9,440 research outputs found

    Vision technology/algorithms for space robotics applications

    Get PDF
    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed

    Communication Beyond Transmitting Bits: Semantics-Guided Source and Channel Coding

    Full text link
    Classical communication paradigms focus on accurately transmitting bits over a noisy channel, and Shannon theory provides a fundamental theoretical limit on the rate of reliable communications. In this approach, bits are treated equally, and the communication system is oblivious to what meaning these bits convey or how they would be used. Future communications towards intelligence and conciseness will predictably play a dominant role, and the proliferation of connected intelligent agents requires a radical rethinking of coded transmission paradigm to support the new communication morphology on the horizon. The recent concept of "semantic communications" offers a promising research direction. Injecting semantic guidance into the coded transmission design to achieve semantics-aware communications shows great potential for further breakthrough in effectiveness and reliability. This article sheds light on semantics-guided source and channel coding as a transmission paradigm of semantic communications, which exploits both data semantics diversity and wireless channel diversity together to boost the whole system performance. We present the general system architecture and key techniques, and indicate some open issues on this topic.Comment: IEEE Wireless Communications, text overlap with arXiv:2112.0309
    corecore