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Investigation of the Hammerstein Hypothesis in the
Modeling of Electrically Stimulated Muscle

Kenneth J. Hunt,*Member, IEEE, Marko Munih,Member, IEEE, Nick de N. Donaldson, and Fiona M. D. Barr

Abstract—To restore functional use of paralyzed muscles by
automatically controlled stimulation, an accurate quantitative
model of the stimulated muscles is desirable. The most commonly
used model for isometric muscle has had a Hammerstein struc-
ture, in which a linear dynamic block is preceded by a static
nonlinear function. To investigate the accuracy of the Hammer-
stein model, the responses to a pseudo-random binary sequence
(PRBS) excitation of normal human plantarflexors, stimulated
with surface electrodes, were used to identify a Hammerstein
model but also four local modelswhich describe the responses to
small signals at different mean levels of activation. Comparison of
the local models with the linearized Hammerstein model showed
that the Hammerstein model concealed a fivefold variation in the
speed of response. Also, the small-signal gain of the Hammerstein
model was in error by factors up to three. We conclude that,
despite the past widespread use of the Hammerstein model, it is
not an accurate representation of isometric muscle. On the other
hand, local models, which are more accurate predictors, can be
identified from the responses to short PRBS sequences. The utility
of local models for controller design is discussed.

Index Terms—Electrostimulation, model identification, muscle,
rehabilitation.

I. INTRODUCTION

T HE FORCE produced by an electrically stimulated mus-
cle depends on the stimulus intensity and the stimulus

frequency. Intensity determines, in a nonlinear fashion, which
neurons are depolarized by the stimulus pulse and, there-
fore, which motor units in the muscles contract. In models
of stimulated isometric muscles, it is common to represent
the nerve-muscle as a two-block structure: the first block
being a time-independent nonlinear function representing the
recruitment, and the second block being the muscle contraction
dynamics. This structure has been used so often that it has
become orthodox.

However, one might expect it to be a poor model for the
following reason. According to Henneman’s principle, for
normal neuromuscular systems, smaller motor nerve fibers
innervate slow motor units and vice versa [1]. It is also the case
that with short rectangular stimulation pulse currents, nerve
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fibers are recruited in the reverse order of their diameters
(“nonphysiological recruitment”) [2]. We, therefore, expect
that dynamics will become slower as the intensity increases.
This cannot be represented by the two-block model which
assumes that the dynamics are independent of intensity.

Nonlinear models of electrically stimulated muscle have
been reviewed by Durfee [3]. Block models are only one of
several possible structures which can be used in biological
(i.e., nonlinear) system identification [4]. Where there are only
two blocks, one of which is nonlinear, the nonlinearity may
be placed before or after the dynamic block, in, respectively,
so-called Hammerstein [5] or Wiener forms. While techniques
for indentifying the parameters for these models have been
investigated by Hunter and Kearney [6], those working in
the field of functional electrical stimulation have usually
adopted the Hammerstein structure [7]–[11]. No doubt this
is due to its correspondence to the biophysics: the two blocks
representing the nerve fiber recruitment followed by muscle
contraction dynamics. Ease of parameter identification is also
important [12]. The need to neutralize the nonlinearity is
obvious in the crudest measurements of muscle response where
a deadband and saturation are evident. However, despite this
popularity, the intensity-dependence of the muscle dynamics
has long been known [13], so clearly it is desirable to assess
the deficiencies of the Hammerstein model and to consider
how the model could be improved without making parameter
identification impractical.

In this paper, we begin by identifying a Hammerstein model
of the plantarflexors of an intact human, stimulated by surface
electrodes. We used the twitch response test of Durfee and
Maclean [12] to determine the recruitment curve, the nonlinear
block. Thereafter, a pseudo-random binary sequence (PRBS)
activation signal was used to stimulate the muscle. The best
order and time delay for the discrete-time linear transfer
function were judged by comparing the response of the transfer
function as a predictor to experimental responses which had
not been used for identification. It appeared that the PRBS
signal gives a model which is a better predictor than the twitch
responses. We then used small-amplitude PRBS excitation,
at four different mean levels of activation, to obtain local
models. These local models are significantly different from
each other, and from the Hammerstein model, showing, as
expected, that the latter is not an accurate representation. This
suggests that stimulation controllers based on local models
may give significantly better results.

