391,225 research outputs found

    Strong consistency of an estimator by the truncated singular value decomposition for an errors-in-variables regression model with collinearity

    Full text link
    In this paper, we prove strong consistency of an estimator by the truncated singular value decomposition for a multivariate errors-in-variables linear regression model with collinearity. This result is an extension of Gleser's proof of the strong consistency of total least squares solutions to the case with modern rank constraints. While the usual discussion of consistency in the absence of solution uniqueness deals with the minimal norm solution, the contribution of this study is to develop a theory that shows the strong consistency of a set of solutions. The proof is based on properties of orthogonal projections, specifically properties of the Rayleigh-Ritz procedure for computing eigenvalues. This makes it suitable for targeting problems where some row vectors of the matrices do not contain noise. Therefore, this paper gives a proof for the regression model with the above condition on the row vectors, resulting in a natural generalization of the strong consistency for the standard TLS estimator.Comment: arXiv admin note: text overlap with arXiv:2302.0682

    Checking Dynamic Consistency of Conditional Hyper Temporal Networks via Mean Payoff Games (Hardness and (pseudo) Singly-Exponential Time Algorithm)

    Full text link
    In this work we introduce the \emph{Conditional Hyper Temporal Network (CHyTN)} model, which is a natural extension and generalization of both the \CSTN and the \HTN model. Our contribution goes as follows. We show that deciding whether a given \CSTN or CHyTN is dynamically consistent is \coNP-hard. Then, we offer a proof that deciding whether a given CHyTN is dynamically consistent is \PSPACE-hard, provided that the input instances are allowed to include both multi-head and multi-tail hyperarcs. In light of this, we continue our study by focusing on CHyTNs that allow only multi-head or only multi-tail hyperarcs, and we offer the first deterministic (pseudo) singly-exponential time algorithm for the problem of checking the dynamic-consistency of such CHyTNs, also producing a dynamic execution strategy whenever the input CHyTN is dynamically consistent. Since \CSTN{s} are a special case of CHyTNs, this provides as a byproduct the first sound-and-complete (pseudo) singly-exponential time algorithm for checking dynamic-consistency in CSTNs. The proposed algorithm is based on a novel connection between CSTN{s}/CHyTN{s} and Mean Payoff Games. The presentation of the connection between \CSTN{s}/CHyTNs and \MPG{s} is mediated by the \HTN model. In order to analyze the algorithm, we introduce a refined notion of dynamic-consistency, named ϵ\epsilon-dynamic-consistency, and present a sharp lower bounding analysis on the critical value of the reaction time ε^\hat{\varepsilon} where a \CSTN/CHyTN transits from being, to not being, dynamically consistent. The proof technique introduced in this analysis of ε^\hat{\varepsilon} is applicable more generally when dealing with linear difference constraints which include strict inequalities.Comment: arXiv admin note: text overlap with arXiv:1505.0082

    On critical cardinalities related to QQ-sets

    Full text link
    In this note we collect some known information and prove new results about the small uncountable cardinal q0\mathfrak q_0. The cardinal q0\mathfrak q_0 is defined as the smallest cardinality A|A| of a subset ARA\subset \mathbb R which is not a QQ-set (a subspace ARA\subset\mathbb R is called a QQ-set if each subset BAB\subset A is of type FσF_\sigma in AA). We present a simple proof of a folklore fact that pq0min{b,non(N),log(c+)}\mathfrak p\le\mathfrak q_0\le\min\{\mathfrak b,\mathrm{non}(\mathcal N),\log(\mathfrak c^+)\}, and also establish the consistency of a number of strict inequalities between the cardinal q0\mathfrak q_0 and other standard small uncountable cardinals. This is done by combining some known forcing results. A new result of the paper is the consistency of p<lr<q0\mathfrak{p} < \mathfrak{lr} < \mathfrak{q}_0, where lr\mathfrak{lr} denotes the linear refinement number. Another new result is the upper bound q0non(I)\mathfrak q_0\le\mathrm{non}(\mathcal I) holding for any q0\mathfrak q_0-flexible cccc σ\sigma-ideal I\mathcal I on R\mathbb R.Comment: 8 page

    Data-driven multinomial random forest

    Full text link
    In this article, we strengthen the proof methods of some previously weakly consistent variants of random forests into strongly consistent proof methods, and improve the data utilization of these variants, in order to obtain better theoretical properties and experimental performance. In addition, based on the multinomial random forest (MRF) and Bernoulli random forest (BRF), we propose a data-driven multinomial random forest (DMRF) algorithm, which has lower complexity than MRF and higher complexity than BRF while satisfying strong consistency. It has better performance in classification and regression problems than previous RF variants that only satisfy weak consistency, and in most cases even surpasses standard random forest. To the best of our knowledge, DMRF is currently the most excellent strongly consistent RF variant with low algorithm complexityComment: arXiv admin note: substantial text overlap with arXiv:2211.1515

