EFFICIENT

METAMATHEMATICS

Laurina Christina Verbrugge

EFFICIENT

METAMATHEMATICS

ACADEMISCH PROEFSCHRIFT

> Ter verkrijging van de graad van Doctor aan de Universiteit van Amsterdam, op Gezag van de Rector Magnificus Prof. Dr. P.W.M. de Meijer in het openbaar te verdedigen in de Aula der Universiteit
> (Oude Lutherse Kerk, ingang Singel 411, hoek Spui) op dinsdag 14 september 1993 te 15.00 uur.
door

Laurina Christina Verbrugge
geboren te Amsterdam

Promotor:	Prof. dr A.S. Troelstra
Co-promotores:	Dr D.H.J. de Jongh
	Dr A. Visser

Faculteit Wiskunde en Informatica
Universiteit van Amsterdam
Plantage Muidergracht 24

ILLC Dissertation Series, 1993, no. 3
ISBN 90-800769-8-8

Cover illustration by Saul Steinberg © 1954 The New Yorker Magazine, Inc.

Druk: Haveka B.V., Alblasserdam

Ter nagedachtenis aan Laurina Verbrugge-de Graag (1901-1993)

Contents

Dankwoord ix
I Introduction and background 1
1 Introduction 3
1.1 What is efficiency? 3
1.2 What is metamathematics? 5
1.3 Interpretability and its logics 5
1.4 Metamathematics of efficient mathematics 6
1.5 Efficient metamathematics of inefficient mathematics 6
1.6 What to expect from the rest of the dissertation? 7
2 Background 9
2.1 Theories of arithmetic 9
2.2 Provability logic 11
2.3 Bounded arithmetic 12
2.3.1 $\mathrm{I} \Delta_{0}+\Omega_{1}$ 12
2.3.2 Buss' systems of bounded arithmetic and the polynomial hierarchy 13
2.3.3 Metamathematics for bounded arithmetic 17
2.4 Interpretations 20
2.5 Interpretability logic 23
2.6 Definable cuts 25
2.7 Cuts may help to characterize interpretability 29
2.8 Between I Δ_{0} and $\mathrm{I} \Delta_{0}+E X P$ 32
2.8.1 $\mathrm{I} \Delta_{0}+E X P$ proves restricted consistency statements 32
2.8.2 Conservativity 36
2.8.3 Non-conservativity and incompleteness 37
II Metamathematics for Bounded Arithmetic 41
3 A small reflection principle for bounded arithmetic 43
3.1 Introduction 43
$3.2 \quad \Sigma$-completeness and the $N P=c o-N P$ problem 45
3.3 The small reflection principle 48
3.4 Injection of small (but not too small) inconsistency proofs 60
4 Provable completeness for Σ_{1}-sentences implies something funny, even if it fails to smash the polynomial hierarchy 65
4.1 Introduction 65
4.2 If S_{2}^{1} proves completeness for all Σ_{1}-sentences, then $N P \cap \operatorname{co}-N P=P$ 66
5 On the provability logic of bounded arithmetic 67
5.1 Introduction 67
5.2 Arithmetical preliminaries 68
5.3 Trees of undecidable sentences 71
5.4 Upper bounds on PL Ω 73
5.5 Disjunction property 76
III Metamathematics for Peano Arithmetic 79
6 Feasible interpretability 81
6.1 Introduction 81
6.2 Feasible interpretations in various settings 82
6.3 Soundness of $I L M$ for feasible interpretability over $P A$ 90
6.4 Interpretability does not imply feasible interpretability 95
6.5 $I L M$ is the logic of feasible interpretability over $P A$ 99
7 The complexity of feasible interpretability 109
7.1 Introduction 109
7.2 Preliminaries and notation 110
7.3 Characterizations of feasible interpretability 112
7.4 The set of Σ_{1}^{b}-axiomatized theories feasibly interpretable over $P A$ is $\Sigma_{2^{-}}$ complete 115
7.5 Lindström's general lemmas polynomialized 118
7.6 Feasible interpretability is Σ_{2}-complete 121
Bibliography 125
Samenvatting 131

Dankwoord

Om te beginnen wil ik mijn oprechte dank betuigen aan het triumviraat van promotor en co-promotores. Mijn promotor, professor A.S. Troelstra, dank ik voor zijn commentaar en voor zijn relativerende opmerkingen. Dick de Jongh deed nuttige en doordachte aanbevelingen naar aanleiding van vele eerdere versies van dit proefschrift. Albert Visser tenslotte wil ik bedanken voor zijn aanstekelijke enthousiasme en de flexibiliteit waarmee hij op een moeilijk moment onmiddellijk een werkplek in Utrecht voor me verzorgde.

Tijdens de eerste paar jaar van mijn promotie-onderzoek vormden de discussies met Edith Spaan een bron van inspiratie, waarvoor ik haar zeer erkentelijk ben.

I have had the good fortune to be supported by NWO (project 611-308-004) and the Tempus Project, which enabled me to visit Prague, Siena and Florence several times. I gratefully thank my colleagues Petr Hájek, Vítězslav Švejdar and Franco Montagna for their hospitality and stimulating discussions. A special thanks goes to Alessandro Berarducci, who has been a wonderful co-author and mentor. In fact, I learnt most of my knowledge about weak arithmetics from his "scatola magica" of index cards crammed with elegant proofs. I also want to thank him and Silvia Cantelli for their generosity and for their fascinating stories, told in a mixture of Italian, German and English.

