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Abstract 

This thesis is concerned with the development and analysis of a non-linear approach to modelling and 

control of the contraction of electrically stimulated skeletal muscle. 
For muscle which has lost nervous control, artificial electrical stimulation can be used as a technique 

aimed at providing muscular contraction and producing a functionally useful movement. This is 

generally referred to as Functional Electrical Stimulation (FES) and is used in different application 
areas such as the rehabilitation of paralysed patients and in cardiac assistance where skeletal muscle 

can be used to support a failing heart. For both these FES applications a model of the muscle is 

essential to develop algorithms for the controlled stimulation. 
For the identification of muscle models, real data are available from experiments with rabbit 

muscle. Data for contraction with constant muscle length were collected from two muscles with very 
different characteristics. An empirical modelling approach is developed which is suitable for both 

muscles. The approach is based on a decomposition of the operating space into smaller sub-regions 
which are then described by local models of simple, possibly linear structure. The local models 
are blended together by a scheduler, and the resulting non-linear model is called a Local Model 
Network (LMN). It is shown how a priori knowledge about the system can be used directly when 
identifying Local Model Networks. Aspects of the structure selection are discussed and algorithms 
for the identification of the model parameters are presented. Tools for the analysis of Local Model 

Networks have been developed and are used to validate the models. 
The problem of designing a controller based on the LMN structure is discussed. The structure of 

Local Controller Networks is introduced. These can be derived directly from Local Model Networks. 
Design techniques for input-output and for state feedback controllers, based on pole placement, are 
presented. 

Aspects of the generation of optimal stimulation patterns (which are defined as stimulation pat- 
terns which deliver the smallest number of pulses to obtain a desired contraction) are discussed, and 

various techniques to generate them are presented. In particular, it is shown how a control structure 

can be used to generate optimal stimulation patterns. A Local Controller Network is used as the 

controller with a design based on a non-linear LMN model of muscle. 

Experimental data from a non-linear heat transfer process have been collected and are used to 

demonstrate the basic modelling and control principles throughout the first part of the thesis. 
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1 Introduction 

This thesis is concerned with modelling and control of electrically stimulated muscle. A non- 
linear modelling approach is presented. Techniques to design controllers based on these model 

structures are developed. 

This introductory chapter gives an overview of the thesis and provides background inform- 

ation about the project of which the work presented forms a part. This project is coordinated 
by J. C. Jarvis at the Department of Human Anatomy and Cell Biology, University of Liver- 

pool. 

1.1 Cardiac Support using Skeletal Muscle Ventricles 

Under certain conditions a weak heart can fail to provide the pumping power required to 
keep the circulatory system in a stable state. Depending on the level of weakness, different 

strategies can be used to assist the failing heart: 

1. A slightly damaged heart can be stimulated directly by periodic electrical impulses to 

provide a consistent heart beat. This technique is used, for example, in pace makers. 

2. A weak heart can be supported by additional hydraulic power which is provided by a 

pumping device. The pumping device is activated in phase with the heart beat when 
the power generated by the heart is not sufficient to sustain the blood circulation. The 

device can be placed at the artery and is primarily aimed at taking load off the damaged 

heart thus enabling the heart to recover. 

3. If the heart fails completely, it needs to be replaced by either an artificial heart or, if 

available, a heart transplant. 

For the project of which this work forms a part we are primarily concerned with supporting 

a weak heart (i. e. item 2 above). A straightforward approach is to use a mechanical pump 

to assist the heart. However, such a system requires an external power supply to provide the 

energy needed for the supporting device and is therefore only suitable for application in a 

clinical environment. 
Another approach is based on Functional Electrical Stimulation (FES) of skeletal muscle 

transformed into a so-called Skeletal Muscle Ventricle (SMV). In general skeletal muscle may 
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blood flow 

Figure 1.1: Control structure for cardiac support using a Skeletal Muscle Ventricle. The force 

generating elements are surrounded by a dashed line. 

The circulatory system is interpreted as a closed loop hydraulic sysi ein. It can be divided 

into the heart-lung pump as the force generating element. and the systemic vascular lied as 

the load (Sagavva 1973). Systemic arterial pressure and systemic venous pressure can be 

thought of as input variables to the heart-lung pump and the output of the systemic vascular 
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1 Introduction 

bed, whereas cardiac output and venous return are given the same value and are regarded 

as the forcing variable in analysing the systemic vascular bed and the dependent variable in 

analysing the heart-lung pump. 
In the right half of Figure 1.1, the elements of the supporting device are shown. It consists 

of the SMV and two controllers which generate the electrical stimulation pulses for the SMV. 

The controller design is aimed to meet the following criteria: 

1. The SMV should support the weak heart in such a way that only the power actually 

needed is generated. Thus, the required pumping activity depends on parameters such 

as blood pressure and flow. 

2. The SMV should be stimulated in such a way that it generates the pumping power 
required with an optimised phase relationship to the natural heartbeat. Furthermore, 
long term changes in the skeletal muscle due to the artificial stimulation should not 
cause progressive deterioration of the SMV performance. 

Controller 1 is designed to meet objective 1. It requires a model of the pressure-flow re- 
lationship in the arterial tree of the circulatory system. The oldest model, dating back to 

the beginning of the century, is the Windkessel model which is based on linear time-domain 

considerations. It describes the artery as a linear compliance which stores energy during 

systole and is discharged via the peripheral resistance during diastole. A number of more 
complex models have been developed since which include non-linear effects. An introduction 

to modelling of the arterial tree can be found in (Timmons 1995) and (Westerhof et at. 1977). 
The command signal for Controller 1 is based on sensor measurements of arterial pressure 

and flow. As these variables change relatively slowly (in the order of seconds to minutes) the 

time constants of this controller will be relatively large. 

Controller 1 generates a desired force which is used to generate the command signal for the 

second control task which corresponds to Controller 2 in Figure 1.1. This controller generates 
the actual stimulation pulses delivered to the muscle, in phase with the heart beat. Here, 

the desired activation of the SMV can reasonably be described as a series of square waves 

whose amplitude is defined by the desired force generated by Controller 1 and whose frequency 

depends on the frequency of the heart beat. As the pulse frequency of a human varies in the 

range of 70 beats/min at rest over 150 beats/min during medium activation to a maximum of 
200 beats/min for very high activation (Gray 1995), a frequency range of [1... 3] Hz can be 

expected. Hence, the second control task requires much smaller time constants than the first. 

The design of Controller 2 is based on a model of the contraction of electrically stimulated 

skeletal muscle. 
This thesis is primarily aimed at developing such a model and to show how it can be used 

to design a corresponding stimulation controller. As muscle is a highly non-linear system, 

a non-linear modelling approach needs to be used. The primary modelling objective is to 
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1 Introduction 

develop stimulation controllers. Hence, the model structure needs to be controller orientated. 
This means that most analytical modelling approaches for muscle are not directly suitable, 

as they are mainly aimed at describing the physiological characteristics of muscle, either 

on a microscopic or on a macroscopic level, which usually leads to complex non-linear model 

structures which cannot be used directly for the design of controllers. We will therefore employ 

an empirical approach to model the contraction of muscle which is based on input-output data 

from standard experiments and which leads to a model structure which can readily be used 
to design stimulation controllers. 

For the identification of muscle models, real data are available from experiments with 

rabbit muscle (tibialis anterior). Data for contraction with constant muscle length (isometric 

muscle contraction) were collected from two muscles with very different characteristics. We 

aim to develop a generic modelling approach which is suitable for both muscles. 
The use of the modelling technique is not limited to the design of stimulation controllers 

for Skeletal Muscle Ventricles in cardiac assistance but can be applied to design stimulation 

controllers for different applications of FES, e. g. for unsupported standing of a paraplegic 

subject (Hunt et al. 1997, Munih et al. 1997). 

1.2 Empirical Non-linear Modelling 

Many of the model structures used for empirical non-linear system identification, especially 
some popular structures of artificial neural networks, treat the system as a black-box. This 

means that they are not intended to have physical significance or to be related to the structure 

of the real system. No a priori knowledge is employed in the design of a model in the hope 

that the modelling process can be fully automated. 
For most real world problems, a priori information is available in some way: the approxim- 

ate dynamic order may be known, some information about non-linearities and their physical 
background may be available, and states of the system might be known. Thus, a system 
identification algorithm is required which can make use of this system knowledge. In such a 

way, the class of potential model structures can be limited and the system identification task 

can be radically simplified. 
Another important aspect of system identification is the validation of an identified model. 

For black-box modelling, the only way of validating a model is to use cross-validation tech- 

niques (Weiss and Kulikowski 1991), i. e. to compare the output of the model with the output 

of the real system for all operating conditions known. When dealing with real-world non- 

linear systems, it is usually impossible to cover all operating conditions with experimental 

data. With a purely empirical modelling approach, it is then never completely known how 

the model will perform for operating conditions other than those covered by the data. If 
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however the model structure can be subject to analysis of its properties, then model prop- 

erties can be compared with characteristics of the real system. This is an additional way of 

validating the model structure. Such analytical validation is almost always essential when the 

model is to be used in a real application. 
In this thesis, the use of Local Model Networks (LMN) for non-linear system identification 

is reviewed. It is shown how a priori knowledge about the system can be used directly when 
identifying Local Model Networks. Tools for analysis of Local Model Networks have been 

developed and can be used to validate the model. 
Local Model Networks are used to model the contraction of electrically stimulated muscle. 

The design of Controller 2 in Figure 1.1 can be based on a non-linear model of the muscle which 
forms the SMV. Based on the structure of a Local Model Network, a non-linear controller 

with a similar structure can be designed, using standard controller design techniques. This 

approach is referred to as a Local Controller Network. 

To investigate how the algorithms developed in this work can be applied to model an 

engineering systems, experimental data from a non-linear heat transfer process have been 

collected and are used to demonstrate the basic modelling and control principles. 

1.3 Outline of Thesis 

In Part I of this thesis, theoretical aspects of the modelling and control techniques used are 

discussed. 

. In Chapter 2, Local Model Networks are introduced as the modelling approach used. 
An overview of modelling techniques which are based on operating regime decompos- 

ition is given. Aspects of the structure selection are discussed and algorithms for the 

identification of the model parameters are presented. The interpretation, analysis and 

validation of the resulting model are discussed. 

" In Chapter 3, the problem of designing a controller based on the model structure 

introduced in Chapter 2 is discussed. The structure of Local Controller Networks which 

are directly based on Local Model Networks is found to be related to the gain scheduling 

approach to control. Design techniques for input-output controllers and state feedback 

controllers, based on pole placement, are introduced. 

Part II forms the main part of the thesis and deals with the application of the modelling and 

control techniques introduced in Part I to electrically stimulated muscle. 

" Chapter 4 provides an overview of aspects of artificial electrical stimulation of skeletal 

muscle. After a short introduction to muscle physiology, the main differences between 

natural and artificial stimulation are discussed. Following that, a review of muscle 
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models is given, ranging from analytical to empirical models, with special emphasise on 
their relevance to Functional Electrical Stimulation. 

" In Chapter 5, Local Model Networks are used to model the contraction of electrically 

stimulated muscle under isometric conditions. This chapter forms the main contribution 

of the thesis. It is shown that the model developed can describe non-linear character- 
istics of the muscle with great accuracy. The models obtained are thoroughly analysed 

and validated, and it is shown how a model can be modified to incorporated a priori 
knowledge of the system characteristics. 

" In Chapter 6, aspects of the generation of optimal stimulation patterns (which are 
defined as stimulation patterns which deliver the smallest number of pulses to obtain a 
desired contraction) are discussed, and various techniques to generate them are presen- 
ted. In particular, it is shown how a closed loop control structure based on the models 

obtained in Chapter 5 can be used to generate optimal stimulation patterns. 

Conclusions and recommendations for future work are presented in the final Chapter 7. 

The thesis has six appendices. Appendices A, B, C and D contain standard material which 

is relevant for the work presented in the main parts of the thesis. 

. Appendix A discusses aspects of the linearisation of non-linear systems which are 
relevant for the modelling approach discussed in Chapter 2. 

. In Appendix B optimisation algorithms are introduced which are used to estimate the 

parameters of the Local Model Networks. 

9 Linear controller design techniques are presented in Appendix C. These techniques 

are used for the design of Local Controller Networks in Chapter 3. 

" In Appendix D aspects of the simulation of systems in continuous and in discrete time 

are discussed. 

Appendix E introduces the heat transfer process and presents the which are used throughout 

Part I of the thesis to demonstrate the modelling and control concepts. 

Notations and abbreviations used throughout the thesis are summarised in Appendix F. 

1.4 Thesis Contributions 

The contributions of the thesis with respect to the modelling and control of electrically stim- 

ulated muscle can be summarised as follows: 

"A new empirical approach to model the contraction of muscle stimulated with supra- 

maximal impulses under isometric conditions is developed. The model is non-linear and 
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can therefore account for non-linear force-frequency characteristics such as the "catch- 
like" effects. The identification of the model parameters is based on input-output data 

of the muscle from standard experiments. Although the model is empirical, it can be 
interpreted in terms of the properties of the real system. It is demonstrated how a priori 
knowledge can be incorporated. The simulation of the model is not computational ex- 
pensive which makes the approach suitable for use in real time with implanted devices. 
The model structure is controller orientated. 

" Based on the non-linear model of muscle contraction, an algorithm is developed which 
can be used to generate stimulation patterns which take account of non-linear force- 

frequency characteristics. The stimulation patterns have properties similar to optimal 
stimulation patterns which deliver the smallest number of pulses to obtain a desired 

contraction and are therefore thought to minimise muscle fatigue and to influence long 

term changes of the muscle due to the artificial stimulation in a positive way. The 

algorithm employs a closed loop control approach where the structure and the design of 
the controller is based on a non-linear model of the muscle. The developed controller is 

not computational expensive and therefore suitable for use in real time with implanted 

devices. 

In terms of the modelling and control concepts used, the following contributions have been 

made: 

"A review of Local Model Network based approaches to modelling is given. Different 

structures for the scheduler and the local models are compared. Aspects of the parameter 

estimation are discussed. 

. Tools to analyse Local Model Networks are developed. It is shown that the model 

can be interpreted as a linear parameter-variant system, and how the stability of such 

systems can be analysed. A graphical interpretation of stability of Local Model Networks 

with local linear models with real eigensystems is applied. It is demonstrated how the 

parameters of the Local Model Networks can be interpreted with respect to known 

characteristics of the real system. 

" An overview of controller design based on Local Model Networks is given, and its relation 
to gain scheduling control is outlined. Design methods based on pole-placement are 
introduced for Local Model Networks in input-output and in state space form. 

" The modelling and control concepts are demonstrated on a heat transfer process to 

show their applicability to engineering systems as well as to a biological system such as 

muscle. 
'The "catch-like" effect refers to a more than linear summation of the muscle response to two or three closely 

spaced stimulation pulses at the onset of a contraction. In our experiments, this effect is present only in 

one of the muscles. 
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2 Local Modelling 

2.1 Introduction 

In this chapter we consider the modelling of complex, non-linear, dynamic systems using a 

multiple-model approach. The approach is based on the concept of "divide and conquer" 

which is a common strategy in solving engineering problems. It can be formulated as follows: 

A complex problem is somehow partitioned into a number of simpler subprob- 
lems that can be solved independently, and whose individual solutions yield the 

solution of the original complex problem. (Johansen and Murray-Smith 1997) 

A problem can be decomposed according to a number of different criteria. (Johansen and 
Murray-Smith 1997) suggest the following classification: 

1. Decomposition into physical components. For example, when modelling the human 

circulatory system the model can be decomposed into a model of the heart-lung pump 

and a model of the systemic vascular bed. 

2. Decomposition based on phenomena. For example when modelling the human circulat- 
ory system, heat transfer and oxygen transfer can be modelled separately. 

3. Decomposition in terms of mathematical series expansions. This includes for instance 

Laguerre polynomials, Volterra expansions, Fourier transformation. 

4. Decomposition into goals. For example, to restore walking in a paraplegic subject using 
Functional Electrical Stimulation of muscle ((Kralj and Bajd 1989), see also Chapter 4), 

one can attempt first to make the subject stand up safely before approaching the task 

of restoring walking capabilities. 

5. Decomposition into operating regimes. 

When solving an engineering problem all these decomposition approaches will be considered 
in some way. However, in this work we will focus on the decomposition into operating regimes. 

The term operating regime decomposition refers to a decomposition of the full oper- 

ating region of a system into smaller regions which can then be modelled locally. This 
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idea is employed in a number of approaches and techniques, for example Local Model Net- 

works (Johansen and Foss 1992, Johansen and Foss 1993, Murray-Smith 1994), discrete lo- 

gic (Söderman and Stromberg 1993, Billings and Voon 1987), finite state automata (Zhang 

et al. 1994, Meilä and Jordan 1997), fuzzy logic (Takagi and Sugeno 1985), probabilistic 

approaches (Jacobs 1995, Skeppstedt et al. 1992), and hierarchical modelling (Jordan and 
Jacobs 1994). These phrases refer to similar techniques and are partially overlapping. A 

comprehensive review can be found in (Johansen and Murray-Smith 1997). 

In this work, we will primarily use the term Local Model Network when we refer to mod- 

elling techniques which are based on operating regime decompositions. One should, however, 

keep in mind that sometimes ideas from the related areas are employed, often using only a 
different terminology. 

2.2 Structures 

The basic idea of the modelling approach employed in this work is to divide a complex, non- 
linear modelling task into smaller, simpler sub-tasks. Each sub-task can then be handled 

locally by a simpler model. A scheduler (or supervisor) decides how relevant the models 

are for the current operating condition, and weights them accordingly. The overall model is 

composed as the sum of all weighted local models. Such a structure is shown in Figure 2.1. 

The local models can generally be of any form, e. g. linear or non-linear, in input-output 

or state-space form, empirical or based on physical analysis. It is often straightforward to 

incorporate a priori knowledge at this stage. 
We will first discuss aspects of local function decomposition, but then focus on issues 

related to the decomposition of dynamic systems. 

2.2.1 Local Function Decomposition 

We consider the local decomposition of the static relation 

y=fý'ý)ý (2. i) 

with 0 E' C RnO the input vector, yEYCR the scalar output, and f: XF -ý Ya smooth 

non-linear continuous function. 
We introduce a scheduler which consists of a set of M scalar functions pi(4) : -4 [0,1], 

with 0EC RnO being the scheduling vector. These functions are smooth with a localised 

region of activity. The set of functions {pi}M1 forms a partition of unity of the scheduling 

space, i. e. 

M 
E PL(O) =1V EID (2.2) 
i=l 
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Scheduler Input 0 

Local Models 

Figure 2.1: The multiple model approach (Local Model Network) (adapted from (Murray-Smith 
and Johansen 1997b)). 

Employing a set of scheduling functions with these properties, we can rewrite equation (2.1) 

as 
M 

y= Pt(0). f(o) 
- 

(2.3) 

i=l 

If, for a given pi(q5) -- 1, a local approximation of f exists, 

fs(! ) ^f (0) if pi(0) ^ 1, (2.4) 

then an approximation to equation (2.3) can be formulated as 

yA-- 9 =EPi(O)fi(L)- 
i=1 

(2.5) 

Here, the functions fi which are locally valid approximations of the global function f, are 

called local models. The functions in the set {pi}M1 define the validity of the corresponding 
local models, they are thus called validity functions. The function p% has the largest value for 

those operating conditions where the function fi is the best approximation to f, and is close to 
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zero elsewhere. The overlap between neighbouring validity functions results in interpolation 
between local models. Properties of this approach to function approximation are discussed in 

more detail in (Johansen 1995, Johansen 1994). 

2.2.2 Operating Regime Decomposition of Dynamic Systems 

In this section we discuss the concept of local decomposition of a complex function in the 

context of dynamic systems. As mentioned earlier, the local models fi in equation (2.5) 

can generally be of any form, e. g. nonlinear or linear, in state space or in input-output 

description, in discrete or continuous time. They can be of different character, using physical 

models of the system for operating conditions where they are available, and parametric models 
for conditions where there is no physical description available. 

We will however restrict ourselves to local linear descriptions, employing the concept 

of local linearisation. First, state space descriptions of non-linear systems are considered 

which can be used in both continuous and discrete time. We then discuss aspects of operating 

regime decomposition for discrete time input-output descriptions, focusing on the well-known 
NARXI structure (Leontaritis and Billings 1985a). 

State Space Model 

Non-linear state space model We consider the following time-invariant non-linear system 
in state space form, 

? (t) =f (x(t), u(t - Td)) ; 20)"10 (2.6a) 

y(t) = g(x(t)) . 
(2.6b) 

Here f () and g() are non-linear, continuous differentiable functions. For simplicity we restrict 

ourselves to single input - single output system, i. e. uEUCR and YEYCR are the input 

and the output of the system, respectively. The dimensionality of the state vector xEXC R" 

defines the dynamic order of the system, and x(t) denotes the derivative of the state with 

respect to time, dz/dt. The continuous time is denoted by t, and the scalar Td ER is a 

time-delay. The initial state at t=0 is xo. 
When equation (2.6a) has an explicit solution, the value of the state at time t2 can be 

calculated as a function of the state at time tl and the time history of the input u(tl - 

Td... t2 -Td), 

x(t2) = F(x(ti), u(tl - Td ... t2 - Td)) " 
(2.7a) 

Introducing the sampling period T3 = t2 -ti and assuming that the input is constant between 

sampling instances, we can obtain the discrete time description of the sampled state space 
'Non-linear AutoRegressive with eXogenous inputs. 

12 



2 Local Modelling 

system (Aström and Wittenmark 1990), 

? (tk+1) _ h(I(tk)) u(tk-d)); x(to) = 10 (2.8a) 

J(t) = 9(1(tk)) . 
(2.8b) 

Here, the index k denotes the k-th sampling instance, 

tk=kT8, k=0,1,2,... (2.9) 

The index d, dEN, denotes the length of the time-delay, Td = dT,, which is assumed to be 

a multiple of the sampling period. 
In the following discussion we will use the continuous time system (2.6). The results 

obtained can be easily extended to the discrete time representation (2.8). 

Linearised state space model A detailed discussion of aspects of the linearisation of the 

system (2.6) can be found in Section A. 1. As outlined in Section A. 1.1, the linearised system 
can be written as 

x(t) =Ax(t) +b u(t - Td) +! f (2.10a) 

y(t) = cT x(t) + dy , 
(2.10b) 

with the bias terms d' and dy defined as 

dx =f (x°, u°) -A x° -b u° E R" (2.11a) 

J= y° - cT xo E R. (2.11b) 

State space LMN In the state space description (2.6), we have two non-linear functions, f 

and g, which can be approximated by means of a local function decomposition as outlined 
in Section 2.2.1. Applying equation (2.5), the system can be rewritten as a weighted sum of 
local models, 

x(t) _E Pi(«(t)) fi(! (t), u(t - Td)); MO) = xo (2.12a) 
i=1 

M 

y(t) _ Pi(O(t)) 9i(2ý(t)) , 
(2.12b) 

i=1 

which is a Local Model Network representation of the system (2.6). 

Employing the concept of local linearisation for different operating conditions, we choose 

to work with linear local state-space representations as described by equations (2.10). This 

results in 

fi(x(t), u(t)) = Aix(t) + biu(t - Td) + di , 
(2.13a) 

gi(r(t)) = cT x(t) + di . 
(2.13b) 
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with i=1, ... , M. The overall system can then be approximated as 
M 

Pi ((t)) [A1 Z(t) + bi u(t - Td) + ai ]; ; E(O) = xo (2.14a) 
i. l 
M 

ýJ(t) _ Pi(«(t)) [ýT x(t) + d] (2.14b) 
i=1 

This Local Model Network structure is depicted in Figure 2.2. 

Local Models f; 

Figure 2.2: Local Model Network in state-space representation. 

When using linear local models, the LMN can be described as a linear parameter-varying 
(LPV) system, 

±(t) = A(cb(t)) i(t) + h(0 (t» u(t - Td) + az(0(t)) ; x(O) = lo 
y(t) = cT (O(t)) i(t) + d'(q5(t)) 

9 

where A, b, df, c and dy are the interpolated parameters of the local models, 

A(q5) = 
ZPi(0)Ai, 

i=1 
M 

Q(o) = 
EPi (0) Qi , 
i=1 

b(0) =E Pi (0) bi 
, 

i=1 

d(0) = Pi(0)d'. 
i=1 

dX (0) =E Pi w ei dä , 
i=l 

(2.15a) 

(2.15b) 

(2.16) 

The parameters of (2.15) depend only on the scheduling vector 0. Aspects of the analysis of 

this system will be discussed in Section 2.4. 
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The state space notation for LMNs introduced here uses a single global state which has 

the same value for all local models. Another approach is to construct LMNs where each local 

model has its individual state, and only the local outputs are interpolated by the validity 
functions, (Gawthrop 1996, Gawthrop 1995). Local state LMNs have the advantage that each 
local model is a real local approximation of the global system for its region of activity, and 
its dynamics are not influenced by neighbouring models. The problem in local state LMNs is, 

however, that the local states of models which are inactive do not influence the overall output 

and have therefore no physical significance. 

Input-Output Model 

The state space description introduced in the previous section is the most general model 
description considered in this thesis. In practical applications, often only sampled input and 

output data of the system can be measured. It is therefore straightforward to investigate 

discrete time input-output model structures. 

NARX Structures For the general discrete time state space description given in equa- 

tions (2.8), we can obtain a non-linear input-output model, provided that i) the system 

is finite realisable (i. e. x is of finite dimensionality) and ii) that a linearisation of the system 

exists around its equilibrium, and that this linearisation has the full order n. For some re- 

stricted region of operation around the equilibrium point, the system can then be described 

in terms of the well-known NARX structure (Leontaritis and Billings 1985a, Leontaritis and 

Billings 1985b, Chen and Billings 1989), 

y(tk) -I (u(tk-d), 
... U(tk-d-n,. ), y(tk-1), ... y(tk-ny)) + e(tk) " 

(2.17) 

Here, f () is a generally non-linear, continuous function, y(tk) is the system output, u(tk) is 

the system input and e(tk) describes a white noise disturbance. The discrete time is expressed 

by tk, cf. equation (2.9), and the index d denotes the length of the input delay, Td = dT8, 

with the sampling period T,. If we restrict ourselves to single-input single-output systems, 

then y(t) EYCR, u(t) EUCRande(t) E]ECIR. 

The arguments of f () can be written as a single vector tai, 

O(tk) - [u'(tk-d)) 
... U(tk-d-n,, ), y(tk-1), ... y(tk-ny)]T (2.18) 

E Lru+l X Yny C j[$nu+ny+l 

Then, equation (2.17) becomes 

y(tk) =f (''(tk)) + e(tk) " 
(2.19) 

When identifying a system one aims at finding a parametrised structure which approxim- 

ates the unknown function f () in equation (2.19). 
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ARX Structure The NARX structure, equation (2.19) with (2.18), can be linearised around 

an operating point [u°, y°]. The Taylor series expansion described in Section A. 2 results in 

the linear ARX structure, 

f (b(tk)) =t iT (tk) f+ dY, (2.20) 

where 0 is the data vector (2.18), dy E IR denotes the bias term determined by the operating 

point (cf. equation (A. 29)), and OE Rn4+nv+l is the parameter vector 

0= [e0, 
... 

enu, E)nY+l 
i ... 

On. +ny]T " 
(2.21) 

The ARX model can also be described in transfer function form (cf. equation (A. 35)), applying 

the forward shift operator q, q" y(tk) = y(tk+n), 

A(9-')y(tk) = 4-dB(9 1)U(tk) + dy + e(tk) 1 
(2.22) 

where A and B are polynomials in q-1 as defined by equation (A. 33) on page 124. 

Input-output LMN A local function decomposition can be applied to the non-linear function 

fin (2.19). Using equation (2.5), it can be approximated by a set of interpolated local models, 

M 
Q (tk)) A(0(tk)) fi(0(tk)) " (2.23) 

i=1 

If we choose to work with local linear ARX models, equation (2.20), we obtain a Local Model 

Network of the form 

M 

Y(tk) = A( (tk)) LT (tk) Ei + d'] + e(tk) (2.24) 
i=1 

This Local Model Network structure is depicted in Figure 2.3. 

When we work with linear local models, the LMN (2.24) can be rewritten as a linear 

parameter-varying (LPV) system, 

y(t) -'T 
(tk) e(0 (tk)) + dY(0(tk)) + e(tk) 1 

(2.25) 

where O and dy are the interpolated parameters of the local models, 
MM 

fi(') = Pi(ý)ai, dY(qS) = 
>Pj(cb)d 

" 
(2.26) 

i=1 i=1 

The parameters of (2.25) depend only on the scheduling vector ¢. Aspects of the analysis of 

this system will be discussed in Section 2.4. 
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0 

Local Models 

Figure 2.3: Local Model Network in Input-Output description. TDL denotes a tapped delay line 
which implements equation (2.18). 

2.2.3 Validity Functions 

To satisfy the approximation described in equation (2.5) we require the following properties 
from the set of validity functions: 

a) A validity function transforms its input to a value between 0 and 1: 

{p; : --ý [0,1]}i f1 (2.27) 

b) The activation of a validity function decreases with increasing distance of the input from 
its maximum (its `centre'). The activation converges to zero for inputs which are far away 
from the `centre'. 

c) The set of validity functions forms a partition of unity of its input space, i. e. 

M 
EPi(4)=1 VOE4DCR7# (2.28) 
i-1 

This ensures that every point in the input space is covered to the same degree. 

d) The shape of the validity functions is smooth. 
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Although any function with the properties listed above could be applied as a validity 
function, the most popular choices include Gaussian bells (Hlaväkovä and Neruda 1993, 
Johansen and Foss 1993, Murray-Smith 1994, Shorten and Murray-Smith 1997), B-splines 
(Brown and Harris 1994), e. g. the ASMOD2 structure (Kavli 1993, Kavli and Weyer 1995, 
Weyer and Kavli 1997) and MARS3 (Friedman 1991), and Kernel functions, e. g. KBFs4 

(Hlavä&ovä 1995). 
In this work we will restrict ourselves to the use of B-splines. 

B-splines 

A set of B-splines can be defined recursively as follows (de Boor 1978): The j-th first order 
B-splines consists of zero order polynomials, 

891 (x) =1 fif rj< x< Tj+1 
, 

(2.29) 
0 otherwise 

where xER. B-splines of order p with p>1 are then defined as, 

Bj, 
P(x) =x- 

Tj Bj, 
p-1(x) '+' 

Tj. fp -x Bj+1, 
p-1(x). 

(2.30) 
Tj+P-1 - Tj Tj+P - Tj+1 

Thus, a B-spline of order p is a composition of p polynomials of order p-1. A set of M 

B-splines is defined by the location of M+p knots r. Examples for B-splines of order 1 to 

4 are shown in Figure 2.4. 

As we require the validity functions to be smooth we choose to work with 3rd order B- 

splines which are composed of quadratic polynomials. Thus, the location and the shape of the 
M validity functions are defined by the set of knots {rj}ý t3. Examples of 3rd order B-splines 

with uniformly and non-uniformly distributed knots are shown in Figure 2.5. Although the 

shape of the validity functions changes significantly when the location of the knots changes, 

each validity functions is exactly defined by a limited number of knots (in this case four). 

This rules out the possibility of reactivation and loss of locality as observed with normalised 
Gaussian bells (Shorten and Murray-Smith 1997). 

B-splines are by definition one-dimensional functions, B3ß : IR -+ Ifs. They can be extended 

to cover a multi-dimensional input space by using the tensor product (Friedman 1991, Kavli 

1993). 