All experiments described in this paper are part of a series
in which we are investigating the behavior of the ankle joints
as actuators for artificial motor control. With the “wobbler”
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apparatus, we can measure joint stiffness or identify the
isometric moment responses of the feet to stimulation of
the plantarflexors [14]. We can then use this data to design
controllers to “stand” the subject using ankle control while
the other joints are braced [15]–[17]. Our preferred controllers
use feedback of both the joint moment and the angle.

II. EXPERIMENTAL PROCEDURES

In this section, we briefly describe the experimental condi-
tions, the wobbler apparatus, the muscles used, the measure-
ment hardware and the software. The experimental estimation,
and validation data sets and twitch responses were measured
by electrically stimulating human plantarflexor muscles of a
neurologically and physically intact man aged 44.

Because we were identifying only ankle plantarflexor mus-
cles, all his joints and segments above the ankles were fixed
by strapping him into a special brace. The body was then a
single inverted pendulum, which was held upright by light
ropes from the left and right shoulders to a frame mounted
below the ceiling. During the experiment, he placed both
arms across his chest and did not interfere with stimulation
voluntarily. The feet were placed in the Wobbler apparatus
[14]. There are two foot boxes in this apparatus into which
sports shoes are fixed. The boxes are mounted on a shaft
with its rotational axis aligned with the joint centre for
plantarflexion of the subject’s ankles. The ankle moments were
measured in isometric conditions by locking the shaft with
the feet in a horizontal position. The moment resolution was
0.1 Nm. The left and right ankle moment data acquisition,
stimulator command, and system control was performed on a
PC computer with custom software.

The self-adhesive 50-mm-diameter Axelgaard electrodes1

were placed on the midlines of the soleus and gastrocnemius
muscles of the subject. A multichannel Stanmore Stimulator
[18] delivered monophasic charge-balanced constant-current
pulses to one leg at a time. Pulse amplitude was preadjusted
in setup Test A, increasing the current in 10-mA steps until
a strong contraction resulted at 500-s pulse width without
significant pain. In these tests, 60 mA was used. Muscles were
stimulated tetanically at 20 Hz with variable pulse-width in 2-

s steps in the range from 0 to 500s. This pulse-width range
represents a normalized muscle activation in the range from 0
to 1000 mAct as is described further in the paper. The tests
described were all done on one day in one leg (the left side).

Stimulation frequencies at or close to 20 Hz are often
used because this rate is high enough for the contraction to
be acceptably smooth. The stimulation rate cannot, however,
be much higher than this as then the high rate of muscle
fatigue would be exacerbated. This sampling frequency is also
appropriate for typical bandwidth requirements in closed-loop
control of muscle moment [15]–[17].

Two tests were used: inTest B, 50 twitch responses were
elicited at 1.2-s intervals. These were five groups of ten pulses,
in the range [50, 100, , 500] s, which were applied in
random order. The PC sampled at 200 Hz the left and right
joint moments from torque load cells in the shaft and checked

1Axelgaard Manufacturing Company, Fallbrook, CA.

Fig. 1. Hammerstein model of muscle,d0(t) = d(t)=Am(q�1).

the exact time of pulse delivery. Later, the five moment
responses at every pulse-width were averaged and the peak
moment value was stored as one point of the Hammerstein
recruitment curve. Data are further processed as described in
Section IV.

