m)S(m) is an induced subgraph of GG. It can be easily shown that the cubicity of any graph is at least \ceil{\log_2\psi(G)}. In this paper, we show that, for an interval graph GG \ceil{\log_2\psi(G)}\le\cub(G)\le\ceil{\log_2\psi(G)}+2. Till now we are unable to find any interval graph with \cub(G)>\ceil{\log_2\psi(G)}. We also show that, for an interval graph GG, \cub(G)\le\ceil{\log_2\alpha}, where α\alpha is the independence number of GG. Therefore, in the special case of ψ(G)=α\psi(G)=\alpha, \cub(G) is exactly \ceil{\log_2\alpha}. The concept of cubicity can be generalized by considering boxes instead of cubes. A bb-dimensional box is a Cartesian product I1×I2×...×IbI_1\times I_2\times...\times I_b, where each IiI_i is a closed interval on the real line. The \emph{boxicity} of a graph, denoted box(G) box(G), is the minimum kk such that GG is the intersection graph of kk-dimensional boxes. It is clear that box(G)\le\cub(G). From the above result, it follows that for any graph GG, \cub(G)\le box(G)\ceil{\log_2\alpha}
    corecore