De laatste tijd heb ik op allerlei manieren veel steun van mijn familie, vriendinnen, vrienden en collega's gekregen. Ik denk bijvoorbeeld aan mijn kamergenoot Domenico Zambella, die me voorzag van krentenbollen en levendige gesprekken over begrensde rekenkunde. Volodya Shavrukov las blijkens zijn rake commentaar het manuscript van dit proefschrift op nauwgezettere wijze dan wie ook, en maakte bovendien een mooie macro.

Mijn twee paranimfen, Marjanne de Jong en Andreja Prijatelj, wil ik bedanken voor de humor en creativiteit waarmee ze me voortdurend hebben gemotiveerd. Joke Hendriks heeft me tijdens onze wekelijkse bijeenkomsten moed ingesproken en is tegelijkertijd een streng extern geweten voor me geweest - die combinatie werkte perfect. Maarten de Rijke wil ik bedanken voor zijn effectieve hulp bij $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ - en printproblemen, en Marjet Denijs voor het vormgeven van de voorkant van dit proefschrift.

I would like to thank all my colleagues in logic and theoretical computer science for providing fruitful discussions and a pleasant atmosphere; specifically I thank Lev Beklemishev, Harry Buhrman, Marc Jumelet, Marianne Kalsbeek, Karen Kwast, Alexander Razborov, Dirk Roorda, Víctor Sánchez, Martijn Spaan, and Yde Venema.

Tot slot dank ik mijn ouders, die mijn keuzen soms met opgetrokken wenkbrauwen begroetten, maar altijd achter me stonden.

Rineke Verbrugge
Amsterdam, juli 1993

Part I

Introduction and background

Chapter 1

Introduction

Verde embeloso de la vida humana, loca esperanza, frenesí dorado, sueño de los despiertos intrincado, como de sueños, de tesoros vana;
alma del mundo, senectud lozana, decrépito verdor imaginado; el hoy de los dichosos esperado y de los desdichados el mañana:
sigan tu sombra en busca de tu día los que, con verdes vidrios por anteojos, todo lo ven pintado a su deseo;
que yo, más cuerda en la fortuna mía, tengo en entrambas manos ambos ojos y solamente lo que toco veo.
(Sor Juana Inés de la Cruz, seventeenth century, Mexico)

Green allurement of our human life, mad Hope, wild frenzy gold-encrusted, sleep of the waking full of twists and turns for neither dreams nor treasures to be trusted;
soul of the world, new burgeoning of the old, fantasy of blighted greenery, day awaited by the happy few, morrow which the hapless long to see:
let those pursue your shadow's beckoning who put green lenses in their spectacles and see the world in colors that appeal.

Myself, I'll act more wisely toward the world: I'll place my eyes right at my fingertips and only see what my two hands can feel.
(translation Alan S. Trueblood)

1.1 What is efficiency?

For more than a century now, mathematicians have been concerned with ways to transfer proofs in which the existence of objects satisfying certain properties is claimed in such a way as to enable us to find particular objects satisfying those properties. Stated in modern terms, they wanted to find witnesses for provable existential statements in a constructive way. They invented new constructive logics to accomodate their concern. Thus, for example, if some statement of the form $\forall x \exists y A(x, y)$ ("for all x there exists a y such that $A(x, y)$ holds") is provable in intuitionistic Heyting Arithmetic, then its proof provides a recursive algorithm to find for every x a witness y such that $A(x, y)$ holds. Moreover, we can assign a numerical code e to the recursive algorithm, for which Heyting Arithmetic proves $\forall x \exists y T_{1}(e, x, y)$. Here T_{1} is Kleene’s primitive recursive T-predicate for
recursive functions of one variable; $T_{1}(e, x, y)$ stands for " y is the numerical code of a computation of the value of the function with associated code e on input x ".

If all quantifiers of A are bounded, then truth of $\forall x \exists y A(x, y)$ already provides a recursive algorithm e for finding witnesses. As in the case of Heyting Arithmetic, we have that if $\forall x \exists y A(x, y)$ is not only true but also provable in Peano Arithmetic, then Peano Arithmetic proves $\forall x \exists y T_{1}(e, x, y)$ (see [$\left.\mathrm{Kr} 51, \mathrm{Kr} 52, \mathrm{Kr} 58\right]$).

Parsons and Mints independently proved a similar result for $\mathrm{I} \Sigma_{1}$, the subsystem of Peano Arithmetic in which induction is only allowed for formulas of the form $\exists z B(z)$ where all quantifiers in B are bounded. If I Σ_{1} proves $\forall x \exists y A(x, y)$ for bounded A, then there is even a primitive recursive function that provides the witnesses (see [Pa 72 , Mi 71]).

Since the rise of computer science the desire for constructivity has been growing more and more stringent. It is no longer sufficient that the constructions to find the witnesses are given by recursive, or even primitive recursive algorithms. The algorithms have to be efficient. For example algorithms that need a computation time exponential in the length of the input are ruled out.

Unfortunately, the precise mathematical meaning of the noun "efficiency" is hard to pinpoint. The dictionary definition does not offer much guidance:

> efficiency [F., from L., efficiens, -ntem, pres. p. of efficere, to EFFECT], n. Adequate fitness; power to produce a desired result; (Eng) the ratio of the output of energy to the input of energy [HS 84].