2Adaptive Spline Modeling of Observation Data 
3Multivariate Adaptive Regression Splines 
4Kernel Basis Functions 
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Figure 2.4: Examples for B-splines. 
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Figure 2.5: Example of 3rd order B-splines. The vertical dotted lines mark the knot locations. 
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2.2.4 Choice of the Scheduling Vector 

We introduced a scheduler of the form {pi(k)}M1 and discussed some properties of it in the 

previous section. However, we did not specify the scheduling vector 0EcC R' . In this 

section, we will discuss how the elements of this scheduling vector can be selected. 
From the discussion in the previous sections it is clear that the scheduling vector should 

in some way reflect changes of the system characteristic which have the effect that the current 
local model is not valid any more, and a different local model should be activated. For linear 

local models such a change of system characteristics means that the operating regime has 

moved too far away from the operating point for which the current local model has been 

linearised. In this case, the scheduling vector should reflect the significant non-linearities of 
the system. 

A change of the system's characteristics is linked to a change of the operating regime of 

the plant. A straightforward approach is therefore to select the elements of the scheduling 

vector in such a way that the current operating regime is represented by it. For state space 

and for input-output representations we obtain the following vectors: 

" State space: The operating regime is determined by the current input u(t - Td) and 
the state x(t). Thus, the scheduling vector becomes 

ýiý _ [u(t 
- id), xT (t)] 

TE 
CIO C IE"+1 (2.31) 

. Input-Output: The operating regime is completely defined by the data vector b, 

equation (2.18). Thus, the scheduling vector can be chosen as 

0(tk) - j(tk) - [u(tk-d)7 
... u(tk-d-nu), y(tk-1), ... y(tk-ny)]T (2.32) 

E(p CRn,. +nyi-1. 

In both cases, defining the scheduling vector in this way will generally lead to a schedul- 
ing space whose dimensionality is higher than necessary, because not all the dimensions of 

the scheduling vector might have a non-linear impact on the system. As we will discuss 

in Section 2.3.1, the major effort in the learning process of an LMN structure is spent on 

the optimisation of the parameters of the scheduler. Thus, reducing the dimensionality of 

the scheduling space by pruning the scheduling vector can significantly simplify the learning 

process. The use of a priori knowledge about the modelled system is of great importance 

here. 
We will therefore discuss some aspects of pruning elements of the scheduling vector. 

Including the input in the scheduling vector 

If the system input u(t - Td) (and possibly additional delayed values of it) is part of the 

scheduling vector, it enters the model both through the non-linear scheduler and as an input 

20 



2 Local Modelling 

of the local models. As the scheduler can perform a many-to-one mapping, it is possible for 

the overall model structure to perform such a mapping, i. e. to have the same output behaviour 
for different input sequences under identical initial conditions. 

If the input is excluded from the scheduling vector, it enters the model only as an input of 

the local models. As these local models are linear they perform a one-to-one mapping. Hence, 

the overall system will perform a one-to-one mapping with respect to the input: different 

input sequences will necessarily lead to different model output patterns, assuming the same 
initial conditions. 

Thus, including the input in the scheduling vector leads to a more general model structure. 

Including feedback elements in the scheduling vector 

If feedback elements (i. e. the state, or delayed values of the output) are included in the 

scheduling vector, changes of the process (for example, an overall change of the gain due to 

fatigue) requires readjustment of both the parameters of the local models and the parameters 

of the scheduler. 
If feedback elements are excluded from the scheduling vector, limited changes of the plant 

require only readjustment of the parameters of the local models. The parameters of the 

scheduler can remain unchanged. 
As outlined in Section 2.3.1, the adaptation of the parameters of the scheduler can be very 

computationally expensive. Thus, excluding feedback elements from the scheduling vector 

simplifies the adaptation of the model to a changing process. 

Scheduling on additional variables 

So far, we have only discussed the use of a subset of the full vectors, (2.31), (2.32), for 

scheduling. Depending on the system to be modelled it might be useful to take additional 

variables as potential elements for the scheduling vector into account: 

. Filtered inputs: The input of the process can often change very rapidly. When in- 

puts are directly used for scheduling, this leads to an abrupt switch to a different local 

model. It is usually desirable to change the model characteristics more smoothly. Em- 

ploying a low-pass filtered version of the input for scheduling can improve the switching 

characteristics of the model significantly. 

" Output derivative: Many physical systems change their characteristics with the rate 

of change of their output. In particular, it is quite often the case that the system behaves 

differently when the output increases than when it decreases. If only the delayed outputs 

are included in the scheduling vector, equation (2.32), such a behaviour will be difficult 

to model. Including the output derivative as an element of the scheduling vector can 

improve the model performance significantly. 
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" Auxiliary inputs: Sometimes the characteristics of a system change with variables 
which do not represent direct inputs to the process themselves. A chemical reaction, for 

example, can depend on the temperature. Although the temperature does not act as an 
input to the reaction, and thus will not be an input to the local models, it is important 

as an element of the scheduling vector. Thus, it might be necessary to include auxiliary 

variables in the scheduling vector which are not inputs to the local models. 

Example E. 4.1 on page 152 illustrates the selection of the elements of the scheduling vector 

with the heat transfer process. 5 

2.3 Learning 

The learning process in Local Model Networks can be divided into two tasks, 

i. to find the optimal number, position and shape of the validity functions, i. e. to learn the 
structure of the network. 

ii. to find the optimal set of parameters for the local models. 

The learning process is usually iterative: after defining the network structure, the parameters 

of the local models are optimised. The structure is then refined, and the local model paramet- 

ers are updated, and this is repeated until the parameters have converged (or until a maximal 

number of iterations has been reached). 
General aspects of parameter optimisation for dynamic systems are discussed in Sec- 

tion B. 1. 

2.3.1 Structural Learning 

The aim of structural learning is to adapt the number, position and shape of the validity 
functions to the complexity of the system. 

The following approaches for the optimisation of the structure of non-linear dynamic 

systems are described in (Haber and Unbehauen 1990) and can be adapted for Local Model 

Networks: 

" Forward regression: The model structure grows according to the complexity of the 

system. For LMNs, clustering techniques can be used to place the centres of the validity 
functions. With unsupervised clustering, which is an approach well-known from pat- 

tern classification, the validity functions are placed according to the complexity and 

the availability of data. Such techniques are, however, unable to take account of the 

5The heat transfer process introduced in Appendix E is used as a simple system to illustrate the modelling 
and control principles throughout Part I of this thesis. 
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complexity of the local models. This can be overcome by using iterative clustering tech- 

niques (Murray-Smith and Gollee 1994, Murray-Smith 1994). Here, the data are initially 

estimated with a model of low complexity, and new validity functions are subsequently 
added where they are needed (e. g. where the modelling error is large). 

" Backward regression (pruning): A complex model is used as an initial structure 
for a model reduction algorithm, through which an attempt is made to extract the 

essence of the system by pruning less significant parameters (Reed 1994, Jutten and 
Fambon 1995). The number of validity functions can be reduced for example by using 

cluster merging techniques (Krishnapuram and Freg 1992, Kaymak and Babu§ka 1995), 

also (Babuýka and Verbruggen 1997) and (Gollee and Hunt 1997). The simplest way to 

choose the initial structure is to place one validity function at each data point. For most 

real world tasks this will be too expensive and therefore not practical. Another way of 
defining the initial structure is to place a large number of validity functions uniformly 
in the scheduling space. 

Backward regression algorithms are usually relatively simple and straightforward. They are, 
however, based on the definition of a complex initial structure. This limits their application 

to problems with low dimensional scheduling space, as the number of validity functions will 

rise exponentially with the number of dimensions of the scheduling space. 
Forward regression does not rely on a complex initial structure and can therefore be 

applied even when the scheduling space is of high dimension. The clustering techniques used 
to optimise the structure are, however, usually complicated and computationally expensive. 

Forward and backward regression techniques are primarily aimed at defining the size of a 

model structure. Techniques to optimise the structural parameters, i. e. the parameters which 
define shape and location of the validity functions are often used in addition. 

The optimal location and shape of the validity functions can be found by optimising their 

parameters directly using some standard, non-linear optimisation algorithm. Such techniques 

are described in (Takagi and Sugeno 1985, Sugeno and Kang 1988, Sugeno and Tanaka 1991), 

see also (Jang 1993). The direct optimisation of the validity functions parameters is partic- 

ularly straightforward to apply when working with B-splines, as their shape and location is 

defined by a single set of parameters, the knots vector. 

2.3.2 Optimisation of Local Model Parameters 

The most straightforward way to optimise the parameters of the local models is to use the 

criterion (B. 2) on page 126 with the weighting factor -y equal to one, 

N 

J(eg) y(ts, eg)] 2 (2.33) 
i=1 
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Here, y is the global LMN output, and ©9 includes the parameter vectors {©m}m 1 of all local 

models, 

= [e 
M]T 0 

X-9 (2.34) 

The global optimisation criterion (2.33) ensures that the overall model performance is op- 
timal. However, as pointed out in (Murray-Smith and Johansen 1995, Murray-Smith and 
Johansen 1997b), global learning can give rise to problems when the network is locally over- 

parameterised or poorly structured6. Large overlap between neighbouring validity functions 

can lead to model parameters where a negative contribution of one local model is compensated 
for by a positive contribution of the neighbouring local model. While such a parameter com- 
bination might minimise the overall error, interpretability of the local models is lost, and it 

can lead to poor generalisation. 
To overcome these problems, (Murray-Smith and Johansen 1997b) suggest the use of a local 

optimisation criterion, where the parameters of each local model are estimated independently. 

The idea is to make the output of a local model match the desired system output when this 

model is active. A weighted least squares optimisation criterion is defined for each local model, 

where the weighting factor is the current activation of the corresponding validity function, 

N 

J(8 )_> Pm(O(ti)) [y (t, ) - ym(ti, em)]2 , M=11 ... Im. 
(2.35) 

i=1 

Here, y�, denotes the output of the m-th local model, and 8 is the corresponding local 

parameter vector. 
While local learning will generally not find parameter sets which give as good an over- 

all performance as can be achieved with parameters found using global optimisation, the 

local models are often more valid as local approximations. Using the local optimisation cri- 

teria has a regularising effect: the degrees of freedom are effectively reduced, which gives 

a reduced variance at the possible cost of an increased bias in error and in the parameter 

estimate (Murray-Smith and Johansen 1997b). 

The choice of the optimisation technique which is used to minimise the criteria (2.33) 

and (2.35) depends on the way the model output, y, is obtained, cf. Section B. 1. For 

LMNs with linear local models which are simulated with a one-step ahead prediction horizon, 

equations (B. 4) and (B. 5), the model output depends on the local model parameters in a 

linear way. Thus, linear regression techniques, as described in Section B. 2, can be applied to 

optimise the parameter vectors. 
If we work with an infinite prediction horizon, equations (B. 6) and (B. 7), the parameter 

optimisation will be a non-linear problem owing to the non-linear scheduler, even when the 

local models are linear. Non-linear optimisation techniques as introduced in Section B. 3 have 

'An example for such a structural mismatch between the model and the real system is a model structure 
with a high concentration of local models in an area of low complexity. 
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to be used. The Levenberg-Marquardt method described there was found to perform in a 
very robust and efficient way for the parameter optimisations carried out in this work. 

Examples E. 4.3 on page 153 and E. 4.4 on page 154 illustrate the use of local and global 
learning for parameter estimation in prediction and in simulation mode. The results obtained 
in these examples show i) that local learning is only of advantage when working with prediction 

model simulation for the parameter estimation and the network structure is large, and ii) that 

the simulation model results are significantly better than the prediction model results. 

2.4 Analysis, and Validation of Local Model Networks 

An important aspect of empirical modelling is the external validation of the model, i. e. the 

process of checking whether the model represents all the characteristics of the real system 

which are important for the intended application (Murray-Smith 1995). A common approach 
to deal with this is to use cross-validation (Weiss and Kulikowski 1991) which in the simplest 

case means optimising the model parameters using one set of training data, and verifying the 

resulting model using a different set of test data. This approach has been employed in the 

examples shown so far by comparing the mean squared modelling error (MSE) on the data 

set used for training the model parameters with the MSE on a test data set which was not 

used for training. The exclusive use of cross-validation requires that all system information 

is contained in the data, which is difficult to ensure in practice without a very large amount 

of data. This problem becomes more important when the system is highly non-linear. 
Another approach to validate a model is to analyse its properties (e. g. steady state gain, 

location of poles) and to check whether these properties correspond to characteristics of the 

real system estimated in other ways. 
In this section we will introduce some tools for analysis of the properties of Local Model 

Networks, and discuss their limitations. 

2.4.1 Local Model Networks as Linear Parameter Varying Systems 

When the concept of operating regime decomposition was introduced for dynamic systems in 

Section 2.2.2, it was shown that Local Model Networks with linear local models can be rep- 

resented as linear parameter-varying (LPV) systems. The corresponding equations are (2.15) 

for state space descriptions, and equation (2.25) when we choose to work with local ARX 

models. The following discussion will be focussed on the state space description of an LPV 

system. 
Although we are dealing with linear parameter-varying systems, tools available from linear 

time-invariant systems theory can generally not be applied as no general explicit solution 

exists for an LPV system with order greater than one (Kailath 1980). Linear system analysis 

techniques are therefore of very limited usefulness for such systems, and more complex analysis 
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approaches have to be used. 

Lyapunov Stability 

The investigation of stability is an important aspect for system identification and for controller 
design. When identifying a model of a system which is known to be stable, we expect the 

model to be stable, too. For controller design, the most basic property required from the closed 
loop system is stability. Thus, being able to analyse stability of a system is a significant issue. 

A large number of stability definitions exist in system theory. The two basic approaches to 

be distinguished are Lyapunov stability (La Salle and Lefschetz 1961, Hahn 1963) and input- 

output stability (Zames 1966a, Zames 1966b). Whereas Lyapunov stability is concerned with 

the internal stability of the system, i. e. whether the state of the system remains stable, input- 

output stability deals with the external stability of the system, i. e. whether the system output 
is bounded for bounded inputs. As input-output stability becomes equivalent to Lyapunov 

stability if the system under study is stabilisable and detectable (Shorten 1996), we will 

restrict our discussion to Lyapunov stability. A more detailed discussion of stability can be 

found in e. g. (Vidyasagar 1993, Slotine and Li 1991, Brockett 1970). 

Definition 2.4.1 (Slotine and Li 1991) The equilibrium state x=0 of equation (2.36) is 

said to be stable if, for R>0, there exists r>0, such that if 1110 < r, then I tx(t)I I<R for 

all t> to. Otherwise the equilibrium point is unstable. 

This definition of stability in the sense of Lyapunov means that the system trajectory can be 

kept arbitrarily close to the origin by starting sufficiently close to it. 

In many engineering applications, it is not sufficient that the state does not leave the 

region defined by R, but it is required that the state returns asymptotically to the origin. 
This type of stability is referred to as asymptotic stability. 

Definition 2.4.2 (Slotine and Li 1991) An equilibrium point M=0 is asymptotically stable 

if it is stable, and if in addition there exists some r>0 such that 111011 <r implies that 

x(t) -0ast-+oo. 

The above definitions are concerned with the internal stability of the unforced dynamic system 

described by equation (2.36). They form the basis for stability analysis using Lyapunov's direct 

method (Hahn 1963, La Salle and Lefschetz 1961). The basic principle of this method can 

informally be stated as follows. 

Theorem 2.4.1 (Kalman and Bertram 1960) A dynamic system (2.36) is stable in the sense 

of Lyapunov if and only if there exists a Lyapunov function, i. e., some scalar function V(x) 

of the state with the properties: 

a) V (Z) > 0, V (x) <_ 0 when x 54 0, and 
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b) V (z) =V (x) =0 when x=0. 

The system is asymptotically stable if f /(M) <0 when x 34 0. 

Stability of Linear Parameter-Varying Systems 

As outlined at the beginning of this section, no general explicit solution of the set of differential 

equations of a LPV system exists. Thus, results obtained for linear systems are no longer 

valid. In particular, the stability of an LPV system is no longer completely determined by its 

eigenvalues7 (Slotine and Li 1991). An intuitive explanation for this can be given as follows 
(Shorten 1996, Shorten and Narendra 1998): For some constant parameters, the state of the 

system may experience an amplification phase before tending to the equilibrium. If during 

the amplification phase the system parameters change, the state may again be amplified. If 

the net growth of the state continues over successive switching intervals then the state will 
become unbounded. 

There exist a number of stability criteria for LPV system which are limited to special 

cases. Some examples include: 

a) If a common Lyapunov function for the LPV system can be found, stability is guaranteed. 
For Local Model Networks, approaches based on piecewise quadratic Lyapunov functions 

have been reported (Johansson and Rantzer 1998). These techniques require the solution 
of linear matrix inequalities. 

b) Stability can be shown for slowly varying systems (Hahn 1963, Shamma 1988, Vidyasagar 

1993). If limits are placed on the rate of change of the parameters, it can be possible 
to guarantee stability by finding a Lyapunov function for the system. The difficulty is, 

however, to determine the limitation of the rate of change. For use with Local Model 
Networks, this restriction implies a slowly varying scheduling vector. 

c) Another class of systems for which stability can be shown are parameter bounded sys- 
tems. By parameter bounded systems we mean systems with a principal linear parameter- 
invariant part which is perturbed by a parameter-varying component. Stability can be 

shown if the parameter-varying component is of limited significance (Hahn 1963). With 

Local Model Networks this implies that the local models are similar to each other. 

d) Strong statements about stability can be made for systems with periodic coefficients (! ström 

and Wittenmark 1989, Brockett 1970, Vidyasagar 1993). However, the usefulness of these 

results is questionable since they involve the calculation of the state transition matrix 
(Shorten 1996). Local Model Networks with a periodic scheduling vector belong to this 

class of systems. 
7We recall that a linear continuous time-invariant system is asymptotically stable if all its eigenvalues are 

located in the left half of the complex plane. 

27 



2 Local Modelling 

e) For LPV systems with real eigenvectors and eigenvalues, an approach to analyse stability 

which is based on geometrical interpretation of time-varying (in)stability is reported in 

(Shorten 1996, Shorten and Narendra 1998). The restriction to real eigensystems excludes 
Local Model Networks with local models which have imaginary eigenvalues or eigenvectors. 

For Local Model Networks, the restrictions required for most of these stability criteria are 

very strong. Thus, most of these methods cannot be used for the applications investigated 

in this work. However, a restriction to real eigensystem proved to be appropriate for the 

application investigated in Part II of this thesis. We will therefore introduce the basic concepts 

of method e) below. 

Stability of Real Eigensystems We consider autonomous LPV system 

x(t) = A(t)x(t) , x(to) = 10 (2.36) 

with A(t) being an asymptotically stable matrix (i. e. all its eigenvalues are located in the left 

half of the complex plane) which has real eigenvalues and eigenvectors for all t. The evolution 

of the state can now be described as follows: 

" For a constant matrix A, the movement of the state vector x is determined by the vector 
field created by the eigenvalues and eigenvectors of the system: each eigenvalue can be 

interpreted as a field component in the direction of the corresponding eigenvector. In the 

case where the magnitude of one eigenvalue is much greater (the "fast" eigenvalue) than 

the other (the "slow" one) the state will move parallel to the fast eigenvector towards the 

slow eigenvector, and then towards the origin along the slow eigenvector. An example 

of such a movement is depicted in Figure 2.6(a). 

When observed from the Cartesian coordinate system, the Euclidean distance of the 

state from the origin (the magnitude of the state vector) may increase before it decays 

to zero at the origin. In terms of the coordinate system formed by the eigenvectors the 

state decays monotonically to zero. 

" For a parameter-varying system, the direction of the eigenvectors will change with time 

with respect to the Cartesian coordinate system. If such a change occurs while the 

magnitude of the state increases, the state could be amplified further by the new ei- 

genvectors. Thus, repeated switching of the eigenvectors can lead to instability. An 

example is given in Figure 2.6(b). 

In (Shorten 1996, Shorten and Narendra 1998), various conditions are outlined for which 

stability of the system can be proven. The most straightforward requirement is to have 

constant eigenvectors for all t, and to let only the eigenvalues of the matrix A vary. This 

condition ensures that the overall system will be asymptotically stable, provided that all 
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fast X1 

fast 

- X2 

0 

(a) Parameter-invariant system. The mag- 
nitude of the state increases initially, but 
moves asymptotically towards the origin. 

slow 

slow 

(b) Parameter-variant system. The state 
vector first moves parallel to the first fast 
eigenvector towards the slow eigenvector. 
After switching it moves parallel to the 
second fast eigenvector towards the other 
slow eigenvector. Switching occurs when the 
state reaches the slow eigenvector of each 
system. 

Figure 2.6: Graphical interpretation of state evolution for a 2nd order system. The state starts 
at xO. The eigenvectors associated with the fast eigenvalues are labelled "fast", those 
related to the slow eigenvalues are marked "slow'. The state trajectory is depicted only 
schematically. 

eigenvalues of A(t) are in the left half of the complex plane. Although this requirement is 

rather conservative, it proves to be easy to implement for system identification. 

The use of constant eigenvectors is illustrated with a simple heat transfer process in 

Example E. 4.5 on page 154. 

2.4.2 Static Analysis of Local Model Networks 

In the previous section, ways to analyse Local Model Networks as linear parameter-varying 

systems have been outlined. It was shown that linear system analysis techniques are gener- 

ally not appropriate to interpret the Local Model Network. In this section we will analyse 

properties of the Local Model Network for fixed values of the scheduling vector, interpreting 

each system obtained this way as a linear parameter-invariant (LPI) system. Although the 

results of such analysis do not reflect all properties of the underlying LPV system and should 
therefore be interpreted with great care, we can still obtain valuable insight in terms of model 

N 
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validation (Gollee and Murray-Smith 1997a, Gollee and Murray-Smith 1997b). 
We recall that in Section 2.2.2 we obtained LPV descriptions for LMNs based on state space 

description and for LMNs based on local ARX models, equations (2.15) and (2.25). Based 

on these descriptions we can obtain properties of the interpolated LPI system as functions of 

the scheduling vector. Such properties include the gain, the location of the system poles, the 

bias, and the activation of the validity functions. Analysis of the change of these properties 

with changing scheduling vector can be useful in two ways: 

is Do the changes of the model properties reflect the characteristics of the real system? 
When relating properties of the model to characteristics of the real system, one has to 

be aware of the fact that the LPI systems do not represent linearisations of the system 
in the classical sense, i. e. linearisations around equilibria. 

" Do the model properties outside the region covered by the training data let us expect 
that the model's ability to generalise will be good? Related to this point is the detection 

of possible over-parametrisation of the model structure. 

These points are illustrated with the heat transfer process in Example E. 4.6 on page 155. 
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3.1 Introduction 

In the previous chapter, modelling techniques were introduced which are based on a "divide 

and conquer" strategy. In this chapter, we will review similar approaches for the design of 

controllers for non-linear systems. 

3.1.1 The Control Problem 

The problem of controlling a plant (or a process) can be formulated as follows: Depending on 
the reference signal r (and subject to a possible feedback signal), the controller delivers some 

control signal u which, when used as the input signal to the plant, makes the plant output y 
follow the reference signal r in some specified way. Note that the plant is, in general, subject 
to disturbances d and e. A general control structure is shown in Figure 3.1. 

disturbance noise 
de 

reference r 
Controller control u plant output 

feedback 

Figure 3.1: General Control Loop. 

The disturbances can be divided into a low frequency component d which includes model- 
ling uncertainties and measurement offsets, and a high frequency component e which includes 

measurement noise and high frequency measurement errors. The controller is usually designed 

in such a way that it counteracts the low frequency disturbance d by an appropriate control 

signal, and rejects the high frequency noise e. 
When the disturbance d is zero, or its value is known, then the control problem can 
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be solved by designing a controller which simply inverts the plant's dynamics', resulting 
in a transfer function of unity from the reference to the output. The feedback loop is not 

necessary in this case, and no sensors are needed to measure the output of the plant. This 

setup is referred to as open loop control. It is a technique particularly popular in robotics 

where the actuator torques required for a specific motion are calculated using an inverse of 
the system. Its main limitation is that exact knowledge of the plant and the disturbances is 

required. 
When the plant is not completely known (e. g. there are modelling uncertainties) or if the 

disturbance d can not be quantified a priori, the feedback path shown in Figure 3.1 can be 

employed to provide information about the actual state of the plant. This configuration is 

referred to as closed loop control. The feedback signal can include the plant output, or, if 

the states are available, the state vector of the plant. The design of a closed loop controller 

requires analysis of the stability and robustness of the control loop. 

3.1.2 Local Control Strategies 

The design of a controller is usually based on a model of the process. A large number of 

powerful design and analysis techniques exists for linear controllers whose design is based on 

a linear model of the process, see for example (Franklin et al. 1994, Aström and Wittenmark 

1990, Middleton and Goodwin 1990, Kailath 1980). These include PID controller, optimal 

control, pole placement, to name but a few. 

If a model of the process is available in form of an LMN with linear local models as intro- 

duced in Chapter 2, a straightforward approach is to use a linear design technique to obtain 

a local linear controller for each local model. The local controllers can then be interpolated 

using the same scheduler as the Local Model Network. We will refer to such a structure, which 
is shown in Figure 3.2, as a Local Controller Network (LCN). The main assumption here is 

that, once the system has been decomposed into locally valid models, a similar decomposition 

can be used to design a corresponding controller. 
Local Controller Networks have been used successfully in a number of applications (Gollee 

and Hunt 1997, Johansen et al. 1998). The approach is closely related to fuzzy control. It 

can be interpreted as a constructive way of designing gain-scheduling controllers which will 

be discussed in more detail in Section 3.2. 

Instead of designing a network of controllers off-line, controllers can be designed on-line: 
the interpolated Local Model Network can be used to design a corresponding time-varying 

controller at each sampling instant. While this approach is closely related to adaptive control 
(Aström and Wittenmark 1989), it is computationally expensive as a new controller needs to 

'This technique can only be applied for plants with minimum phase characteristics for which the plant's 
zeros (which will be the poles of the controller) are all stable (i. e., located in the left half of the complex 
plane if the system is continuous). 
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Scheduler Input 

Local Controllers 

Figure 3.2: The multiple controller approach (Local Controller Network). 

be designed at each sampling instant. An alternative approach is suggested in (ß. on(-o 1997), 

where a new controller is only designed if the performance requirements can not be suet by 

the current controller. Such a design approach is. however, potentially sensitive to noise and 

(Ii st i Irban( (IS. 

3.2 Gain Scheduling Approach to Control 

The basic idea of the gain sch('diilii1 , approach is to design different (linear) controllers for 

different operating conditions of the plant. When in operation, the parameters of these 

controllers are interpolated by a scheduler, resulting in a time-varying control scheme. Time 

main advantage of this technique is that relatively simple standard design techniques (such 

as PID control) can be used to compose a non-linear controller. 

Although gain scheduling has been proven to work successfully in iuiany real world applic- 

ations, it is difficult to obtain analytical results for stability and robustness of this control 

approach. The main problem is that the influence of the scheduler has to be taken into ac- 

count. It can only be neglected if the scheduling variable varies slowly in which case stability 
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can easily be proven (Shamma 1988). For a review of the limitations and potential dangers 

of using gain scheduling see (Shamma and Athans 1992) and (Shorten 1996). 

Traditional gain scheduling is limited to design based on local models which are linear- 

isations of the plant's dynamics around equilibria. While this yields good results when the 

plant is operating close to its equilibrium manifold, performance can be unsatisfactory for 

transients which go through operating regions far away from the equilibrium manifold. In 

(Hunt and Johansen 1997) it is shown how a controller design based on local models which 

are not limited to linearisations around plant equilibria, but which cover off-equilibrium tran- 

sient operating conditions, can significantly improve the performance of the gain scheduling 

controller. As the local models in LMNs are not restricted to equilibrium points of the plant 

this structure is a good candidate upon which to base such a controller design. An application 

of this approach to a vehicle speed control system has been reported in (Johansen et at. 1998). 

3.3 Local Controller Network Design 

The basic concepts of Local Controller Networks was introduced in Section 3.2. We want to 

illustrate here how linear controller design techniques which are described in Appendix C can 
be used with this approach. 

Suppose the plant can be described by an LMN in transfer function form, as introduced 

in Section 2.2.2. For each local model, {Ai, B;, Td,;, di };? 1, a corresponding local controller 
{Si, Gs, Hi, Cff}; 

=f 1 can be designed using the pole-placement technique described in Sec- 

tion C. 1. The offset term can be eliminated by either forward compensation or by including 

integral action. Owing to its robustness to low-frequency modelling uncertainties we choose 

to work with integral action. The time-domain closed-loop specification (rise-time t,. and 
damping factor ý) can generally be chosen differently for different local controllers. 

When the plant is described by an LMN with local models in state-space notation, the 

state-space design method introduced in the previous section can be applied in a similar way as 
described above: for each local model {A;, b� dx; c;, djY}M1, a corresponding local controller 
{Kj, Ni}M1 and a local state estimator {k1}M1 can be designed. The overall controller is 

obtained by interpolating the local controllers using the same scheduler as for the LMN. 

The superior performance of a non-linear Local Controller Network compared with a single 

linear controller when used to control a non-linear plant is demonstrated with the heat transfer 

process in Example E. 4.7 on page 157. The control characteristics of the LCN control loop 

are consistent for varying operating conditions whereas a single linear controller meets the 

control specifications only for a part of the operating space. 
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4 Functional Electrical Stimulation 

4.1 Background 

The term Functional Electrical Stimulation (FES) generally refers to the artificial electrical 

stimulation of muscle which has lost nervous control, with the aim of providing muscular 

contraction and producing a functionally useful movement (Kralj and Bajd 1989). 

First experiments with artificial electrical stimulation of nerve-tissue date back to the 

19th century (Hambrecht 1992). However, practical applications of this technique have only 

started relatively recently. Liberson's group is generally regarded as the first to apply FES in 

long-term clinical trials (Liberson et al. 1961). 

The interest in FES has grown rapidly during recent years. This is partly due to progress 

made in hardware techniques which make small and powerful stimulators possible. New 

surgical techniques enable the use of chronically implanted stimulators which stimulate nerves 
directly within the body, e. g. (Perkins et al. 1996). 

Functional Electrical Stimulation is widely used in the rehabilitation of paralysed patients 

where natural nervous control of muscular contraction has been lost due to a spinal cord injury. 

FES aims at restoring function to affected limbs by providing artificial electrical stimulation 

patterns which enable the subject, for instance, to use upper extremity functions (Peckham 

and Keith 1992, Allin and Inbar 1986), to stand up (Perkins et al. 1996, Hunt et al. 1998b), 

or to walk (Solomonow 1992, Graupe and Kohn 1994). A comprehensive introduction to FES 

for rehabilitation of standing and walking is provided in (Kralj and Bajd 1989). 

A different application area of FES is to use this technique to obtain cardiac assistance 

from skeletal muscles (Chagas et al. 1989, Hooper and Stephenson 1991, Pochettino et al. 

1991, Salmons and Jarvis 1992), cf. Chapter 1. The aim is to provide pumping support for 

a failing heart by a Skeletal Muscle Ventricle (SMV). A possible setup uses a muscle from 

the patient's back (latissimus dorsi) and reconfigures it as an SMV which provides additional 

hydraulic power to the circulation of blood. The transformed skeletal muscle is cut off from 

its natural nervous stimulation, and is now stimulated by FES such that i) the SMV supports 

the weak heart in such a way that only the power actually needed is generated, and ii) it 

contracts with an optimised phase relationship to the natural heart-beat. 

For both areas of FES applications a model of the muscle is essential to develop algorithms 
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for its controlled stimulation. We are therefore interested in obtaining models of electrically 

activated muscle which can be used in stimulator controllers for FES. 
A general overview of muscle modelling with emphasis on biomechanical applications is 

given in (Winters and Woo 1990). In (Stein et at. 1992), aspects of muscle modelling and 

control are discussed and examples of FES implementations are given. A collection of more 

recent FES related research results, including numerous applications, can be found in (Pedotti 

et at. 1996). 

4.2 Muscle Stimulation 

The activation of muscle by artificial electrical stimulation differs from the activation by the 

central nervous system in a number of ways. To understand these differences, it is essential 
to take some basic physiological properties of the neuro-muscular system into account. Thus, 

we introduce some physiological properties of muscle which are relevant for FES. A more 
detailed introduction can be found in standard physiology textbooks, e. g. in (Gray 1995). 

