Classical communication paradigms focus on accurately transmitting bits over
a noisy channel, and Shannon theory provides a fundamental theoretical limit on
the rate of reliable communications. In this approach, bits are treated
equally, and the communication system is oblivious to what meaning these bits
convey or how they would be used. Future communications towards intelligence
and conciseness will predictably play a dominant role, and the proliferation of
connected intelligent agents requires a radical rethinking of coded
transmission paradigm to support the new communication morphology on the
horizon. The recent concept of "semantic communications" offers a promising
research direction. Injecting semantic guidance into the coded transmission
design to achieve semantics-aware communications shows great potential for
further breakthrough in effectiveness and reliability. This article sheds light
on semantics-guided source and channel coding as a transmission paradigm of
semantic communications, which exploits both data semantics diversity and
wireless channel diversity together to boost the whole system performance. We
present the general system architecture and key techniques, and indicate some
open issues on this topic.Comment: IEEE Wireless Communications, text overlap with arXiv:2112.0309