107,370 research outputs found

    Legal Problems Affecting Interstate Transportation Agencies

    Get PDF

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    Study on behavioral impedance for route planning techniques from the pedestrian's perspective: Part I - Theoretical contextualization and taxonomy

    Get PDF
    The interest of researchers for analyzing of best routes and shortest paths allows a continuous technological advance in topological analysis techniques used in the geographic information systems for transportation. One of the topological analysis techniques is the route planning, in which the constraint management must be considered. There have been few studies where the constraint domain for pedestrian in an urban transportation system was clearly stated. Consequently, more studies need to be carried out. The aim of this paper is to provide a theoretical contextualization on identification and management of constraints to ascertain the behavioral impedance domain from the pedestrian perspective. In this part of the research the grounded theory was the research method used to develop the proposed theory. A meta-model was used to (1) define the behavioral domain structure, (2) hold the behavioral data collection and (3) verify the design of the proposed taxonomic tree. The main contribution of this article is the behavioral domain taxonomy from the pedestrian perspective, which will be used to implement a module responsible for the constraint management of an experimental application, named Router. Within this context, the proposed taxonomy could be used to model cost functions more precisely.Postprint (published version

    Open source environment to define constraints in route planning for GIS-T

    Get PDF
    Route planning for transportation systems is strongly related to shortest path algorithms, an optimization problem extensively studied in the literature. To find the shortest path in a network one usually assigns weights to each branch to represent the difficulty of taking such branch. The weights construct a linear preference function ordering the variety of alternatives from the most to the least attractive.Postprint (published version

    Data-driven Variable Speed Limit Design for Highways via Distributionally Robust Optimization

    Full text link
    This paper introduces an optimization problem (P) and a solution strategy to design variable-speed-limit controls for a highway that is subject to traffic congestion and uncertain vehicle arrival and departure. By employing a finite data-set of samples of the uncertain variables, we aim to find a data-driven solution that has a guaranteed out-of-sample performance. In principle, such formulation leads to an intractable problem (P) as the distribution of the uncertainty variable is unknown. By adopting a distributionally robust optimization approach, this work presents a tractable reformulation of (P) and an efficient algorithm that provides a suboptimal solution that retains the out-of-sample performance guarantee. A simulation illustrates the effectiveness of this method.Comment: 10 pages, 2 figures, submitted to ECC 201

    Convex Integer Optimization by Constantly Many Linear Counterparts

    Full text link
    In this article we study convex integer maximization problems with composite objective functions of the form f(Wx)f(Wx), where ff is a convex function on Rd\R^d and WW is a d×nd\times n matrix with small or binary entries, over finite sets S⊂ZnS\subset \Z^n of integer points presented by an oracle or by linear inequalities. Continuing the line of research advanced by Uri Rothblum and his colleagues on edge-directions, we introduce here the notion of {\em edge complexity} of SS, and use it to establish polynomial and constant upper bounds on the number of vertices of the projection \conv(WS) and on the number of linear optimization counterparts needed to solve the above convex problem. Two typical consequences are the following. First, for any dd, there is a constant m(d)m(d) such that the maximum number of vertices of the projection of any matroid S⊂{0,1}nS\subset\{0,1\}^n by any binary d×nd\times n matrix WW is m(d)m(d) regardless of nn and SS; and the convex matroid problem reduces to m(d)m(d) greedily solvable linear counterparts. In particular, m(2)=8m(2)=8. Second, for any d,l,md,l,m, there is a constant t(d;l,m)t(d;l,m) such that the maximum number of vertices of the projection of any three-index l×m×nl\times m\times n transportation polytope for any nn by any binary d×(l×m×n)d\times(l\times m\times n) matrix WW is t(d;l,m)t(d;l,m); and the convex three-index transportation problem reduces to t(d;l,m)t(d;l,m) linear counterparts solvable in polynomial time

    Macroscopic modelling and robust control of bi-modal multi-region urban road networks

    Get PDF
    The paper concerns the integration of a bi-modal Macroscopic Fundamental Diagram (MFD) modelling for mixed traffic in a robust control framework for congested single- and multi-region urban networks. The bi-modal MFD relates the accumulation of cars and buses and the outflow (or circulating flow) in homogeneous (both in the spatial distribution of congestion and the spatial mode mixture) bi-modal traffic networks. We introduce the composition of traffic in the network as a parameter that affects the shape of the bi-modal MFD. A linear parameter varying model with uncertain parameter the vehicle composition approximates the original nonlinear system of aggregated dynamics when it is near the equilibrium point for single- and multi-region cities governed by bi-modal MFDs. This model aims at designing a robust perimeter and boundary flow controller for single- and multi-region networks that guarantees robust regulation and stability, and thus smooth and efficient operations, given that vehicle composition is a slow time-varying parameter. The control gain of the robust controller is calculated off-line using convex optimisation. To evaluate the proposed scheme, an extensive simulation-based study for single- and multi-region networks is carried out. To this end, the heterogeneous network of San Francisco where buses and cars share the same infrastructure is partitioned into two homogeneous regions with different modes of composition. The proposed robust control is compared with an optimised pre-timed signal plan and a single-region perimeter control strategy. Results show that the proposed robust control can significantly: (i) reduce the overall congestion in the network; (ii) improve the traffic performance of buses in terms of travel delays and schedule reliability, and; (iii) avoid queues and gridlocks on critical paths of the network

    Study on behavioral impedance for route planning techniques from the pedestrian s perspective: Part II - Mathematical approach

    Get PDF
    The theoretical foundations of the behavioral impedance domain are based on (1) a meta-model composed of analytical and mathematical approaches and (2) a taxonomy on the constraints involved in the decision-making process of a pedestrian during the route selection. The goal of this technical report is to present the mathematical model of the behavioral impedance domain. The partial least squares approach has been used to validate the meta-model analytical approach and develop the proposed mathematical model. This study contributes a mathematical model towards the implementation of behavioral impedance domain in geographic information systems for transportation through a constraint management module.Postprint (published version
    • …
    corecore