651,010 research outputs found

    Neural Delay Differential Equations: System Reconstruction and Image Classification

    Full text link
    Neural Ordinary Differential Equations (NODEs), a framework of continuous-depth neural networks, have been widely applied, showing exceptional efficacy in coping with representative datasets. Recently, an augmented framework has been developed to overcome some limitations that emerged in the application of the original framework. In this paper, we propose a new class of continuous-depth neural networks with delay, named Neural Delay Differential Equations (NDDEs). To compute the corresponding gradients, we use the adjoint sensitivity method to obtain the delayed dynamics of the adjoint. Differential equations with delays are typically seen as dynamical systems of infinite dimension that possess more fruitful dynamics. Compared to NODEs, NDDEs have a stronger capacity of nonlinear representations. We use several illustrative examples to demonstrate this outstanding capacity. Firstly, we successfully model the delayed dynamics where the trajectories in the lower-dimensional phase space could be mutually intersected and even chaotic in a model-free or model-based manner. Traditional NODEs, without any argumentation, are not directly applicable for such modeling. Secondly, we achieve lower loss and higher accuracy not only for the data produced synthetically by complex models but also for the CIFAR10, a well-known image dataset. Our results on the NDDEs demonstrate that appropriately articulating the elements of dynamical systems into the network design is truly beneficial in promoting network performance.Comment: 11 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:2102.1080

    Enriching the tactical network design of express service carriers with fleet scheduling characteristics

    Get PDF
    Express service carriers provide time-guaranteed deliveries of parcels via a network consisting of nodes and hubs. In this, nodes take care of the collection and delivery of parcels, and hubs have the function to consolidate parcels in between the nodes. The tactical network design problem assigns nodes to hubs, determines arcs between hubs, and routes parcels through the network. Afterwards, fleet scheduling creates a schedule for vehicles operated in the network. The strong relation between flow routing and fleet scheduling makes it difficult to optimise the network cost. Due to this complexity, fleet scheduling and network design are usually decoupled. We propose a new tactical network design model that is able to include fleet scheduling characteristics (like vehicle capacities, vehicle balancing, and drivers' legislations) in the network design. The model is tested on benchmark data based on instances from an express provider, resulting in significant cost reductions

    Jamming transition in air transportation networks

    Full text link
    In this work we present a model of an air transportation traffic system from the complex network modelling viewpoint. In the network, every node corresponds to a given airport, and two nodes are connected by means of flight routes. Each node is weighted according to its load capacity, and links are weighted according to the Euclidean distance that separates each pair of nodes. Local rules describing the behavior of individual nodes in terms of the surrounding flow have been also modelled, and a random network topology has been chosen in a baseline approach. Numerical simulations describing the diffusion of a given number of agents (aircraft) in this network show the onset of a jamming transition that distinguishes an efficient regime with null amount of airport queues and high diffusivity (free phase) and a regime where bottlenecks suddenly take place, leading to a poor aircraft diffusion (congested phase). Fluctuations are maximal around the congestion threshold, suggesting that the transition is critical. We then proceed by exploring the robustness of our results in neutral random topologies by embedding the model in heterogeneous networks. Specifically, we make use of the European air transportation network formed by 858 airports and 11170 flight routes connecting them, which we show to be scale-free. The jamming transition is also observed in this case. These results and methodologies may introduce relevant decision making procedures in order to optimize the air transportation traffic

    Cross-layer Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless Networks

    Get PDF
    This paper considers jointly optimal design of crosslayer congestion control, routing and scheduling for ad hoc wireless networks. We first formulate the rate constraint and scheduling constraint using multicommodity flow variables, and formulate resource allocation in networks with fixed wireless channels (or single-rate wireless devices that can mask channel variations) as a utility maximization problem with these constraints. By dual decomposition, the resource allocation problem naturally decomposes into three subproblems: congestion control, routing and scheduling that interact through congestion price. The global convergence property of this algorithm is proved. We next extend the dual algorithm to handle networks with timevarying channels and adaptive multi-rate devices. The stability of the resulting system is established, and its performance is characterized with respect to an ideal reference system which has the best feasible rate region at link layer. We then generalize the aforementioned results to a general model of queueing network served by a set of interdependent parallel servers with time-varying service capabilities, which models many design problems in communication networks. We show that for a general convex optimization problem where a subset of variables lie in a polytope and the rest in a convex set, the dual-based algorithm remains stable and optimal when the constraint set is modulated by an irreducible finite-state Markov chain. This paper thus presents a step toward a systematic way to carry out cross-layer design in the framework of “layering as optimization decomposition” for time-varying channel models

    Dynamic vs Oblivious Routing in Network Design

    Full text link
    Consider the robust network design problem of finding a minimum cost network with enough capacity to route all traffic demand matrices in a given polytope. We investigate the impact of different routing models in this robust setting: in particular, we compare \emph{oblivious} routing, where the routing between each terminal pair must be fixed in advance, to \emph{dynamic} routing, where routings may depend arbitrarily on the current demand. Our main result is a construction that shows that the optimal cost of such a network based on oblivious routing (fractional or integral) may be a factor of \BigOmega(\log{n}) more than the cost required when using dynamic routing. This is true even in the important special case of the asymmetric hose model. This answers a question in \cite{chekurisurvey07}, and is tight up to constant factors. Our proof technique builds on a connection between expander graphs and robust design for single-sink traffic patterns \cite{ChekuriHardness07}
    corecore