research

Convex Integer Optimization by Constantly Many Linear Counterparts

Abstract

In this article we study convex integer maximization problems with composite objective functions of the form f(Wx)f(Wx), where ff is a convex function on Rd\R^d and WW is a d×nd\times n matrix with small or binary entries, over finite sets S⊂ZnS\subset \Z^n of integer points presented by an oracle or by linear inequalities. Continuing the line of research advanced by Uri Rothblum and his colleagues on edge-directions, we introduce here the notion of {\em edge complexity} of SS, and use it to establish polynomial and constant upper bounds on the number of vertices of the projection \conv(WS) and on the number of linear optimization counterparts needed to solve the above convex problem. Two typical consequences are the following. First, for any dd, there is a constant m(d)m(d) such that the maximum number of vertices of the projection of any matroid S⊂{0,1}nS\subset\{0,1\}^n by any binary d×nd\times n matrix WW is m(d)m(d) regardless of nn and SS; and the convex matroid problem reduces to m(d)m(d) greedily solvable linear counterparts. In particular, m(2)=8m(2)=8. Second, for any d,l,md,l,m, there is a constant t(d;l,m)t(d;l,m) such that the maximum number of vertices of the projection of any three-index l×m×nl\times m\times n transportation polytope for any nn by any binary d×(l×m×n)d\times(l\times m\times n) matrix WW is t(d;l,m)t(d;l,m); and the convex three-index transportation problem reduces to t(d;l,m)t(d;l,m) linear counterparts solvable in polynomial time

    Similar works

    Full text

    thumbnail-image

    Available Versions