If we want to classify algorithms as to their efficiency in a mathematically fruitful way, we should abstract as much as possible from highly specific factors like the programming language and the size, kind and operating speed of the computer on which the program is run. Cobham gave just such a classification in [Co 64]. He classified algorithms in terms of the number of steps taken by a Turing Machine to complete the computation as a function of the length of the input. For example, an algorithm runs in polynomial time if there are fixed integers c and k such that for all n, the computation on inputs of length n is completed in at most $c \cdot n^{k}$ steps.

Efficiency is thus a relative measure, not an absolute one. When I do abuse language by using the adjective "efficient" in an absolute sense in this dissertation, it refers to algorithms which run in (deterministic or sometimes non-deterministic) polynomial time.

In the literature, the word "feasible" is used a little more precisely than "efficient"; a feasible algorithm should run in time polynomial in the input. However, even for this relatively young word non-standard uses abound (see e.g. de volume [BS 90]).

In 1986, Buss introduced systems of arithmetic that cater to the need for efficient algorithms $[\mathrm{Bu} 86]$. For example, if the best-known of his systems proves a statement of the form $\forall x \exists y A(x, y)$ where A defines a predicate in $N P$ (i.e. computable by a nondeterministic polynomial time Turing machine), then there is a polynomial time algorithm f that computes for every x a witness $f(x)$ such that $A(x, f(x))$ holds. For syntactic reasons Buss called his hierarchy of systems Bounded Arithmetic. Induction is not allowed for all first order formulas, as in the standard system of arithmetic, Peano Arithmetic. Instead, every system allows induction only for a specific class of bounded formulas, in which all quantifiers are bounded by a term in the language of Bounded Arithmetic. Because of the concern for efficiency behind his systems we can see them as an example of efficient mathematics, and his most well-known system S_{2}^{1} even as feasible mathematics.

1.2 What is metamathematics?

In 1931, Gödel proved his First and Second Incompleteness Theorems (see [Gö 31, Ho 79]). They are theorems about systems of mathematics. For example, the Second Incompleteness Theorem says that every consistent theory that can, by some coding mechanism, express enough information about its syntax, cannot prove its own consistency. Theories like Peano Arithmetic ($P A$) prove a formalization of the Second Incompleteness Theorem, namely the arithmetical sentence that expresses "If $P A$ is consistent, then $P A$ does not prove that $P A$ is consistent". In general, metamathematics is the study of mathematical theories by mathematical methods like formalization.

Löb [Lö 55] listed the properties of the formalized provability predicate that are sufficient for proving the formalized version of Gödel's Second Incompleteness Theorem. In the seventies, the conditions listed by Löb came into their own as the modal logic of provability, where $\square A$ is read as " A is provable" (see e.g. [MS 73]). This provability logic, which we call L after Löb, has proved to be very useful in the study of provability predicates for theories like Peano Arithmetic. The outstanding result in this area was attained by Solovay, who proved in 1976 that L exactly captures the modal properties of the provability predicate of Peano Arithmetic. More precisely, he showed that for any modal formula A, L proves A if and only if Peano Arithmetic proves all translations of A in the language of arithmetic that interpret \square as the formalized provability predicate [So 76].

1.3 Interpretability and its logics

As early as the 19th century, mathematicians sought a relative consistency proof in order to show that the consistency of Euclidean geometry implies the consistency of Hyperbolic geometry. A positive answer would show that the parallel postulate is not provable from the other Euclidean axioms. One of the earliest proofs, by Poincaré, made use of an interpretation, even though that concept was not formally defined at the time. We do not give a precise definition here. Intuitively, the theory U interprets the theory V if there exists a translation of the language of V into the language of U that enables us to "see" a model of V inside every model of U. Interpretations have been used for various purposes, at first mainly for relative consistency proofs as in Poincaré's example (see also [Hi 1899]), and later for proving theories to be undecidable (see e.g. [TMR 53]).

The study of interpretability picked up momentum in the seventies with papers by Hájek and Solovay (see e.g. [Há 71, Há 72, So 76b]). Their results, which include the Orey-Hájek characterization for interpretability over theories like Peano Arithmetic, gave the study of interpretability its proper place as a part of metamathematics.

The eighties saw the development of modal logics for interpretability, first introduced in [Šv 83] and [Vi 89]. Here \triangleright is a binary modal operator corresponding to interpretability over a base theory T. In contrast to the case of provability logic, there are several interpretability logics around, capturing the principles that govern interpretability over various kinds of base theories (see e.g. [JV 90, Vi 90a]). For example, Berarducci and Shavrukov independently proved by modified Solovay constructions that the interpretability logic $I L M$ is the logic of interpretability over Peano Arithmetic (see [Ber 90, Sh 88]).

1.4 Metamathematics of efficient mathematics

If we want to prove an analog of the formalized version of Gödel's Second Incompleteness Theorem for systems of efficient mathematics like Bounded Arithmetic, we are forced to make our metamathematics efficient, too.

First of all, we need efficient numerals. This is because $\underbrace{S \ldots S}_{k \text { times }} 0$ has length exponential in the length of k written in binary; so we cannot prove in Bounded Arithmetic the totality of the function that sends natural numbers k to the code of $\underbrace{S \ldots S}_{k \text { times }} 0$. Thus we use numerals that are based on the binary expansion of k and are of length linear in the logarithm of k.

Once we have made this move, it is not difficult to prove that Löb's logic L is sound with respect to Bounded Arithmetic (see subsection 2.3.3). Thus Gödel's Second Incompleteness Theorem holds, and its formalized version is provable.