Test PRBSwas used to measure PRBS signal responses.
A PRBS input sequence was generated with Matlab software
in advance off-line, and stored in a file. PRBS signals are
specified in mAct units (0–1000). The Test PRBS program read
those signals from the file, converted to units of pulse width
with the inverse recruitment curve, previously measured in
Test B, and sent these in real time to the Stanmore Stimulator.
(But see Section V, where the inverse recruitment curve was
taken as linear.) Stimulation and sampling of the moments
occurred at a constant 20-Hz frequency. The delay in the
system between an input value being read from the file and
the stimulation pulse being delivered to the electrodes was 6.7
ms, much less than the 50-ms interpulse interval. This delay
was caused by the PC, serial communication to the stimulator
and the stimulator’s program.

III. ESTIMATION AND VALIDATION ALGORITHMS

A. Procedure

The open-loop muscle model in Hammerstein form is de-
picted in Fig. 1.

The signals in this model are as follows:

muscle moment;
muscle “activation level”;
stimulation pulse width (constant amplitude);
disturbance signal.

In Hammerstein form the muscle consists of the static re-
cruitment nonlinearity followed by the linear discrete-time
transfer function . The linear part of
the model is assumed to be of auto-regressive with exogenous
input (ARX)-type, i.e., it is described by

(1)

where the net effect of disturbances is represented by the zero-
mean white noise signal. (Note that (1) implies that the signal

in Fig. 1 is related to by .)
The integer is a discrete input-output time-delay.

and are polynomials in the delay operator and have
the form

(2)

(3)
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Fig. 2. Structure for global transfer-function identification in Hammerstein model,d0(t) = d(t)=Am(q�1):

Empirical determination of the Hammerstein model consists
of two steps.

1) The impulse response method [12] is used to deter-
mine the recruitment nonlinearity based on twitch
response data (the responses to well-separated stimulus
pulses from which the muscle contraction or twitch is
completed before the next stimulus pulse).

2) Parametric identification methods are used to determine
the parameters of the linear transfer function. In this
paper, a PRBS-stimulation test is employed to generate
identification data.

The impulse response method is described in detail in
Section IV-A. In order to generate test data for estimation
of the linear part of the muscle model, the approximated
recruitment nonlinearity from one. is first cancelled via the
inverse function ; the setup for identification of the linear
transfer function is shown in Fig. 2.

A series of activation test signals are applied (typically
PRBS signals) and the ankle moment is recorded.

B. Parameter Estimation

Assuming perfect cancellation of the recruitment nonlinear-
ity the open-loop muscle can be represented by the model

(4)

Since the disturbance is assumed to be an uncorrelated
zero-mean stochastic signal, the best 1-step-ahead moment
prediction is [19]

(5)

where the parameter vector and regression vector are
defined by

(6)

(7)

A measure of model fidelity is provided by the least-squares
criterion

(8)

where is the number of data points. The analytical solution
for the optimal parameter estimate is [19], [20]

(9)

providing that the inverse exists. This is the solution used for
parameter estimation in the identification experiments reported
in the sequel.

C. Model Validation

For the validation of identified models, it is useful to use
more general measures than the 1-step-ahead criterion (8),
which tends to emphasize high-frequency components in the
model. In this work, models are validated using a separate set
of validation data with the -step-ahead root-mean-square
(rms) criterion

(10)

Here, the operator denotes that the predictionis conditional
upon measured outputs available up to time ; the -
step-ahead moment prediction is defined by

(11)

with the conditional regressor vector recursively calculated
using

(12)

Various values of are used in the validation tests.
An alternative method of measuring the frequency response

is by Fourier transformation of the twitch responses [12]. In
our experiments, however, we do not use Fourier methods
to determine the nonparametric frequency responses. Instead,
we use the parameter identification method described above,
with PRBS-stimulation, since the parametric transfer-function
models are required for the analytical control system design
methods we employ for muscle moment control (see Huntet
al. [15], [21], and [22]). (For comparison, we also apply para-
metric identification to the twitch responses in Section IV-C.)
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D. Imperfect Cancellation

Note that in practice we can expect only imperfect cancel-
lation of the recruitment nonlinearity. At a given operating
point, imperfect cancellation will result in a static bias in the
model. In this case, the open-loop model will be [c.f. (4)]

(13)
where is a bias term which is dependent on the operating
point . The 1-step-ahead moment prediction will still
be given by (5), but the parameter and regression vector
definitions change to

(14)

(15)

The optimization criterion (8) and solution (9) remain un-
changed, and an estimate of the bias term is delivered
as part of the solution.