    Consistent Basis Pursuit for Signal and Matrix Estimates in Quantized Compressed Sensing

    Get PDF
    This paper focuses on the estimation of low-complexity signals when they are observed through MM uniformly quantized compressive observations. Among such signals, we consider 1-D sparse vectors, low-rank matrices, or compressible signals that are well approximated by one of these two models. In this context, we prove the estimation efficiency of a variant of Basis Pursuit Denoise, called Consistent Basis Pursuit (CoBP), enforcing consistency between the observations and the re-observed estimate, while promoting its low-complexity nature. We show that the reconstruction error of CoBP decays like M1/4M^{-1/4} when all parameters but MM are fixed. Our proof is connected to recent bounds on the proximity of vectors or matrices when (i) those belong to a set of small intrinsic "dimension", as measured by the Gaussian mean width, and (ii) they share the same quantized (dithered) random projections. By solving CoBP with a proximal algorithm, we provide some extensive numerical observations that confirm the theoretical bound as MM is increased, displaying even faster error decay than predicted. The same phenomenon is observed in the special, yet important case of 1-bit CS.Comment: Keywords: Quantized compressed sensing, quantization, consistency, error decay, low-rank, sparsity. 10 pages, 3 figures. Note abbout this version: title change, typo corrections, clarification of the context, adding a comparison with BPD

    Simultaneous event detection rates by electromagnetic and gravitational wave detectors in the Advanced Era of LIGO and Virgo

    Full text link
    We present several estimates of the rate of simultaneous detection of the merging of a binary system of neutron stars in the electromagnetic and the gravitational wave domains, assuming that they produce short GRBs. We have based our estimations on a carefully selected sample of short gamma-ray bursts, corrected from redshift effects. The results presented in this paper are based on actual observation only. In the electromagnetic spectrum, we considered observations by current (Swift and Fermi}) and future (LOFT and SVOM) missions. In the gravitational wave domain, we consider detections by the Advanced Virgo instrument alone and the network of both Advanced LIGO and Advanced Virgo. We discuss on the possible biases present in our sample, and how to fix them. For present missions, assuming a detection in the following years, we find that we should observe simultaneously between 0.11 and 4.2 gravitational wave events per year with Swift} and Fermi} respectively. For future projects (LOFT and SVOM) we can expect less than one common detection per year. We check the consistency of our results with several previously published rate of detection of gravitational waves.Comment: 7 pages, accepted for publication in MNRAS, with note added in proof correcting the rates for Fermi/SVOM experiment. Added tables 5 and 6 that are corrected and replace tables 2 and

    Primordial power spectrum: a complete analysis with the WMAP nine-year data

    Full text link
    We have improved further the error sensitive Richardson-Lucy deconvolution algorithm making it applicable directly on the un-binned measured angular power spectrum of Cosmic Microwave Background observations to reconstruct the form of the primordial power spectrum. This improvement makes the application of the method significantly more straight forward by removing some intermediate stages of analysis allowing a reconstruction of the primordial spectrum with higher efficiency and precision and with lower computational expenses. Applying the modified algorithm we fit the WMAP 9 year data using the optimized reconstructed form of the primordial spectrum with more than 300 improvement in \chi^2 with respect to the best fit power-law. This is clearly beyond the reach of other alternative approaches and reflects the efficiency of the proposed method in the reconstruction process and allow us to look for any possible feature in the primordial spectrum projected in the CMB data. Though the proposed method allow us to look at various possibilities for the form of the primordial spectrum, all having good fit to the data, proper error-analysis is needed to test for consistency of theoretical models since, along with possible physical artefacts, most of the features in the reconstructed spectrum might be arising from fitting noises in the CMB data. Reconstructed error-band for the form of the primordial spectrum using many realizations of the data, all bootstrapped and based on WMAP 9 year data, shows proper consistency of power-law form of the primordial spectrum with the WMAP 9 data at all wave numbers. Including WMAP polarization data in to the analysis have not improved much our results due to its low quality but we expect Planck data will allow us to make a full analysis on CMB observations on both temperature and polarization separately and in combination.Comment: 19 pages, 5 figures, discussions extended, results unchanged, matches the final version published in JCAP. Note: JCAP published version contains minor typesetting errors (introduced by JCAP at the proof stage) in the plot label
    corecore