Rosser strengthened Gödel's First Incompleteness Theorem by constructing an arithmetical sentence R that is independent of Peano Arithmetic, provided that Peano Arithmetic is consistent [Ros 36]. In chapter 3, we prove the formalized version of Rosser's Theorem in Bounded Arithmetic. In more technical terms, we prove the arithmetical sentence expressing "if Bounded Arithmetic is consistent, then neither R nor $\neg R$ are provable from it". Here R is constructed by Gödel's method of diagonalization; informally, R says "there is a proof of my negation which is smaller than any proof of myself". The proof of the formalized version of Rosser's Theorem does not come cheaply. We use almost the whole chapter in order to prove a "small reflection principle" on which the proof is based.

However, the real trouble only starts when we want to prove Solovay's Completeness Theorem for Bounded Arithmetic. As we mentioned, it is easy to prove that L is sound with respect to Bounded Arithmetic, but as far as we know the provability logic of Bounded Arithmetic might well be a proper extension of L. The problems we encounter when we want to adapt Solovay's construction to Bounded Arithmetic are discussed in chapter 3 and chapter 4 . They are related to open problems in complexity theory.

In chapter 5, we show that formulas having models on suitably simple Kripke trees can be translated into arithmetical sentences that are consistent with Bounded Arithmetic. We also show that the provability logic of Bounded Arithmetic cannot be the modal theory of a class of Kripke trees. The general question 'What is the provability logic of Bounded Arithmetic' is still left open for future research.

Because interpretability logics always include a provability logic ($\neg A \triangleright \perp$ being equivalent to $\square A$), we do not yet have enough material to find the interpretability logic of Bounded Arithmetic.

1.5 Efficient metamathematics of inefficient mathematics

What happens when the techniques from efficient metamathematics of efficient mathematics are turned loose on normal mathematics? We may study interpretability between extensions of inefficient theories like Peano Arithmetic and Zermelo Fraenkel set theory. For example, it has been known for a long time that in every model of Zermelo Fraenkel set theory, we can see a model of Peano Arithmetic. Now we might ask: can we see it in an efficient way? In other words, is there a translation from the language of arithmetic
into the language of set theory such that set theory proves all axioms of Peano arithmetic by proofs that are easy to compute given the original axioms? The answer turns out to be yes.

In chapter 6 we ask a more general question: are all interpretations that we know feasible? The answer is: yes and no! Yes, because well-known interpretations like that of $Z F$ plus the negation of the continuum hypothesis into $Z F$ are feasible. No, because we can use tricks like diagonalization to make some theories U, V such that U interprets V, but not by any feasible interpretation.

We then restict our attention to feasible interpretability between finite extensions of Peano Arithmetic. What is the logic of feasible interpretability over such theories? It turns out to be $I L M$, the same interpretability logic that is arithmetically sound and complete with respect to normal interpretability over Peano Arithmetic.

Finally, in chapter 7, we establish the intrinsic complexity of the formula " $P A+A$ feasibly interprets $P A+B$ ". Feasible interpretability over $P A$ turns out to be Σ_{2}^{0}-complete, contrasting with the fact that standard interpretability over $P A$ is Π_{2}^{0}-complete. We also prove that the formula " $P A$ interprets $P A+A$ but not by any feasible interpretation" is Π_{2}^{0}-complete.

1.6 What to expect from the rest of the dissertation?

The remainder of part I contains some preliminaries needed to read parts II and III of the dissertation, as well as some material not covered in those chapters but interesting in its own right.

Part II

Chapter 3 A small reflection principle for bounded arithmetic. This is based on the paper [VV] written jointly with Albert Visser; which in its turn is based on [Ve 88] and [Ve 89].

Chapter 4 Provable completeness for Σ_{1}-sentences implies something funny, even if it fails to smash the polynomial hierarchy. This is based on unpublished work with Alexander Razborov. It is reproduced here with his permission.
Chapter 5 On the provability logic of bounded arithmetic. This is based on the paper [BV 91]. Preliminary results can be found in [Ve 88].

Part III
Chapter 6 Feasible interpretability. This is based on [Ve 93].
Chapter 7 The complexity of feasible interpretability. A previous version of this chapter has been submitted to the book Feasible Mathematics II, edited by J. Remmel et al., to appear with Birkhauser.

Chapter 2

Background

2.1 Theories of arithmetic

Definition 2.1.1 The language of arithmetic contains $0, S,+, \cdot,=$ and \leq.
Definition 2.1.2 Robinson's Arithmetic Q is a theory in the language of arithmetic given by the following axioms:

Q1 $\forall x(S x \neq 0)$;
Q2 $\forall x, y(S x=S y \rightarrow x=y)$;
Q3 $\forall x(x \neq 0 \rightarrow \exists y x=S y)$;
Q4 $\forall x(x+0=x)$;
Q5 $\forall x, y(x+S y=S(x+y))$;
Q6 $\forall x(x \cdot 0=0)$;
Q7 $\forall x, y(x \cdot S y=(x \cdot y)+x)$;
Q8 $\forall x, y(x \leq y \leftrightarrow \exists z(z+x=y))$;
Definition 2.1.3 Peano Arithmetic $P A$ contains the theory Q plus the induction scheme

$$
\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \forall x \varphi(x)
$$

where φ may be any first-order formula in the language of arithmetic.
Remark 2.1.4 We presuppose familiarity with the arithmetical hierarchy (see a textbook on recursion theory, e.g. [So 87]). We remind the reader that a formula in the language of arithmetic is $\Delta_{0}^{0}=\Sigma_{0}^{0}=\Pi_{0}^{0}$ if all its quantifiers are bounded, which means that they are of the form $\forall x \leq t$ where t is any term not involving x. Σ_{n+1}^{0}-formulas have the form $\exists x \varphi$ for some φ in Π_{n}^{0}. Dually, Π_{n+1}^{0}-formulas have the form $\forall x \varphi$ for some φ in Σ_{n}^{0}.
Δ_{0}^{0}-formulas define primitive recursive relations of natural numbers, but not all primitive recursive relations are Δ_{0}^{0} definable: only those from the so-called linear time hierarchy (see [HP 93, Definition V.2.10, Theorem V.2.16]). Σ_{1}^{0}-formulas define recursively enumerable (r.e) relations, whereas Π_{1}^{0}-formulas define co-r.e. relations.