Aspect which are specific to the physiology of the neuro-muscular system are covered in 

(Keynes and Aidley 1991) and (McMahon 1984). 

4.2.1 Muscle Physiology 

In the neural system, transmission of information takes place in the form of impulse trains. 
A single stimulation pulse can create an action potential in the neuron if it exceeds a certain 
threshold. To avoid over-excitation, another action potential is only possible after a certain 

recovery period. The neural information is encoded in the inter-pulse interval (IPI), or the 

pulse frequency, of the stimulation pattern. 
In skeletal muscle, extrafusal muscle fibres are the primary units of contraction. They are 

activated by axons of a-motoneurons, which originate in the spinal cord. 
One motoneuron activates 5 to 1000 muscle fibres simultaneously. All the fibres activated 

by the same motoneuron can be distributed over the entire muscle and form a motor unit, 

which represents the "unit" of muscle force in a normally innervated muscle. The contractile 
force of each motor unit depends on the inter-pulse interval of the action potentials. All the 

motoneurons going from the spinal cord to the same muscle are contained in a nerve. 
Two types of motor units can be distinguished, fast and slow units. Slow motor units are 

more fatigue resistant and are therefore able to generate a certain force for a longer time, 

whereas fast motor units can produce more power but with less endurance. The ratio of 

fast and slow motor units in a muscle has a great influence on its characteristics. Muscle 

with mainly fast motor units can contract with a higher speed and produce relatively large 

forces, but only for short periods of time. Such muscle is therefore specialised for movement 

tasks, e. g. walking. Muscle which contains mainly slow motor units has a smaller contractile 

37 



4 Functional Electrical Stimulation 

speed but is more fatigue resistant than fast muscle. It is mainly used for tasks which require 
the production of a constant force for a longer period of time, e. g. holding and standing. 
The motor unit characteristics depend on the stimulation properties of the corresponding 

motoneuron, in particular on the pulse frequency. 

The overall force developed by the muscle depends on i) the pulse frequency of the neural 

stimulation, and ii) the number of activated (recruited) motoneurons. 

4.2.2 Natural Stimulation 

When the neuro-muscular system is intact, the motoneurons are stimulated by the central 

nervous system through the spinal cord. Each motoneuron can be stimulated selectively, 

enabling a graduated muscle activation: those motoneurons which innervate slowly but are 
fatigue-resistant are recruited first, and fast motor units which fatigue quickly are only re- 

cruited if high force is necessary. The motor units are recruited in an asynchronous fashion 

which ensures a smooth contraction and, by allowing all muscle fibres some rest, the whole 

muscle fatigues more slowly. 

4.2.3 Artificial Stimulation 

Artificial muscle activation can take place by applying electrical impulses to the motoneurons, 

thus generating action potentials which are transmitted to the corresponding muscle fibres. 

The motoneurons can be stimulated by surface or chronically implanted electrodes. Surface 

electrodes are cheap and easy to use but, owing to the varying resistance between the skin 

and the electrodes and the relatively large distance from the nerve, they do not allow for a 

very selective stimulation. Chronically implanted electrodes are usually located directly at the 

nerve and therefore ensure a more exact stimulation level. Their implementation is, however, 

expensive. 
Even with current chronically implanted electrodes, single motoneurons are not stimulated 

directly. The electrodes are relatively large and stimulate many neurons. Thus, with artificial 

electrical stimulation the muscle activation can be varied by 

a) the energy of the electric pulse (i. e. the amplitude and the pulse width) which defines the 

number of recruited motor units, and 

b) the pulse frequency, or the inter-pulse interval (IPI), which determines the contraction of 

the recruited muscle fibres. 

If the energy delivered by the electric impulses is large enough to recruit all the motoneurons 

of this muscle, the stimulation is said to be supramaximal, and submaximal otherwise. 
When submaximal stimulation is used, the fast motor units are recruited first as they have 

larger motoneurons than the slow motor units. This is contrary to the way the recruitment 
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takes place when the muscle is stimulated by the central nervous system. Moreover, all the 

recruited motor units are stimulated synchronously, as opposed to the natural stimulation 

which can take place asynchronously. Thus, it is more difficult to ensure smooth contraction 

with artificial stimulation. One way to obtain a smooth tetanus even with synchronous stim- 

ulation is to increase the stimulation frequency which leads, however, to faster muscle fatigue. 

Additionally, as every submaximal stimulation pulse will recruit the same motor units, these 

units will fatigue quickly, and the overall muscle fatigues more quickly than with natural 

stimulation. 

Non-linear Stimulation Characteristics 

As the recruitment of the motoneurons depends on the energy of the electric stimulation pulses 
in a non-linear way, recruitment non-linearities can be observed. Often these non-linearities 

are approximated by a static curve. However, recruitment varies with the stimulation charac- 

teristics (Durfee 1992), and differences in recruitment and de-recruitment require a dynamic 

description of these effect (Dorgan and O'Malley 1997). 

It is well-known that the muscle characteristics vary significantly with the stimulation 
frequency (Cooper and Eccles 1930). The dependency of the force generated by a muscle 

on the frequency of the stimulation pulse train can be described in a simple way by a static 
force-frequency curve. 

Both the static recruitment curve and the static force-frequency characteristic have a 

similar shape which is shown in Figure 4.1. For low pulse energies or small stimulation 
frequencies a threshold in the activation can be observed. Saturation takes places for large 

energies or high stimulation frequencies as all motoneurons are recruited or they fire at their 

maximal rate, respectively. 

c 
0 

u 

a 
I- v 
E 

Figure 4.1: Non-linear muscle activation characteristics. 

It has been observed that the force-frequency relationship is generally not static; the force 

developed by the muscle depends on the history of the stimulation frequency (Binder-Macleod 

and Barrish 1992, Duchateau and Hainaut 1986). The phrase "catch-like" effect is often used 
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4 Functional Electrical Stimulation 

to refer to a non-linear summation of contraction for stimulation pulses with a very short 
IPI at the onset of a contractions. This effect is described by e. g. (Binder-Macleod and 
Barrish 1992), and analysed in (Stein and Parmiggiani 1981, Parmiggiani and Stein 1981). 
As the "catch-like" effect is normally initiated by a doublet or triplet of pulses with short IPI, 

it is sometimes referred to as the "doublet" or "triplet" effect. 
Fatigue causes medium term changes of the muscle characteristics. As fatigue properties 

depend on the history of the muscle stimulation, which is normally not sufficiently known, it 

is difficult to describe these effects in a consistent way. 

Long Term Effects 

Owing to the differences between artificial and natural activation of muscle, the characteristics 

of the muscle tissue can change with time when stimulated artificially. In particular, fast motor 

units can be transformed into slow ones and vice versa. 
Muscles stimulated chronically with constant frequency pulse trains undergo significant 

changes in their characteristics (Kwende et al. 1995): Chronic stimulation of rabbit skeletal 

muscle at 10 Hz for several weeks renders it fatigue resistant, a property that is crucial to 

clinical applications that call for sustained levels of activity. However, muscles stimulated 
in this way also undergo a reduction in bulk and contractile speed, and this results in a 

substantial loss of power (Jarvis et al. 1991, Jarvis 1993). (Jarvis et al. 1996b) have shown 
that stimulation at 2.5 Hz produces muscles that are significantly faster and more powerful 
than those stimulated at 10 Hz, yet just as resistant to fatigue. 

For this reason, and to minimise muscle fatigue, it is desirable to enable the same mechan- 
ical response to be elicited by fewer impulses. This would i) deliver a lower aggregate number 

of impulses over time and therefore hold out the prospect of preserving muscle power more 

effectively in the long term, and ii) minimise the number of repetitive stimulations of the same 

motor units and thus reduce fatigue (Karu et al. 1995). We refer to such stimulation pattern 

as being "optimal". The generation of optimal stimulation patterns to obtain a desired muscle 

response is an area of active research (Maxwell et al. 1996, Binder-Macleod and Barker 1991). 

We suggest techniques to obtain such patterns in Chapter 6, see also (Jarvis et al. 1996a). 

4.3 Muscle Model Structures 

Different types of muscle models are used for different purposes. The range extends from 

analytical models which are based on physical properties of the muscle, either at a microscopic 

or at a macroscopic level, to empirical models which are purely mathematical descriptions of 

the input-output characteristics of the muscle. An extensive review of various modelling 
'Note that the term "catch-like" effect is sometimes used in the literature to describe a more general class 

of non-linear force-frequency characteristics. Throughout the thesis we will, however, use this term in the 
sense of the definition given here. 

40 



4 Functional Electrical Stimulation 

approaches can be found in (Zahalak 1992). Aspects which are particularly relevant for 

modelling of artificially stimulated muscle are discussed in (Durfee 1992). (Winters and 
Stark 1987) compare model structures based on microscopic analysis, macroscopic analysis 

and purely mathematical models. 

4.3.1 Analytical Models 

Microscopic Models 

The most widely used biophysical model is the cross bridge model, the basic principles of which 

were developed by Huxley (Huxley 1957). It aims to describe the muscle characteristics at 

a microscopical level by modelling the processes within a single muscle fibre. This type of 

model is in principle useful to describe all characteristics of muscle, as all model parameters 

are based on physical components, which makes it very popular amongst biologists. However, 

the microscopic approach makes a description of entire muscle very difficult as parameters at 
the level of muscle fibres have to be identified. It also leads quickly to large systems of non- 
linear partial differential equations which are difficult to handle. Parameters of a Huxley-type 

model are difficult to interpret in terms of the macroscopic muscle characteristics. 
A number of unconventional cross-bridge models have been suggested which make different 

assumptions than those of Huxley, e. g. (Hatze 1990). 

Macroscopic Models 

In biomechanics, analogue models which are based on macroscopic muscle characteristics 

remain more popular, as they are more tractable and easier to interpret when used to describe 

an entire muscle. The most often cited model is based on the description by Hill (Hill 1938), 

a schematic diagram of which is shown in Figure 4.2(a) (Zahalak 1992). It comprises a 

contractile element which is the force generating element, in parallel with a spring representing 

the elasticity of the muscle (and the tendon, if included), all of which is in series with a second 

elastic component representing the passive tissue. The elements in this model are standard 

mechanical components (although they might be non-linear) and thus most engineers are 
familiar with them. The parameters are easy to interpret in terms of the macroscopic muscle 

characteristics. A large amount of experimental data and results are available for the Hill-type 

model from almost 60 years of experience. However, for the identification of the parameters of 

the model components special experiments are necessary which may not be applicable in all 

situations. The elements of the model are not related to underlying physiological processes; 

the components are artificial constructs. 

Variants of the original model proposed by Hill are used in the literature, one of which 

is the muscle-tendon model shown in Figure 4.2(b) (Durfee and Palmer 1994, Winters and 

Stark 1987). The model is modified in such a way that the active and the passive components 
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contractile element 

(a) Structure according to (Zahalak 1992). 

- ------------- 
SE Active 

contractile AAA elements 

Passive 
elements 

---------- 

(b) Modified structure. 

Figure 4.2: Hill-type muscle model structures. 

of the muscle are separated. The active elements contain a contractile element in series 

with a series elastic element (SE). The passive elements comprise a parallel spring-damper 

combination. 
In the original work of Hill, the contractile element did not include muscle activation 

dynamics; the muscle was thought to be stimulated at a constant level. Since then, much 

work has focused on including activation dynamics in the contractile element. Often empirical 

model structures as described in Section 4.3.2 are used here, e. g. (Durfee and Palmer 1994, 

Shue et al. 1995). 
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Hybrid Models 

Another group of model structures aims at combining the interpretability and accessibility 
of a model which describes the entire muscle with the physiological insight which is gained 

when processes inside a single muscle fibre are taken into account. Here, each muscle fibre 

is modelled individually based on physiological principles. These single models are then 

combined by a recruitment model which describes effects which can be attributed to the 

artificial electrical stimulation of the muscle. 
The best known model structure of this type is described in (Hatze 1977, Hatze 1978). 

Here, each muscle fibre is described as a Hill type model whose elements are interpreted 

as being linked to physiological processes in the muscle. Additional elements of the model 

account for the effect of motor unit recruitment. Hatze claims that his model is capable of 

predicting correctly practically all known phenomena in terms of the muscular force-output. 

However, the model is complicated and requires solution of non-linear differential equations. 
A number of other muscle model structures are based on the model introduced by Hatze. 

(Riener et al. 1996) propose a model where the description of each motor unit is based on 
Hatze's model. The motor units axe divided into a group of fast and a group of slow mo- 
tor units. Separate static recruitment models for each group account for effects of varying 

stimulation activity. This model also includes elements to describe fatigue and recovery. 
A related modelling approach is described in (Dorgan and O'Malley 1996, Dorgan and 

O'Malley 1997). As in Riener's model, the description of each muscle fibre is based on 
(Hatze 1978). However, Dorgan uses a dynamic recruitment model which accounts for different 

recruitment characteristics when more units are recruited, the recruitment decreases, or the 

recruitment remains constant. 

4.3.2 Empirical Models 

For use in implantable muscle stimulator devices different model characteristics from the ones 
inherent to the group of analytical models become important, namely that the model 

" should be easy to adapt to the muscle using data from standard experiments which do 

not damage the muscle tissue; 

" should be controller orientated, i. e., controller design based on such a model should be 

possible. The designed controller must not be computationally expensive as it should 
be implemented in the form of an implantable device. 

Whereas the first point can be partly overcome by modern analytical model structures, ana- 

lytical models cannot usually be represented in the form necessary for controller design. Thus, 

empirical model strategies which aim to describe the input-output characteristics of muscle 

(often limited to conditions common in FES applications), and whose structure is suitable 
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for the design of stimulation controllers become useful. A review of empirical modelling ap- 
proaches for muscle is given in (Durfee 1992). 

In order to describe the characteristics of a muscle when working against a load, a two- 
input one-output system is usually considered: the muscle stimulation and the length (or the 

velocity) are the input variables, and the force is the output. In such a general setup, the 
force-length relationship depends on the chaxacteristics of the load. 

For experimental analysis, the load is often idealised in the sense that the muscle length 
is kept constant. The contraction is then referred to as isometric. As force becomes the only 
output variable in this setup the structure of the system is simplified to a single-input single- 
output system. Note that no mechanical power is generated by the muscle during isometric 

contraction. 
As the modelling experiments described in Chapter 5 of this thesis focus on muscle con- 

traction under isometric conditions we first review model structures which describe muscle 
under such conditions. At the end of this section, extensions for non-isometric contraction 
are briefly introduced. 

Modelling of Isometric Contraction 

When the muscle contraction is isometric, the model structure simplifies to a single-input 

single-output system where stimulation is the input and force the system output. 
Experiments have shown that under constant stimulation conditions (e. g. constant pulse 

energy and frequency), isometric contraction can be described by a linear second order dy- 

namic model (Mannaxd and Stein 1973, Zahalak 1992) 2. However, a purely linear description 
fails when the muscle stimulation varies significantly (Winters and Stark 1987). 

One way to extend the linear modelling approach to stimulations with varying pulse energy 
is to add a model component which describes the non-linear recruitment of motor units. A 

widely used structure applies a static non-linear recruitment curve( cf. Figure 4.1), which 
leads to a Hammerstein model as shown in Figure 4.3. This approach has been used for 

example in the models of (Bernotas et al. 1986, Shue et al. 1995, Durfee and Palmer 1994). 

Techniques to identify the recruitment curve have been described in the literature (Durfee 

and MacLean 1989). The main advantage of this simple model structure is that the plant can 
be easily transformed into a linear form for controller design by shaping the control signal by 

the inverse static recruitment curve (Durfee 1992, Hunt et al. 1997). 

As mentioned in Section 4.2.3, a simple static recruitment curve cannot take account of 

the inherently dynamic process of motor unit recruitment. It has also been observed that 

the assumption that the dynamics of the muscle can be described by a linear time-invaxiant 

transfer function does not hold if the level of activation varies over a wide range (Hunt et 

2Note that a second order linear description was found appropriate even under non-isometric conditions 
(Bawa et al. 1976a, Bawa et al. 1976b). 
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Figure 4.3: Hammerstein cascade structure. 

al. 1998a). 
The simple Hammerstein structure does not account for changes of the muscle charac- 

teristics with varying stimulation frequency, cf. Section 4.2.3. Controller-orientated models 

which describe non-linear properties such as the force-frequency curve and the "catch-like" 

effect will be very useful for FES, as it is important to employ such non-linear characteristics 
to reduce muscle fatigue (Kaxu et al. 1995). 

Thus, more general non-linear model structures are needed to describe isometric muscle 

contraction under varying stimulation conditions. In (Donaldson et al. 1995), a radial basis 

function network is used to model isometric contraction of muscle which is stimulated with 
supramaximal pulse trains of varying frequency. (Schultheiss et al. 1997) use a neural network 

structure to incorporate non-linear recruitment dynamics in the model. (Bobet et al. 1993) 

show that a linear time-vaxying model can successfully describe muscle contraction under 

conditions where pulse energy and/or stimulation frequency vary. In their model structure, 

the muscle force is approximated by a critically damped, linear second order system which is 

time-invaxiant between stimulation pulses. The model parameters are adapted separately for 

each inter-pulse interval (IPI). This results in an overall model with as many linear models as 
IPIs. The fact that this approach can approximate isometric muscle contraction under various 

stimulation conditions shows that a 2nd order time-variant linear model is an appropriate 

model structure. However, a general way of relating stimulation to the parameter changes of 

the model could not be found (Bobet et al. 1993). 

Modelling of Non-isometric Contraction 

When muscle is allowed to change its length the contraction is said to be non-isometric. In 

such a setup, the force developed by the muscle does not only depend on the muscle activation, 
but also on its length (the force--length relationship) and on the velocity of the contraction 
(the force-velocity relationship). A common approach for the modelling of non-isometric 

contraction is to work with empirical model structures which axe based on a Hill-type model, 

cf. Figure 4.2. In (Durfee and Palmer 1994) and (in a slightly different form) in (Shue et 

al. 1995) a modified Hill-type model is used which is schematically shown in Figure 4.4. 
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Figure 4A Model of non-isometric muscle contraction based on a Hill-type structure. The elec- 
trical stimulation of the muscle is denoted by u, 1 is the muscle length, dildt the 
change of the length, and F,,, denotes the muscle output force. 

In this model the force-length and the force-velocity characteristics in the contractile and 
in the passive elements are approximated by non-lineax static curves. A model of isometric 

contraction is used to describe the activation dynamics in the contractile element. In (Durfee 

and Palmer 1994, Shue et al. 1995), Hammerstein structures axe employed here. This limits 

the validity of the model to muscle stimulation with varying pulse energy. To take advantage of 

variation of the stimulation frequency a more complex non-linear model structure of isometric 

contraction is needed to describe the activation dynamics under such general conditions. 

4.3.3 Discussion 

In the review of modelling approaches for muscle given above, two main strategies can be 

distinguished, analytical (or physiological) and empirical (or "black-boie') modelling. In this 

section we will summarise the properties of both approaches and discuss their relevance to 

muscle modelling. 
The analytical approach to modelling of muscle is based on first principles. Depending 
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on the intended application, muscle characteristics are analysed either on a microscopic or 

on a macroscopic level. The structure and parameters of analytical models can therefore be 

related to known properties of the muscle. Thus the behaviour of the model is known with 

respect to the muscle characteristics which have been considered for the model development. 

This can be regarded as the main advantage of analytical models. Analytical models can be 

useful to study the chaxacteristics of muscle in simulation experiments, avoiding the need for 

expensive experiments. 
Analytical models are, however, expensive to develop as they require a detailed analysis 

of the muscle. Only characteristics which are known and for which an analytical description 

exist can be incorporated. The models are often relatively complex which complicates their 

use in real-time with implantable devices where the available resources are limited. They are 

usually not controller oriented in the sense that a direct controller design which is based on 

such model is not possible. 
The empirical approach to modelling is not based on an analysis of the underlying system. 

The parameters of the model axe generally not related to characteristics of the muscle. All 

information used to build the model is extracted from experimental data (usually input-output 

data) obtained from the muscle. Thus the design of the experiments to collect these data is of 

great importance to ensure that all relevant chaxacteristics of the muscle are represented in the 

data. Once the data is available, the identification of the model structure and its parameters 
is relatively straightforward and inexpensive compared to analytical models. The structure 

of empirical models is often simpler than that of a corresponding analytical model. Empirical 

models can therefore usually be simulated more easily and are often suitable for real-time 

applications. Their structure can be controller orientated which facilitates the design and 

analysis of control strategies. 
For empirical models it can generally not be ensured that their behaviour for operating 

conditions which axe not covered by the experimental data corresponds to the behaviour 

expected from muscle. The analysis of the model properties is more complicated as the 

parameters are not directly related to system characteristics. This makes the validation of 

empirical models more complicated. 
The Local Model Network approach introduced in Chapter 2 represents a model structure 

which is aimed to overcome some of the problems associated with pure empirical modelling. 
In particular, it is possible to interpret their paxameters to some degree with respect to the 

chaxacteristics of the underlying system. This makes this approach more attractive for real 

applications than pure "black-bo)e' approaches. 
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In this chapter we will introduce an empirical approach to the modelling of electrically stimu- 
lated skeletal muscle. The structure of the model is non-linear and based on the Local Model 
Network introduced in Chapter 2. Thus, it is a controller orientated model, as the design of 

a Local Controller Network can be directly based on this structure, cf. Chapter 3. 
The chapter is structured as follows. After a brief description of the experimental setup 

used to collect the data, the data obtained for isometric contraction of rabbit muscle are 
introduced and analysed. Analysis of the data provides guidelines for the choice of the initial 

model structure such as the sampling period, the dynamic order and the time delay. 

To assess non-lineaxities of the system and to obtain further information on the selection 

of the optimal model structure, lineax models of muscle contraction are identified. Based 

on the results obtained in these experiments, Local Model Network structures with linear 

local models axe used to identify models of muscle contraction. Different LMN structures of 

various sizes are compared to obtain a structure which is best suited to model the data. The 

models are analysed thoroughly and their properties are related to the characteristics of the 

real muscles. An algorithm is presented which allows for the local modification of LMNs to 
incorporate a priori knowledge. Finally, the results obtained are discussed and suggestions 
for further work axe presented. 

5.1 Experimental Setup 

The data used in this thesis are obtained from experiments with rabbit tibialis anterior 

muscles. The experiments were carried out by M. M. N. Kwende and J. C. Jarvis at the 

Department of Human Anatomy and Cell Biology, University of Liverpool. The muscle is 

stimulated by irregular supramaximal pulse trains using flap electrodes which are placed 

around both common peroneal nerves. The term supramaximal refers to the fact that the 

amplitude and length of the stimulation pulses axe chosen such that all motoneurons of the 

muscle are recruited. The activation of the muscle is varied by changes of the inter-pulse 

intervals (IPIs) of the stimulation pulses. 
The experimental protocol is described in detail in (Kwende et al. 1995). The following 

conditions apply to all experiments and are particularly relevant for our studies: 
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The muscle is stimulated using electrical impulses of 200 microseconds duration and an 

amplitude three times the threshold for muscle stimulation, which ensures supramaximal 
stimulation. 

e The inter-pulse intervals vary randomly between 1 and 70 milliseconds. 

The duration of each pulse train does not exceed 300 milliseconds. Together with periods 
of rest of 30 seconds between the pulse trains, this ensures that the influence of fatigue 

on the recorded data can be neglected. 

A constant-frequency burst of impulses (25 milliseconds IPI, which corresponds to a 

stimulation frequency of 40Hz) was delivered every 5 minutes to check that the prepar- 

ation did not show progressive deterioration during the experiment. 

9 The data are recorded with a sampling interval of T. = lms. 

5.1.1 Supramaximal Muscle Stimulation 

With supramaximal stimulation, the amplitude and length of the stimulation pulses are chosen 

such that all motoneurons of the muscle are recruited by every impulse. Thus, the muscle 

operates at a constant (full) level of recruitment, and effects due to recruitment variations 

axe not present. The muscle activation is varied by changes of the inter-pulse interval, i. e., by 

variations of the stimulation frequency. Hence non-linear force-frequency characteristics, such 

as the "catch-like" effect described in Section 4.3.2, axe expected to be present in the data. 

The use of supramaximal stimulation is motivated by the following observations: 

When a constant distance between the implanted electrode and the nerve cannot be 

ensured it is desirable that the muscle activation is not affected by small changes of the 
location of the stimulation electrode relative to the stimulated nerve. This is relevant 

when the muscle subjected to FES is not located at its natural position but, for instance, 

is transplanted to a different place in the body. With supramaximal stimulation pulses 
it can be ensured that all motoneurons are recruited even when the distance between 

the stimulation electrode and the nerve varies in a limited range. 

For long-term, repetitive muscle activation, where it is crucial to obtain the maximal 

power possible, it is desirable that the stimulation technique makes use of the power 

of all motor units. With submaximal stimulation, only a part of the motor units is 

recruited, but these same units will be stimulated over and over again. This leads 

more rapidly to fatigue without exploiting the potential power of all motor units. With 

supramaximal stimulation all motor units are recruited by each pulse, and thus their 

potential power is maximally used. 

Both these objectives are relevant for the use of skeletal muscle for cardiac assistance. 
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5 Modelling of Muscle Contraction 

5.2 Data of Isometric Contraction 

5.2.1 Data Collection 

For experiments with isometric muscle contraction, the contractile force of the muscle is 

measured and recorded while the muscle length is held constant. The experimental setup is 

shown in Figure 5.1. The muscle pulls a lever which is attached to a motor. The moment 
generated by the motor is controlled in such a way that the lever does not move, i. e. the 

muscle length I is held constant. Thus, when the muscle is stimulated by a pulse sequence u, 
the muscle output force F.. is compensated for by the moment generated by the motor. The 

motor moment (and thus the muscle output force) is determined by measuring the current I 

through the motor. 

I= const 

Fm 
Muscle 

Iýý tu 

Motor 

Figure 5.1: Experimental setup for the collection of isometric muscle data. 

The experimental data were pre-processed such that the offset in the measured force was 

removed, and the input and output data sets were normalised in such a way that they lie in 

the range [0,11. 

Two types of muscle were used in the experiments, a control and a chronically stimulated 

muscle. 
The control muscle is an unchanged rabbit tibialis anterior whose characteristics are de- 

termined by a majority of fast motor units. We will therefore refer to it as the fast muscle. A 

total of 60 data sets, containing the input pulses and the contractile force were recorded. The 

duration of each set is 590 milliseconds. A number of typical records are shown in Figure 5.2. 

The chronically stimulated muscle is a rabbit tibialis anterior which was stimulated at 1OHz 

for 4 weeks. As outlined in (Jarvis 1993), such chronic stimulation reduces the contractile 

speed of the muscle. The muscle chaxacteristics are therefore dominated by slow motor units, 

and we will refer to this muscle as the slow muscle. A total of 84 data sets, containing the input 

pulses and the contractile force was recorded. The duration of each set is 600 milliseconds. A 

number of typical records are shown in Figure 5.3. 

Note that the output data of the fast and of the slow muscle were normalised individually. 
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Figure 5.2: Four typical data records for the fast control muscle. The data sets are shown con- 
catenated; the periods of rest of 30 sec between the records are omitted. The input 
pulses are shown in the top graph, the muscle force at the bottom. The first three 
data sets show records with random stimulation patterns. The last set shows a record 
with a constant-frequency stimulation of 40Hz. 

The absolute value of the normalised muscle tensions shown in Figures 5.2 and 5.3 cannot 
therefore be compared with each other. 

5.2.2 Data Analysis 

A first analysis of the experimental data can give information about the frequency range of 

the data, time-delays and dynamic properties of the system. This information is useful for the 

selection of the sampling period, dynamic order and time delay of the initial model structure. 

Sampling Period 

The experimental data introduced in Section 5.2 are sampled with a period Tse,, p = lms, 

which is sufficiently short to represent all system dynamics in the discrete samples. As outlined 
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Figure 5.3: Four typical data records for the slow chronically stimulated muscle. The data sets are 
shown concatenated; the periods of rest of 30 sec between the records are omitted. 
The input pulses are shown in the top graph, the muscle force at the bottom. The first 
three data sets show records with random stimulation patterns. The last set shows a 
record with a constant-frequency stimulation of 40Hz. 

in Appendix D, the representation of a system in the form of a discrete time model depends on 
the sampling period. In particular, for the shift operator representation (see Section D. 2.1) 

fast sampling can lead to sensitivity problems for the identification of the parameters, cf. 
Section D. 3. We are therefore interested in selecting an optimal sampling period which is 

a) not too long, so that no information about the dynamics of the real system is lost due to 

a violation of the sampling theorem, and 

b) not too short, to avoid sensitivity problems for the parameter estimation. 

Furthermore, a larger sampling period is desirable because this goes with a reduction of the 

size of the data set and hence leads to a decreased computational effort. 
The effects related to a changed sampling period axe different for the pulse-like input signal 

and for the continuous-in-value output signal. In the following sections they are discussed 
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separately. 

Resampling of the Input Signal For the input signal, a change of the sampling period 

should not affect the form of the signal, which has to remain pulse like. The sub-sampling is 

therefore processed in such a way that the input pulses are only shifted towards the nearest 

sampling point. Two objectives have to be considered here: 

a) The energy of the input signal must not change, i. e. the number of pulses in the sub- 

sampled signal must be the same as in the original pulse train. 

b) The pulses must not be shifted too far away from their original position. 

Any increase of the sampling period results in a loss of information in the input signal: by 

moving the pulses to the nearest sampling point they are shifted away from their original 

position in time. Also, the sampling frequency itself represents an upper limit to the stim- 

ulation frequency contained in the input data. If the sampling period is increased, the loss 

of information will increase. For the input signal we are therefore interested in a sampling 

period which is as close as possible to the original sampling time Ts = lms. 

Resampling of the Output Signal The sampling period for the continuous-in-value output 

signal can be changed in the usual way, i. e. after low-pass filtering the signal is resampled 

with a larger period. Here, it is important that no significant frequency components, i. e. 
information, axe lost. 

By analysing the power spectrum of a signal, information about its frequency components 

can be obtained. The power spectra of the output for the fast control and the slow stimulated 

muscle are shown in Figure 5.4. They were calculated by applying the Fast Fourier Trans- 

formation (FFT) to all available data sets (i. e., 60 data sets for the fast muscle and 84 data 

sets for the slow muscle). Both graphs have a similar shape, which consists of a flat region 

with high magnitude at low frequencies, a descending area at medium frequencies and a flat 

portion with small magnitude at high frequencies. This flat region at high frequencies can be 

regarded as representing the noise components in the data. Thus, the "usefur' information is 

contained in the frequency range below this region. From Figure 5.4(a) it can be surmised that 

the sampling frequency for the fast muscle should be chosen not lower than f,, f. t = 200 Hz, 

which corresponds to a maximal sampling period of T,, f. t =5 ms. The sampling frequency for 

the slow muscle should be not lower than fAj,,,, = 10OHz (Figure 5.4(b)), which corresponds 

to an upper limit of T,, f,, t = 10ms for the sampling time. 

Time Delay 

In order to select the structure of a model it is important to have information about the delay 

of the system, i. e., the time it takes until an input signal affects the system output. Such 
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Figure 5A Power spectra of muscle output data. 

information can be casily extracted from Hie response of the , Iv,, 
t(, m io a single stimulation 

pulse. 
A nuniher of examples for the impulse responses of both ilic fast and the slmv muscle are 

shown in Figure 5.5. From this, it can be surmised that the delay is approximately the same 

for the fast, and the slow muscle and has a value of Td -- 7nis. 

05 10 Is 20 26 30 35 40 45 

- Time [ms] 
T, 

I, fa. t 

(a) Fast muscle 

Figure 5.5: impulse responses. For each muscle, three examples of the response to a single stim- 
ulation pulse are shown. The vertical dotted line denotes the time when the input 
pulse was applied. Note that for the slow chronically stimulated muscle (b) the en- 
tire response could not be shown as subsequent stimulation pulses would occur in the 

records. 
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5 Modelling of Muscle Contraction 

The shapes of the pulse responses suggest that second order dynamic model structures 

are appropriate for modelling the response characteristics of the muscles to single stimulation 
pulses. 