A second method for dealing with the bias term resulting
from imperfect cancellation, and one which avoids estimation
of an additional parameter, is to remove mean levels from the
data. Denoting the operating point as we have

(16)

(17)

where and are the small deviations from the operating
point. With these definitions, the average value of biascan
be seen from (13) to be

(18)

Substituting from (16)–(18) into (13), the linear transfer func-
tion around is

(19)

For parameter estimation the regression vector, therefore,
becomes

(20)

i.e., the mean levels (operating point values) are removed from
the data before estimation:

.

IV. HAMMERSTEIN MODEL

A. Recruitment Nonlinearity

For identification of the recruitment nonlinearity we use
Durfee and Maclean’s impulse response method on the muscle
twitch responses [12]. As they point out, this test causes little
fatigue. In our “Test B,” 50 pulses are applied at 1.2-s intervals;
they are of ten different pulse widths and in random order.
The five responses for each pulse width are averaged and
the results are plotted as a surface with moment versus pulse
width and time since the last pulse. The peak value of each

Fig. 3. Twitch response data for estimation of recruitment nonlinearity.

averaged twitch, plotted versus the stimulus pulse width, is the
recruitment curve for that channel. Having found the inverse
recruitment curve, we then describe the level of stimulation
by its “activation level,” which is the input to the inverse
recruitment block ( in Fig. 2).

Test B, as described above, involves the application of
isolated pulses with ten distinct pulse widths of [50, 100,

500] s. A typical set of averaged responses is shown
in Fig. 3, which shows measured ankle moment against time,
for the range of pulse widths applied.

The recruitment nonlinearity is obtained by plotting the
maximum moment for each pulse width, against the pulse
width. For each pulse width this results in a notional muscle
activation , normalized in the range 0–1 Act. It is assumed
that a pulse width of 500 s corresponds to maximum acti-
vation, i.e., to 1000 mAct. Thus, to find the activation (in
mAct) corresponding to pulse width we use

(21)

where is the maximum moment measured for
and is the maximum moment measured for the given
pulse width . An approximation to the recruitment curve
is obtained by interpolating the experimental points, and the
recruitment nonlinearity is denoted as

(22)

For somedesiredmuscle activation the estimated pulse width
required is given by the inverse recruitment nonlinearity

(23)

The recruitment curve obtained using this method for the
test data from Fig. 3 is shown in Fig. 4. (Note that the
point has been omitted from this curve. For the
pulse width 500 s an unusually high moment was recorded,
resulting in a clear discontinuity in the estimated recruitment
curve. We attribute this to an unknown measurement error
during the test at this pulse width. One possibility is that
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Fig. 4. Recruitment curvefr.

the subject moved during the test. The modeling results are,
however, unaffected by this.)

B. Transfer-Function Estimation

The purpose of this section is to validate thestructure
of the linear transfer function (4), and to find a typical
set of parameters for the optimal structure. The structure
of the model consists of the transfer-function order, the
associated degree of the numerator polynomial,(whereby,
it is normally assumed that ), and the time-delay.
Previously, it has been found that a second-order model gives
a reasonable approximation of the muscle dynamics [23], and
we wished to confirm this.