We usually use Δ_{0} for $\Delta_{0}^{0}, \Sigma_{n}$ for Σ_{n}^{0} and Π_{n} for Π_{n}^{0}.

Definition 2.1.5 Let Γ be a class of formulas in the language of arithmetic. Then $I \Gamma$ contains the theory Q and additionally the induction scheme

$$
\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \forall x \varphi(x)
$$

for $\varphi \in \Gamma$.

Remark 2.1.6 Note that the induction axioms for Δ_{0}-formulas can be written in Π_{1-} form, namely as

$$
\forall y(\varphi(0) \wedge \forall x \leq y(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \forall x \leq y \varphi(x))
$$

for $\varphi \in \Delta_{0}$.

Definition 2.1.7

- $\omega_{1}(0)=0$;
- $\omega_{1}(x)=x^{|x|}$ for $x>0$; here $|x|=\left\lceil\log _{2}(S x)\right\rceil$.

Definition 2.1.8

- $2_{0}^{x}=x$;
- $2_{k+1}^{x}=2^{2 x}$.

We sometimes write $\exp (x)$ instead of 2^{x}.
Many mathematicians, most notably Bennett, Paris, and Pudlák [Ben 62, Di 80, $\mathrm{Pu} 83]$ have constructed Δ_{0}-formulas corresponding to the relation $y=2^{x}$. We refer the reader to [HP 93, Section V.3] for a clear description of the construction of such a formula.

Similarly, there exist Δ_{0}-formulas defining the relation $y=2_{z}^{x}, y=\omega_{1}(x)$ and even to the graphs of most functions that we introduce in section 2.3. For those functions we use " $y=f(\vec{x})$ " as shorthand for the appropriate Δ_{0}-formula. In I Δ_{0} we can prove the recursive clauses for these functions, as well as some other useful facts, for example that 2^{x} grows faster than ω_{1}.

Definition 2.1.9

- EXP $:=\forall x \exists y\left(" y=2^{x "}\right)$;
- $\operatorname{SUPEXP}:=\forall x \exists y$ (" $\left.y=2_{x}^{x "}\right)$.

We have the following hierarchy of theories:

$$
Q \subseteq \mathrm{I} \Delta_{0} \subseteq \mathrm{I} \Delta_{0}+E X P \subseteq \mathrm{I} \Delta_{0}+S U P E X P \subseteq I \Sigma_{1} \subseteq I \Sigma_{2} \subseteq \ldots \subseteq P A
$$

2.2 Provability logic

Definition 2.2.1 The language of modal logic contains a countable set of propositional variables, the propositional constant \perp, boolean connectives $\neg, \wedge, \rightarrow$, and the unary modal operator \square. The modal provability logic L is axiomatized by all formulas having the form of propositional tautologies (including those containing the \square-operator) plus the following axiom schemes:

1. $\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$
2. $\square(\square A \rightarrow A) \rightarrow \square A$
3. $\square A \rightarrow \square \square A$

The rules of inference are:

1. If $\vdash A \rightarrow B$ and $\vdash A$, then $\vdash B$ (modus ponens)
2. If $\vdash A$, then $\vdash \square A$ (necessitation)

We suppose that the reader is familiar with Kripke frames and forcing relations on them. For L, finite Kripke trees give a good semantics. To make this precise, we state a definition and a theorem.

Definition 2.2.2 A Kripke tree is a frame (K, \prec) in which

- \prec is a strict partial ordering, i.e. it is transitive and asymmetric;
- for every element of K, the set of its predecessors is finite and linearly ordered by々;
- there is one root which precedes all other elements.

Löb's logic L is modally complete with respect to finite Kripke trees:
Theorem 2.2.3 For every modal sentence A, the following are equivalent:

1. $L \vdash A$;
2. for all finite trees (K, \prec) and points $k \in K$ and for all forcing relations \Vdash on (K, \prec), we have $k \Vdash A$;
3. for all finite trees (K, \prec) and for all forcing relations \Vdash on (K, \prec), we have $k_{0} \Vdash A$ where k_{0} is the root of (K, \prec).

Proof. See [Sm 85, Theorem 2.2.3] QED

Definition 2.2.4 Let T be a theory in the language of arithmetic. A T-interpretation * is a function which assigns to each modal formula A a sentence A^{*} in the language of T, and which satisfies the following requirements:

1. \perp^{*} is the sentence $0=1$.
2. * distributes over the boolean connectives, i.e. $(A \rightarrow B)^{*}=A^{*} \rightarrow B^{*}$, etc.
3. $(\square A)^{*}=\operatorname{Prov}_{T}\left(\left\ulcorner A^{*}\right\urcorner\right)$.

