109 research outputs found

    A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets

    No full text

    A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets

    No full text

    A computable expression of closure to efficient causation

    Get PDF
    International audienceIn this paper, we propose a mathematical expression of closure to efficient causation in terms of lambda-calculus; we argue that this opens up the perspective of developing principled computer simulations of systems closed to efficient causation in an appropriate programming language. An important implication of our formulation is that, by exhibiting an expression in lambda-calculus, which is a paradigmatic formalism for computability and programming, we show that there are no conceptual or principled problems in realizing a computer simulation or model of closure to efficient causation. We conclude with a brief discussion of the question whether closure to efficient causation captures all relevant properties of living systems. We suggest that it might not be the case, and that more complex definitions could indeed create crucial some obstacles to computability

    On the Invariance of G\"odel's Second Theorem with regard to Numberings

    Get PDF
    The prevalent interpretation of G\"odel's Second Theorem states that a sufficiently adequate and consistent theory does not prove its consistency. It is however not entirely clear how to justify this informal reading, as the formulation of the underlying mathematical theorem depends on several arbitrary formalisation choices. In this paper I examine the theorem's dependency regarding G\"odel numberings. I introduce deviant numberings, yielding provability predicates satisfying L\"ob's conditions, which result in provable consistency sentences. According to the main result of this paper however, these "counterexamples" do not refute the theorem's prevalent interpretation, since once a natural class of admissible numberings is singled out, invariance is maintained.Comment: Forthcoming in The Review of Symbolic Logi

    Efficient Metamathematics

    Get PDF

    Type-free truth

    Get PDF
    This book is a contribution to the flourishing field of formal and philosophical work on truth and the semantic paradoxes. Our aim is to present several theories of truth, to investigate some of their model-theoretic, recursion-theoretic and proof-theoretic aspects, and to evaluate their philosophical significance. In Part I we first outline some motivations for studying formal theories of truth, fix some terminology, provide some background on Tarski’s and Kripke’s theories of truth, and then discuss the prospects of classical type-free truth. In Chapter 4 we discuss some minimal adequacy conditions on a satisfactory theory of truth based on the function that the truth predicate is intended to fulfil on the deflationist account. We cast doubt on the adequacy of some non-classical theories of truth and argue in favor of classical theories of truth. Part II is devoted to grounded truth. In chapter 5 we introduce a game-theoretic semantics for Kripke’s theory of truth. Strategies in these games can be interpreted as reference-graphs (or dependency-graphs) of the sentences in question. Using that framework, we give a graph-theoretic analysis of the Kripke-paradoxical sentences. In chapter 6 we provide simultaneous axiomatizations of groundedness and truth, and analyze the proof-theoretic strength of the resulting theories. These range from conservative extensions of Peano arithmetic to theories that have the full strength of the impredicative system ID1. Part III investigates the relationship between truth and set-theoretic comprehen- sion. In chapter 7 we canonically associate extensions of the truth predicate with Henkin-models of second-order arithmetic. This relationship will be employed to determine the recursion-theoretic complexity of several theories of grounded truth and to show the consistency of the latter with principles of generalized induction. In chapter 8 it is shown that the sets definable over the standard model of the Tarskian hierarchy are exactly the hyperarithmetical sets. Finally, we try to apply a certain solution to the set-theoretic paradoxes to the case of truth, namely Quine’s idea of stratification. This will yield classical disquotational theories that interpret full second-order arithmetic without set parameters, Z2- (chapter 9). We also indicate a method to recover the parameters. An appendix provides some background on ordinal notations, recursion theory and graph theory
    • …
    corecore