The muscle was stimulated around its mid-range using
a PRBS activation signal of value mAct. The
recruitment nonlinearity was approximately cancelled as in the
setup of Fig. 2. Two similar sets of data were generated: one
set for model estimation, and a second set for model validation.
The estimation and validation data sets are shown in Fig. 5.
The test input sequence used to generate the estimation and
validation data sets was kept the same, but was applied at
different times. This was done in order to ensure that any
differences in the estimation and validation sets were due only
to unpredictable factors related to muscle physiology, and not
to any input signal dependencies.

In the first validation step, the appropriate time-delaywas
sought: and were fixed as , and four
different models with were estimated according
to (8)–(9) with the estimation data. For these models, the
1-, 5-, and -step-ahead prediction measures were calculated
for the validation data, i.e., (10) with and .
(The case corresponds to pure simulation.) The
validation results are summarized in Table I. It is clear that
the appropriate delay is . Note that the identified models
for and were unstable, resulting in very high
rms errors for pure simulation. This experimental result meets
expectations since the combined delay resulting from muscle
dead-time and communication protocols was anticipated to lie
just below the sample time of 50 ms, which means that the
muscle responds to a change in activation within one sample
period.

TABLE I
VALIDATION RESULTS: DETERMINATION OF TIME-DELAY k. RMS PREDICTION

ERRORS(10) FOR THE IDENTIFIED MODELS WITH DELAY k = 1; 2; 3; OR 4

The second validation step is to find the model order,.
The time delay was fixed at and was varied from

, with in each case. The validation
results with the four identified models for 1-, 5-, and-step-
ahead predictions on the validation data are shown in Fig. 6.
Each graph in Fig. 6(a)–(c) shows a clear improvement in
performance as increases from one to two. There is some
improvement in each performance measure for , but
for the -step-ahead error increases. These results
suggest that the best structural parameters are

. However, the difference in performance between
models with and is significant only for the
1-step-ahead measure, which may indicate too strong a depen-
dence on high-frequency information (noise) for . We,
therefore, remain with the choice for
the remainder of the paper. This brings the further advantage
that the model with has two parameters fewer than
the model with .

The estimated parameters of the model with structure
are

(24)

Simulation of the model against the measured muscle moment
from the validation data is shown in Fig. 7, and the pole-zero
configuration in Fig. 8 (the points marked “1”).

It should be noted that for parameter estimation, and in
the simulation result of Fig. 7, the mean levels in the in-
put and output signals have been removed. As described in
Section III-D, this avoids the need to estimate a steady-state
offset term.

C. Transfer-Function Estimation from Twitch Responses

The PRBS-type activation signal is designed to give the
best excitation of the muscle, leads to an information-rich
output measurement, and is the preferred type of activation
for transfer-function estimation. However, the twitch responses
can in principle also be used for parametric transfer-function
identification; in situations where it is critical to avoid muscle
fatigue, use of the twitch response data would avoid the need
for the PRBS-test. For this reason we have compared transfer
functions estimated from twitch responses with the PRBS-
based models. The procedure, (8) and (9), was applied to the
average twitch response for a pulse width of 250s. The
model thus obtained is

(25)
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(a) (b)

Fig. 5. PRBS identification data. (a) Estimation data set and (b) validation data set.

(a) (b)

(c)

Fig. 6. Validation results: determination of model orderna. Each bar chart shows the rms prediction errors (10) for the identified models withna = 1; 2; 3;

or 4. (a) One-step-ahead prediction, (b) five-step-ahead prediction, and (c) pure stimulation (1-step-ahead prediction).

The 1-, 5-, and -step-ahead prediction errors for this model
on the validation data were calculated and these are compared
with those for model (24) in Table II. Quite clearly, the
model identified from the twitch responses is much inferior
to the PRBS-based model on this set of validation data. This

is due primarily to the low dynamic information content
of the twitch responses. The pole-zero configurations for
models (24) and (25) are compared in Fig. 8. The number
1 in the figure denotes the PRBS-based model (24), and the
number 2 denotes the twitch-response-based model (25). The
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Fig. 7. Model identified from PRBS-data,(na; nb; k) = (2; 1; 1). Measured
and simulated output. Solid line: measurement, dotted line: model.