Here $\operatorname{Prov}_{T}\left(\left\ulcorner A^{*}\right\urcorner\right)$ is the formalization of " A^{*} is provable from T " (see subsection 2.3.3).
Clearly * is uniquely determined by its restriction to the propositional variables. The presence in the modal language of the propositional constant \perp allows us to consider closed modal formulas, i.e. modal formulas containing no propositional variables. If A is closed, then A^{*} does not depend on ${ }^{*}$, e.g. ($\left.\square \perp\right)^{*}$ is the arithmetical sentence $\operatorname{Prov}_{T}(\ulcorner 0=1\urcorner)$.

For arithmetical recursively enumerable theories T with $\mathrm{I} \Delta_{0}+E X P \subseteq T \subseteq P A$ we have for all modal formulas A :

$$
L \vdash A \Longleftrightarrow \text { for all } T \text {-interpretations }{ }^{*}, T \vdash A^{*} .
$$

The soundness direction (\Rightarrow) is not difficult to prove. It hinges on the observation that for $T \supseteq \mathrm{I} \Delta_{0}+E X P$ the formalized version of Löb's Theorem is provable:

$$
T \vdash \operatorname{Prov}_{T}\left(\left\ulcorner\operatorname{Prov}_{T}\left(\left\ulcorner\varphi^{\urcorner}\right) \rightarrow \varphi^{\urcorner}\right) \rightarrow \operatorname{Prov}_{T}(\ulcorner\varphi\urcorner) .\right.\right.
$$

Incidentally, the formalized version of Löb's Theorem immediately implies the formalized version of Gödel's Second Incompleteness Theorem by taking \perp for φ :

$$
T \vdash \operatorname{Prov}_{T}\left(\left\ulcorner\operatorname{Prov}_{T}\left(\left\ulcorner\perp^{\urcorner}\right) \rightarrow \perp^{\urcorner}\right) \rightarrow \operatorname{Prov}_{T}(\ulcorner\perp\urcorner) .\right.\right.
$$

Solovay proved the completeness direction (\Leftarrow) for $P A$ in his landmark paper [So 76]. It was pushed down to $\mathrm{I} \Delta_{0}+E X P$ in [JMM 91].

2.3 Bounded arithmetic

In this section we introduce classical arithmetical theories that are strictly weaker than $\mathrm{I} \Delta_{0}+E X P$. It turns out that there are two salient theories of this kind: Paris and Wilkie's I $\Delta_{0}+\Omega_{1}$ [WP 87] and Buss' S_{2}^{1} [Bu 86], both of them satisfying Löb's logic.

We will not state all the interesting results that appeared in the standard references to the area of weak arithmetics (see [Bu 86, WP 87] and Chapter V of [HP 93]). Instead we quickly review those concepts that we need in the sequel.

The principal feature distinguishing various theories of Bounded Arithmetic from Peano Arithmetic is that in the former induction is restricted to bounded formulas.

2.3.1 $\mathrm{I} \Delta_{0}+\Omega_{1}$

Definition 2.3.1 The language of $\mathrm{I} \Delta_{0}+\Omega_{1}$ as introduced in [WP 87] contains $0, S,+, \cdot$, $=$ and \leq, and additionally the logical symbols \neg, \rightarrow and \forall, and variables v_{1}, v_{2}, \ldots. With regard to logical axioms, we use a Hilbert-type system as in [WP 87], but other choices are reasonable too. For example, a Gentzen style sequent calculus with cut rule or natural deduction would do. However, we do not use a logic in which only direct proofs (i.e tableau proofs or cut-free proofs) are allowed.

As non-logical axioms we consider a set containing the following:

- a finite number of universal formulas defining the basic properties of the function and predicate symbols of the language:

1. $0 \leq 0 \wedge \neg(S 0 \leq 0)$;
2. $\forall x(x+0=x \wedge x \cdot 0=0 \wedge x \cdot S 0=x)$;
3. $\forall x \forall y(S x=S y \rightarrow x=y)$;
4. $\forall x \forall y(x \leq S y \leftrightarrow(x \leq y \vee x=S y))$;
5. $\forall x \forall y(x+S y=S(x+y))$;
6. $\forall x \forall y(x \cdot S y=(x \cdot y)+x)$;

- a formula $\forall x \exists y \varphi(x, y)$, where φ is the Δ_{0}-formula defining the relation $y=\omega_{1}(x)$ (= $x^{|x|}$; see definition 2.1.7);
- the scheme of induction for Δ_{0}-formulas.

2.3.2 Buss' systems of bounded arithmetic and the polynomial hierarchy

Definition 2.3.2 The language of Buss' bounded arithmetic consists of $0, S,+, \cdot$, $=, \leq,|x|\left(=\left\lceil\log _{2}(x+1)\right\rceil\right.$, the length of the binary representation of $\left.x\right),\left\lfloor\frac{1}{2} x\right\rfloor$, and $x \# y\left(=2^{|x| \cdot|y|}\right.$, the smash function).

Remark 2.3.3 Note that the smash function \# allows us to express terms approximately equal to $2^{P(|x|)}$ for any polynomial P. More precisely, for every $n, x \geq 2$ the following holds:

$$
2^{|x|^{n}} \leq \underbrace{x \# \ldots \# x}_{n \text { times }} \leq 2^{2 \cdot|x|^{n}-2},
$$

as is easily proved by induction. This property of \# is useful when we want to define polynomial time functions.