5.3 Linear Model for Isometric Contraction 

From the survey of muscle models given in Section 4.3 it is clear that Muscle is a significantly 

non-linear system and that non-linear modelling techniques will be needed to obtain a good 

model. We choose, however, to use linear model structures for initial experiments in order to 

a) assess how non-linear the system is, 

b) obtain guidelines for the choice of the sampling period and of the dynamic order for the 

model structures, and 

c) provide a benchmark for the non-linear modelling experiments. 

A linear input-output model structure is the ARX model introduced in Section A. 2. It is 

defined in shift operator notation, cf. Section D. 2.1. To avoid potential sensitivity problems 
during the estimation of the model parameters (cf. Section D. 3), the parameter optimisa- 
tion can be performed in a different domain, for example in the delta operator domain, cf. 
Section D. 2.2. To simulate the model, the parameters obtained are transformed to the shift- 
operator notation. 

Throughout this section, we will work with ARX model structures. If the parameters 

are identified directly, the model will be termed the "shift operator moder'. In Section 5.3.2, 

we will work with ARX models whose parameters are identified in the delta domain. These 

model structures will be called the "delta operator moder'. 
In order to evaluate the model performance the data are divided into 30 data sets which 

are used to estimate the model parameters (the training data) and the remaining data sets 
(i. e., 30 sets for the fast muscle and 54 sets for the slow muscle) which axe called the test 

data. Three error criteria axe used which axe based on the mean squared error as defined in 

Equation B. 8 on page 128: 

The training mean squared prediction error (Training MSPE) is obtained from the error 

of the one-step-ahead prediction on the training data. It is only used with models 

trained in prediction mode. 

9 The training mean squared simulation error (Training MSSE) is obtained from the error 

of the model simulation with infinite prediction horizon on the training data. 

* The test mean squared simulation error (Test MSSE) is obtained from the error of the 

model simulation with infinite prediction horizon on the test data. 
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5 Modelling of Muscle Contraction 

To compaxe the errors for different sampling periods, the outputs of the models for sub- 

sampled data are interpolated for the original sampling period of lms. 

5.3.1 Shift Operator Model 

In this section linear shift operator models are identified and evaluated. The model order 
is chosen to be equal to 2, as this was reported to be appropriate for various muscle mod- 

elling applications, cf. Section 4.3.2. The input delay, Td, is chosen to be a multiple of 

the sampling period, and equal to, or larger than, Td = 7ms. Models for sampling periods 

of T, = [1,5,10]ms are identified. The parameters are estimated in both prediction and 

simulation mode. The modelling errors are shown in Figure 5.6. 
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(a) Fast muscle. The minimal Test MSSEs are 
2.98 x 10-3 (prediction mode) and 3.90 x 10-3 
(simulation mode) at T, = 5ms. 

(b) Slow muscle. The minimal Test MSSEs are 
15.7 x 10-3 (prediction mode) and 12.0 x 10-3 
(simulation mode) at T. = 10ms. 

Figure 5.6: Linear shift operator model. The dark bars show errors of models trained in prediction 
mode, the white bars results obtained with models trained in simulation mode. The 
delays are 7ms for T. = lms, and 10ms for T, = 5ms and T, = 10ms. Note, that for 
T, = ims, the training MSPEs are in the order of 10-7 and therefore not visible in the 
plots. 

For the models identified in prediction mode, a strong dependency of the errors on the 

sampling period can be observed. The Training NISPE is very small for small sampling periods, 

and increases for larger sampling periods. The very small MSPE for T, = lms indicates that 

the identified model only propagates the previous system output. This is supported by the 

observation that the training and the test MSSEs are maximal for T, = lms. The simulation 

errors decrease for sampling periods larger than lms and are minimal for T. = 5ms for the 

fast muscle and T. = 10ms for the slow muscle. 
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5 Modelling of Muscle Contraction 

For the models identified in simulation mode, a similar dependency of the MSSEs on the 

sampling period, although less strong, can be observed. 
The best modelling results for the fast muscle could be obtained with prediction mode at 

T. = 5ms, although the simulation model performs similarly at this sampling period. For the 

slow muscle, the simulation model outperforms the prediction model at TS = 10ms. 

Further insight in the reason why the shift operator models do not perform well for fast 

sampling periods can be gained by analysing the location of the poles of the identified models. 
These axe shown in Figure 5.7. The fast poles of the models with T, = lms (marked by o) 

are located very close to the point [1, Oj]. Thus, sensitivity problems during the parameter 

estimation are likely as very small changes of the parameters will have a relatively large 

effect on the characteristics of the model. As the sampling period increases, the fast poles 

move further inside the unit circle, and the parameter estimation becomes more robust. This 

observation is similar for prediction and simulation modes. 
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Figure 5.7: Location of the poles of the linear shift operator models in the complex plane. o denotes 

poles with T, = lms, + poles with T. = 5ms, and * corresponds to T, = 10ms. Large 

symbols denote models identified in simulation mode, smaller symbols correspond to 

models identified in prediction mode. The border of the stability region (the unit circle) 
is shown as a solid line. 

5.3.2 Delta Operator Model 

The delta operator model structure is used to identify linear models in simulation mode with 

the original sampling period T. = lms and a delay of Td = 7ms. As outlined in Section D. 2.2, 
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Figure 5.8: Linear delta operator model, T, =I ms, Tj :- 7ms. 

The models with the iiiiiiiiiial training and test crrors are of 2nd order for bot I, the fa. st and 
the sloxv muscle. This supports the choice made for the shift operator model in the previous 

Section. 
Comparing the results of the 2nd order nl0dVk With ill(' 'shift operat or niodek for T, =I ills 

shown in Figure 5.6, the delta operator models clearly outperform ill(, shift operator models. 

Even when the results obtained Nvith the delta operator niodels are compared with the hest 

shift operator niodel results, the delt, a operator models performs better. It should, however, 

be noted that the paraineters of the delta operator model need to he estimated in simulation 

mode which is- significantly inore coniputationally expensive than Pill-al"Her estimation using 

prediction mode (cf. Example E. 4.2 oil page 152). 

The reason why the delta operator models perform well even Nvith it very small sampling 

period becomes clearer when the locations of the model poles are analYsed. These are shown 

in Figure 5.9. All poles are located clearly inside the region of stabilit. y. Thus, sensitivity 

problems for the estimation of the model parameters are not present here. 

Simulation results for some typical data sets are shown in Figure 5.10 for the fast muscle 

and lit Figure 5.11 for the slow muscle. The outputs of the linear models inatch the output of 
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Figure 5.9: Location of poles of the linear delta operator models, T. = Ims, Td = 7ms. in the 
complex plane. o denotes poles of 1st order model, + poles the 2nd order models, and 
* corresponds to the 3rd order model. The solid line denotes the border of the stability 
region. 

the real muscles only on average. Large modelling errors are present for very high and very 
low muscle activation. 

5.3.3 Conclusions 

In this section linear ARX model structures were used to model isometric contraction of 

muscle. Model structures with a dynamic order of 2 and an input delay of Td = 7... loms 

were found to be suitable for both the fast and the slow muscle. 
Experiments with models whose parameters were identified in shift operator notation show 

that the original sampling period of T, = lms is not suitable. Parameter identification in pre- 

diction mode fails completely for this sampling period, and estimation of the parameters in 

simulation mode has convergence problems. Analysis of the location of the model poles in 

the complex plane shows that these problems are due to the fact that the poles axe located 

very close to the point [1, Oj] in the complex plane which leads to sensitivity problems for the 

parameter estimation. It was found that these problems can be overcome by increasing the 

sampling period, i. e. by down-sampling the data. The poles of the model are then located 

further inside the region of stability and the paxameter estimation becomes more robust. The 

optimal sampling periods were found to be Tsf. t = 5ms for the fast muscle and Ts,,, I,, w = 10ms 
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Figure 5.10: Fast muscle: Comparison of the simulated output of the linear 2nd order delta operator 
model (Figure 5.8(a)) with the output of the muscle for four typical data sets from 
the test data. The data sets are shown concatenated; the simulation is restarted after 
each set. For a low level of muscle activation, the output of the model is too high 
(e. g. 3rd data set), and for high activation of the muscle the model output is too low 
(e. g. 2nd data set). The initial muscle behaviour for a stimulation with a constant 
frequency burst cannot be correctly predicted (4th data set). 

for the slow muscle. The delay is Td = 10ms in both cases. Parameter identification in pre- 
diction mode gives results similar to those obtained by parameter optimisation in simulation 

mode, but the latter technique is much more computationally expensive. 
The need to increase the sampling period can be avoided by using model structures whose 

paxameters are identified in the delta operator domain. Model structures with a dynamic 

order of 2 and an input delay of Td = 7ms were found to be appropriate for both the fast and 

the slow muscle. The modelling results axe slightly better than those obtained with the shift 

operator model. Owing to the fast sampling, the computational cost is significantly larger 

than for the shift operator models with enlarged sampling periods. 
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Figure 5.11: Slow muscle: Comparison of the simulated output of the linear 2nd order delta op- 
erator model (Figure 5.8(b)) with the output of the muscle for four typical data sets 
from the test data. The data sets are shown concatenated; the simulation is restarted 
after each set. For low and medium levels of muscle activation, the output of the 
model is too low (e. g. 2nd and 3rd data set). For high activation of the muscle the 
model output is too high (e. g. 1st and 4th data set). 

The process of increasing the sampling period for the data gives a reduction of computa- 
tional cost but involves, necessarily, a loss of information. As pointed out in Section 5.2.2, 

high frequency components of the input stimulation sequence are affected in particular. As 

the linear model does not include the force-frequency characteristics of the system, this loss 

does not have a significant effect here. It is, however, to be expected that down-sampling will 
have a larger effect with non-linear model structures. 

Based on the results obtained in this section, the following model structures are chosen as 
initial structures for non-linear identification experiments: 
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A shift operator model of 2nd order with a sampling period of 5 and 10ms. The para- 

meter optimisation can be based on the prediction mode which is fast, or on the sim- 

ulation mode which is much slower but produces slightly better results for the slow 

muscle. 

A delta operator model of 2nd order with the original sampling period of Ims. With 

this structure, the parameter optimisation will be based on the simulation mode. 

In the following section, Local Model Networks based on local models with these linear struc- 
tures will be further investigated. 

5.4 Non-linear Local Model Network for Isometric Contraction 

In this section, non-lineax Local Model Network structures, as introduced in Chapter 2, will 
be investigated as a modelling technique for isometric muscle contraction. Linear local models 

will be used. 
The results of the previous section give guidelines for the initial choice of some model 

parameters, such as the dynamic order of the model, the time delay, the sampling period, and 

the parameter optimisation algorithm. In this section, the following model design parameters 

will be investigated in detail: 

" the elements of the scheduling vector (cf. Section 2.2.4); 

" the structure of the validity functions, i. e., the number of units (which determines the 

number of local models), their type and shape (cf. Section 2.2.3); 

" the structure of the local models, i. e., state space or input-output (cf. Section 2.2.2) 

e the discrete time domain (shift or delta operator) and, related to this, the parameter 

estimation technique (cf. Section 2.3) and the sampling period. 

Starting with the model structures suggested at the end of Section 5.3.3, we will first 

investigate the optimal choice of the elements of the scheduling vector and the structure of 

the scheduler (without optimising the shape of the validity functions). The LMN structures 

will be based on local ARX models as used in the previous section, and aspects of the discrete 

time domain, parameter estimation and the sampling period will be considered. 

Based on the results obtained, structures for the local models other than the ARX form 

will be investigated and the shape of the validity functions will be optimised in Section 5.4.2. 

The Local Model Networks obtained will be analysed and validated in Section 5.4.3. 

As for the single lineax models, 30 data sets are used to estimate the model parameters, 

and the model performance is tested on the remaining data sets. The same mean squared 

'Note that these structures are equivalent when working with a single linear model, but need to be distin- 

guished for the Local Model Network. 
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error measurements as defined at the beginning of Section 5.3 are used to compare different 

models. 

5.4.1 Selection of the Scheduler and Parameter Estimation Domain 

Aspects of selecting an appropriate scheduling vector for a given system have been discussed In 

Section 2.2.4. As outlined there, the scheduling variables should represent the non-linearities 
of the system. 

For isometric contraction of muscle stimulated with supramaximal pulses a major non- 

lineax characteristic is the force-frequency relationship (Cooper and Eccles 1930, Binder- 

Macleod and Baxrish 1992, Stein and Parmiggiani 1981, Parmiggiani and Stein 1981) which 
depends on the activation of the muscle. A straightforward approach is to characterise the 

activation by the muscle force. Hence, the delayed output force can be used as a scheduling 

vaxiable. This setup will be called "output scheduling! '. Alternatively, a measurement of 

the current stimulation frequency can be used for scheduling. As the stimulation frequency 

is a chaxacteristic of the system input this setup will be termed "input scheduling! '. Both 

alternatives will be discussed below. They result in structures where the scheduling vector 

has only one element. This reduces the input space for the validity functions to one dimension 

and thus greatly facilitates the selection of the optimal network structure. 
In this section we will work with LMN structures which have uniformly distributed B- 

spline validity functions, and whose local models are linear ARX models. When the local 

model paxameters are identified directly in the shift operator domain the model is referred to 

as a shift operator model. The term delta operator model denotes an LMN structure whose 

parameters are identified in the delta domain but which is implemented as an input-output 

LMN with local ARX models in shift operator notation. 

output Scheduling 

A straightforward assumption is that the non-linearities of the muscle depend on its activity, 

and to characterise the muscle activity by the force produced by it. Thus, the delayed system 

output can be chosen as the scheduling variable, 

ON) = y(tk-1), (5.1) 

where tk denotes the discrete time. This setup has previously been used successfully with 

the fast muscle. In these identification experiments, the structure of the LNINs was based 

on a scheduler with Gaussian bells and local ARX models in shift operator notation with a 

sampling period of Ts = 5ms. The paxameters were estimated using local optimisation in 

prediction mode. The results are reported in (Gollee et al. 1994, Gollee et al. 1997, Gollee 

and Hunt 1997). 
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In this section, we will investigate whether this scheduling approach is suitable for both 

the fast and the slow muscle, and what effect it has to estimate the model parameters in the 
delta domain with the original sampling period of T, = lms. Various structures with different 

numbers of uniformly distributed B-spline validity functions are compared. 

Shift Operator Models Based on the results obtained from the experiments with linear 

model structures, we compaxe models in shift operator notation with an increased sampling 

period. Results for LMNs with different numbers of units whose parameters were estimated in 

prediction mode with local and with global optimisation are shown in Figure 5.12. Parameter 
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Figure 5.12: Shift operator LIVIN with output scheduling, parameter estimation in prediction mode. 
Results with local optimisation are shown with dark bars, global optimisation results 
are printed with light bars. For the Training and Test MSSE some large errors exceed 
the axis range and are therefore truncated. 

estimation in simulation mode was also investigated. The results obtained are, however, 

significantly worse than those with prediction mode and are therefore not shown. 
Global parameter optimisation results in smaller one-step-ahead prediction errors on the 
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5 Modelling of Muscle Contraction 

training data than local learning. However, when tested in simulation mode, the models 
obtained with global parameter optimisation perform significantly worse than models whose 
parameters are estimated using local learning. This is consistent with the results obtained in 
Example E-4.3 on page 153. 

For both the fast and the slow muscle, the Training MSPE decreases monotonically for 
laxger networks. 

For the fast muscle, the best simulation error results are achieved with models of 8 to 
13 units. Whereas the Training MSSE does not improve significantly compared with the 
linear model (i. e., an LMN with 1 unit), some improvement can be observed on the test data. 

For the slow muscle, the best model has only 2 units. Its performance is only slightly 
better than that of a single linear model (i. e., an LNIN with 1 unit). For larger networks, the 

performance of the models in simulation mode deteriorates drastically. 
For both the fast and the slow muscle, over-fitting can be observed for large model struc- 

tures: while the Training NISPE decreases for larger networks, the Training and the Test 
MSSE decrease only for model structures up to a certain (optimal) network size. When the 

network size is growing further, these errors start to increase. 

Delta Operator Models Based on the results obtained from the experiments with linear 

model structures, we investigate LXINs with local ARX models whose parameters are es- 
timated in delta operator notation. The sampling period is unchanged, Ts = Ims, and the 

paxameters are estimated in simulation mode. Modelling results of UIN structures with 
different numbers of units axe shown in Figure 5.13. 

For the fast muscle, the optimal network size is 4 to 5 units. The modelling results for 

LMNs of this size are significantly better than the results obtained with a single linear model. 
Comparing with Figure 5.12(a), the results of the delta operator LTUNs clearly outperform 
the results obtained with LMNs in shift operator notation. For networks which are larger 

than the optimal size, over-fitting becomes a problem, and also the parameter identification 

process takes a very long time. 
For the slow muscle, the modelling results axe better than those obtained with the shift 

operator LMNs (cf. Figure 5.12(b)), and outperform a single linear model structure on both 

training and test data sets. The optimal network size is 3 to 4 units. For larger networks, the 

parameter optimisation does not always converge, and the performance deteriorates drastic- 

ally. 
Although the LMNs in delta operator notation perform better than those in shift operator 

notation, the results obtained for the slow muscle axe still significantly worse than the results 
for the fast muscle. It seems therefore that output scheduling is not the optimal way of 

switching between local linear models in an UIN structure for the slow muscle. 
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5 Modelling of Muscle Contraction 

variable is approximately in the input range of the validity functions, i. e. between 0 and 1. 
Thus, the only filter constant which remains to be determined is the natural frequency w". 
Experiments with LMN structures with different numbers of uniformly distributed validity 
functions have shown that the modelling results do not strongly depend on the exact value 
of w,,. The model structure can compensate for a non-optimal choice of the filter coefficient 
by identifying the parameters of the local models accordingly. Thus, a value of w. = 50 was 
found to be appropriate for both the fast and the slow muscle. The corresponding gain factor 
for this natural frequency is K= 25 x 103. The resulting filter transfer function is 

Gp,. e(s) = 
25000 

82 + 100s + 2500 
(5.4) 

The scheduling variable which is obtained with this filter is shown in Figure 5.14 for some 

characteristic input patterns. In addition, the output of the fast muscle (which is the schedul- 
ing variable for the LMNs with output scheduling of the fast muscle) is shown in the bottom 

plot. Note that the obtained scheduling variable, 0, resembles a scaled linear approximation 
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Figure 5.14: Scheduling variable 0 (bottom) obtained from some characteristic input pulse se- 
quences u (top). The output of the fast muscle, y, is shown as the dotted line in the 
bottom plot. 

of the output of the fast muscle, y. Although this was not intended when the filter parameters 

were selected, it is a direct results of choosing to work with a 2nd order filter. As scheduling 
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5 Modelling of Muscle Contraction 

on the system output worked well for the fast muscle, using a scheduling variable which has 

similar characteristics as the output of the fast muscle is expected to be suitable for both the 
fast and the slow muscle. 

In this section, we will investigate the performance of Local Model Networks In shift and 
in delta operator notation which use this filtered input for scheduling. 

Shift Operator Models Based on the results obtained from experiments with linear model 

structures, Local Model Networks with local ARX models in shift operator form and uniformly 
distributed validity functions are used with a sampling period of Tj, = 5ms for the fast muscle 

and Ts = lOms for the slow muscle. The modelling results for structures with different 

numbers of local models are shown in Figure 5.15 for parameter estimation in prediction 

mode and in Figure 5.16 for parameter estimation in simulation mode. 
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Figure 5.15: Shift operator LIVIN with input scheduling, parameter estimation in prediction mode. 
Results with local optimisation are shown with dark bars, global optimisation results 
are printed with light bars. For the Training and Test MSSE some large errors obtained 
with global optimisation exceed the axis range and are therefore truncated. 
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Figure 5.16: Shift operator LIVIN with input scheduling, parameter estimation in simulation mode. 

NVIien the parameters are estimated III predict loll global ]('ýIrlilllg re""Illts, ill "'llial- 

ler 'n-aining Nl')PEs than local learning. The Training and 'NISSE", ýIre' however, Inore 

consistent for local learning. For some specific network sizes, niod(+s whosw parameters are 

identified Nvith global learning fail to generalise satisfactorilY from the one-step-ahe'Id pre- 
diction used for paranicter estimation to the infinite prediction horizon elliploYed for the 

't (e -es wi simulation tes -g- strilctin th 5,10... 12 and 1.4... 20 units for the fast inuscle and 

with 12,15... 20 units for the slow muscle). When the parameters are optlinised in siniula- 

tion mode, the Training MSSEs decrease xvith larger networks, whereas the Test INISSEs start 

to decrease initially but increase for networks which are larger than the optimal size. 
For modelling the fast imiscle, the optimal network size is 10 to 14 units for UNINs whose 

parameters are optiinised in prediction mode, -and 4 to 8 units for models whose parameters 

are estimated in simulation mode. The Týraiiiiiig and Test NMSSEs are sinaller than those 

obtained with shift operator models with output scheduling, cf. Figure 5.12(a). However, 

the models perform less Nvell than the best delta operator models Nvith output scheduling, cf. 

Figure 5.13(a). The variation of the results for models of different sizes is significantly smaller 

for LMNs with input. scheduling than for models with output scheduling. The models whose 

parameters are estimated in prediction mode perform similarly to LNINs whose parameters 

are estimated in simulation mode. 

For the slow muscle, the optimal network size is 2 to 4 units for models whose parameters 

are optimised in prediction mode, and 6 to 9 units for LMNs whose parameters are identified 

in simulation mode. The results are significantly better than those obtained with output 

scheduling in shift operator form, cf. Figures 5.12(b). The shift operator model results 
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Figure 5.17: Delta operator LMN with input scheduling, parameter optimisation in simulation 
mode, T, = lms. 

For the fast muscle, the optimal networks consist of 4 to 6 unils'. The best results for 

the slow inuscle are obtained with structures of 5 to 8 units. ror both muscles, the test 

errors deteriorate for structures with more units than the optimal size while the training error 
decreases further. 

The modelling errors for the fast inuscle. are only slightly better than those obtained with 
the shift operator models with input scheduling. However, they are slightly larger than the 

errors obtained with delta operator models with output scheduling, cf. Figure 5.13(a). 

For the SIONN, muscle, the modelling errors are smaller than those obtained with shift 

operator models with input scheduling. The results obtained with input scheduling clearly 

outperform the delta operator models Nvith output scheduling, cf. Figure 5.13(b). 

The results show that scheduling on the filtered input is adequate for both the fitst and 

the slow iiiiiscle. 
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5 Modelling of Muscle Contraction 

Discussion 

In this section, two approaches for the selection of the scheduling variable for LMN struc- 
tures were evaluated. Each approach was tested with networks of varying Bize and structure. 
Parameter identification in the shift operator and in the delta domain using prediction and 
simulation mode were compaxed. The simulation results on the training and test data for 
the different network structures are surnmarised in Table 5.1. The results with single linear 

models axe included for comparison. 

Scheduling Parameter Estimation Fast muscle Slow muscle 
domain mode # MSSE (X10-3) MSSE (X10-3) 

units Training Test S Training Test 
(lineax) shift pred. 1 4.61 2.98 1 16.5 15.7 
(lineax) shift Sim. 1 4.55 3.90 1 10.1 12.0 
(linear) delta Sim. 1 3.87 3.80 1 10.2 10.7 
output shift pred. 11 3.83 1.29 2 9.02 10.2 
output delta Sim. 4 0.78 0.91 4 3.44 3.76 
input shift pred. 10 1.89 0.92 3 1.64 1.60 
input shift Sim. 6 1.31 1.23 8 1.91 2.02 
input delta Sim. 5 0.86 1.09 6 0.66 1.05 

Table 5.1: Summary of the modelling results. For each setup, the network with the smallest Test 
MSSE is selected. For parameter estimation in prediction mode only the results obtained 
with local learning are shown. 

Scheduling on the delayed output of the system works well with the fast muscle, but was 
found to fail when used with data from the slow muscle where the best model obtained is 

only slightly better than a single linear model. In a second approach, a filtered version of 
the input was used for scheduling. The filtering was aimed at obtaining a smooth scheduling 
variable which provides information about the frequency of the stimulation. It was found that 
the optimal filter gives a scheduling variable which is similar to a linear approximation of the 

output of the fast muscle. Scheduling on the filtered input works well for the fast and for the 

slow muscle and is therefore thought to be a scheduling approach which is suitable for both 

muscles2. 
Models identified in delta operator notation (which operate at the original sampling period 

of T, = lms) perform better than similar structures in shift operator notation which operate at 

an increased sampling period. In paxticular for the slow muscle, models operating at Ts = lms 

cleaxly outperform the shift operator models operating at T. = 10ms. This indicates that 

'Note that LMNs with output scheduling in delta operator notation perform slightly better than the corres- 
ponding models with input scheduling. However, we aim to find a modelling technique which can be used 
with both the fast and the slow muscle. As output scheduling fails for the slow muscle, this scheduling 
approach is found unsuitable for a general model structure. 

71 



5 Modelling of Muscle Contraction 

significant input information is lost when the sampling period is increased. 
A straightforward extension to the approaches discussed here is to use a combination of 

output and input scheduling which results in a 2-dimensional scheduling space. Experiments 

with this setup do not indicate an improvement of the modelling performance. Owing to the 
higher dimensionality of the scheduling space, the scheduling space now includes areas with 
sparse data which leads quickly to difficulties with parameter identification, and the models 
obtained do not generalise in a satisfactory way. 

5.4.2 Local Model Structure and Optimisation of the Validity Functions 

In the previous section LMN structures with uniformly distributed B-spline validity functions 
and 2nd order local models in ARX form were used to identify the optimal scheduling variable 
and the best way of estimating the local model parameters. Local Model Networks with input 
scheduling whose parameters axe optimised in the delta operator domain using a sampling 
interval of T, = lms were found to perform best for the fast and for the slow muscle. 

In this section, LMN structures with local models in state space form will be investigated. 
The parameters of the B-spline validity functions will be optimised to obtain model structures 
which are adapted to the complexity of the system. 

Local Models in State Space Form 

A general description of an LMN in state space form is given by equation (2.14) on page 14 for 
the continuous time domain. An equivalent delta domain structure (cf. Section D. 2.2) will be 

used here to model the characteristics of the fast and the slow muscle. LMN structures with 
2nd order local models in state space form will be investigated. The model parameters will be 

estimated in the delta domain, using simulation mode, with a sampling period of T. = lms. 

The models have an input delay of Td = 7ms. Structures with 1 to 10 uniformly distributed 

B-spline validity functions will be used. The filtered input, equation (5.4), is employed as the 

scheduling variable. 

Direct State Space Description Local Model Networks in state space form are used where 
all model paxameters {Aj, b,, 4-jr; gi, diy}Ml are optimised directly. The results for networks 
of different sizes are shown in Figure 5.18. 

For the fast muscle, the optimal network size is 3 to 4 units. The performance on the test 
data deteriorates quickly for larger models. The results axe significantly better than those 

obtained with local ARX models, cf. Figure 5.17(a). 
For the slow muscle, networks with 7 to 9 units perform best. As for the fast muscle, the 

state space LMNs cleaxly outperform the LMNs with local ARX models, cf. Figure 5.17(b). 

The results indicate that the higher number of free paxameters in the more general local 

state space description leads to a significant improvement of the model performance compared 
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Figure 5.18: Direct state space LIVIN with input scheduling. Large errors which exceed the axis 
range are truncated. 

to LMNs Nvith local input outplit 111odels: for LNINS in input Output notation each Second 

order local n1odvl has 5 parainvter, 3 which ran hv adjumvd, whHv in 1AINs in suav spm, v 

notation each second order local lias II free paranict ers-1. 

Eigensystem State Space Description In Section 2.4.1, aspects, of' tll(, st, abilit, Y of linear 

paranictcr varying systems, ix-, Local Model Networks, Nvere discussed. In particular, it 

could be shown that models with stable local real eigensystenis and common eigenvectors are 
stable. On(, way to use this property to identify Local Model Networks which are guaranteed 
to be stable was shown in Example E. 4.5 on page 154. This approach seenis to be Nvell-suited 
for the modelling of muscle contraction, as muscle can generally be regarded as a well-daniped 
system, making a restriction to real eigensystenis a straightforward choice. We hope that by 

restricting the degrees of freedom of the model structure while considering the characteristics 
of the underlying systeni, the modelling performance can be improved. and the identification 

of the model parameters will be more robust. Note that, although the poles of the single 
linear muscle models shown in Figures 5.7 and 5.9 are complex, we expect that locally the 

system behaves well-damped. 
For comparison, Nve first identify LNINs with local eigenvectors. As in Example E. 4.5 on 

page 154. the parameters of the local state feedback matrices Ai are not identified directly. 

Instead, the local eigenvectors Vi C R2 X2 
, and the local eigenvalues, ci CR2 are estimated 

3 The numerator and the denominator have two free parameters each, and the offset term has one parameter. 
'The A matrix has four parameters, the b and the c vectors and the state offset term (" have two parameters 

each, and the output offset P has one parameter. 
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Figure 5.19: State space LIVIN with local eigenvectors with input scheduling. Large errors which 
exceed the axis range are truncated. 

The results are very similar to those obtained with LNINs in direct state space forin, 

cf. Figure 5.18. The optimal network size for the fast iiiiisch, is 3 to -1 units. The, optimal 

network for the slow muscle is smaller than in Figure 5.18(b), consisting of only 4 to 6 units. 

ýVe (, an therefore conclude that restricting the local state space models to real eigensystenis 

is appropriate for the given application. 

The eigenvector configurations of the best models (in terms of a minimal Test MSSE) 

from Figure 5.19 are slioxvil in Figure 5.20. The eigenvectors vary significantly over a large 

range, and it is possible that unstable eigenvector configurations as described in Section 2.4.1 

are present. 
To ensure stability of the global model when all local eigensystems are stable, we restrict 

the LNIN to have a set of common eigenvectors for all local models. Equation (5.5) is modified 

such that all local models now share a common set of eigenvectors, VC Vx2' 

Ai=VdiagLiV--', i=1 ... Al. (5.6) 

The modelling results are shown in Figure 5.21. 
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Figure 5.20: Local eigenvectors of the best state space models from Figure 5.19. "S" denotes the 
slow eigenvectors, the fast eigenvectors are marked by Y'. The numbers indicate the 
number of the local model. 

The results are very similar to both the results obtained with direct state space description 
(cf. Figure 5.18) and the results obtained with real eigensystems with local eigenvectors (cf- 
Figure 5.19). This indicates that the restriction to common eigenvectors and real eigensystems 
does not lead to deterioration of the model performance. The results for the fast muscle are 
even better than those obtained with LMNs with local eigenvectors. The optimal network 
size is 3 to 6 units for the fast muscle and 5 to 6 units for the slow muscle. 

The eigenvector configurations of the best models (in terms of a minimal Test MSSE) from 

Figure 5.21 axe shown in Figure 5.22. 

Discussion It was found that LMN structures with local state space models perform signific- 

antly better than LMNs with local input-output models for both the fast and the slow muscle. 
Models with general local state space models, with state space models with real eigensystems, 

and with local state space models with real eigensystems and common eigenvectors were found 

to perform similarly. The reduction of the degrees of freedom introduced by restricting the 
local models does not lead to a deterioration of the performance. Thus, the limitation to real 

eigensystems and common eigenvectors which ensures stability of the global model provided 
that all local models are stable is adequate for the given application. 
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Figure 5.21: State space LIVIN with common eigenvectors with input scheduling. Large errors 
which exceed the axis range are truncated. 