Fig. 8. Pole-zero configuration for PRBS-based model, 1, and twitch- re-
sponse-based model, 2.

TABLE II
RMS PREDICTION ERRORS FORPRBS MODEL

(24) AND TWITCH RESPONSEMODEL (25)

qualitative difference is that the twitch-based model has a pair
of complex-conjugate poles, thus, giving a slightly oscillatory
step response. The PRBS-model has an overdamped response
with two real poles. This qualitative difference is discussed
further in Section V.

V. MODEL VARIABILITY VIA LOCAL LINEARISATIONS

In order to empirically investigate the nonlinear properties
of the physical muscle, four distinct levels of PRBS-type
activation signal were applied and the four corresponding
local linearizations were estimated. The four activation levels
referred to were as follows:

1) 125 120 mAct;
2) 375 120 mAct;
3) 625 120 mAct;
4) 875 120 mAct.

Fig. 9. PRBS activation signals, local excitation.

Fig. 10. Measured moments corresponding to the four local stimulation
levels of Fig. 9. These data used for model estimation.

The activation signals and the corresponding measured muscle
moments are shown in Figs. 9 and 10, respectively.

Since the aim here is to locally linearize the muscle,
estimation of the recruitment nonlinearity, and its subsequent
inversion, was not required. In fact, a linear characteristic
was implemented instead of , as shown in Fig. 11, so
that all nonlinear effects can be deduced by examining the
local linearizations.2 The transfer functions for the four es-
timated local models are given in Table III, together with
the steady-state gains,3 where for

. Notice that the given transfer functions and
gains are for the small-signal activation–moment relationship,
i.e., , where denotes the deviation from a
fixed operating point. To obtain the pulse width–moment
relationship, the given models are multiplied by the factor two

2The scaling was chosen such that an activation level of 1000 mAct
corresponds to a pulse width of 500�s.

3Mean levels in the input–output signals were subtracted before estimation
to avoid the need to estimate operating-point-dependent offset terms (see
Section III-D).
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Fig. 11. Structure for identification of local linearizations,d0 = d=Am (q�1): no cancellation of the recruitment nonlinearity.

(a) (b)

Fig. 12. (a) Pole-zero configurations for activation levels 1, 2, 3, and 4. (b) Close-up of pole positions.

TABLE III
LOCAL LINEAR MODELS FOR FOUR ACTIVATION LEVELS

(i.e., the inverse of the slope of the linear characteristic of
Fig. 11, where an activation of 1000 mAct corresponds to a
pulse width of 500 s).

In Table III, the model numbers refer to the PRBS levels
described above.

A consistent pattern of variability can be clearly seen from
analysis of the local models. The following conclusions can
be drawn regarding the qualitative properties of the muscle,
as the activation level changes:

1) The pole-zero configurations for the local models are
shown in Fig. 12(a), and a close-up of the pole positions,
labeled according to model, in Fig. 12(b).

• At low activation, the muscle has complex-conjugate
poles leading to an underdamped oscillatory response.

• As activation is increased, the poles move onto the
real axis, giving an overdamped response.

• With increasing activation, the “slowest” pole (i.e., the
one with the largest magnitude) migrates toward the
unit circle, resulting in a slower response.

2) The variation in steady-state gain across the models is
plotted in Fig. 13(a).

• The steady-state gain pattern qualitatively reflects the
static Hammerstein characteristic, peaking at inter-
mediate activation levels, and low at high and low
activations (this point is discussed in depth in the
following section).

3) The variation in speed of response can be seen clearly
from the normalized step responses of the local transfer
functions, as plotted in Fig. 13(b).

• As the activation level increases, the speed of response
of the muscle decreases (as reflected in the pole
migration toward the unit circle).