Definition 2.3.4 The hierarchy of bounded arithmetic formulas is defined as follows:

1. $\Sigma_{0}^{b}=\Pi_{0}^{b}=\Delta_{0}^{b}$ is the set of formulas with only sharply bounded quantifiers $\forall x \leq|t|$, $\exists x \leq|t|$ (where t is any term not involving x)
2. \sum_{k+1}^{b} is defined inductively by:

- $\sum_{k+1}^{b} \supseteq \Pi_{k}^{b}$, and is closed under $\wedge, \exists x \leq t$ and $\forall x \leq|t|$;
- if $B \in \Pi_{k+1}^{b}$, then $\neg B \in \Sigma_{k+1}^{b}$.

3. Π_{k+1}^{b} is defined inductively by:

- $\Pi_{k+1}^{b} \supseteq \Sigma_{k}^{b}$, and is closed under $\wedge, \forall x \leq t$ and $\exists x \leq|t|$;
- if $B \in \Sigma_{k+1}^{b}$, then $\neg B \in \Pi_{k+1}^{b}$.

4. \sum_{k+1}^{b} and Π_{k+1}^{b} are the smallest sets which satisfy 2,3 .

Definition 2.3.5 If R is a theory and A a formula, we say that A is Δ_{k+1}^{b} with respect to R iff there are formulas $B \in \Sigma_{k+1}^{b}$ and $C \in \Pi_{k+1}^{b}$ such that $R \vdash A \leftrightarrow B$ and $R \vdash A \leftrightarrow C$.

We never leave out the superscripts b from the levels Σ_{n}^{b} and Π_{n}^{b} of Buss' bounded arithmetical hierarchy, so our use of Σ_{n} for Σ_{n}^{0} and Π_{n} for Π_{n}^{0} should not give rise to confusion.

The hierarchy of bounded arithmetic formulas is constructed in such a way that all levels Π_{i}^{b} and Σ_{i}^{b} except Σ_{0}^{b} correspond to levels of the polynomial hierarchy, which is well-known from structural complexity theory. Without defining all the basic notions of complexity theory, for which the reader may turn to [BDG 87], we give one of the standard definitions.

Definition 2.3.6 The polynomial hierarchy is defined as follows:

1. $P=\Delta_{1}^{p}$ is the set of predicates on the natural numbers which are recognized by a deterministic polynomial time Turing machine;
2. $N P=\Sigma_{1}^{p}$ is the set of predicates on the natural numbers which are recognized by a nondeterministic polynomial time Turing machine;
3. Σ_{i}^{p} is the set of predicates Q such that there is an $R \in \Delta_{i}^{p}$ and a polynomial P, such that for all $\vec{x}, Q(\vec{x}) \Longleftrightarrow \exists y \leq 2^{P(|\vec{x}|)} R(\vec{x}, y)$.
4. Π_{i}^{p} is the set of predicates Q such that there is an $R \in \sum_{i}^{p}$, so that for all \vec{x}, $Q(\vec{x}) \Longleftrightarrow \neg R(\vec{x})$.
5. Δ_{i+1}^{p} is the set of predicates which are recognized by a deterministic polynomial time Turing machine with some oracle from Σ_{i}^{p}.

As usual we use the name co- $N P$ for Π_{1}^{p}. There are many open questions about the polynomial hierarchy. The most important one is: is there a k such that $\sum_{k}^{p}=\sum_{k+1}^{p}$, in which case the hierarchy collapses? More particularly, does $N P=c o-N P$? Or even $P=N P$? It is also unknown whether for any $k, \Delta_{k}^{p}=\Sigma_{k}^{p} \cap \Pi_{k}^{p}$, and in particular whether $P=N P \cap \operatorname{co}-N P$.

Definition 2.3.7 A is polynomially reducible to B if there is a polynomial time computable function f such that $\forall x(x \in A \leftrightarrow f(x) \in B)$.

Note that polynomial reducibility is analogous to many-one reducibility from ordinary recursion theory.

Definition 2.3.8 B is $N P$-complete if all $A \in N P$ are polynomially reducible to B. Similarly, B is co $-N P$-complete if all $A \in \operatorname{co}-N P$ are polynomially reducible to B.

Remark 2.3.9 It is easy to see that for every $N P$-complete set B, the following holds:

- If $B \in \operatorname{co}-N P$, then $N P=\operatorname{co}-N P$;
- If $B \in P$, then $P=N P$.

Remark 2.3.10 From results of Stockmeyer, Wrathall, and Kent and Hodgson [St 76, Wr 76, KH 82] it follows that the bounded arithmetical hierarchy is related to the polynomial hierarchy in the following way: \sum_{k+1}^{p} is the class of predicates which are defined by formulas in Σ_{k+1}^{b}. In particular, $N P$ is the class of predicates which are defined by Σ_{1}^{b}-formulas; similarly co-NP is the class of predicates defined by Π_{1}^{b}-formulas. We refer the reader to [Bu 86 , Chapter 1] for proofs of these correspondences.

Definition 2.3.11 The theory S_{2}^{i} consists of BASIC, a finite list of axioms defining the basic properties of symbols in the language of bounded arithmetic, plus the following induction scheme $\operatorname{PIND}\left(\Sigma_{i}^{b}\right)$:

$$
A(0) \wedge \forall x\left(A\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow A(x)\right) \rightarrow \forall x A(x)
$$

for $A \in \Sigma_{i}^{b}$.
Definition 2.3.12 $S_{2}:=\bigcup_{i} S_{2}^{i}$.
Definition 2.3.13 The theory T_{2}^{i} consists of BASIC plus the following induction scheme:

$$
A(0) \wedge \forall x(A(x) \rightarrow A(S x)) \rightarrow \forall x A(x)
$$

for $A \in \Sigma_{i}^{b}$.
Definition 2.3.14 $T_{2}:=\bigcup_{i} T_{2}^{i}$.
Buss proves that for each $i, S_{2}^{i+1} \vdash T_{2}^{i}$ (see [Bu 86, Corollary 2.21]). It is clear that also for each $i \geq 1, T_{2}^{i} \vdash S_{2}^{i}$. Thus, $T_{2}=S_{2}$.