Optimisation of the Validity Function Parameters 

In the idelitificMion experilliciits carried out so far, Nve worked with LNIN' structures with 

uniformly distribut ed B spline validity functions. The optimal iiiinihcr of' units was found by 

comparing the performance of models of different size. 
As outlined in Section 2.3.1, it is also desirable t, o adapt the shape of' the validity functions 

to tile coil] plexitY of the system. When Nvorking with B splines, this can be easily achieved 

by optimising the location of the knots, i. e. by applying a parameter optlinis'ation algorithm 

to the, knot vector. After the knots have been changed, the parameters of the local models 

are updated. and the knot vector is then optimised again. This process is iterated until the 

network has converged. 
This structure optlinisation algorithm is applied to the LMNs in state space form with 

common eigenvectors which have 6 units (fast muscle) and 5 units (slow muscle), cf. Fig- 

ure 5.21. The shape of the uniform and of the optinfised validity functions are shown together 

with the modelling errors in Figure 5.23. 

The optimised shapes of the validity functions differ only slightly from the shapes of 

the uniform validity functions. For both muscles, the performance oil the training set has 

improved. For the fast muscle, however, the performance on the test data deteriorates for the 

network Nvith optimised validity functions. This indicates that over-fitting takes place. For 

the model of the slow muscle the test error is slightly lower for the optimised network. 

Both the over-fitting for the model of the fast muscle and the improvement for the model 
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Figure 5.22: Common eigenvectors of the best state space models from Figure 5.21. "S" denotes 
the slow eigenvectors, the fast eigenvectors are marked by T'. 
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Figure 5.23: Shape of the optimised validity functions for the best models from Figure 5.21. pi 
denotes the activation of the i-th validity function. 

of the slow muscle could be observed consistently when the shape of validity functions was 
optimised for networks of different sizes and with different local models. 

Owing to the small effect of the optimisation of the shape of the validity functions, and 
the possible deterioration of the model performance on the test data, we choose to work with 
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models with uniformly distributed validity functions for the remaining parts of this chapter. 

5.4.3 Analysis of the Model Performance and Properties 

In the previous section, different model structures and parameter optimisation algorithms 
were compared in order to obtain the best models to describe the characteristics of the fast 

and of the slow muscle. As a criterion for the comparison of the different results, various 
measurements of the MSE which are defined at the beginning of Section 5.3 were used. 

In this section, a more detailed analysis of the models will be carried out. The results 

presented will focus mainly on the best LMNs in state space form with real eigensystems with 
input scheduling, as shown in Figures 5.19 and 5.21. The modelling results for these LMNs 

are surnmarised in Table 5.2. 

Fast muscle Slow muscle 
Eigenvectors # 

units 

MSSE (X10-3) 
Training I Test 

# 

units 

MSSE (X 10-3) 
'Raining I Test 

local 4 0.34 0.54 5 0.17 0.28 

common 6 0.35 0.50 0.16 0.28 

Table 5.2: Modelling results of the LMNs in state space notation with real eigensystems, input 
scheduling. 

It should be noted that the analysis techniques described below have also formed an 
integral part in the experiments described in the Sections 5.4.1 and 5.4.2. 

We will first present model simulation results, before some properties of the models are 

analysed. In the final paxt of the section aspects of model modification and restriction axe 

presented. 

Model Performance 

The performance of the best LMNs with local models in state space form with real eigensys- 
tems and common eigenvectors (cf. Figure 5.21) on some typical test data sets axe shown 
for the fast muscle in Figure 5.24 and for the slow muscle in Figure 5.25. Note that the 

performance of the LMNs with local eigenvectors (cf. Figure 5.19) and the LMNs in direct 

state space form (cf. Figure 5.18) is very similax. 
From the resulting plots it can be concluded that the LMNs model the behaviour of the 

real muscle with great accuracy for stimulation with randomly varying IPIs present in the 

experimental data. 

The model performance can be further analysed by investigating the relationship between 

the stimulation frequency and the muscle output force. Long bursts (10OOms) of constant 
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Figure 5.24: Fast muscle, LIVIN with local models in state space form with real eigensystems and 
common eigenvectors, 6 units: Comparison of the simulated model output (bottom, 
solid) and the output of the muscle (bottom, dashed) for four typical test data sets. 
The data sets are shown concatenated; the simulation is restarted after each set. 
The model output matches the muscle output for almost all operating conditions. A 
small model error is present in the first part of the 4th data set. The "catch-like" 
effect which is present in this muscle is modelled accurately (middle of 1st data set 
at 250ms, 4th and 5th pulse of the 2nd data set at 750ms). 

frequency trains were applied to the muscle models, and the resulting model output was 

recorded. The "output force" was measured as the average model output after the initial 

rising portion of the response. The force-frequency curves obtained for LMNs with real 

eigensystems and local and common eigenvectors are shown in Figure 5.26. 
The shapes of the force-frequency curves are as expected up to a frequency of approx- 

imately 10OHz: the model output increases as the stimulation frequency is increased. This 

relationship is non-linear, with some saturation at almost 10OHz. For frequencies above 10OHz 

it would be expected that the force saturates. However, for the fast muscle it continues to 

grow, whereas for the slow muscle some saturation can be observed. This indicates that the 
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Figure 5.25: Slow muscle, LIVIN with local models in state space form with real eigensystems and 
common eigenvectors, 5 units: Comparison of the simulated model output (bottom, 
solid) and the output of the muscle (bottom, dashed) for four typical test data sets. 
The data sets are shown concatenated; the simulation is restarted after each set. The 
model output matches the muscle output for all operating conditions. Note that the 
9. catch-like" effect is not present in this muscle. 

model of the fast muscle does not include saturation for long bursts of impulses with a high 

stimulation frequency. Such stimulation patterns were not present in the data used to identify 

the model, where only short high frequency bursts could be observed. 
The dashed line in Figure 5.26(a), which corresponds to the LMN with local eigenvectors, 

shows an unexpected negative bump at 30 ... 40Hz- This indicates that the model does not 

perform well for long input bursts of this frequency range. Again, stimulation pulses with 

such a characteristic were not present in the data used to identify the models. The analysis 

of the properties of the models in the next section will provide more insight into the reason 
for this unexpected behaviour. 
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Figure 5.26: Force-frequency relationship for best LMNs with local state space models with real 
eigensystems with common eigenvectors (solid) and with local eigenvectors (dashed). 

Analysis of Model Properties 

Aspects of the static analysis of the properties of a Local Model Network were discussed in 

Section 2.4-2. Applying the technique described there to the models obtained from the exper- 
iments on muscles will provide further insight into the properties of the modelling approach. 

Before the analysis results are presented we will briefly discuss how the model properties 
can be interpreted with respect to the chaxacteristics of the muscles. 

Interpretation The (steady-state) gain of the model is the steady state value of the model 

response to a step input. It is equivalent to the integral of the impulse response. As the inputs 

to the muscle model axe always impulses, the latter interpretation is more appropriate for our 

application. As the model output is a prediction of the force produced by the muscle, the 

value of the gain for a certain activation can be interpreted as the force-time integral (FTI) 

per pulse for this activation. The relevance of the FTI for muscle stimulation is discussed in 

more detail in Chapter 6. 
The location of the poles gives an indication of stability properties of the model: if the 

poles axe located outside the region of stability (cf. Section D. 2.2 for a definition of this region 
for models in delta operator notation) the model is unstable. 

The absolute value of the poles is related to the time-constants of the model for the 

corresponding activation. The further away the poles axe from the real axis (from zero), the 

smaller is the corresponding time-constant. Thus, poles with a large absolute value indicate 

a fast model response, whereas poles with a small absolute value correspond to slow modes 
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of the model. 

Results The results of the static analysis for the best LMNs with local models in state space 

notation with real eigensystems and common eigenvectors are shown in Figure 5.27. 
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Figure 5.27: Static analysis for LMN structures with local models in state space form with real 
eigensystems and common eigenvectors. The top plots show the activations of the 
validity functions, pi. In the middle plots the steady state gains, G, of the interpol- 
ated models are depicted. In the bottom plots the values of the two poles of the 
interpolated models are shown. 

For both models the chaxacteristics vaxy smoothly with the scheduling variable. This 

indicates that the models do not over-fit the data. 

For the model of the fast muscle, the gain vaxies in a wide range, with a distinct maximum 

at 0 ý- 0.5. The gain for small activation is relatively small. For high activation the gain 

remains constant non-zero. Thus, saturation is not present for large activations. The poles 

vaxy in a wide range. A fast and a slow pole can be distinguished. The value of the slow pole 
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approaches zero for 0 ; z: i 0.5. 
For the model of the slow muscle, the gain varies in a much smaller range than the gain 

of the model for the fast muscle. It has a distinct maximum for small activation, and quickly 
decreases as the activation becomes larger. The gain becomes slightly negative for 0 s: tl 0.3 

which indicates that for this activation, stimulation will decrease the model output. For large 

activation the gain is close to zero which corresponds to saturation. The poles are significantly 
slower than the poles of the model for the fast muscle. The slow pole changes only slightly, 

whereas the second pole becomes close to the slow pole for increased activation. 
The results of the static analysis for the best LMNs with local models in state space 

notation with real eigensystems and local eigenvectors are shown in Figure 5.28. 
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Figure 5.28: Static analysis for LMN structures with local models in state space form with real 
eigensystems and local eigenvectors. The top plots show the activations of the validity 
functions, pi. In the middle plots the steady state gains, G, of the interpolated models 
are depicted. In the bottom plots the values of the two poles of the interpolated 

models are shown. 

83 



5 Modelling of Muscle Contraction 

The analysis results are generally very similar to the characteristics shown in Figure 5.27. 
A few important differences should, however, be noted. 

For the model of the fast muscle, the gain not only increases in the area around sze 0.5 
but the model is unstable for this activation, as the slow pole becomes slightly positive. The 

negative bump in the force-frequency curve shown in Figure 5.26(a) can be related to this 

characteristic. The instability is certainly not a property of the real system. We will therefore 

consider this characteristic in more detail below. 
For the model of the fast muscle, the shape of the change of the fast pole is different for 

low activation levels from that shown in Figure 5.27(a). This can be explained by the different 
location of the corresponding eigenvectors. Referring to Figure 5.20(a) on page 75 confirms 
that the location of the eigenvectors of the first local model of the LMN with local eigenvectors 
differs significantly from the location of the common eigenvectors shown in Figure 5.22(a) on 
page 77. 

Similarly, the difference between the pole characteristics of the model for the slow muscle 
for large activations and the pole characteristics shown in Figure 5.27(b) can be attributed 
to the different eigenvector configurations. Additionally it should be noted that the gain of 
the model is small for large activations (0 > 0.7). The location of the poles for that region of 

activation will therefore not influence the global model characteristics strongly. 

Discussion The limited and smooth variation of the gain for the models of the slow muscle 
indicate that the force-time integral (FTI) does not change significantly depending on the 

activation. We expect such behaviour for this muscle as it does not show the "catch-like" 

effect. The fact that the gain is almost zero for activations above 0 -- 0.7 corresponds to a 
decrease of the FTI per pulse for intensive stimulation. This will be verified in the experiments 
in Chapter 6. 

The large vaxiation of the gain for the models of the fast muscle indicates that, for this 

muscle, the FTI per pulse depends strongly on the activation. This is expected as the fast 

muscle shows the "catch-like7' effect. The large value of the gain for 0 ;:: ý 0.5 for the model 
with common eigenvectors, and the instability of the model with local eigenvectors in the 

same range, can be related to the initial response of the model to two closely spaced input 

pulses (the response to a "doublet"). In Figure 5.29, a doublet stimulation pattern is depicted 

together with the obtained scheduling variable. It shows that the maximal value reached by 

the scheduling variable for this input pattern is 0 ; ý-, 0.5. 
Comparing the location of the poles, it can be observed that the poles of the models of 

the slow muscle are significantly slower than the poles of the models of the fast muscle. This 

corresponds to the known characteristics of the muscles. 
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Figure 5.29: Scheduling variable obtained from a doublet input with IPI=2ms. 

Modification of a Model 

In the previous section it was found that the LMN with real eigensystems and local eigen- 

vectors which was identified for the fast muscle is unstable for a region of activation around 
0 -- 0.5, cf. Figure 5.28(a). The eigenvalues of the local models of this LMN axe shown 
in Table 5.3. Note that the slow eigenvalue of the 3rd local model is slightly positive and 
therefore unstable. 

# unit eigenvalues 
1 -256.27 -33.24 
2 -87.07 -7.71 
3 -220.68 9.96 
4 -128.48 -29.61 

Table 5.3: Eigenvalues of the local models of the LMN in state space form with real eigensystems 
and local eigenvectors for the fast muscle. 

The unstable 3rd local model does not lead to a deterioration of the results for the exper- 
imental data used in Section 5.4.2 where the simulation errors obtained with this LMN are 

very small, cf. Figure 5.19(a). In these data sets, the stimulation varies randomly in such a 

way that the muscle is never in the same state of activation for a longer period of time. As 

the unstable pole is relatively slow, it has no effect on the output for these data. 

When the model is, however, stimulated with longer bursts of constant stimulation fre- 

quency which cause a single local model to be active for a longer period of time, the unstable 
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pole influences the model behaviour. An example of this are the experiments to obtain the 
force-frequency relationship, where the model was stimulated with constant frequency bursts 

of 10OOms duration. As depicted in Figure 5.26(a), the LMN with local eigenvalues shows a 
negative force bump. We will show that this can be attributed to the unstable local model. 

In this section we aim to modify the unstable local model such that the model is stabilised, 
without deterioration of the overall model performance. The results presented axe included 
in (Shorten et at. 1998). 

Modification of the Local Model The unstable local model is modified in such a way that 

its positive eigenvalue is replaced by a slow, but negative eigenvalue. It was found that the 

exact value of this changed eigenvalue does not have a significant influence on the performance 

of the model on the experimental data as long as its absolute value is small. We therefore 

choose to replace the unstable eigenvalue with -1. To ensure that the local dynamics are 

similar to those obtained with the unstable local model, the location of the operating point 

corresponding to this local model needs to be readjusted. As this operating point is contained 
in the bias terms d1' . 7) on page 120), these terms need to be re- 3 and d3l (cf. equation (A 

estimated using the same optimisation technique as for the original identification of the LMN 

parameters. Note that only the unstable eigenvalue and the bias terms of the corresponding 
local model are modified. 

Results and Analysis The Training and Test MSSE results for the original and for the 

modified LMNs are summarised in Table 5.4. The modelling performance of two LMNs for a 
typical set from the experimental data is shown in Figure 5.30. 

LMN ý MSSE (X10-3) 

TYaining I Test 

original_ 0.34 0.54 

modified 0.39 0.54 

Table 5A Mean squared error results for the original and the modified LMN on the experimental 
data. 

The two models perform very similarly. The MSE error results on training and test 

data sets are almost identical. Thus, the modification of the local model does not lead to a 
deterioration of the model performance with the experimental data. As the 3rd local model 
is only active for a short period of time, the slow time-constants of the modified pole do 

not influence the model output significantly. This becomes even more obvious in the phase 

trajectories of the two LMNs which are shown in Figure 5.31. The trajectories of the two 

models axe almost identical. 
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Figure 5.30: Experimental data and model responses over time. The bold lines indicate that the 
third local model is active (p3 > 0.3). 
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Figure 5.31: Phase plane trajectories corresponding to the behaviour of the unstable and the mod- 
ified LMNs shown in Figure 5.30 from 150 to 310ms. To marks the beginning, 11 
the end of the trajectories. The sudden vertical jumps are due to the pulse-like input 

u(t). The bold lines indicate that the third local model is active (P3 > 0-3). 
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(b) Phase planes of the autonomous system for the 3rd local models, and state trajectories of 
the LMNs. The trajectories are shown from 1 to 300ms. 

Figure 5.32: Time responses of the LMNs, and phase planes and state trajectories of the unstable 
and the stable local model for an input stimulation with a constant pulse frequency 

of 37Hz. 
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The responses of the original and of the modified LMN to stimulation with a constant 
frequency burst of 37Hz axe shown in Figure 5.32(a). The stimulation frequency has been 

chosen to demonstrate the effect of the unstable local model in the original LMN by driving 

the model to a state where the 3rd local model is constantly activated. Note that a similar 
stimulation pattern is not present in the data used to identify the models. The initial responses 
of both LMNs are identical. After the 3rd local model was active for a considerable time, 
the output of the original LMN starts to decrease, and becomes negative unbounded as the 

simulation continues (not shown). The modified LMN behaves as expected from the real 
muscle, i. e., it reaches a constant trajectory and remains there. 

The differences in the phase trajectories of the 3rd local models of the two LMNs axe 
shown in Figure 5-32(b). The trajectory of the unstable local model of the original LMN 
drifts away towards minus infinity, whereas the trajectory of the stable local model of the 

modified LMN reaches a limit cycle. 
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Figure 5.33: Phase planes of the 3rd local models of the original and the modified LMN, ' without 
and with input applied. The phase planes of the two models are almost identical. 

In Figure 5.33, the phase planes of the 3rd local models are shown for the autonomous 

case and when an input u=1 is applied, and the corresponding values of the equilibria are 

given. The phase planes of the two local models axe almost indistinguishable. However, they 

differ substantially in the location of the equilibrium points which define whether the models 

are stable or unstable. The slow time constants associated with this difference of stability 

only become significant when the local model is activated for a longer period of time. 
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Discussion Local instability of an LMN model for the fast muscle was investigated in the 

previous section by analysing the properties of the model structure. Such instability represents 
a basic mismatch between the model properties and the properties of the real muscle. This 

mismatch could not be found by analysing the model performance with the experimental 
data. It was, however, shown that the instability leads to unexpected model behaviour for 

stimulation with long bursts of constant frequency trains. 
A method to modify the model locally in such a way that the global model matches 

the properties of the real system more closely was introduced. The LMN was stabilised by 

modifying the parameters of the unstable local model. The global model performance did not 
deteriorate after the modification. It was shown that the modified LMN performs as expected 
from the real muscle for stimulation patterns of long bursts with constant frequency. 

The example shows that analysis of the properties of an LMN can give useful insight con- 
cerning the behaviour of the model outside the operating regions covered by the experimental 
data. Restricting the properties of the local models by using a ptiori knowledge about the 

system (i. e., the knowledge that the system is stable) can improve the model performance in 

operating regions not covered by data. 

It was found that the experimental data can be approximated locally by two models with 

completely different stability properties to the same degree of accuracy. Thus one. has to 
be careful when relating local properties of the model to global model characteristics. The 

phase plots in Figures 5.32(b) and 5.33 show that although two local models have very similar 
chaxacteristics locally inside the operating region, their properties differ substantially outside 
this region as a result of the different location of the equilibrium point. 

5.5 Discussion 

In this chapter, a novel approach, to modelling of electrically stimulated muscle under con- 
ditions of isometric contraction was presented. The model is non-linear and its structure is 

based on a network of locally valid linear models which are blended together by a scheduler. 
The model accounts for non-linear effects due to variations of the stimulation frequency, such 

as the "catch-like" effect. It was shown that this modelling technique is, suitable for modelling 
the contraction of muscles with very different characteristics, such as muscle with a majority 

of fast motor units and muscle with mainly slow motor units. 
Data from experiments with rabbit tibialis anterior muscles were used. The muscles were 

stimulated with supramaximal impulses, i. e. all motor units were activated by every stimula- 
tion pulse. Thus, effects due to recruitment variations were not present. The muscle activation 

was varied by changing the IPI which leads to non-linear effects due to changing stimulation 
frequency. 
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The modelling approach uses only input-output data of the muscle from simple stand- 
ard experiments which are aimed at exciting all dynamic modes of the system. No explicit 
knowledge of the physiological processes of muscle contraction was used. However, the mod- 
elling technique differs from a pure black-box approach in that a prio7i knowledge about the 

expected muscle behaviour was used for the selection of the scheduling variable and for the 

analytical validation of the models obtained. Thus, the approach described here could be 

termed a "grey-box! ' technique. 

5.5.1 Modelling Technique 

An initial analysis of the experimental data and identification experiments with linear model 
structures gave guidelines for the selection of the optimal model structure. This includes 

the dynamic order, the time delay, the sampling period, and the parameter identification 

technique. Simulation results obtained with linear model structures confirmed that the muscle 
characteristics are significantly non-linear and that a simple linear approach does not describe 

the muscle behaviour correctly for varying operating conditions. 
Local Model Network structures were therefore used as a non-linear modelling technique. 

Based on the results of the linear experiments, various approaches for the identification of 
the model parameters, the choice of the scheduling vector, and the number and structure 

of the local models of the network were evaluated until optimal structures were found. A 

priori knowledge was used for the selection of the scheduling variable, and for selecting real 
eigensystems for the local models in state space notation. 

Experiments with single linear models and with LMNs with local models in input-output 

notation showed that the sampling period needs to be increased when the paxameters are 
identified in the shift operator domain. The original sampling period of T, = lms could 
be used when the parameters were optimised in the the delta operator domain. Parameter 

estimation in the delta domain, although computationally more expensive owing to the shorter 

sampling period, was found to give the best results. 
Local Model Networks with output scheduling were found to perform well with data from 

the fast muscle, see also (Gollee et al. 1994, Gollee et al. 1997, Gollee and Hunt 1997). This 

scheduling approach failed, however, for the slow muscle. Using pre-processed input pulses for 

scheduling was found to yield very good modelling results for both the fast and the slow muscle, 

and is therefore thought to be a scheduling technique generally applicable for modelling of 

muscle contraction under isometric conditions with supramaximal stimulation. 
LMNs with local models in input-output and in state space notation were compaxed. The 

state space LMNs were found to outperform the LMNs in input-output notation, owing to 

the fact that the former have a larger number of free parameters than the latter. 

The local state space descriptions were then restricted to real eigensystems. Models with 
local and with common eigenvectors were compared. They were found to perform equally 
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5 Modelling of Muscle Contraction 

well on the experimental data. 
Optimising the shape of the validity functions did not improve the model performance 

significantly. For the models of the fast muscle it even led to an increase of the test error. 
Networks with uniform validity functions were therefore used. 

5.5.2 Model Analysis 

The optimal Local Model Network structures were analysed and validated both using data and 

analytically. Validation based on data similax to those used to identify the model parameters 

showed that the models perform well for all operating conditions represented in the data. In 

particular, it could be observed that the model of the fast muscle can describe the "catch-like" 

effect which is one of the main non-lineax characteristics of this muscle. 
In order to evaluate whether the models can predict the force-frequency characteristics 

correctly, pulse trains with constant IPIs of different value were applied. The force-frequency 

curves were estimated correctly by the models for small and medium stimulation frequencies. 

For high stimulation frequencies, the models of the fast muscle did not show saturation as 

expected from the properties of the real muscle. Thus, the models could not generalise 

correctly from the kind of data used in the identification experiments to data which contain 
long trains of constant stimulation frequencies. 

Analysis of the model properties showed that the characteristics of the models can be 

related to known properties of the real muscles. It explains for the failure of some models to 

predict the force-frequency curve correctly. 
The analysis of the model properties showed that the LMN with real eigensystems and 

local eigenvectors which was identified for the fast muscle is unstable for a certain region 

of activation. Owing to the small time-constant associated with this instability, it did not 
degrade the modelling performance with the experimental data. However, it could be shown 
that the LMN becomes unstable when it is stimulated with a long input pulse train of constant 
frequency which causes the unstable local model to be active for a longer period of time. Using 

the a priori knowledge that muscle is a stable system, a simple technique was developed to 

modify the unstable local model in such a way that the overall LMN performs well on both 

the experimental data and pulse trains with constant IPI. The properties of the original and 

of the modified LMN were analysed for vaxious stimulation patterns. 

5.5.3 Conclusions 

Local Model Networks provide a form of model structure which is well suited to the modelling 

of isometric contraction of electrically stimulated muscle. This is'supported by the fact that 

lineax time-varying systems have been found to be suitable for describing muscle contraction 

under vaxying conditions (Bobet et al. 1993), as LMNs with lineax local models axe time- 

varying linear systems. The technique to change the model parameters depending on the 
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muscle activation using a scheduling variable obtained from the model inputs can be used for 

muscles with very different chaxacteristics. 
The identification of the parameters of the Local Model Networks is very simple, and 

is based only on input-output data obtained from the muscle during standard experiments. 
As discussed in Chapter 3, the model structure is controller orientated. An application of 
local control techniques which is based on the muscle model introduced here will be described 

in Section 6.5. The simplicity of the model from the system theoretical point of view is a 

great advantage compared to more complex muscle models which are based on physiological 

properties. 
The Local Model Networks can be implemented in a relatively simple way: the valid- 

ity functions can be stored in form of a lookup table. The models can be evaluated in a 
discrete-time simulation which can be easily implemented in digital computing hardware. In 

contrast to various models which are based on physiological properties of muscle (Dorgan and 
O'Malley 1997, lUener et al. 1996), no numerical solution of continuous differential equations 
is necessary. The system can therefore easily be simulated in real-times. 

A potential disadvantage of the modelling technique described here is that knowledge of 

the physiological properties of muscle is not used. All information necessary to describe the 

characteristics of the muscle needs to be presented in the experimental input-output data. 

It is therefore necessary to ensure that all operating conditions of interest for the intended 

application are represented in the data. The limitations of the modelling technique become 

obvious for the models of the fast muscle which cannot predict the saturation present in real 

muscle for stimulation with long trains of constant high frequency and which axe, in some 

cases, unstable for certain stimulation conditions. One way to over-come this limitation would 
be to include input stimulation of different constant frequencies in the experimental data. The 

problem to obtain sufficient information for the identification of the model parameter from 

experimental input-output data will become more important for more general stimulation 

conditions. The experiments to obtain the data need then to be planned carefully to ensure 
that all relevant, operating conditions are covered by data. 

Summary of the Modelling Approach 

The description of the results in this chapter is very comprehensive and this may obstruct the 

basic steps of the Local Model Network approach when used in practice. We will therefore 

briefly summarise some guidelines for the modelling of muscle contraction with the approach 
described here. 

'In the implementation used in this work which is based on C-MEX files running under MATLAB, the Local 
Model Networks of the muscles can be simulated in approximately three times real-time on a SPARC 2 
(Sun 4/75). 
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" By analysing twitch'response data and frequency components of the data, initial in- 
formation about the time constants and delays of the muscle can be obtained. 

" Simple identification experiments with 2nd order linear models provide information 

about how non-linear the muscle characteristics are under the stimulation conditions 
investigated. If the model parameters are estimated in the delta operator domain, a 
fast sampling period is not critical. 

The scheduling variable should be obtained from the stimulation input to the model. 
This can be either a filtered version of the stimulation pulses, or other properties of the 
input such as pulse-width or current if these parameters vary, or a combination of those. 

LMNs with local models in state space form should be used as these give significantly 
better modelling results than LMNs with local models in input-output notation. The 

parameters can be identified in simulation mode using the Levenberg-Marquardt al- 
gorithm. 

" Staxting with a small network, the number of units can be increased until an optimal 
network size is found, i. e. until the model performance on test data starts to deteriorate. 

" The model analysis consists of three steps: 

- The model is tested against experimental test data which have not been used to 
optimise the model parameters. 
Known characteristics of muscle such as the force-frequency and the recruitment 
curve can be verified with the model in simulation experiments. 
Model properties such as steady state gain, the location of the poles and the shape 
of validity functions axe analysed for varying scheduling variables and can be related 
to known chaxacteristics of muscle. In particular, the change of time-constants 
with varying muscle activation, saturation and possibly model instabilities can be 
detected. 

It can be expected that the application of this modelling technique for isometric contraction 
of different muscles, e. g. human muscle, is straightforwaxd. For more general stimulation 
conditions, the modelling cost, in particular the effort to collect sufficient experimental data, 

could increase significantly. It will also become more difficult to relate model properties to 
known characteristics of the muscle. However, a basic model mismatch such as instability or 
lack of saturation will still be easily detectable. 

Further Work 

In its current form, the model does not include vaxying motor unit recruitment. The model 

structure can be extended in a straightforwaxd way by either adding an explicit recruitment 
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model, or by including the recruitment effects in form of a varying amplitude of the stimulation 
pulses. The scheduling vector may need to be extended to account for non-linear recruitment 
effects. 

To model non-isometric muscle contraction, the non-linear model described here can be 

used'as the active force-generating element of a Ifill-type model structure. In the model 
structure used by (Durfee and Palmer 1994) which is shown in Figure 4.4 on page 46, the non- 
linear model of isometric contraction introduced in this chapter can replace the Hammerstein 

model to describe the activation dynamics of the muscle. Local Model Networks can also be 

used to approximate the force-length and the force-velocity characteristics which are modelled 
by piecewise linear curves in (Durfee and Palmer 1994). 

Initial experiments with non-isometric data give promising results. Due to lack of exper- 
imental resources it was, however, impossible to collect sufficient data for a given muscle to 

obtain results which could be presented as part of this thesis. Additional effort will be re- 

quired to develop a more systematic approach to collect input-output data for non-isometric 
contraction. 
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Generation of Optimal Stimulation 
Patterns 

When discussing aspects of artificial stimulation of muscle in Section 4.2.3, it was pointed out 
that owing to the differences of artificial stimulation from the way the muscle is stimulated 
by the central nervous system, the characteristics of the muscle tissue can change over time. 
We discussed that, in order to retain the power of the muscle and to minimise fatigue, it is 

desirable to obtain the same mechanical response by fewer stimulation pulses. We referred to 

such stimulation patterns as "optimal". 

This chapter is aimed at analysing the properties of optimal stimulation patterns (OSPS) 

for the muscles investigated in Chapter 5, and at developing algorithms to generate such 

patterns. 

6.1 Introduction 

We define optimal stimulation patterns as stimulation sequences which maximise the force 

produced by the muscle over time per stimulation pulse. The muscle force over time is 

described by the force-time integral (FTI), 

tj 
FTIp = 

ft=to 
F[up (-), t] dt, 

where F[up(. ), t] is the output force when the muscle is stimulated with the stimulation 

pattern up(-), and to and tj axe the beginning and the end of the recorded intervaL The index 

p denotes the number of pulses in the stimulation pattern. All stimulation pulses have the 

same amplitude and width. For a sampled output force sequence with sampling period Ts, 

the integral is approximated by the sum, 
N 

FTIp F[{u}p, ri]T,, (6.2) 

where -ri denotes the discrete time, and the force is recorded in the interval [TI = tot ... i 'TN = 

tj - TJ. The discrete stimulation sequence containing p pulses is denoted by {u}p. As a 

measurement of the force generated per pulse, the normalised force-time integral per pulse 
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(FTIpP) is introduced, 

FTIpPp = 
FTIp 

FTI, xp 
(6.3) 

Here p denotes the number of impulses in the stimulation pattern, FTIp is the force-time 
integral for a sequence of p pulses, {ulp, and FTII is the force-time integral of the response 
to a single impulse. 

An optimal stimulation pattern of p stimulation pulses, {u}p*, can now be defined as a 
sequence of impulses which maximises the force-time integral per pulse for the given muscle, 

arg max FTIpP ({u}p) (6.4) 
(ulp 

In this chapter different methods to generate optimal stimulation patterns are introduced. 
The non-linear models of isometric muscle contraction developed in Section 5.4 are used in 

these algorithms. Unless otherwise stated, we work with the LMNs with local models in 

state space notation with real eigensystems and common eigenvectors which were-analysed in 
Section 5.4-3. 

The methods discussed in Sections 6.2 to 6.4 are adapted from (Kwende et al. 1995), where 
they were used in experiments with the real muscles from which the data used in Chapter 5 

to identify the models were obtained. The methods described in Sections 6.2 and 6.3 can 
not be used directly to generate optimal stimulation patterns. However, they give valuable 
insight concerning the different properties of optimal stimulation patterns for the two muscles. 
By showing that the results obtained with the models of the muscles are equivalent to those 

obtained with the real muscles, the validity of the models is further demonstrated. 
The iterative method introduced in Section 6.4 is suitable for generating optimal stimu- 

lation patterns. In Section 6.5, a more general way of obtaining optimal stimulation patterns 
for specific desired contractions is described. This method is based on a non-linear control 
structures using Local Controller Networks. I 

6.2 Random Pattern Method 

The random pattern method is aimed at finding from a number of randomly generated stim- 

ulation patterns those patterns which maximise the FTIpP. It is used here to verify that 

the models developed in Section 5.4 produce results which are equivalent to those reported in 
(Kwende et al. 1995), and to analyse characteristic properties of optimal stimulation patterns. 

