588 research outputs found

    Solving Lotsizing Problems on Parallel Identical Machines Using Symmetry Breaking Constraints

    Get PDF
    Production planning on multiple parallel machines is an interesting problem, both from a theoretical and practical point of view. The parallel machine lotsizing problem consists of finding the optimal timing and level of production and the best allocation of products to machines. In this paper we look at how to incorporate parallel machines in a Mixed Integer Programming model when using commercial optimization software. More specifically, we look at the issue of symmetry. When multiple identical machines are available, many alternative optimal solutions can be created by renumbering the machines. These alternative solutions lead to difficulties in the branch-and-bound algorithm. We propose new constraints to break this symmetry. We tested our approach on the parallel machine lotsizing problem with setup costs and times, using a network reformulation for this problem. Computational tests indicate that several of the proposed symmetry breaking constraints substantially improve the solution time, except when used for solving the very easy problems. The results highlight the importance of creative modeling in solving Mixed Integer Programming problems.Mixed Integer Programming;Formulations;Symmetry;Lotsizing

    Modeling Industrial Lot Sizing Problems: A Review

    Get PDF
    In this paper we give an overview of recent developments in the field of modeling single-level dynamic lot sizing problems. The focus of this paper is on the modeling various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing industry need to solve more realistic and comprehensive production planning problems. First, several different basic lot sizing problems are defined. Many extensions of these problems have been proposed and the research basically expands in two opposite directions. The first line of research focuses on modeling the operational aspects in more detail. The discussion is organized around five aspects: the set ups, the characteristics of the production process, the inventory, demand side and rolling horizon. The second direction is towards more tactical and strategic models in which the lot sizing problem is a core substructure, such as integrated production-distribution planning or supplier selection. Recent advances in both directions are discussed. Finally, we give some concluding remarks and point out interesting areas for future research

    A novel flexible model for lot sizing and scheduling with non-triangular, period overlapping and carryover setups in different machine configurations

    Get PDF
    © 2017, Springer Science+Business Media New York. This paper develops and tests an efficient mixed integer programming model for capacitated lot sizing and scheduling with non-triangular and sequence-dependent setup times and costs incorporating all necessary features of setup carryover and overlapping on different machine configurations. The model’s formulation is based on the asymmetric travelling salesman problem and allows multiple lots of a product within a period. The model conserves the setup state when no product is being processed over successive periods, allows starting a setup in a period and ending it in the next period, permits ending a setup in a period and starting production in the next period(s), and enforces a minimum lot size over multiple periods. This new comprehensive model thus relaxes all limitations of physical separation between the periods. The model is first developed for a single machine and then extended to other machine configurations, including parallel machines and flexible flow lines. Computational tests demonstrate the flexibility and comprehensiveness of the proposed models

    An optimization framework for solving capacitated multi-level lot-sizing problems with backlogging

    Get PDF
    This paper proposes two new mixed integer programming models for capacitated multi-level lot-sizing problems with backlogging, whose linear programming relaxations provide good lower bounds on the optimal solution value. We show that both of these strong formulations yield the same lower bounds. In addition to these theoretical results, we propose a new, effective optimization framework that achieves high quality solutions in reasonable computational time. Computational results show that the proposed optimization framework is superior to other well-known approaches on several important performance dimensions

    A priori reformulations for joint rolling-horizon scheduling of materials processing and lot-sizing problem

    Get PDF
    In many production processes, a key material is prepared and then transformed into different final products. The lot sizing decisions concern not only the production of final products, but also that of material preparation in order to take account of their sequence-dependent setup costs and times. The amount of research in recent years indicates the relevance of this problem in various industrial settings. In this paper, facility location reformulation and strengthening constraints are newly applied to a previous lot-sizing model in order to improve solution quality and computing time. Three alternative metaheuristics are used to fix the setup variables, resulting in much improved performance over previous research, especially regarding the use of the metaheuristics for larger instances

    Capacitated lot-sizing and scheduling with sequence-dependent, period-overlapping and non-triangular setups

    Get PDF
    In production planning, sequence dependent setup times and costs are often incurred for switchovers from one product to another. When setup times and costs do not respect the triangular inequality, a situation may occur where the optimal solution includes more than one batch of the same product in a single period - in other words, at least one sub tour exists in the production sequence of that period. By allowing setup crossovers, flexibility is increased and better solutions can be found. In tight capacity conditions, or whenever setup times are significant, setup crossovers are needed to assure feasibility. We present the first linear mixed-integer programming extension for the capacitated lot-sizing and scheduling problem incorporating all the necessary features of sequence sub tours and setup crossovers. This formulation is more efficient than other well known lot-sizing and scheduling models. © Springer Science+Business Media, LLC 2010

    An Efficient MIP Model for the Capacitated Lot-sizing and Scheduling Problem with Sequence-dependent Setups

    Get PDF
    This paper presents a novel mathematical programming approach to the singlemachine capacitated lot-sizing and scheduling problem with sequence-dependent setup times and setup costs. The approach is partly based on the earlier work of Haase and Kimms (2000) which determines during pre-processing all item sequences that can appear in given time periods in optimal solutions. We introduce a new mixed-integer programming model in which binary variables indicate whether individual items are produced in a period, and parameters for this program are generated by a heuristic procedure in order to establish a tight formulation. Our model allows us to solve in reasonable time instances where the product of the number of items and number of time periods is at most 60–70. Compared to known optimal solution methods, it solves significantly larger problems, often with orders of magnitude speedup. Keywords: Lot-sizing, scheduling, sequence-dependent setups, mixed-integer programming.

    Integrated capacitated lot sizing and scheduling problems in a flexible flow line

    Get PDF
    The lot sizing and scheduling problem in a Flexible Flow Line (FFL) has extensive real-world applications in many industries. An FFL consists of several production stages in series with parallel machines at each stage. The decisions to be taken are the determination of production quantities (lots), machine assignments and production sequences (schedules) on each machine at each stage in an FFL. Lot sizing and scheduling problems are closely interrelated. Solving them separately and then coordinating their interdependencies is often ineffective. However due to their complexity, there is a lack of mathematical modelling and solution procedures in the literature to combine and jointly solve them.Up to now most research has been focused on combining lotsizing and scheduling for the single machine configuration, and research on other configurations like FFL is sparse. This thesis presents several mathematical models with practical assumptions and appropriate algorithms, along with experimental test problems, for simultaneously lotsizing and scheduling in FFL. This problem, called the ‘General Lot sizing and Scheduling Problem in a Flexible Flow Line’ (GLSP-FFL). The objective is to satisfy varying demand over a finite planning horizon with minimal inventory, backorder and production setup costs. The problem is complex as any product can be processed on any machine, but these have different processing rates and sequence-dependent setup times & costs. As a result, even finding a feasible solution of large problems in reasonable time is impossible. Therefore the heuristic solution procedure named Adaptive Simulated Annealing (ASA), with four well-designed initial solutions, is designed to solve GLSP-FFL.A further original contribution of this study is to design linear mixed-integer programming (MILP) formulations for this problem, incorporating all necessary features of setup carryovers, setup overlapping, non-triangular setup while allowing multiple lot production per periods, lot splitting and sequencing through ATSP-adaption based on a variety of subtour elimination
    corecore