1,474 research outputs found

    Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle

    Get PDF
    To restore functional use of paralyzed muscles by automatically controlled stimulation, an accurate quantitative model of the stimulated muscles is desirable. The most commonly used model for isometric muscle has had a Hammerstein structure, in which a linear dynamic block is preceded by a static nonlinear function, To investigate the accuracy of the Hammerstein model, the responses to a pseudo-random binary sequence (PRBS) excitation of normal human plantarflexors, stimulated with surface electrodes, were used to identify a Hammerstein model but also four local models which describe the responses to small signals at different mean levels of activation. Comparison of the local models with the Linearized Hammerstein model showed that the Hammerstein model concealed a fivefold variation in the speed of response. Also, the small-signal gain of the Hammerstein model was in error by factors up to three. We conclude that, despite the past widespread use of the Hammerstein model, it is not an accurate representation of isometric muscle. On the other hand, local models, which are more accurate predictors, can be identified from the responses to short PRBS sequences. The utility of local models for controller design is discussed

    Penguasaan kemahiran generik di kalangan graduan hospitaliti di politeknik : satu kajian berkenaan keperluan industri perhotelan, persepsi pensyarah dan pelajar

    Get PDF
    Kajian yang dijalankan ini bertujuan untuk mengenal pasti kepentingan kemahiran generik mengikut keperluan industri perhotelan di Malaysia dengan persepsi pensyarah dan persepsi pelajar Jabatan Hospitaliti. Oleh kerana matlamat kurikulum pendidikan kini adalah untuk melahirkan graduan yang dapat memenuhi keperluan pihak industri, maka kajian ini dijalankan untuk menilai hubungan di antara keperluan industri perhotelan di Malaysia dengan persepsi pensyarah dan pelajar Jabatan Hospitaliti di Politeknik. Terdapat 13 kemahiran generik yang diperolehi daripada Kementerian Pelajaran dan Latihan Ontario (1997) dijadikan sebagai skop kepada instrumen kajian. Responden kajian terdiri daripada tiga pihak utama iaitu industri perhotelan di Malaysia yang melibatkan 40 buah hotel yang diwakili oleh MAH Chapter dan jawatankuasa dalam Malaysian Associated of Hotel (MAH), pensyarah Unit Hotel dan Katering dan pelajar semester akhir Diploma Hotel dan Katering di Politeknik Johor Bahru, Johor dan Politeknik Merlimau, Melaka. Kajian rintis yang dijalankan menunjukkan nilai Alpha Cronbach pada 0.8781. Data yang diperolehi dianalisis secara deskriptif dan inferensi dengan menggunakan perisian Statistical Package for Social Science (SPSS) versi 11.5. Melalui dapatan kajian, satu senarai berkenaan kemahiran generik yang diperlukan oleh industri perhotelan telah dapat dihasilkan. Selain itu, senarai kemahiran generik menurut persepsi pensyarah dan juga persepsi pelajar turut dihasilkan. Hasil statistik dan graf garis yang diperolehi menunjukkan terdapat perbezaan di antara kemahiran generik yang diperlukan oleh industri perhotelan di Malaysia dengan kemahiran generik menurut persepsi pensyarah dan persepsi pelajar Politeknik. Dapatan analisis menggunakan korelasi Pearson mendapati bahawa tidak terdapat perhubungan yang signifikan di antara kemahiran generik yang diperlukan oleh industri perhotelan dengan persepsi pensyarah dan persepsi pelajar. Namun begitu, terdapat hubungan yang signifikan di antara persepsi pensyarah dengan persepsi pelajar berkenaan dengan amalan kemahiran generik di Politeknik

    Feedback control of unsupported standing in paraplegia. Part II: experimental results

    Get PDF
    For pt. I see ibid., vol. 5, no. 4, p. 331-40 (1997). This is the second of a pair of papers which describe an investigation into the feasibility of providing artificial balance to paraplegics using electrical stimulation of the paralyzed muscles. By bracing the body above the shanks, only stimulation of the plantar flexors is necessary. This arrangement prevents any influence from the intact neuromuscular system above the spinal cord lesion. Here, the authors present experimental results from intact and paraplegic subjects

    Feedback control of unsupported standing in paraplegia. Part I: optimal control approach