6.2.1 Experimental Setup and Results 

Stimulation patterns with randomly vaxying IPIs, which were generated according to the setup 

outlined in Section 5.1, axe applied as inputs to the models of the fast and of the slow muscles. 
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For eadi input pattern, a sequence of stimulation frequencies is determined as 

f, ti,,, (k) 
tk+l - tk I (6.5) 

where p is the total number of pulsesin the input pattern, tk denotes the time when the 
k-th impulse is delivered, and fti,, (k) is the corresponding stimulation frequency. Thus, an 
average stimulation frequency, htim, av, can be obtained to describe each stimulation pattern, 

P-1 
fstim, 

av p11E fstim(k). 
k=l 

(6.6) 

The FTIpPs for each stimulation pattern for both muscle models are calculated according 
to equation (6-3). The results are shown in Figure 6.1 for the fast muscle and in Figure 6.2 
for the slow muscle. 
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(b) Stimulation patterns corresponding to min- 
imal and maximal FTlpP. 

Figure 6.1: Random pattern method applied to the fast muscle model. 

6.2.2 Conclusions 

For the model of the fast muscle the stimulation patterns which result in the laxgest FTIpP 

contain pulses with high average frequency. The patterns consist of pulses with generally 

small and irregular IPI, cf. Figure 6.1(b). The lowest value of the FTIpP can be observed for 

pulse patterns with low average frequencies. These stimulation patterns consist of regularly 

spaced impulses with laxge IPIs. 
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Figure 6.2: Random pattern method applied to the slow muscle model. 

For the model of the slow muscle, the FTIpP is large for stimulation patterns with a 
low average frequency. The best stimulation patterns in terms of maximal FTIpP have low 
frequency components, the worst contain components of high frequency, cf. Figure 6.2(b). 

Compaxing the patterns shown in Figure 6.1(b) with those depicted in Figure 6.2(b) 

shows that the stimulation patterns which result in the maximal FTIpP for the fast muscle 
give minimal FTIpP for the slow muscle, and vice versa. This supports the observation that 
the "catch-like" effect is only present in the fast muscle, and that this cliaracteristic has been 
lost in the slow muscle. 

The results are equivalent to those described in (Kwende et al. 1995) for experiments 
with real muscles. This confirms that the muscle models describe non-linear effects due to 
stimulation with irregulax pulse trains correctly. 

6.3 Constant- Frequency Train Method 

In the method described in this section, short constant frequency trains with 1 to 10 impulses 

are generated for different IPIs. The FTIpP of the two muscle models for these input patterns 
are analysed. 
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Figure 6-3: Constant-frequency train method. 

6.3.2 Conclusions 

The results for the model of the fast muscle show a significant increase of the F'l'lpP for 

stimulation pulses with more than one pulse. Three areas of high FTlpP can be distinguished 

which are marked with the corresponding letters in Figure 6.3(a): 

short stimulation bursts (ýzt 3 pulses) with high stimulation frequency, 

longer bursts Nvith low stimulation frequency (fti, :: ý 50Hz), and 

C) long bursts with high stimulation frequency. 

In the results from experiments with real muscle as reported in (KNvende et al. 1995), areas 

A) and B) were also found to have high FTIpP. In area Q, however, the FTIpP decreased 

rapidly with the real muscle and approached FTIpP -- I for long burst of high frequency 

stimulation. Thus, the model fails to predict the muscle characteristics correctly for long 

stimulation patterns with constant high frequency. This Inodel deficiency was previously 
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observed when the models were analysed, cf. Section 5.4.3, in particular when the force- 
frequency curves were discussed. Note that region A) corresponds to the "catch-like" effect. 

For the model of the slow muscle, the following three areas can be distinguished in Fig- 

ure 6.4(b): 

A) The FTIpP is maximal for stimulation with a single pulse. 

B) Another maximum of the FTIpP can be observed for pulse trains of different length with 
low stimulation frequency (fti,,, ,: t: 1OHz). 

C) The FTIpP decreases when the stimulation frequency is increased and the pulse trains 
become longer. 

Similar results were reported in (Kwende et at. 1995) for experiments with the real muscle. 
Thus, the model of the slow muscle predicts the characteristics of the real muscle correctly 
for stimulation patterns of different frequencies with up to 10 impulses. The fact that short 
impulse bursts with high stimulation frequencies do not lead to an increase of the FTIpP 

compared to stimulation with a single pulse indicates again that the "catch-like! ' effect is not 

present in this muscle. 

6.4 Iterative Generation of Optimal Stimulation Patterns 

In this section, an iterative method will be described which allows for a constructive generation 

of optimal stimulation patterns which maximise the FTIpP. An approach of this type has also 
been used in (Karu et al. 1995) and (Zajac and Young 1980). 

6.4.1 Experimental Setup and Results 

In the iterative method for generating optimal stimulation patterns, the model of the muscle 
is subjected to a growing number of impulses. Whenever a new impulse is added, its IPI to 

the previous pulse is optimised such that the FTIpP is maximal. 
The algorithm can be described as follows: 

1. The response to a single pulse (the twitch response) is recorded. 

2. Pulse trains consisting of two pulses are applied. The IPI varies between 2 and 100ms 

in steps of lms. The pulse train which maximises the FTIpP is selected and the IPI 

between the first and second pulse is fixed to the corresponding optimal value IPII*, 2' 

3. Pulse trains with three pulses axe applied where the IPI between the first and second 

pulse is fixed to the optimal value IPII, 2 obtained in the previous step, and the distance 

between the second and third pulse is varied as in step 2. The IPI which maximises the 

FTIpP is selected as the optimal value, P, 2*, 3, 
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4. Further pulses are iteratively added to the stimulation pattern as in step 3. 

The results obtained with Local Model Networks for up to five impulses are shown in 
Figure 6.4 for the models of the fast muscle and of the slow muscle. 

6.4.2 Conclusions 

The results show that for the model of the fast muscle the FTIpP increases when few pulses 

are added at a very short IPI, cf. Figure 6.4(a). The optimal IPI for the 4th and 5th input is, 

however, relatively laxge. This indicates that a very short IPI is only useful at the beginning of 
the stimulation. As stimulation continues, the pulse frequency should be decreased to obtain 
the maximal FTIpP. 

For the model of the slow muscle, the maximal FTIpP is obtained for the twitch response, 

cf. Figure 6.4(b). The FTIpP decreases as further pulses are added. Thus, the maximal 

normalised FTIpP is equal to one, and can only be reached for very long IPIs for which the 

responses to the inputs pulses are well separated. 
In (Kwende et al. 1995), the same technique was used with the real muscles. The res- 

ults reported there are very similar to those obtained here with the muscle models. Thus, 

the models developed can be used with this iterative algorithm to constructively generate 

optimal stimulation patterns and to analyse their properties without the need for expensive 

experiments on real muscle. 
The fact that the optimal stimulation pattern found for the fast muscle has pulse patterns 

of varying IPI shows that changing the stimulation frequency during a given contraction is 

essential to obtain the maximal force-time integral. Thus, stimulation with constant frequency 

pulse trains is not optimal for this muscle. 
The iterative algorithm described is only aimed at maximising the force-time integral. 

It cannot account for a desired muscle contraction which should be obtained by delivering 

the minimum number of pulses possible. It is also computationally very expensive, as it 

is essentially a "trial and error" strategy where all possible IPIs are investigated before the 

optimal one is selected. 
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Figure 6.4: Iterative method: o denotes 2 pulses, x3 pulses, o4 pulses and + stands for 5 pulses. 
Responses to a single pulse are shown as *- The short vertical bars denote the optimal 
values of the IPI which are selected for the pulse train. In each subfigure, the top plot 
shows the maximal force produced, the force-time integral is depicted in the middle 
plot, and the bottom plot shows the normalised force-time integral per pulse. 
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6.5 Non-linear Control 

In this section, a more constructive algorithm for generating optimal stimulation patterns 
is introduced which is based on a simulated non-linear closed-loop control structure. Local 
Controller Networks, as introduced in Chapter 3, are used as controllers. The objective is to 

generate optimal stimulation patterns (in the sense of equation (6.4)) which are specific for a 
desired contraction. 

In many FES applications a direct measurement of the muscle output is not available 

as sensors cannot be placed at the muscle actuator. This is, for example, the case in the 

application of SMVs for caxdiac assistance, cf. Section 1.1. In the control structure shown 
in Figure 1.1 on page 2, only the outer control loop (Controller 1) has access to feedback 

information from the flow and pressure sensors. The inner Controller 2 is an open-loop 

controller as direct output information from the SMV is not available. For this reason, we 

aim to develop an algorithm for the generation of stimulation patterns which does not require 
feedback information from the muscle. 

6.5.1 Concept 

A straightforward technique for generating input patterns for the muscle to perform a desired 

contraction is to use an inverse model of the plant. The inverse model generates a continuous 

control signal u,,,,, t based on the reference signal r. In order for the control signal to be used 

as a stimulation pattern for the muscle, it needs to be transformed to a pattern of impulses 

Upulse using some pulse shaping algorithm. The stimulation pattern obtained is applied to the 

muscle in order to let it perform the desired contraction. This setup, which is an open-loop 

control structure, is shown in Figure 6.5. 

Figure 6.5: Generation of stimulation patterns with an open-loop control structure based on an 
inverse model. 

In order to obtain an inverse model, the plant itself must be invertible which is not 

always the case. For electrically stimulated muscle, it is known that the same contraction 

can be obtained by applying different input patternsl. Thus, muscle performs a many-to- 

one mapping from the input space to the output space. A unique inverse model therefore 

does not exist. This observation is supported by the results obtained in Section 5.4 for the 

'In fact, the objective of this section is to find an algorithm to select from the various possible input patterns 
the one which is optimal in the sense of equation (6.4). , 
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selection of the scheduling variable for LMN model structures. There it was found that the 

pre-processed input needs to be included in the scheduling vector to obtain a model structure 
which is suitable for the fast and for the slow muscle. As we discussed in Section 2.2.4, 

this implies that the model performs a many-to-one mapping from the input to the output. 
Thus, the obtained LMN model cannot be inverted as a unique inverse does not exist. The 

open-loop structure cannot therefore be used to generate stimulation patterns with the LMN 

models available. However, it should be noted that the structure shown in Figure 6.5 has the 

advantage that no feedback information of the muscle output is necessary. 
The open-loop control setup can be extended to a closed-loop control structure where the 

controller is based on a forward model of the muscle and which provides additional degrees of 
freedom when designing the controller to ensure that the generated stimulation patterns are 
optimal. A possible setup is shown in Figure 6.6(a). 
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(a) Closed-loop control with feedback from the real muscle. 

----------------------------------------- 
Ucont Pre- UP Ise Controller 01111- Muscle 

processing 

-fb Muscle y 
Model 

---------------------------------------- 
(b) Open-loop control with a controller based on simulated closed-loop control with a 
feedback signal estimated by a model of the muscle. The dashed line denotes the elements 
of the open-loop controller as seen by the muscle. 

Figure 6.6: Control structures for the generation of stimulation patterns. 

The control loop consists of the controller which generates the control signal based on 

the command signal r and a feedback signal yfb. As described above, the continuous control 

signal u,,,. t is transformed to a pulse pattern Upulse which is applied to the muscle. As the pre- 

processing of the control signal is now part of the closed loop, non-linear effects introduced by 

it can be rejected by the controller. The control activity is defined by the controller design. 
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For example, the controller can be designed in such a way that the control signal changes 

rapidly, or the design can be aimed at obtaining a smoothly varying control signal. Thus, the 

properties of the stimulation patterns can be influenced by the design of the controller. 
The main disadvantage of this structure is that it requires the feedback signal V fb which 

is normally a measurement of the muscle output, y. As outlined earlier we assume that 

such a feedback signal is not available. The closed-loop controller can be modified in such a 

way that the feedback signal is estimated by a model of the muscle. This setup is shown in 
Figure 6.6(b). The control-loop now consists of the controller, the pre-processing and, instead 

of the real muscle, a model of the plant. The controller can be an LCN which is designed 

based on the LMN model of the muscle. By using a model of the muscle in the control loop, 

we are able to exploit the extra freedom gained by closed-loop control and to take account of 
the effects introduced by the pre-processing of the control signal without the need for sensor 
information of the output of the real muscle. An advantage from the controller design point 

of view is that the feedback signal does not necessarily have to be the output of the model. 
It can, for instance, be the entire state vector of the model, avoiding the need for a state 

estimator. 
For the plant, the structure shown in Figure 6.6(b) represents an open-loop controller 

which consists of the loop formed by the controller, the pre-processing and the muscle model. 
Note that, unlike for the linear case, the simulated closed loop cannot be simply replaced by 

a single forward controller, owing to the non-lineaxities in this loop. 

6.5.2 Pre-processing of the Control Signal 

When using controller techniques as shown in Figure 6.5 and 6.6 in the muscle application, 

the problem arises that the control signal {ucmt(t)} given by the controller is continuous both 

in value and in time, i. e., the control signal can have any value at any sampling interval. 

For physiological reasons, the muscle can only be stimulated using impulse trains. In the 

application considered in this thesis, the muscle is stimulated with supramaximal pulses which 

implies that all pulses have the same amplitude. Thus, an algorithm has to be designed which 

transforms the continuous signal patterns {Ucont(t)} into a train of binary impulses {upu1,,, (t)}- 

The following objectives have to be taken into account: 

The energy fed into the system by the pulse signal {upuj,, (t)} needs to be related to the 
i. e., energy of the original continuous signal {u, 

NN 

Ucont (ti)Ts Upulse(ti) Ts (6.7) 

where N is the number of samples, T, denotes the sampling periodjý-and tj is the discrete 

time. 
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2. In the pulse signal, jupuj,, (t)}, a pulse must be followed by a zero signal. Otherwise, a 
large continuous signal would be transformed into a continuous series of ones. 

In order to preserve the energy of the signal, the energy since the last pulse, E, is introduced2, 

k 

E(tk, tip) =Eu,,, ýt(tj) (6.8) 
i=lp+l 

Here, tk denotes the current time instant and tip is the time when the last impulse was 
delivered. If the energy described by equation (6.8) exceeds a threshold 17, and if k> 1p + 1, 

an impulse is delivered, and tip is reset to the current time tk. To ensure that the continuous 

and the pulse signal have the same energy the threshold needs to be chosen equal to one. An 

example of a transformation of a continuous signal to a series of pulses is shown in Figure 6.7. 

continuous signal uc.,, t 

3.8 

D. 6 

DA 

D. 2 

1% 
0 zu 4U bu bu IOU 120 140 160 150 200 

pulse signal upulse 

r 
0 20 40 60 so 100 120 140 160 180 200 

samples 

Figure 6.7: Pre-processing of the continuous control signal to obtain a pulse train. 

6.5.3 Controller Design and Results 

Based on the results obtained in Chapter 5, Local Model Networks in state space notation with 

common eigenvectors will be used as the model of the muscle in the control structure shown in 

Figure 6.6(b). Thus, it is straightforward to use the concept of Local Controller Networks as 

introduced in Chapter 3 for the controller. The suitability of LCNs to control the fast muscle 

was shown in (Gollee and Hunt 1997). The approach described there is, however, based 

on LMNs in input-output notation, and the controller designed is not particularly aimed at 

generating optimal stimulation patterns. 
2 Note, that the sampling period T. has been dropped for convenience. 
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As the muscle model is in state-space form, we choose to work with a state-feedback 
controller. Aspects of this control structure and the controller design were introduced in 
Sections 3.3 and C. 2. Note that a state estimator is not needed in the setup used here as the 
full state is available from the muscle model. 

The complete plant in the closed-loop consists of the LMN as the design model, augmented 
by the pre-processing algorithm which transforms the continuous control signal into a series of 

pulses. Rom the controller design point of view, the effects introduced by the pre-processing 

will be treated as modelling uncertainties. Integral action will therefore be included in the 

controller to enhance robustness, in paxticulax to ensure zero steady state error. The resulting 

control structure which is adapted from Figure 6.6(b), is shown in Figure 6.8. The structure 

of the local controllers of the LCN is depicted in Figure C. 3 on page 139. 

r (t) 

Figure 6.8: Closed-loop state-feedback control structure for the generation of optimal stimulation 
patterns. The muscle is modelled by an LIVIN, the controller has the form of an LCN. 

We use pole-placement to design the local controllers of the LCN. The time-domain para- 

meters rise-time t, and the damping factor ý are selected to define a desired dominant pair 

of closed-loop poles, P1/2. The control paxameters are calculated as described in Section 3.3. 

Owing to the integral action, the closed loop has the order n+1, where n is the order of 

the plant, cf. equation (C. 27) on page 138. With a second order plant, we obtain a closed 
loop with an extra pole, P3, in addition to the pair of poles PI/2 defined above. To retain the 

dominance of the pole pair, the extra pole needs to be faster than PI/2. Thus, we choose to 

set P3 = -1.91T., where T. is the sampling period. 

Design objectives 

The overall goal is to generate optimal stimulation patterns which make the muscle perform 

a desired action given by the command signal r(t). Thus, one design objective is to make, 

the model output g(t) follow the command signal r(t), i. e., to minimise the control error 
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ec(t) = 0(t) - r(t). The second objective is to make the pulse command signal up,, I,, (t) 

an optimal stimulation pattern in the sense of equation (6.4). The different properties of 
optimal stimulation patterns for the fast and for the slow muscle have been investigated in 

the Sections 6.2 to 6.4. These results will be considered for the controller design. 
Owing to the fact that we are working with a model of the muscle, no measurement noise 

can enter the closed loop. Thus, the controller design does not need to be robust with respect 
to such disturbances. 

The effects introduced by the pre-processing of the control signal need to be accounted 
for. This is ensured by including integral action in the controller. 

The results are evaluated with the design model as both the muscle model and the muscle 
itself in Figure 6.6 (b) - 

Fast Muscle 

We choose to work with the optimal LMN with local models in state space notation with 

real eigensystems and common eigenvectors (see Table 5.2 on page 78) as the design plant. 
The damping factor is chosen to be ý=1.2, i. e. the closed-loop response should have no 

overshoot. The rise time is selected individually for each operating regime. The values shown 
in Table 6.1 were found to be optimal with respect to the design objectives. 

# unit 1 2 -3 4 5 6 

t'Ims] 100 30 30 10 20 30 

Pi -57.9 -180.2 -180.2 -449.1 -257.8 -180.2 
P2 -17.0 -55.6 -55.6 -157.8 -82.3 -55.6 

K: ý,, 83.0 3.3 9.1 28.2 9.0 11.7 
Kx, 2 -5.8 -1.7 -2.0 -1.9 -1.1 -0.3 
Ki 2340 680.5 597.7 250.1 517.2 599.5 

Table 6.1: Fast muscle: closed-loop rise times for the LCN design, dominant closed-loop poles and 
state feedback gains. 

The control results for step-like command signals of different amplitude are shown in 

Figure 6.9. 

Slow Muscle 

In a first approach, the optimal LMN with local models in state space notation with real 

eigensystems and common eigenvectors (see Table 5.2 on page 78) was used as the design plant. 

However, the performance of the resulting controller was not satisfactory. Analysis shows that 

the gains of some of the local models of the design plant are negative, cf. Figure 5.27(b) on 
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Figure 6.9: Generation of optimal stimulation patterns by non-linear control, fast muscle model. 

page 82. A controller designed with this LMN can get into a state where it switches between 

the controller associated with a local model with positive gain and a neighbouring controller 
which is associated with a local model with negative gain. The resulting characteristics of the 

closed loop are therefore not satisfactory. 
Thus, the controller design needs to be based on a LMN with local models which do not 

have negative gains. The gain of the overall muscle system is obviously non-negative for all 
operating conditions. Thus, the gains of the local models can only become negative when the 
local offset terms are non-zero. By fixing the offset terms dYj}Yj to zero, an LMN can be 

identified for the slow muscle where the gains of all local models are non-negative. The results 

of a static analysis of such a model with 5 units, together with the training and test errors, 

are shown in Figure 6.10. Although the training and test errors of this model are larger than 

the errors for a model with non-zero offset terms, cf. Table 5.2 on page 78, the performance 

on experimental data is similax to the simulation results shown in Figure 5.25 on page 80. 

When this LMN is used as the design model for the controller, the resulting closed-loop 
behaviour is satisfactory. As before, the damping factor is chosen to be ý=1.2, i. e. the 

closed-loop response should have no overshoot. The rise time is selected individually for each 

operating regime. Good results could be obtained when the values were equally spaced in the 
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Figure 6.10: Analysis of the LMN (state space notation with real eigensystems and common eigen- 
vectors) with no offset terms for the slow muscle. Training MSSE = 0.36 x 10-3, Test 
MSSE = 0.48 x 10-3. The top plot shows the activations of the validity functions, 
pi. in the middle plot the steady state gain, G, of the interpolated model is depicted. 
In the bottom plot the values of the two poles of the interpolated model are shown. 

interval [30 ... 200]ms. The individual values axe shown in Table 6.2. 

The control results for step-like command signals of different amplitude axe shown in 

Figure 6.11. For compaxison, the response to the generated stimulation patterns of the LMN 

with offset terms is included in this figure. 

Note that the outputs of the design model (which is used in the closed loop) and of the 

LMN with offset terms (which was used in place of the real muscle outside the loop, cf. 
Figure 6.6(b)) are very similar. 

6.5.4 Conclusions 

For both muscles, the output of the model follows the command signal, i. e., the average 

steady state control error becomes zero. The chaxacteristics of the responses axe consistent 

for command signals of different amplitude. 
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# unit 1 2 3 4 -5ý 

tr[msl 30 72.5 115 157.5 200 

Pi -180.2 -79.0 -50.5 -37.2 -29.4 
P2 -55.6 -23.4 -14.8 -10.8 -8.6 

K,, j 10.3 13.3 5.8 3.2 3.5 
Kx, 2 1.4 1.1 1.0 1.0 1.4 
Ki 608.6 267.2 106.4 59.2 73.4 

Table 6.2: Slow muscle: closed-loop rise times for the LCN design, dominant closed-loop poles 
and state feedback gains. 
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Figure 6.11: Generation of optimal stimulation patterns by non-linear control, slow muscle model. 

For the fast muscle, three phases can be distinguished in the generated stimulation pat- 

terns: 

a) The pattern staxts with two or three closely spaced impulses ("doublets" or "triplets"). 

b) This is followed by a short period without stimulation. 

c) After that, the pattern consists of relatively evenly spaced pulses, i. e., the stimulation 

frequency is almost constant. 
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Phase a) is not present for a small command signal (e. g., r=0.15 in Figure 6.9), where 

a single pulse suffices to achieve the desired contraction. For larger command signals, the 
initial doublet or triplet (Phase a)) causes the plant to rapidly reach the desired output. 
After a stimulation pause (Phase b)), the contraction is retained by stimulation with constant 
frequency (Phase c)). 

The stimulation pause in Phase b) indicates that the controller aims at maintaining the 
desired contraction by delivering the minimal number of pulses. It causes, however, the plant 

output to drop below the desired value before the following constant frequency stimulation 

ensures that the output recovers in Phase c). If this drop is not desired, it can be avoided 
by selecting the controller design parameters differently. The generated stimulation patterns 

will then contain more pulses and may therefore only be sub-optimal. 
For the slow muscle, the stimulation pulses are almost evenly spaced for a constant com- 

mand signal. Only the initial IPI is smaller than the following IPIs; it is, however, significantly 
larger than the IPIs in Phase a) for the fast muscle and therefore does not represent a "doublet". 

The characteristics of the stimulation patterns which were generated by the technique 
described in this section are similar to the properties of the optimal stimulation patterns 

obtained in Sections 6.2 to 6.4. Although equation (6.4) was not formally minimised over the 

set of all possible control design paxameters, it can be concluded that the non-linear control 

approach is suitable for the generation of stimulation patterns specific for a desired contraction 

which have properties similar to those of optimal stimulation patterns. 
The control approach employs a simulated closed-loop controller as part of a feedforward 

control technique. By using a simulated closed-loop which consists of the non-lineax controller, 
the pre-processing of the control signal and a non-linear model of the plant no inverse of the 

muscle model is required. The dynamic properties of the controller can be defined by an 

appropriate selection of the closed-loop dynamics, and the non-linear influence of the pre- 

processing can be taken account of. Note that disturbances and modelling uncertainties 

cannot be rejected by this control approach as no feedback signal from the muscle is used. 
Compared to the iterative method introduced in Section 6.4, this technique has the advant- 

age that it is not computationally expensive: after the controller parameters are calculated 
(which is done off-line), the simulation of the closed-loop involves only the computation of 

the Local Model Network, augmented by the integrator, the state-feedback gain vector and 

the pre-processing algorithm. Thus, this technique is suitable for real-time applications with 

implantable micro-controllers. 
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Future, Work 

In this thesis, a novel approach to the modelling of electrically stimulated muscle under 
isometric conditions was developed. The modelling technique is empirical, and the structure 

of the model is controller orientated. It was shown how the design of muscle stimulation 

controllers can be based on the model structure presented. 

7.1 Local Modelling and Control 

The modelling and control techniques introduced in this work are based on a "divide and 

conquer" strategy. In the modelling approach, the operating space is decomposed into smaller 

sub-regions which are then described by local models of simple, possibly lineax structure. The 

local models axe blended together by a scheduler, and the resulting non-linear model is called 

a Local Model Network (LMN). The approach was put into context with similax strategies 

such as fuzzy logic, hierarchical modelling, etc. Aspects of the structure of the scheduler 

and of the local models were discussed. Local linear models in input-output and in state 

space form were considered. For the scheduler, we introduced normalised Gaussian bells and 
B-splines. 

Methods for the estimation of paxameters for dynamic systems were discussed, and para- 

meter optimisation algorithms based on one-step-ahead prediction and on model simulation 

were compared. These algorithms were used for leaxning the structure of the Local Model 

Network, and for the estimation of the paxameters of the local models. 
The analysis and validation of the non-lineax model structures were recognised as import- 

ant aspects of the modelling process. It was shown that LMNs with linear local models can 

be interpreted as linear parameter-variant systems. Aspects of the stability of this class of 

systems were discussed, and a graphical phase plane interpretation of lineax paxameter-variant 

systems with real eigensystems was presented. It was shown that stability analysis for such 

systems becomes straightforwaxd when all local models share a common set of eigenvectors. 
Static analysis of the properties of the interpolated Local Model Network can provide 

further insight into the properties of the model. It was shown how information gained by such 
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analysis can be used to validate the model analytically by relating the model characteristics 
to known properties of the real system. 

The Local Model Network approach results in a model structure which is controller ori- 

entated: linear techniques can be used to design a controller for each local linear model of 
the LMN. The local controllers can then be interpolated using the same scheduler as in the 
LMN. This approach, which was termed a Local Controller Network approach, was reviewed 
and put into context with gain scheduling methods of control. Linear controller design tech- 

niques which are based on pole-placement were introduced for LMNs with local models in 

input-output and in state space form. The design of Local Controller Networks based on 
these linear techniques was demonstrated. 

7.2 Modelling and Control of Electrically Stimulated Muscle 

The Local Model Network introduced in the first part of the thesis was applied to the mod- 

elling of the contraction of electrically stimulated muscle under isometric conditions. Data 

from experiments with two rabbit tibialis anterior muscles were used. The chaxacteristics of 
the two muscles were very different owing to the fact that one has a majority of fast motor 

units whereas the other has mainly slow motor units. The muscles were stimulated with 

supramaximal stimulation pulses, and the force of the isometric muscle contraction was re- 

corded. The muscle activation was vaxied by changing the stimulation frequency. Non-linear 

characteristics due to vaxiations of the stimulation frequency such as the "catch-like" effect 
could be observed. 

Data analysis gave first estimates for model structure parameters such as the dynamic 

order, the time delay and time constant of the system. A linear modelling approach was 

used to assess the degree of non-linearity of the system and to obtain initial guidelines for 

the selection of the non-linear model structure. Local Model Networks of different sizes and 

structures were then identified and the modelling results compared and analysed. LMNs with 
local linear models in state space form with the pre-processed input as the scheduling variable 

were found to perform best for both muscles. Using a priori knowledge about the properties 

of muscle, the local models were restricted to be real eigensystems. This restriction did not 
lead to a deterioration of the performance of the models. A further limitation to common 

eigenvectors for all local models of the network ensured that the global LMN is stable, provided 
that all local lineax models axe stable. 

A detailed analysis and validation of the models was caxried out: 

A very good match between the simulated model output and the output of the real 

muscles was found. Non-linear effects such as the "catch-like" effect (where present) 

could be approximated. Thus, the models were found to perform very well on experi- 

mental data similar to those used to identify the model parameters. 
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The force-frequency relationships were obtained for the models. They show that the 

model characteristics diverge from the properties expected in the real muscles for stim- 
ulation patterns involving long bursts of high frequency. Such data were not present in 
the experimental data. 

e Static analysis shows that the model parameters can be related to properties of real 
muscles. 

For one LMN, the analysis showed that one local model was unstable. This did not 
influence the model performance with the experimental data used to identify the model 
parameters as the unstable local model was activated for short periods of time only. 
However, the instability could be detected when the model was stimulated with an 
input pattern of a constant fiequency which activated the unstable local model. A 

method was developed to modify the unstable local model in such a way that the global 
model is stabilised without deteriorating the overall model performance. 

The modelling approach is empirical in the sense that only input-output data from the 

experiments were used to identify the model. No explicit knowledge about the physiological 
properties and characteristics of muscle was used. However, the modelling technique differs 
from a pure black-box approach in that a priori knowledge was used for the selection of 
the scheduling variable, the choice of the structure of the local models, and for the analyt- 
ical validation of the models obtained. The approach can therefore be termed a "grey-box" 
technique. 

The model structure can be implemented easily and the simulation is not computation- 
ally expensive. It is therefore suitable for real-time applications with implanted stimulation 
devices. 

It was shown how the non-linear muscle models can be used to obtain stimulation pat- 
terns which are optimal in the sense that they deliver the smallest number of pulses for a 
desired force output. Such patterns are thought to minimise muscle fatigue and to have a 

positive influence on the long term changes of the muscle properties which take place due to 

artificial stimulation. Results from experiments with real muscle were available for the first 

three methods investigated. The good match between the experimental results and the sim- 

ulation results assured in the validity of the models for a wide range of operating conditions. 
Mismatches between experiments and simulation could be observed for some operating con- 
ditions, in particular when the systems were stimulated with long burst of high stimulation 
frequency. This indicates the limitations of the models. 

A closed loop control approach was developed which can be used to obtain stimulation 

patterns specific for a desired contraction which have similar properties to optimal stimulation 

patterns. Local Controller Network structures whose design was based on the LMN models of 

the muscles were used as non-lineax controllers. The muscles were simulated by Local Model 
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Networks. This method was found to be a constructive technique to generate stimulation 
patterns for real-time application. 

7.3 Outlook 

The modelling approach presented can be extended in a number of ways: 

For stimulation with sub-maximal input pulses a model of motor unit recruitment needs 
to be added. This can be either a separate recruitment model, or an additional schedul- 
ing dimension in the Local Model Network structure. 

The approach presented here can be used to model muscle activation as part of a Hill- 

type model structure for non-isometric muscle contraction. Initial experiments with 
sudi a setup gave promising results. 

In addition to the activation model, Local Model Networks can be used in a non- 
isometric model to approximate the non-linear force-length and force-velocity char- 
acteristics. 

The experiments to collect the data need to be optimised to cover all operating regions 
of interest. This will help to avoid model mismatch for some important operating 
conditions. In particular, data obtained under conditions of constant stimulation should 
be included in the experiment design. The importance of the data collection experiments 
will increase for modelling of more general stimulation conditions. 

The non-linear control algorithm for the generation of optimal stimulation patterns requires 
experimental validation. Based on the results of these experiments the technique can be 

analysed and developed further. 
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Linearisation 

In this appendix, linearisations of non-lineax systems are introduced which are based on the 

expansion of the system into a Taylor series axound some operating point. Note that the 

operating point is not required to be an equilibrium point. For further discussion see (Hunt 

and Johansen 1997). 