Thus, while the Hammerstein model to some extent reflects
the variability in static gain, there are very significant changes
in the dynamic properties of the muscle which are left unac-
counted for in the Hammerstein structure. In fact, the speed
of response of the muscle, as quantified by the rise-time in
the step response of the local models, is seen to change by a
factor of about five.
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(a) (b)

Fig. 13. Gain and time-constant properties of the four local models. (a) Steady-state gains and (b) normalized step responses

VI. COMPARISON OF HAMMERSTEIN

MODEL AND LOCAL LINEARISATIONS

In Section V, we analyzed the variation in dynamic and
static characteristics of the local models corresponding to dif-
ferent levels of muscle activation. We also noted the qualitative
similarity in static gain variation between the Hammerstein
model and the set of local models. In this section, we first
perform some analysis which enables us to make a quantitative
comparison of the gain profile, and we carry out an evaluation
of the ability of the Hammerstein model to represent the
muscle gain characteristics over the activation range. Sec-
ond, the dynamic fidelity of the Hammerstein model over a
wide operational range is compared with the combined local
linearizations using a new set of validation data.

A. Static Gain Properties

Ignoring the disturbance term, the Hammerstein model of
Fig. 1 is

(26)

The small-signal behavior can be determined approximately
from a first-order Taylor expansion of this expression at some
fixed operating point

(27)

where the deviation variables and are defined by
and . The steady-state

gain of the Hammerstein representation, denoted as, is,
therefore, given by

(28)

The models in Table III, obtained by local stimulation of
the muscle, each give a small-signal representation of muscle

behavior

(29)

where the deviations from activation operating point are
given by . The index represents
the four operating points used in the experiment. As noted
above, for these experiments we had , so that the
small-signal relationship between pulse width and moment is

(30)

The steady-state gain of the muscle, which for the local models
we denote as is, thus, determined from

(31)

The gain profile resulting from the Hammerstein model and
from the set of local models can now be quantitatively
compared using expressions (28) and (31); to evaluate the
gain according to the Hammerstein expression (28) we take
the gain of the model (24), which is ,
and we evaluate the slope at the midpoints of the nine
parts of the piecewise linear approximation to the recruitment
nonlinearity depicted in Fig. 4. The gain profile thus obtained
is shown as the dashed line in Fig. 14.4

Using Table III and (31), the steady-state gains of the four
local models can be calculated, and these experimental points
are also shown in Fig. 14 (solid line).5

Recall that the linear part of the Hammerstein model, (24),
was obtained using an activation level centred at 500 mAct.
From Fig. 4, this corresponds to a pulse width of 250s. It
can be seen from the results in Fig. 14 that the muscle gain
predicted by the two kinds of model are in close agreement

4If, instead, we used the linear transfer function (25) from the twitch
responses, this graph would simply be scaled by the factor0:04=0:071 =

0:563, where 0.04 is the steady-state gain of (25).
5Here, the four pulse widths are obtained from the four applied activation

levels (125, 375, 625, 875) divided by two, i.e., (62.5, 187.5, 312.5, 437.5).
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TABLE IV
AVERAGE RMS PREDICTION ERRORS (33) FOR COMBINED LOCAL MODELS AND HAMMERSTEIN MODEL

Fig. 14. Gain profiles of Hammerstein (dashed line) and local models (solid
line).

only in this mid-range stimulation region. For low and high
stimulation levels there is significant discrepancy in the gain
profiles.

In the interpretation of this result we assume that the gain
profile of the local models is accurate, due to the truly local
stimulation levels used for identification of the local models.
The good correspondence of the gains of the Hammerstein and
local models near the centre of PRBS stimulation is as one
would expect. However, the gain of the Hammerstein model
is sensitive to the PRBS-stimulation region used to obtain
the linear transfer function; it will be accurate only in the
stimulation range where most energy is concentrated (in this
case around 250s). Thus, we conclude that while theshape
of the Hammerstein gain profile is approximately qualitatively
correct, there is a strong quantitative discrepancy when viewed
over the whole range of muscle stimulation.