    Get PDF
    This is the first of a pair of papers which describe an investigation into the feasibility of providing artificial balance to paraplegics using electrical stimulation of the paralyzed muscles. By bracing the body above the shanks, only stimulation of the plantarflexors is necessary. This arrangement prevents any influence from the intact neuromuscular system above the spinal cord lesion. Here, the authors extend the design of the controllers to a nested-loop LQG (linear quadratic Gaussian) stimulation controller which has ankle moment feedback (inner loops) and inverted pendulum angle feedback (outer loop). Each control loop is tuned by two parameters, the control weighting and an observer rise-time, which together determine the behavior. The nested structure was chosen because it is robust, despite changes in the muscle properties (fatigue) and interference from spasticity

    New control strategies for neuroprosthetic systems

    Get PDF
    The availability of techniques to artificially excite paralyzed muscles opens enormous potential for restoring both upper and lower extremity movements with\ud neuroprostheses. Neuroprostheses must stimulate muscle, and control and regulate the artificial movements produced. Control methods to accomplish these tasks include feedforward (open-loop), feedback, and adaptive control. Feedforward control requires a great deal of information about the biomechanical behavior of the limb. For the upper extremity, an artificial motor program was developed to provide such movement program input to a neuroprosthesis. In lower extremity control, one group achieved their best results by attempting to meet naturally perceived gait objectives rather than to follow an exact joint angle trajectory. Adaptive feedforward control, as implemented in the cycleto-cycle controller, gave good compensation for the gradual decrease in performance observed with open-loop control. A neural network controller was able to control its system to customize stimulation parameters in order to generate a desired output trajectory in a given individual and to maintain tracking performance in the presence of muscle fatigue. The authors believe that practical FNS control systems must\ud exhibit many of these features of neurophysiological systems

    A New Method towards Achieving FES-Induced Movement

    Get PDF
    Literature has revealed that applications of Functional Electrical Stimulation (FES) for restoration of movements have been yielding promising results in people with impaired neural system. Records indicate rise in subjects with such disabilities without corresponding increase in orthosis devices using FES. The scarce available ones have high cost which could be due strict clinical requirement imposed on such equipment. In order to alleviate the aforementioned challenges an approach was proposing procedure to the system. It suggested improvements for three basic components: plant modelling, remoudelling the fatigue, spasm and tremor disturbances from the works of Lynch et al., and finally a combined Sliding Mode and Wavelets techniques availing a new control approach for the FES to facilitate safe sit-to-stand movement. There some basic similarities in the sit-to-stand and knee swinging such as; pivot point and muscles stimulated during the processes. The knee joint model proposed by Ferrarin and Pedotti and the disturbances models (fatigue, tremor and spasm) developed by Lynch et al. would be utilized as stated earlier. The procedure was to be conducted phases: plant modeling, disturbances modelling and control system design. Expectations include enhancing subject condition, interactions with others and environment, delivery of health care, self-reliance and reducing health maintenance costs

    A non-linear approach to modelling and control of electrically stimulated skeletal muscle

    Get PDF
    This thesis is concerned with the development and analysis of a non-linear approach to modelling and control of the contraction of electrically stimulated skeletal muscle. For muscle which has lost nervous control, artificial electrical stimulation can be used as a technique aimed at providing muscular contraction and producing a functionally useful movement. This is generally referred to as Functional Electrical Stimulation (FES) and is used in different application areas such as the rehabilitation of paralysed patient and in cardiac assistance where skeletal muscle can be used to support a failing heart. For both these FES applications a model of the muscle is essential to develop algorithms for the controlled stimulation. For the identification of muscle models, real data are available from experiments with rabbit muscle. Data for contraction with constant muscle length were collected from two muscle with very different characteristics. An empirical modelling approach is developed which is suitable for both muscles. The approach is based on a decomposition of the operating space into smaller sub-regions which are then described by local models of simple, possibly linear structure. The local models are blended together by a scheduler, and the resulting non-linear model is called a Local Model Network (LMN). It is shown how a priori knowledge about the system can be used directly when identifying Local Model Networks. Aspects of the structure selection are discussed and algorithms for the identification of the model parameters are presented. Tools of the analysis of Local Model Networks have been developed and are used to validate the models. The problem of designing a controller based on the LMN structure is discussed. The structure of Local Controller Networks is introduced. These can be derived directly from Local Model Networks. Design techniques for input-output and for state feedback controllers, based on pole placement, are presented. Aspects of the generation of optimal stimulation patterns (which are defined as stimulation patterns which deliver the smallest number of pulses to obtain a desired contraction) are discussed, and various techniques to generate them are presented. In particular, it is shown how a control structure can be used to generate optimal stimulation patterns. A Local Controller Network is used as the controller with a design based on a non-linear LMN model of muscle. Experimental data from a non-linear heat transfer process have been collected and are used to demonstrate the basic modelling and control principles throughout the first part of the thesis
    corecore