A. 1 Linearisation of State Space Model 

We consider the following time-invariant non-linear system in state space form, 

i(t)ýfW090-TO); Z(O)ý220 (A. 1a) 

Y(t) = g(gz(t)) - (A. 1b) 

where f () and go are non-linear functions, f () is continuous differentiable. For simplicity we 

restrict ourselves to single-input single-output system, i. e. uER and yER are the input 

and the output of the system, respectively. The dimensionality of the state vector -x 
E Rn 

defines the dynamic order of the system, and _+(t) denotes the derivative of the state with 

respect to time, dxldt. The scalar Td ER is a time-delay, and the continuous time is denoted 

by t. 

A. 1.1 Taylor Series Expansion 

Equations (A. 1) can be linearised axound an operating point [uO, X0, y"]. The Taylor series 

expansion results in 

Lf f 
ud(t _T 

z., u. 
(t) f (el UO) + 

ex 

1.2 
d(t) + d) + h. o. t. ; z(0) = 10 (A. 2a) 

au 
x«>, uo 

y(t) = g(e) + 
ag 

zd(t) + h. o. t. (A. 2b) 
ex 

1X0 

119 



A Linearisation 

where h. o. t. denotes higher order terms which will be ignored. The deviation variables are 
defined as 

Zd(t) = Z(t) _ Zo 

id (t) = (t) _f (e, Uo) 

d(t T -T -UO u d) = U(t d) 

y d(t) 
= V(t) _ Ilo 

When introducing the constants 

A= 
Of 

E rxn; 
Ox 

I 

xO, U(p 

equation (A. 2) can be rewritten as 

ý= 
Lf 

G e; ýý = 
ag 

EW , aule, 
uo (9xizo 

id(t) = AXd(t) + ýUd(t - Td) ; 2d(0) = 20 _ X, 

y d(t) 
=gT2 

d(t) 

(A. 3) 

(A. 4) 

(A. 5a) 

(A. 5b) 

The state equation (A. 5a) can be reformulated in terms of the original variables x and u, 

A x(t) + ýu(t - Td) + [f (e, u") -A x* -b C] ; (A. 6a) l(0) = 20. 

Similarly, the output equation (A. 5b) can be rewritten in terms of the original output y, 

z(t) [v* - C, x'] . (A. 6b) 

With the offset terms 

41 = f(e, u*) -A x"-buo E R7 (A. 7a) 

dy = yo -J xo E R, (A. 7b) 

system (A. 6) becomes 

. +(t) =A x(t) + ýu(t - Td) + dx; 1(0) = 2: 0 (A. 8a) 

y (t) =j I(t) + dy . 
(A. 8b) 

The system (A. 8) is depicted in Figure (A. 1). 

A. 1.2 Linear Transfer Function 

The Laplace transformed system corresponding to (A. 8) has the form 

X(s) = (sI - A)-' 1: 0 + (sI - A)-' U(S) +! f -1) (A. 9a) 
s 

Y(s) = gT X(s) + dy (A. 9b) 
s 
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Figure Al: Linear state space description. 

For zero initial condition, equations (A. 9a) and (A-9b) can be combined to 

Y(s) =j (sl - A)-' U(s)+jf! +dyl. (A. 10) 
8) S 

We can now substitute 

gT (sI -A)-' b= ! gT Adj (sI - A) b(s) (A. 11a) det (sl - A) a(s) 

and 

gT (sI -A)-' d' = ! gT Adj (sl - A) d'(, g) (A. 11b) 
det (sI - A) a (s) 

When we introduce the transfer function (Kailath 1980) in terms of the polynomials a(s) and 
b(s), 

H(s) = 
b(9) 

(A. 12a) 
a(s) 

and combine the effects of the bias terms in D(s), 

D(s) = 
d-- (s) +a (s) dy 1 (A. 12b) 

a(s) S' 

equation (A. 10) can be rewritten as 

Y(s) H(s) U(s) + D(s) 
b(s) 

U(s) + D(s). (A. 13) 
a(s) 

When the bias terms, d' and dy, axe zero, D(s) vanishes and we obtain the classical trans- 

fer function description of a lineax state-space system. The representation (b(s), a(s)} can 
be called a polynomial (fractional) representation of the state space realisation {A, ý, g}. A 

polynomial representation of a system can have an unlimited number of state space realisa- 

tions (Kailath 1980), and the state space realisation can be regaxded as the more general 

description. (Note that transfer function and state space descriptions are not necessarily 

equivalent for linear paxameter varying systems. ) The polynomial representation (or transfer 

function) can be directly obtained from its state space realisation (A. 8a)-(A. 8b) if the system 
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is in observer canonical form (Franklin et al. 1994). The elements of the polynomials b(s) and 
a(s) axe then related to JA, ý,! g} as follows, 

-al 10... 0 bi 

A= -a2 01-*01 
b= 

b2 

I gT=[1,0.... 10] (A. 14) 

00... 0 bn 

A. 1.3 Steady State Gain and Dynamics 

To investigate the steady state value of the step response, we apply an input to the system 

which is a step with amplitude u, U(s) = ul. Equation (A. 10) becomes now, a 

Y(s) (sl - A)-' u+d: " 1+ 
dy 

1 (ý 

s3s 

Using the final value theorem for the Laplace transform, which says that provided that all 

poles of sY(s) axe in the left half-plane, 

lim y(t) = lim SY(S), t +oo $-+0 

the steady state value for (A. 15) becomes 

lim y(t, u) = y,,,, Iu = -gTA-1(ýu+e) +dy. (A. 17) 
t ý00 

Thus, the steady state gain can be defined as 

G= 
YOOJU2 - YOOJUI 

= -cTA-lb, (A. 18) 
U2 - Ul 

where U2 and ul are close in value. 
The dynamics of the system are determined by the eigenvalues of the state feedback matrix 

A, 

eigA. 

These eigenvalues axe also the poles of the characteristic polynomial, det (sl - A). 

A. 2 Linearisation of NARX Model 

We consider the general description of the input-output chaxacteristics of a non-lineax system 

as a NARX model, cf. Section 2.2.2, 

Y(tk) "": f (100) + e(tk) - 
(A. 20) 
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with the data vector 

j(tk) 
----: 

[U(tk-d)t 
... U(tk-d-nu)t Y(tk-I)i ... Y(tk-nv )IT (A. 21) 

+nl, +l E Lru+1 X Yny C R7" 

Here, tk expresses the k-th discrete time step, tk = kT, with T, as the sampling period, and 
the index d denotes the input delay, Td = dTs. 

A. 2.1 Taylor Series Expansion 

The classical approach to find a lineax model is based on the expansion of this general NARX 

description into a Taylor series axound some operating point [uO, yO]. For small deviations 

around this point higher order terms can be ignored and we obtain a linear approximation, 

Y(tk) f (f) + '* c9f 
- (U(tk-, I-j) - U*) + "' 

'OU(tk-d-j) 

luo 

yo j=o I (A. 22) n. 
af 

aY(tk-i) 
(Y(tk-i) - y") + e(tk) 

When we define the deviation variables as 

yd (tk) Y(tk) f (f) ý Y(tk) Yo 

ud (tk) U(tk) - UO 

and lpd (tk) ON) - Oo (A. 23) 

where V)o [uo, U0, yo .... yo]T 

and introduce the constants 

ai -of i=1.... ny (A. 24a) jY(tk-i) 

bj - 
Of 

-j=0.... nu (A. 24b) OU(tk-ci-j) 

luo, 

yo 
' 

equation (A. 27) can be rewritten as 

yd (tk) = -al yd (tk-1) an, yd (tk-ny) + boUd (tk-d) +---+ bn. Ud (tk-d 
nj + e(tk) - 

(A. 25) 

Introducing the parameter vector QE Rn-+n, +l 
I 

[Go) ... l9no E)n,, +li ... E)n. +n, IT 
(A. 26) 

[bo 
.... bn,,, -al, ---- an, )T' 

equation (A. 25) becomes, 

d (tk) = '0 dT (tk)Q + e(tk) - (A. 27) 
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An equivalent model expressed in terms of the absolute input-output signals u and y can be 

obtained when substituting (A. 23) in equation (A. 27). This results in 

Y(tk) = 3j(tk) fi + dy + e(tk) = jT (tk)! Eý + e(tk)t 

where the offset term dy is expressed in terms of the operating point as 
nu ny 

dy = -Ebju*-Eaiy* 
j=o i=l 

and 
VAtk) [U(tk-d)s 

... U(tk-d-nu)i Y(tk-I)i ... Y(tk-nv)s ]T 
I 

T [bo.... bnu 
t -al, any s dy] 

(A. 28) 

(A. 29) 

(A. 30a) 

(A. 30b) 

Often, it can be assumed that the number of delayed inputs corresponds to the number of 
delayed outputs, 

n=n,, +1= ny , 

which simplifies the data vector (2.18) to 

:01 
(tk) 

---: 
[U(tk-d)i 

... U(tk-d-n+l)) Vtk-lb 
... Y(tk-n )IT. (A. 32) 

a, n 

Using data vector (A. 32) the linear ARX structure is defined by only two design parameters, 

n and d. 

A. 2.2 Linear Transfer Function 

Defining the polynomials A and B in q-1 as 

A(q-1) =1+ alq-1 + ---+ an,, -ny (A. 33a) 

B(q-1) = bo+blq-'+ ... +bnq-n., (A. 33b) 

equation (A. 27) can be rewritten as a transfer function, 

A(q-1) Ud (tk) = q-" B(q-1) Ud(tk) + e(tk) - 
(A. 34) 

Here q-1 is the time shift operator, i. e. q-' Y(tk) ---' Y(tk-n)- 

Describing an ARX model in the form of a transfer function (A. 34) facilitates the analysis 

of the system, e. g. statements about its stability can be given by observing the location of 

the poles and zeros, and techniques for controller design are often based on this form. 

An equivalent model expressed in terms of the absolute input-output signals u and y can 

be obtained when applying substitutions (A. 23) to equation (A. 34). This results in 

A(q-1) Y(tk) = q-d B(q-1) U(tk) + dy + e(tk) s 
(A. 35) 

where the offset term dy is expressed in terms of the operating point as 

dy = A(l) yO - B(l) uO. (A. 36) 
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A. 2.3 Steady State Gain and Dynamics 

From equations (A. 25) and (A. 33), the steady state response of the ARX system (A. 34) to a 

step input with amplitude u can be derived as 

B(l) u+ dy lim Y(tk, U) Yoo = (A. 37) 
k-+oo 

lu A(l) 

Thus, the steady state gain can be formulated as 

YOOIU3 - Yoolul B(l) 
(A. 38) 

U2 - Ul A(l) 

where U2 and ul are close in value. 
The dynamics of the system are determined by the poles of the polynomial A(q-1). 

I 
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B Parameter Optimisation 

The objective of parameter optimisation is to find the parameter vector 0E Rn of a model 

which minimises a chosen measure of the output error. The output error is defined as 

ei(P) = yj - Pj(2), 

where 19i}iv 1 is the model output sequence, and {yi}? " 1 is the desired model response se- J= J= 
quence; N denotes the number of data points. The weighted sum of the squared output error 

will be used in the formulation of the optimisation criterion, 
N 

J(O) f [ei(2)] _f, [y, _ g, (k)]2 (B. 2) 

where -yi axe the weighting factors for each data point, and N is the number of data points. 
Criterion (B-2) depends only on the model parameter vector -0. 

Thus, the optimal parameter 

vector 0* in the sense of equation (B. 2) is the one which minimises J(Q), 

Q* = arg min J(Q) . (B. 3) 

Depending on the characteristics of the function P(Q), different techniques are available to 

minimise J(k). In Section B. 2, we will consider the case when the dependency of 0 in J(Pj 

on the paxameters 0 is lineax. In Section B. 3 we will present techniques to solve (B. 3) when 
depends on its parameter in a non-linear way. 

Before approaches for linear and non-linear parameter estimation are introduced, we will 
discuss some general aspects of parameter optimisation for dynamic systems. 

B. 1 Parameter Optimisation for Dynamic Systems 

For dynamic systems the way in which the parameter vector influences the model output can 
depend on how 9 is calculated. For discrete time dynamic model structures, two modes of 

calculating 9 can be distinguished, depending on the way the feedback information is obtained: 

Prediction model: The model predicts the new system output (or state) based on 

past outputs (or states) obtained from the real system. For a general input-output 
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model structure, the model has the form, 

Wk+0 `f (Y(ti)t tl(ti-d+l)t i :5k, tL-). (B. 4) 

This setup is illustrated in Figure B. 1(a). For the discrete time state space description, 

the relevant state equation becomes 

; Ytk+l) :, -- 
h(! (tk)) U(tk-d)) - (B. 5) 

Simulation model: The model predicts the new system output (or state) based on 
past outputs (or states) predicted by the model. In input-output form we obtain, 

9 (tk+ 1) ý-- f (9 (ti) 
iU 

(ti 
-d+ 1) 1i< 

k), tk) - 
(B. G) 

This setup is illustrated in Figure B. 1(b). The corresponding description for the discrete 

state space model has the form 

INA = h(IN)i U(tk-d)) - (B. 7) 

u 
Model Model 

(a) Prediction model. (b) Simulation model. 

Figure BA: Calculation of the model output for input-output structures. u is the input, ý denotes 
the model output and y is the output obtained from the real system. T. denotes a 
delay of one sampling interval. 

The prediction model uses a one-step ahead prediction, whereas the simulation model works 

with an infinite prediction horizon. Intermediate setups which use n-step ahead prediction 

are possible. With respect to the identification of the parameters they are equivalent to the 

simulation model. Thus, we restrict our discussion to prediction and simulation models. 
In order to use the prediction model mode with state space descriptions, the entire state 

of the real system must be available. This often restricts the use of this mode to input-output 

models, where measured past outputs axe readily available. However, the correct choice of 
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the sampling period becomes crucial, as this mode will fail to represent important system 
dynamics when the sampling period is very short. The model then learns just to propagate 

the past measured value as the new prediction. For example, for the input-output structure, 

a model which just propagates the past measured output as the model predicted output, 
g(ti+1) = y(ti), can give a very small prediction error, as y(ti+l) ; ý-. y(ti) for ti+l - ti very 

small. 
The simulation model approach is less sensitive to the choice of the sampling period. It 

has the further advantage that for the state space model structure, no measurements of the 

states axe necessary. Parameter optimisation with this mode is, however, often much more 

complex and expensive than with the prediction model. 
In order to compare the performance of different models easily, a single measurement of 

the error is needed. Based on the optimisation criterion (B. 2), the mean squared error (MSE) 

can be formulated' 

1N 
MSE E[y(ti) 

- P(ti)]' (B. 8) 
i=l 

where N denotes the number of data points, y is the desired output and ^ is the model output. y 
The advantage of the MSE compared to the sum of squared errors is that it can be compared 
for different numbers of data points. To distinguish the way in which the model output was 

obtained, the result of equation (B-8) will be called mean squared prediction error (MSPE) if 

p is the result of a prediction model, equations (B. 4) and (B. 5), or mean squared simulation 

error (MSSE) if the model output was obtained from a simulation model, equations (B. 6) 

and (B. 7). 
Aspects of paxameter identification with prediction and with simulation mode are illus- 

trated in Example E. 4.2 on page 152. 

B. 2 Linear Least Squares Optimisation 

In this section we consider 9 to be a lineax function with respect to its parameters, 2, 

To, 
yi = 0. !. -t - (B. 9) 

with iP Er as the input vector. 
We aim to solve equation (B. 3), i. e. to find the global minimum of the function (B. 2). A 

necessary condition for this is that its derivative with respect to the parameter vector vanishes, 
N 

=0=2E-yio. [yi- OTT] (B. 10) 00 
i=l 

'Note that in a strict statistical notation, equation (B. 8) denotes the average squared error which converges 
to the mean squared error for N -+ oo. According to the notation common in the literature, we will, 
however, use the term mean. 
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or, 

yi - 
Equation (B. 11) can be rewritten in terms of matrices and vectors as 

[%pT %py] qT 
7 'Y 

(B. 12) 

where 

[ý, f'Tyl-llll... 
I *vf'-YN YN]T RN 

T, 

E exn 

Vr7Y-N 
i rN 

(B. 13) 

The optimal parameter vector can now be calculated as 

(B. 14) 

where the matrix %P, +, E RnXN denotes the Moore-Penrose pseudo inverse of %P.,. It can be 

calculated as 

qT 
ly (B. 15) 

The direct computation of the pseudo inverse using the above equation is problematic when 
[qjTqj, y] is ill-composed. A robust way to calculate the pseudo inverse which avoids taking ly 
the inverse of the matrix [%pT%py] is to use Singular Value Decomposition (Press et al. 1992). ly 

B. 3 Non-linear Least Squares Optimisation 

A standard algorithm to solve (B. 3) for non-linear systems is the Levenberg-Marquardt 

method (Marquardt 1963). It is an elegant way of switching smoothly between the (ro- 

bust, but slow) steepest descent method and the (fast, but sensitive) Newton-Raphson al- 

gorithm (Unbehauen and Rao 1987). Gradient information from the Jacobian and the Hessian 

of (B. 2) is used. The implementation presented here is adapted from (Press et at. 1992). 

NVe first introduce the Jacobian and the Hessian of (B. 2). NVe then discuss the Newton- 

Raphson algorithm, and finally present the Levenberg-Tviarquardt method. 
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B. 3.1 Jacobian and Hessian 

One way to find a minimum of (B. 2) is to expand the non-linear function J(Q) into a Taylor 

series around some nominal parameter vector _0', 
ignore higher order terms, and minimise the 

approximation of the original function. 

The Taylor series expansion of equation (B. 2) around the nominal parameter vector 0E 

R" has the form 
n1nn 

192 j0 
J(2) = J(20) +E Ili I 

(Ok - Oko) +- 0") + h. o. t. . 
(Ok - OA; ) (01 

k=1 
ýýOk 

k=1 1=1 

When the higher order terms, which are denoted as h. o. t., are ignored, equation (B. 16) can 
be approximated as a quadratic equation, 

lT 
J(2); ý-, c+dAO+jAO DAO, (B. 17) 

where 
9j 

AO -= 0- 0* (B. 18) d =- VJIE,, Dk, l =- 
t 

80001 

The gradient vector d is the Jacobian, and the matrix D denotes the Hessian of (B. 2). 

Calculation of the Jacobian and the Hessian 

Considering J in the form given by equation (B. 2). The gradient vector, 4, then has the 

components 

yj ej k=1... n. (B. 19) dk = -2E 00k 
i=1 

The Hessian matrix, D, can be obtained by taking an additional partial derivative, 
N api(a) '99i (a) 

- ei(M 
a2 00) 

t k'l =1... n. (B. 20) Dk, l= 2E-yi [ 190k 001 00100k 
i=1 

Usually, it is assumed that the second derivative term in (B. 20) can be ignored (Press et 

al. 1992), and the Hessian can be approximated by 

Dk, I ý: -- -5kj =2 'Yi '99i (a) api(a) 
I 

k, l =I... n. (B. 21) 
[ 

00k 001 

1 

To rewrite equations (B. 19) and (B. 21) in matrix form, we define a few vectors and 

matrices, 

t(2) = [el(2) IeN (2)IT 

G= diag (-ti W) 
Ü(e) Z-: [91(e» 

IÜN 
g]T 

VD(Q)lr = ... 9 
VÜN (Q) Ir]T 

E RNxN 

E R! v 

E Rlvxn (B. 22) 
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The gradient vector (B. 19) becomes now 

4= -2 
[Vp(g)lr]T Ge, (B. 23) 

and the simplified Hessian matrix (B. 21) can be rewritten as 

D=2 [Vk(g)lr]T GVD(2)lr. (B. 24) 

B. 3.2 Finding the Minimum 

Newton-Raphson method 

The minimum of function (B. 17) can be determined by setting its first derivative equal to 

zero, 
aj(ý) =O=d+DAO. (B. 25) 

Thus, the optimal parameter vector could be found in one step, considering the initial para- 

meter set 00, as 

0* = Q'- D-ld. (B. 26) 

For linear functions J, equation (B. 26) describes the global minimum. For non-linear func- 

tions, however, the approximation in equation (B. 17) is only valid for limited (typically small) 

values of (2 - 2*). Taking the full step towards the optimum in equation (B. 26) may take us 

out of the region where the approximation is valid. It is then better to take only a small step 
in the direction given by (B. 26), and to repeat this procedure iteratively. 

Replacing the gradient vector by (13.23), and approximating the Hessian by (B. 24) in 

equation (B. 26), and introducing a small positive step size h results in the Newton-Raphson 

algorithm (Unbehauen and Rao 1987), where the parameter vector is iteratively updated as 
follows) 

h 15-1 d 

=L+h 
[Vve)li IT GVý(O)lb 

1-1 [VýY(g)jb ]T Ge&). (13.27) f 

-mj -mm 

For each iteration, the model of the system must be simulated to evaluate the cost func- 

tion (B. 2) and to estimate the sensitivity function in (B. 23) and (B. 24) which is 

calculated for each paxameter using finite differences. 

For linear systems, the Newton-Raphson algorithm always converges to the optimal para- 

meter vector 0*. For non-lineax systems, the convergence of this iterative process depends on 

the degree of non-linea-rity of the system. For many non-linear systems the straightforward 

Newton-Raphson algorithm overshoots and tends to become unstable. Various modifications 

exist which try to eliminate this problem, see (Beck and Arnold 1977) for examples. The 
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basic problem is, however, that the Newton-Raphson algorithm depends on the approxim- 

ation (B. 17) which might be only valid near the optimum. The problem remains that this 

algorithm can perform poorly far away from the region where (B. 17) holds. 

Levenberg-Marquardt Method 

The Levenberg-Marquardt method (Marquardt 1963) provides an elegant technique to over- 

come the problems encountered with the Newton-Raphson algorithm by switching smoothly 
between the steepest descent method and Newton-Raphson. 

The steepest descent method is an optimisation technique which is robust even when (B. 17) 

is a very poor local approximation, as it follows the gradient, 

h. (B. 28) 

where the constant h, is small enough to exhaust the downhill direction. The steepest descent 

method does not converge very fast, especially close to the optimum. This can make it 

computational very expensive if it is used exclusively to minimise the criterion (B. 2). 

Smooth switching between the steepest descent method (B. 28) and Newton-Raphson (B. 26) 

is a way to combine the advantages of both techniques. It can be achieved by multiplying the 

diagonal elements of the Hessian matrix D by a positive factor (1 + A), 

I'l =I 
(1+, X)i)k, i for k=l 

k, l =1... n (B. 29) 
Dk, l for k 54 1 

This modified Hessian is now used to update the parameter vector, 

d. (B. 30) 

For small values of A, this is equivalent to equation (B. 27) with a step size of h=1. For 

large A, the matrix D' is diagonally dominant, and equation (B. 30) becomes equivalent to 

the steepest descent method (B. 28). 

The factor A is adapted in the following way: 

If J(2,,, +, ) ý: J(, O) then the new parameter vector is rejected, and A is increased by a 
factor of 10 (i. e., the optimisation behaves more like steepest descent). 

e If J(2,,, +, ) < J(2,,, ) then the new parameter vector is accepted, and A is decreased by 

a factor of 10 (i. e., the optimisation behaves more like Newton-Raphson). 

The Levenberg-Marquardt method is a standard tool for non-linear parameter optimisa- 

tion, and it was found to perform very robust for the parameter optimisations carried out in 

this work. 
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In this appendix linear controller design techniques are introduced. These techniques can be 

used for the design of local controllers in LCN structures, cf. Chapter 3. 
We will first discuss the design of a linear controller based on a model in input-output 

notation. In Section C. 2, a controller design technique which is based on a linear model in 

state space form is introduced. 

C. 1 Design based on Input-Output Models 

We consider the linear plant in discrete-time' (shift operator) transfer function form as de- 

scribed by equation (A. 35) on page 124, 

A(q-l)y(t) = q-dB(q-')u(t) + dy + e(t) , (C. 1) 

where A and B axe polynomials of degree n in q-1, dy is a constant offset and e(t) denotes a 

white noise term. This description can be reformulated in q by multiplying (C. 1) with qn+d 
whicli results in 

A'(q)y(t) = B'(q)u(t) + qn+ddy + qn+d e(t). (C. 2) 

Here A' and B' are polynomials of degree n+d in 
Given a measurement of the plant output y(t) and some command signal r(t), the dynamic 

properties of the control loop can be determined by the feedback component u(t). A general 
two-degrees-of-freedom structure can be defined as, 

1 [S(q)r(t) - G(q)y(t)] (C. 3) u (t) F(-q) 

where the polynomials G, H and S have the forms 

G(q) =goq'. 9+glqn. 9-1+ ... +gng, (C. 4a) 

H(q) = nh + hlqnh-l+. .. + hnh I 
(C. 4b) 

S(q) = soqn, + , qn. - 1+ 
---+ Sn. i 

(C. 4c) 

'Note that t denotes the discrete time throughout this section as we drop the index k for convenience. 
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and these are to be determined in the control design. 
Owing to the offset term dy, the plant described by equation (C. 2) does not have the form 

required by most linear design techniques. Thus, the offset has to be explicitly taken account 
of by the control strategy. A possible approach is to include integral action in the controller. 
The controller polynomials are now restricted to include an integral component, 

G(q) =q G'(q) (C. 5a) 

H(q) = (q - 1) H(q) (C. 5b) 

S(q) =q S'(q) (C. 5c) 

Integral action can also be desirable to compensate for a mismatch between the real plant and 
the model used for the controller design, and to enhance controller robustness. The overall 
control structure is shown in Figure C. 1. 

q 
r(t) S'(q) 

H'(q) q-1 

------------------------------- dy e(t) 

Al(l) q 

: U(t) 
B'(q) 
Al(q) 

----------------------------- 

G'(q) 

.............................................................. 

y(t) 

Figure CA: Closed-loop control with integral action: single linear transfer function model. The 
dashed line marks the plant, the controller components are surrounded by the dotted 
line. 

C. 1.1 Pole-placement Design 

An approximate way to meet control specifications is to aim for a dominant pair of poles for 

the transfer function of the closed loop from r to y. The specification consists of a desired 

nominal rise time, tr, and a damping factor, C, for which the corresponding pair of poles can 
be directly set using standaxd time-domain formulae, see for instance (Franklin et al. 1994). 

Combining equations (C. 2)-(C. 4) and compensating for the offset dy by (C. 5), the closed 
loop chaxacteristic polynomial can be easily found to be A'H + B'G. For a given desired 

closed loop chaxacteristic Ad = A,, A,,, the following equation is solved, 

A'(q)H(q) + B'(q)G(q) = Aý(q)Ajq) - 
(C. 6) 
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Here, A,, corresponds to a desired observer polynomial and A,, to the remaining desired closed 
loop poles which will be assigned to the dominant poles. The observer poles need to be faster 

than the poles of A,,, to obtain a dominant pair of poles. We choose to work with a dead-beat 

observer, i. e., the observer poles are set as fast as possible, A,, = qn, t-2. 
In order to solve equation (C. 6) for a given An(q) of degree 2, the degree of the closed loop, 

n,,, has to be equal to 2np - 1, where np is the degree of the system's denominator 2. Hence, 

the degree of the controller polynomials must be chosen as np - 1, i. e. nh = ng = nj = np - 1. 

Note that, if integral action is included, the integrator is considered to be part of the plant 
for the design, i. e. np =n+d+1, and nh, n, and ng refer to the degrees of the polynomials 
H', S' and G', respectively. Without integral action, the degree of the system's denominator 

is nP =n+d. 
The S polynomial in equation (C. 3) is chosen to achieve a desired servo response, in 

particular zero steady state error, 

A, j (1) 
n, S(q) 

B'(1) q 

C. 2 State-space Design 

(C. 7) 

We now consider a linear plant in state-space notation as described by equation (A. 8) on 

page 120, 

. +(t) =A x(t) + ýu(t - Td) + (C. 8a) 

y(t) =j 1(t) + dy. (C. 8b) 

We choose to work with a description of the system in the continuous time domain for this 

section. The results obtained can be easily adapted for discrete time shift and delta operator 

notations by replacing the time derivative by the appropriate operator, cf. Appendix D. For 

simplicity, we further assume that the system has no input delay, Td = 0. Extension to 

systems with input delay is straightforward when working in shift operator notation and was 
discussed in the previous section for controller design with input-output models. 

A closed-loop control structure which is based on a state-space notation is shown in 

Figure C. 2. The control law uses full state-feedback via the controller gain -K 
If only the output of the plant is available, an estimator is used to reconstruct the state 

using input-output data from the plant. If the full state of the plant is available, the estimator 
is not needed, and the real state x will be fed back instead of the estimate 1. 

We will first introduce a design method for the control law, assuming that the full state -x 
is available. Then, design aspects of the estimator will be discussed. 

2 Note that due to the input delay d the degree of the system's denominator will generally be larger than the 

order n of the system. 
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---------------------- 
d e(t) 

....................................................... 

U(t) 
r(t) -ýO- N -0-- Plant' 

--------------------- ................................... 

gt) 
-4- Estimator ad! 

......................................................................................... 

Y(t) 

Figure C. 2: Linear state feedback control with state estimator. The dashed line marks the plant, 
the controller components are surrounded by the dotted line. 

C. 2.1 State-Feedback Controller Design 

Given a measurement of the full state of the plant x(t) E Rn, knowledge of the offset terms 
d' and dy, and some command signal r(t), a general state feedback controller can be defined 

to consists of a feedforward control uff (t) and a feedback control u1b, 

Uff (t) + Ufb (t) . 
(C. 9) 

The feedforward component compensates the effect of the constant offset terms, 

uff -Ndy - 
bT 

d', (C. 10) Fh - 

where NER is a scalax factor. The feedback component determines the dynamic properties 
of the control loop, 

ufb(t) = Nr (t) - KTx (t) . (C. 11) 

Provided that the plant is controllable, the eigenvalues of the closed loop can be assigned by 

selecting the feedback gain vector KE R" appropriately, as can be seen from the resulting 

closed-loop state equation, 

: ý(t) = (A - bKT) X(t) + ýN[r(t) - dy]. (C. 12) 

Using pole-placement design as introduced in the previous section, we define a desired char- 

acteristic polynomial of the closed loop, 

aci(s) = det[sI - (A -W 
T)] =n+ aisn-1 + a2Sn-2 +, ** + an - 

(C. 13) 

136 



C Linear Controller Design 

A number of techniques exist whicli relate the coefficients of the polynomial a, 1(8) to the ele- 
ments of the feedback gain K. A compact solution is given by Ackermann's formula (Franklin 

et al. 1994). The feedback gain vector can be obtained as 

e= [0 0 1]F-laI(A) E Rlxn ) (C. 14) 

where FE R"I is the controllability matrix, 

F=[ý Ab A2b A"-'M 

and the matrix equation acl(A) E Rn" is defined as 

aci(A) = A'+ alA'-' + a2A'-2 +---+ aj, (C. 16) 

with the coefficients from equation (C. 13). 
The scalar factor N in equation (C. 11) ensures a steady state gain of one from the com- 

mand r(t) to the output signal, y(t). Using equation (A. 18) with equations (C. 12) and (C. 8b), 
N is diosen as, 

T) 
! gT(A -W -lb' 

C. 2.2 Estimator Design 

(C. 17) 

A straightforward approach of estimating the full state of the plant would be to use an exact 
model of the plant dynamics with the same input signal as the plant. The estimated state Vt) 

will, however, only be equal to the state of the plant, x(t), if the initial conditions ! (0) and 
1(0) are identical. Furthermore, small disturbances and modelling uncertainties will cause 
the estimated state to diverge from the true state. 