B. Comparison of Dynamic Performance

The dynamic fidelity of the Hammerstein model over a wide
operational range can be compared with the combined local
linearizations using a new set of validation data. As before,
four activation levels were applied to the muscle, and the
resulting moments were recorded. The four activation input
signals were the same as those depicted in Fig. 9, and the
recorded moments this time are shown in Fig. 15.

Two kinds of model were tested on the validation data. First,
for each level of activation, , local model from
Table III was applied. Second, for each level of activation, the
linear transfer-function part of the Hammerstein model, (24),
was applied (with cancellation of the recruitment nonlinearity).

Fig. 15. Measured moments corresponding to the four local stimulation
levels of Fig. 9. These data used only for validation test.

For each , and each model, the -step-ahead prediction error
was calculated, for various

(32)

Here, for the combined local models, prediction
is the prediction on data setof model from Table III. For the
Hammerstein model, the prediction uses the transfer function
(24) on each data set. In each case, i.e., for the combined local
models and the Hammerstein model, the average prediction
error over all data sets was then calculated using

(33)

The results of this comparison for 1-, 5-, and-step-ahead
predictions are given in Table IV.

The results show clearly that the combined local models sig-
nificantly outperform the Hammerstein model in reproducing
the muscle dynamics.

VII. CONCLUSION

We first followed the path taken by earlier investigators in
identifying a Hammerstein model for the stimulated isometric
muscle. Like Bawa and Stein [23], we found that a second-
order transfer function gave a good fit to stimulated calf
muscles in man if there is also a transport delay, which they
found to be 15–20 ms and we found to be less than 50 ms
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(one sample period). We found that a good model structure is
. Durfee and Maclean [12] pointed out

that if avoiding fatigue is important, the frequency response of
the muscle can be identified from the twitch responses, though
Allin and Inbar [11] preferred to excite the muscle with PRBS
activation, which we find gives a better model. The tests we
used are quick. Test B takes 1 min and each PRBS test, at one
mean level, takes 10 s.

The use of the Hammerstein model to represent electri-
cally stimulated muscle is based on the assumption that the
dynamics are independent of activation level. As explained
in Section I, one would expect that for normal muscles,
stimulated with rectangular pulses of current, the slower motor
units would be recruited at high activation and, therefore,
that the dynamics will change with activation level. This
is shown in Figs. 12 and 13, the speed of response falling
dramatically by a factor of five. The gain of the linear part
of the Hammerstein model is found using the PRBS response
to stimulus pulses around one average width. Consequently,
the small-signal gain of the model is quantitatively correct for
activation by pulses close to this width, but it is in error by
factors of up to three at other pulse widths (Fig. 14). Finally,
it was shown that the dynamic performance of the combined
local models is significantly better than that of a Hammerstein
model.

These large discrepancies of the Hammerstein model imply
that one of two possible choices must be made for stimulation
controllers. If a linear controller followed by an inverse
recruitment curve is to be used [4], the design must be robust
enough to accomodate the actual range of gain and speed
of the muscles. Local models can be used to design such a
robust controller but this will only be achieved by loss of
performance. On the other hand, high performance may be
achieved by adopting a nonlinear control strategy [24], [25].

Local models can be joined into a single model by inter-
polation [26], [27] and this naturally leads to corresponding
controllers in which the controller gain and dynamics are
progressively altered by scheduling [28]. Our results show that
activation is an appropriate scheduling variable for such a con-
troller, which we expect could be designed and implemented
quite easily (see [24] for a simulation study). Perhaps the chief
outstanding question is whether this black-box approach is the
best replacement for the Hammerstein muscle models and their
controllers, or whether some more physiological model will be
better [29]. This should depend on the time taken to perform
the identification tests, the range of operating conditions which
the model describes and the desired accuracy, and whether
the calculations can be performed in real time on practical
stimulators. These questions will form the basis of our future
research.
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