A robust method of estimating the state is to include feedback information of the plant 
output in the estimator model, 

A -; -(t) + ýu(t) + 41 +L [y(t) - dy - J., ý(t)] (C. 18) 

where LEr is the estimator gain vector. Using equation (C. 8) and defining the state 

estimation error as I(t) = x(t) -1(t), the estimation error dynamics can be obtained as, 

x(t) = (A - LcT) Jý(t) (C. 19) 

Thus, the dynamics of the state estimation error are defined by the characteristic polynomial, 

Cfe(s) = det[sI - (A - LcT)j =n+ aes n-1 +aes n-2 +---+a". (C. 20) 12n 

Provided that the plant is observable, the poles of or,. (s) can be completely defined by an 

appropriate selection of L. As in equations (C. 14)-(C. 16), we can use Ackermann's formula 

(Franklin et al. 1994) to obtain the estimator gain vector, 

L: -- ae(A) 0-1 [0 
... 0 1]T E R7x' - 

(C. 21) 
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Here, 0E R"" is the observability matrix, 

0=[! gT gTA cTA2 ... cTAn-l]T I 
(C. 22) 

and the matrix equation a. (A) E Rnxn is defined as, 

cfe(A) =A'+ a', A"-'+aeA'-'+... +a,, I, (C. 23) 2 

with the coefficients from equation (C. 20). 
To ensure that the state estimation error 1 decays quickly to zero, it is desirable to have 

fast estimator dynamics. The consequence of increasing the speed of the estimator is that 

the bandwidth of the estimator becomes higher. In the presence of sensory noise, this causes 

more noise to pass on to the control actuator which is generally not desirable. Thus, good 

estimator design is a balance between fast estimator response and low-enough bandwidth. 

C. 2.3 Integral Action 

Instead of using a feedforward control action uff (t) which is obtained using explicit knowledge 

of the offset terms, the steady state effect of the offset terms can be eliminated by including 

integral action in the controller. 
We aim to ensure that the control error, ec(t) = y(t) - r(t), decays to zero in the steady 

state. Thus, an additional state is defined, 

ii (t) = e(t) =y (t) -r (t) . (C. 24) 

Replacing y(t) by equation (C-8b), and augmenting equation (C. 8a) with the extra state 

results in 

ij (t) 
-T u(t) - r(t) +[ ary (C. 25) 

(t) 0A x(t) b0 dx 
21, 

cII '"I(t) 
I+101 

Similar to equation (C. 11), a control law which is based on the feedback of the plant state 

can be defined, 

u(t) [Ki HT XI(t) 
-K 

XI(t) (C. 26) 
=x 

xWI J(t) 

I- 

The corresponding control structure, using an estimator to approximate the state of the plant, 

is shown in Figure C. 3. 

The differential equation of the closed-loop becomes, 

0 CT 
I[ 

II(t) 
I-[1] 

r(t) +[ 
dy (C. 27) 

(t) ýKj A-bK. Z(t) 9 d' 
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---------------------- 

e(t) d 

.................................................................. : 

e'(t) U(ty: 
r(t) Plant yW 

Estimator 

Figure C. 3: Linear state feedback control including integral action, with state estimator. The 
dashed line marks the plant, the controller components are surrounded by the dotted 
line. 

Provided that the augmented plant is controllable, the eigenvalues of the closed loop can 
be assigned by selecting the feedback gain KE Rn+1 accordingly. The same algorithm as 
described by equations (C. 13)-(C. 16) can be applied. 

If K is chosen such that the closed loop is stable, the first equation in (C. 27) has the 
following form for the steady state, 

HM +I (t) =0= lim [g7'x (t) + dy -r (t)]. (C. 28) 
t +00 t-+oo 

With equation (C. 8b) and (C. 24), we obtain 

lim e'(t) =0= lim [y(t) - r(t)], (C. 29) 
t ý00 t-+oo 

i. e., the steady state control error is zero. Note that no explicit knowledge of the values of 
the offset terms is used in the control law (C. 26). 
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D Simulation 

The way a model is simulated can have a significant influence on the choice of the parameter 

estimation algorithm and on the identification results. In this chapter, we discuss aspects of 

system simulation in continuous and in discrete time. The time-shift and the delta operator are 
introduced as discrete-time operators. For a review of other discrete-time operators, see (Back 

et al. 1997). A detailed discussion of discrete and continuous time system representation with 

particular emphasis on the delta operator can be found in (Middleton and Goodwin 1990). 

D. 1 Continuous Time 

Continuous-time simulation is the most straightforward and natural way to describe a system, 

as physical systems are always continuous. Models derived from first principles can often be 

represented as a set of ordinary differential equations (ODEs), 

PI(t) =f (0), u W) 
Y(t) = gWt) , 

(D. 1a) 

(D. 1b) 

where f () and go are non-linear functions, f () is continuously differentiable. For simplicity 

we restrict ourselves to single input - single output systems, i. e. uEUCR and yEYCR 
axe the input and the output of the system, respectively. The dimensionality of the state 

vector xEXC R' defines the dynamic order of the system. For consistency throughout 

this chapter, we denote the derivative with respect to time, d1dt by the operator p, i. e. 

pX(t) = -; -(t) = dýx(t)ldt. For simplicity the initial condition, 1(0) = 10, is omitted and no 
input delay is considered throughout this appendix. 

The corresponding linear form of a continuous time system can be written as 

pi(t) = Ax(t) + b(t) 

yW= 9T-x W- 

(D. 2a) 

(D. 2b) 

Note that in equation (D. 2), the variables X, u and y denote deviations from the operating 

point for which the system was linearised. 

The linear system is stable if all the eigenvalues of the Matrix A (i. e., the poles of the 

characteristic polynomial) are located in the left half of the complex plane or on the imaginary 
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axis, and asyni p t, ot I (-; I I 1Y shible if tI Ic cI gel Iv; IIII vs '11-c 1 oc; It cdIn tIwI eft I I: IIf p1: 11w. TII Is regiol I 

of stabilitY Is shown ill Figure DA 

Figure D. 1: Region of stability for continuous system. 

Coi it inuous time systenis can 0111Y he Si II it I hit ed (I irectIly b. N. aIi; ll()gl Ic Wh ('I I (I I Alt al 

computing hardware is used, numerical integration algorithms such as Runge Klltta have to 

be used to solve the 9ý'steni of ODEs. This can he coniputationallY expensive and represents 

one of the major drawbacks of continuous system simulation. 

D. 2 Discrete Time 

ýVhen using digital computers for sy'AcIll mialYsls. Identilicillion m. cmltnd, we dcal with 

sampled signals instead of continuous signals. The relationship between the ('real') continti- 

ous system and its discrete approximation xvhich is obtain from the computer is shown in 

Figure D. 2. Here, the tinie-continuous input signal it(. ) is transformed Into a sampled data 

sequence ju(k)ý, using an A-D converter. The sequence fu(k)j forins, the input of the dis- 

crete model, the output sequence jy(k)j of which is Interpolated by the D-A converter to 

the approxiiiiated continuous output ! &). Both converters are sYlIchrolused bY the sampling 

interval T, 

Owing to the sampling process, the interpolated tinie-continuous output y(-) Is generally 

only an approxiniation of the output of the real continuous time sYstem, ! &). The qualitY of 

this approxiiiiation depends on both the sampling interval and the interpolation process. We 

consider the interpolation to be of order zero (sainple-and-hold). 

For the transformation of the continuous input to a discrete sequence. aliasing effects have 

to be considered, and low pass filtering inay he necessary prior to sampling. 
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real system 
I V. ) 
I IVI- 

rfI 
UO 

A-D I -U" discrete model {Y^(k)) 
D-A Y^ 

(computer) 
LL,.. L iLLI 

------------- 
1ý 

--------------- 

1.14 oil 
continuous time 

Figure D. 2: Relationship between continuous-time and discrete-time system. 

The continuous time system can now be represented by its discrete approximation as 

z((k + 1)T. ) - z(U. ) 
=f d(z(kT, ), u(kT, ), T, ) (D. 3a) 

TS 

y(kT, ) = yd (Z(kT, ), T. ), (D. 3b) 

where f do and gdo relate to the corresponding continuous functions in equation (D. 1), but 

take the effect of the A-D and D-A converters into account. 

For linear systems, we can find representations of the system (D. 3) which match the 

continuous system exactly at the sampling instances. We introduce two such representations, 
the first using the traditional time-shift operator, the second the delta operator, which has 

superior numerical properties if the sampling interval is small. 
For simplicity, we replace the discrete time argument U, by the index k, i. e., Xk denotes 

x (kT. ) 

D. 2.1 Shift Operator 

When we introduce the time-shift operator q, 

qXk -': -- Xk+l v 
(D. 4) 

the system (D. 3) can be rewritten as 

af 
d(lk, 

8) qlk = Zk +T Uk, T (D. 5a) 

d (21k, T Yk =9 3). 
(D. 5b) 

For the lineax system (D. 2), the corresponding discrete system in shift-operator notation is 

qlk = Aqjk + YUk (D. 6a) 

A= 
-C 

q Zk i 
(D. 6b) 
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where f A", I)q, (, q ý 
can he directly obt allied froill t If(' cmit 11111olls represclitat ioll. 

The discretle sYstem in shift-operator I 10 ý It I oI I Is : "tahlc i f; II It IIc elgel Iv, IIII c" (d, IIIcIII; It rix 
Aq are locatcd insidc or on the milt (. 11-cle III the complex plalle, and slable 

if the eigenvalues are located inside the lillit cirde. This rcglml ()f ý'slabllllv Is "'llown ill 
Figure D-3. 

Figure D. 3: Region of stability for discrete system with shift operator. 

The imaginary axis from the continuous complex phille, Figure D. 1, i's limpped to the 
border of the indl (We in Figure D. 3. NNW the sampling time tend.,, to zero, T, ---ý (), Hie 

poles of the system inigrate tonmrds the poha [1-11 in the db(-i-(, t(, complex plane. Zen),,; of 
the discrete systern which have been hAro(hiccd b. y the sanipliiig prowess migrate to fixed 

positions inside the unit circle. 

D. 2.2 Delta Operator 

When we introduce tile delt, a operator 

61k - 
Ik+ I- lk 

(D. 7) 

tile systein (D. 3) can be rewritten as 

61, kfd (--rk 
- Uk, (D. 8a) 

VGEk, TO (D. 8b) 

For the linear system (D. 2), the corresponding discrete system In delta Operator ll()tlti(),, is 

6xk = A6. rk + b621k 

Yk -: "ý L- 
- 

ýXk 

(D. 9a) 

(D 9b) 

where JA', V, c6l can be directly obtained from the continuous representation. 
The discrete system in delta operator notation is stahle if all (ýigejivaliies of the matrix A'5 

are located inside or on a circle of the radhis I/T, with centre at [-I/T,, Ol in the complex 
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plane, and as. viiil)t, ot, l(, all. v stable if' the eigellvallics ; 11-(, 111"Ide Ille cil-cle. 'Hus 

of stability is shown in Figure DA. 

Figure DA Region of stability for discrete system with delta operator. 

The imaginary axis of the cont inuous complex phille. Figure 1). 1, isý limpped Iot he horder 

of the stability region ill Figure DA. When I he smilpling lilt erval t ends Io Zero, 'T, -ý0,1 he 

region of stability becomes the ent In, left half plýlllc. The poles of' I he discrcl e SYst ('111 InigrM v 

to the location of ill(, corresponding poles of the colitillilolls, SIN-OcIll. Zeros which 1mve heell 

introduced by the sampling process go to -(: )c. Thus, for T, -4 (), ille di""crete sYstem in delta 

operator notation converges towards, ill(' corresponding colitilillolis 'sYstelli. 

D. 3 Discussion 

The slimilittion of it svstelli III discrele-lillic hil. " c(qi1plit ill Iollill ildvillililgc., (-()Ij1j)i1lvd 1() (. ()Il- 

tinuous simulation, as the. niodel can he computed directly using digital techniques. Cowinuous- 

time simulation requires expensive integration algorithms to solve the slystvin of ODI's which 

are often difficult to iiiil)leiii(, iit in real-time. 

On the other hand, continuous time is the natural domain in which to represent ii phYs-ical 

system. The approximations Introduced by discrete representations niust he carefullY taken 

account of, especially when dealing Nvith non-linear systenis. 

We introduced the shift and the delta operator as possible donlains for the representation 

of a systeiii in discrete tinie. The shift operator is very ea. sy to implement. and it variety 

of model structure, such as the (N)ARX inodel (cf. Section 2.2.2). are directIv hased on 

it. Hmvever, when a system is represented in the shift operator doniain, any relation to 

the continuous time doinain is lost. In particular, thc shift operator representation does not 

converge to the continuous representation NN-lien the sampling interval approaches zero. This 

can have significant effects for the identification of svsteins which are sampled very fast. The 

poles of the niodel in shift operator representation then ton(l to converge to the point [1, Oil 
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in the complex plane. This can lead to sensitivity problems for the parameter estimation. 
The delta operator is directly based on the continuous representation in the sense that it 

represents a discrete approximation of the differential operator p. Thus, the representation of 

a system in the delta domain converges to the corresponding continuous-time representation 
when the sampling interval approaches zero. Sensitivity problems due to fast sampling are 
therefore not encountered when the model parameters are estimated. 

For linear systems, the representations in continuous time, equation (D. 2), in shift operator 
form, equation (D. 6), and in delta operator notation, equation (D. 9), can be easily transformed 
into each other (Middleton and Goodwin 1990). 
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E The Heat Transfer Process 

The heat transfer process is used in examples throughout Part I of this thesis to demonstrate 

basic concepts of the operating regime based approaches to modelling and control presented 
in Chapter 2 and 3. A similar process has been studied in (Johansen and Foss 1995). 

We first introduce the heat transfer system from which experimental data were obtained. 
Then the data collection experiments are described. Finally, some system properties, like 

dynamic order and time delays, and non-linearities of the plant are discussed in a first analysis 

of the data. 

E. 1 The System 

The experimental setup of the heat transfer process is illustrated in Figure E. 1. 

resistor temperature Fan sensor 

air flow 
U y(t) 

Figure EA: Heat transfer process. 

Air is driven by a fan through a tube. The air is heated by a resistor at the tube input, 

and its temperature is measured at the outlet. The air flow can be adjusted by changing the 

valve angle a of the fan inlet. 

The heat transfer process can be interpreted as a system with two inputs, the valve angle 

a(t) and the voltage at the resistor, u(t), and one output, the voltage y(t) at the temperature 

detecting element at the tube outlet. 
The system is non-lineax in a number of ways: 

The gain and time-delay of the heat transfer process u(t) -+ V(t) vary with changing 

valve angle a(t). A larger angle causes the air to flow faster which decreases the delay 
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u(t) -+ y(t). At the same time a larger angle increases the volume of air pulled through 

the tube and heated by the resistor. Hence, the temperature at the outlet will decrease. 

The heat transmitted from the heating element will generally depend on the voltage 
in a non-linear way. Only for small changes in u, it can be approximated by a linear 

relationship. 

When modelling this process, we are only interested in the short term effect of heating the 

air moving through the tube. Throughout the experiments, the tube itself will be heated up. 
However, this process has much larger time constants than the heating of the moving air and 
is therefore neglected in this study. 

E. 2 Experimental Data 

The experiments for recording data are aimed at exciting all dynamic modes of the system 
for all operating conditions. Examples of the data sets recorded are shown in Figures E. 2 

and E. 3. The sampling period was chosen at T, = 0.05 s. Four different experiments have 

been performed to obtain data: 

"Fast pseudo-random data?, Figure E. 2(a), are aimed to excite all modes of the system. 
The voltage changes fast in a pseudo-random way, around a slower pseudo-random 

variations, to excite all dynamics of the system for different amplitudes. The angle 

changes also in a pseudo-random way. Three data sets of 50 seconds each were recorded. 

In the "slow pseudo-random data! ', Figure E. 2(b), the voltage changes in a pseudo- 

random fashion, but slower than in the fast pseudo-random data, thus exciting different 

modes than those data. The angle vaxies again in a pseudo-random way. 'No data sets 

of 50 seconds each were recorded. 

In the "test-angle data? ', Figure E. 3(a), the voltage is held constant for 25 seconds, thus 

obtaining a response to changes of the angle only. The angle varies randomly every few 

seconds. Two data sets of 50 seconds each were recorded. 

In the "test-voltage data? ', Figure E. 3(b), the angle is held constant at values of a= 
[20*, 401,60', 90*, 120'] for 50 seconds each. For every angle, the same random voltage 

sequence is applied. Two data sets of 250 seconds each were recorded. 

The recorded data contain noise and are therefore filtered by a second order FIR filter 

(mean filter). All data axe normalised in such a way that their values are mapped to the 

region [0,1]. 
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Figure E. 2: Examples of experimental data from the heat transfer process. 
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Figure E. 3: Examples of experimental data from the heat transfer process (continued). 
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E. 3 First Analysis 

The analysis of the step response of a system under varying operating conditions can provide 
information about the dynamic order, time-delays and non-linear characteristics of the process. 
In Figure EA, responses to a4 volt input step are shown for various valve angles. The following 

observations can be made: 

In the step responses shown in Figure EA(a), a change of the gain from the voltage u(t) 
to the output V(t) with varying valve angle a can be observed. The gain is large for 

small valve angles (small airflow) and decreases as the valve is opened further (airflow 
increases). 

20* 

5.400 
-------------------- 

4- ot = 600 
..... . ..................... 

........................ 3- ct 900 

120* 

0 095 1 1.5 2 2.5 

4.. 

time [s] 

(a) Step response 

3.6- 4011 0" 4 

0', 
3- 

a : 0160* 
2.5- 

120" 120' 

1 .1a= 20* 

01 L. 
0 0.1 0.2 0.3 0.4 O. S 0.6 0.7 0.2 0.0 1 

4- 
'-a 

>' 

time (s] 

(b) Step response (shorter time-scale) 

Figure EA Response to a4 volt step input. 

From the short time-scale step response shown in Figure EA(b), the change of the delay 

of u(t) -+ y(t), Td,., with varying valve angle can be determined. The delay is small 
for laxge valve angles, as the air flows fast. It increases when the valve is being closed, 

as the air flows slower. The delays estimated from Figure EA(b) for various angles are 

shown in Table E. l. 

Two responses to steps of the valve angle for constant voltages are shown in Figure E. 5. It 

is difficult to determine the exact value of the delay, as the change of the angle is not exactly 

step-like. 
Additional linear identification experiments confirm that the optimal value for the delay 

of the system a(t) -+ y(t), Td,,, is approximately Us smaller than the corresponding delay of 

the system u(t) -4 y(t), Td, u. These results are summaxised in Table E. 1. 
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Figure E. 5: Responses to steps of the valve angle. 

angle a [01 delay u -+ y delay a -+ y 
Td, 

u 
[S] I Td, u 

ITs Td, 
q 

[S] I Td, q 
ITs 

20 0.30 6 0.20 4 
40 0.25 5 0.15 3 
60 0.25 5 0.15 3 
90 0.20 4 1 0. 2 

1 
120 0.10 2 1<0.05 

,<1 
Table E. 1: Delays for various valve angles ce. 

From the shapes of the step responses in Figure EA and E. 5, it can be surmised that the 

system is of lst or 2nd order. 
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EA Examples 

The heat transfer process is used as a simple system to illustrate the modelling and control 
principles throughout Part I of this thesis. The examples in this section are referred to in 
Chapter 2 and 3. 

Example E. 4.1 The inputs to the heat transfer process are the valve angle a and the voltage 
at the resistor u, the output is the temperature at the outlet, y. As discussed in Section E. 1, the 

characteristics of the system strongly depend on the valve angle. For significant changes of the 

voltage u, this input will also have a non-linear influence on the system. There is no evidence 
to suggest that the system characteristics will change significantly with the temperature at the 

outlet (as long as this temperature remains in a reasonable range. ). 
The most straightforward choice is therefore to include the valve angle and the voltage in 

the scheduling vector. This results in a 2-dimensional scheduling space, 

±(t) = [a (t - Td,,, ), u(t - Td,,, )]T E R?. 

This setup has been used in (Johansen and Foss 1995). 
For small changes of u, or if the system non-linearities with respect to the voltage are not 

significant, it might be sufficient to include only the valve angle in the scheduling vector, 

±(t) =a (t -ER. (E. 2) 

This reduces the dimensionality of the scheduling space significantly, and, although it is not as 
general as (E. 1), it may help to reduce the variance in the estimate of the model parameters. 

Example E. 4.2 We attempt to identify the parameters of a linear Ist order ARX structure, 
equation (2.20), with the data vector chosen as 

±(t) = [a(t - 3), U(t _ 5), y(t _ 1)IT E k3 (E. 3) 

Employing the pre-diction model simulation, the elements of the parameter vector can be 

identified using the linear least squares algorithm described in Section B. 2. 
For simulation model mode, not all elements of the data vector 0 are known in advance. 

Thus, a recursive optimisation algorithm must be used. For simplicity, we choose to work with 
the Levenbery-Marquardt method described in Section B. 3.2. The modelling results together 

with the model parameters are shown in Table E. 2. 

The performance of the simulation model in terms of the training and test errors is signi- 
ficantly better than that of the prediction model. However, the parameters of the two models 

are very similar. The fact that the pole is located close to the unit circle (0.911 and 0.945 

respectively) indicates that the system has been sampled rather fast. The parameter optimisa- 
tion for the simulation model takes approximately 10 times longer than the optimisation of 

the parameters of the prediction model. 
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Prediction model T Simulation model 
Train MSE 5.30 x 10-3 4.35 x 10-3 

Test MSE 6.69 x 10-3 5.32 x 10-3 

B(q-1) 
A(q-1 

d 

-0.0458q-3a(t) + 0.0365q-, 5u(t) 
1-0.945q-1 

0.0292 

-0.0697q-3a(t) + 0.0537q-5u(t) 
1-0.911q-1 

0.0481 
Ga -0.837 -0.785 
Gu 0.667 0.605 

Table E2 ARX modelling (1st order). 

Example E. 4.3 We will compare local and global optimisation of the local model parameters 
for models of the heat transfer process. Following the results obtained in Example E. 4.2, we 

choose to work with local Ist order ARX models. The valve angle ce is selected as the scheduling 

variable which results in an one-dimensional scheduling space. We compare networks with 5 

and with 10 uniformly distributed B-spline validity functions. 

The parameters of the local models are estimated using prediction mode. The mean squared 

prediction error (MSPE) and mean squared simulation error (MSSE) results are shown in 

Table EA Note that the training MSPE is the criterion used for the estimation of the local 

model parameters. The training MSSE is given for the prediction model for comparison to the 

training MSSE of the simulation model in Example E-4-4. 

5 units 10 units 
training test training test 

MSPE MSSE MSSE MSPE II MSSE 

global 4.96 x 10-5 1.80 x 10-3 1.79 x 10-3 4.88 x 10-5 
I 

1.74 x 10-3 1.88 x 10-3 
learning 
local 5.34 x 10-5 1.87 x 10-3 1.91 X 10-3 1 5.12 x 10-5 1.77 x 10-3 1.82 X 10-3 
learning 

Table E. 3: Modelling results for prediction model. 

For both model structures, the training MSPE is larger for local learning than for global 
learning, i. e. local learning leads to a larger bias in the estimate. The simulation error results 

are better with global learning only for the smaller network. With the network of 10 units, 

simulation error results with local learning outperform the global learning results. This suggest 

that the regularisation effect introduced by local learning leads to better generalisation results 

of the network when the structure is large and probably locally over-parameterised. Note that 

when trained in prediction mode, the model has to generalise from the one-step-ahead prediction 
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used for training to an infinite prediction horizon for simulation. 

Example E. 4.4 We now compare local and global optimisation of the local model parameters 
for the simulation model mode. We choose to work with the same setup as in Example E. 4-3. 
The mean squared simulation error (MSSE) results are shown in Table E-4. 

5 units 10 units 
training test training test 
MSSE MSSE MSSE MSSE 

global 1.28 x 10-3 
I 

1.27 x 10-3 1.10 X 10-3 1.50 X 10-3 
learning 
local 2.17 x 10-3 1.78 x 10-3 1.29 X 10-3 1.54 x 10-3 
learning 

Table EA Modelling results for simulation model. 

For both model structures, the results obtained with global learning outperform those achieved 

using local learning. This was expected for the training error, as local learning gives a larger 

bias in the estimate. The observation that the global learning test errors are smaller than those 

with local learning suggest that the necessity for generalisation of the networks when faced with 
the test data is not as great as in Example E. 4.3. This is to be expected as we use an infinite 

prediction horizon for both the parameter estimation and the model validation. 

Example E. 4.5 To illustrate the effect of constant eigenvectors, we consider again the mod- 

elling of the heat transfer process. The model structure is similar to the one employed in 

Example E. 4.4, with only the network with 5 units being considered here. Instead of local Ist 

order ARX models, we choose to work with local linear 2nd order delta-domain (cf. Sec- 

tion D. 2.2) state space descriptions, equivalent to equations (2-14a)-(2.14b) on page 14. 

In order to ensure that all eigenvalues are real, the parameters of the local state feedback 

matrices Ai are not identified directly. Instead, the local eigenvectors Vi E R2X2, and eigen- 

values eE R2 are estimated. The state feedback matrices of the local models, Ai, are then 

obtained using the equation 

Ai = Vi diage Vi-1, j=i ... M. (E. 4) 

In a first identification experiment, the eigenvectors and eigenvalues for all local models are 

estimated without restrictions, using global parameter estimation in simulation mode. We 

will refer to this model as the general model. In a second experiment with similar setup, a 

common set of eigenvectors V is identified such that (Vi = Vjgj, and only the eigenvalues J= 

are identified individually for each local model. This model will be referred to as the restricted 

model. 
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The identification results are summarised in Table E. 5. The performance of the restricted 
model is only slightly inferior to the performance of the general model. 

Model 1 1 Training MSE I Test MSE 

general 0.93 x 10-3 1.04 x 10-3 

restricted 0.99 X 10-3 1.08 X 10-3 

Table E. 5: Modelling results for state space LMN structures with global learning. 

The eigenvectors are depicted in Figure EA The fast eigenvectors of the general model 

vary significantly over a large range whereas the slow eigenvectors are very similar. Unstable 

eigenvector configurations as shown in Figure 2.6(b) are possible. Using only one eigenvector 
configuration for all local models, Figure E. 6(b), excludes such instabilities, without significant 
loss of model performance. 
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(a) General LMN. The numbers correspond to (b) Restricted LMN. 
the number of the local model. 

Figure E& Eigenvector configuration. The slow eigenvectors are marked by 's' and plotted as 
dashed lines, the fast eigenvectors are denoted T and plotted solid. 

Example E. 4.6 In Example E-4.4, we compared local and global optimisation results for 

LMNs with 5 and with 10 units for modelling the heat transfer process. The results for global 
learning are repeated in Table EA 

For the model with 5 units, the training error is slightly larger than the test error, which 

suggests that the model performs as well on unknown data as it does on known data, i. e. it 

generalises well. 
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No. units 11 Training MSE I Test MSE 

5 1.28 x 10-3 1.27 x 10- 
10 1.10 X 10-3 1.50 X- 

Table E6: Modelling results for simulation model with global learning. 

For the model with 10 units, the training error is significantly smaller than the test error 
(and also smaller than the training error of the smaller network). This suggests that the model 
does not generalise satisfactorily on unknown data. 

Analysis of the properties of the LMNs for constant values of the scheduling variable 

provides further insight. The analysis results are shown in Figure E. 7. 
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For the LMN with 5 units, Figure E. 7(a), the properties change smoothly over the range 
of the scheduling variable which is in this case the valve angle. The gain of the plant from the 

voltage to the output, Gu, is large for small valve angles and decreases for larger angles. The 

gain from the angle to the output, Gc,, decreases with larger angles, i. e. the influence of the 

angle on the process is smaller for larger angles. The pole moves further inside the unit circle 
for increasing valve angle, i. e. the plant becomes faster. All these observations correspond to 

properties of the real system as discussed in Section E. 1. 
For the LMN with 10 units, Figure E. 7(b), the properties change in a similar way to those 

of the LMN with 5 units. However, the changes are not smooth, and are sometimes rapid. 
These non-smooth changes certainly do not reflect properties of the real system. They suggest 
that the model is over-parameterised, as pointed out in the discussion on training and test 

errors. 

Example E. 4.7 We illustrate the design concept of the LCN with the heat transfer process. 
The model structure is chosen as in Example E. 4.4 on page 154. To simplify the controller 

structure, we include only the voltage as an input to the local models, i. e. the data vector of 
the local ARX model has the form 

[U(t TT (E. 5) d, i), Y(t 

The valve angle is used as the scheduling variable. A model with 5 uniformly distributed 

validity functions is identified, using global optimisation and simulation model mode. 
The local models of this LMN are then used to design a local controller network. The 

control specification is 

1. no steady state error, 

2. zero overshoot, and 

3. a varying rise-time from 700ms for fully open valve (large angle) to 10OOms for minimal 

valve opening (small angle). 

This specification takes account of the fact that the plant is faster for a larger valve angle. To 

meet the specification of zero steady state error, integral action is included in the controller. 
To compare the performance of the non-linear L CN with a standard linear controller design, 

a single linear controller is used as a benchmark. The linear controller was designed for the 

interpolated plant at a=0.5, with a rise-time of 900ms. 

The controllers are tested in simulations with the design model as the plant. Results are 

shown in Figure E. 8(a). 

To evaluate the robustness of the design to changes of the plant, the same controllers are 

tested in simulations to control the LMN model with 5 units from Example E-4.4. Note that 
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control u: LCN linear controller valve angle a 
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(b) Control of a changed plant. 

Figure E. 8: Simulation of LCN and linear controller to control a model of the heat transfer process. 
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this model differs from the design model in that the valve angle a is also an input of the local 

models. The results are shown in Figure E. 8(b). 
The results show clearly that the Local Controller Network performs consistently for all 

operating conditions, and that the controller specifications are met for varying valve angles. 
The single linear controller performs well for medium and large valve angles. Its performance 
deteriorates when the valve angle is small as a significant overshoot can be observed for these 

operating conditions. 
The performance of both controllers does not change significantly when a slightly different 

plant than the design plant is controlled. This indicates that the controller design is robust 

with respect to modelling uncertainties. A slight overshoot can be encountered at 37s for the 
LCN which is due to saturation of the control signal (which cannot become negative). The 

overshoot could be avoided by implementing anti-reset windup in the controllers (Franklin et 

al. 1994). 
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F. 1 Notation 

u scalar variable u 

U vector u 
M sequence u 
A matrix A 

A-' inverse of matrix A 

A+ pseudoinverse of matrix A 
AT transpose of matrix A 

t continuous time 
tk discrete time, k-th sampling point 
Td time delay 

TS sampling period 

q time shift operator 

U system input 

Y system output 
0 estimate of y 

Y0 value of y at an operating point 

Yd deviation of y from the operating point 

X state vector 

i derivative of x with respect to time 

10 initial state at t=0 

Xe equilibrium state 

Rn Euclidean n-dimensional space 

Rnxn Euclidean n-by-n-dimensional space 

C Complex space 
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R real part of a complex number 
Qý imaginaxy part of a complex number 
i optimisation criterion 

ly weighting factor 

0 parameter vector 

0* optimum of 0 

estimate of the parameter vector 0 

scheduling vector 
input vector containing delayed system inputs and outputs 

A i-th validity function 

A i-th local model 
C damping factor 

tr rise time 

F. 2 Abbreviations 

ARMAX Auto-Regressive Moving Average model with eXogenous inputs 

ARX Auto-Regressive model with eXogenous inputs 

ASMOD Adaptive Spline Modeling of Observation Data 

CE Contractile Element 

FES Functional Electrical Stimulation 

FTI Force-Time Integral 

FTIpP (normalised) Force-Time Integral per Pulse 

IPI Inter-Pulse Interval 

KBF Kernel Basis Functions 

LCN Local Controller Network 

LMN Local Model Network 

LPI Lineax Parameter-Invariant 

LPV Linear Parameter-Vaxiant 

MARS Multivaxiate Adaptive Regression Splines 

MSE Mean Squared Error 

MSPE Mean Squared Prediction Error 

MSSE Mean Squaxed Simulation Error 

NARX Non-lineax ARX 
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PE Passive Element 

SE Series elastic Element 

SMV Skeletal Muscle Ventricle 

ODE Ordinary Differential Equation 

OSP Optimal Stimulation Pattern 
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