One of the most important theorems about bounded arithmetic is Parikh's Theorem. It implies that every Δ_{0}-definable provably total function of S_{2} can increase the length of its input only polynomially.

Parikh originally proved his theorem for $\mathrm{I} \Delta_{0}$, for which the Δ_{0}-definable provably total functions are even more severely limited than for S_{2} : they can increase the length of the input only linearly.

We state a version of Parikh's Theorem for Buss' theories S_{2}^{i}.
Theorem 2.3.15 (Parikh's Theorem) Let $i \geq 0$. Suppose that φ is a bounded formula and that $S_{2}^{i} \vdash \forall x \exists y \varphi(x, y)$. Then there is a term $t(x)$ such that $S_{2}^{i} \vdash \forall x \exists y \leq t(x) \varphi(x, y)$.

Proof. Buss gives a proof-theoretic proof (see [Bu 86, Theorem 4.11]). However we prefer to give a model-theoretic proof, because it is easier to understand and much shorter. So suppose that there is a bounded formula φ such that $S_{2}^{i} \vdash \forall x \exists y \varphi(x, y)$, but for every term $t(x), S_{2}^{i} \nvdash \forall x \exists y \leq t(x) \varphi(x, y)$. Now if c is a fresh constant, the set of formulas

$$
S_{2}^{i}+\{\forall y \leq \underbrace{c \# \ldots \# c}_{k \text { times }} \neg \varphi(c, y) \mid k \in \omega\}
$$

is finitely satisfiable. Thus by the Compactness Theorem there is a model

$$
\mathcal{M} \vDash S_{2}^{i}+\{\forall y \leq \underbrace{c \# \ldots \# c}_{k \text { times }} \neg \varphi(c, y) \mid k \in \omega\} .
$$

Suppose that a is the interpretation of c in this model. Next, take the submodel \mathcal{M}^{*} of \mathcal{M} defined by:

$$
\mathcal{M}^{*}:=\{b \in \mathcal{M} \mid \exists n \in \omega(b \leq \underbrace{c \# \ldots \# c}_{n \text { times }})\} .
$$

It is easy to check that \mathcal{M}^{*} is closed under $0, S,+, \cdot \leq,|x|,\left\lfloor\frac{1}{2} x\right\rfloor$, and \#. Moreover the induction axioms of S_{2}^{i} can be written in Π_{1}-form, so they still hold in \mathcal{M} 's initial segment \mathcal{M}^{*}. Therefore $\mathcal{M}^{*} \models S_{2}^{i}$, but $\mathcal{M}^{*} \not \models \exists y \varphi(a, y)$, contradicting our first assumption that $S_{2}^{i} \vdash \forall x \exists y \varphi(x, y)$. QED

Definition 2.3.16 \square_{1}^{p}-functions are those computable by a polynomial time Turing machine. For $i>1, \square_{i}^{p}$ contains those functions computable by a polynomial time Turing machine from finitely many oracles in \sum_{i-1}^{p}.

Buss proved that the provably total Σ_{1}^{b}-definable functions of S_{2}^{1} are exactly the functions computable by a polynomial time Turing machine. More precisely, and at the same time more generally, we have the following two theorems:
Theorem 2.3.17 Let $i \geq 1$. Let g be an m-ary \square_{i}^{p}-function. Let $t(\vec{x})$ be a term so that for all $\vec{x} \in \omega^{m}, g(\vec{x}) \leq t(\vec{x})$. Then there is a \sum_{i}^{b}-formula A such that:

1. $S_{2}^{i} \vdash \forall \vec{x} \exists y \leq t A(\vec{x}, y)$;
2. $S_{2}^{i} \vdash \forall \vec{x}, y, z(A(\vec{x}, y) \wedge A(\vec{x}, z) \rightarrow y=z)$;
3. For all $\vec{x} \in \omega^{m}, A(\vec{x}, g(\vec{x}))$ is true.

Proof. See [Bu 86, Theorem 3.1] QED
Theorem 2.3.18 (Buss' Main Theorem) Let $i \geq 1$. Suppose $S_{2}^{i} \vdash \forall \vec{x} \exists y A(x, y)$ where $A(x, y)$ is a \sum_{i}^{b}-formula with only \vec{x}, y free. Then there is a term $t(\vec{x})$, a \sum_{i}^{b}-formula B and a function g in \square_{i}^{p} such that

1. $S_{2}^{i} \vdash \forall \vec{x} \forall y(B(\vec{x}, y) \rightarrow A(\vec{x}, y))$;
2. $S_{2}^{i} \vdash \forall \vec{x} \forall y, z(B(\vec{x}, y) \wedge B(\vec{x}, z) \rightarrow y=z)$;
3. $S_{2}^{i} \vdash \forall \vec{x} \exists y \leq t B(\vec{x}, y)$;
4. For all $\vec{n}, \omega \models B(\vec{n}, g(\vec{n}))$.

Proof. See [Bu 86]. Buss uses methods well-known from proof theory. We give a short sketch. Suppose $S_{2}^{i} \vdash \forall \vec{x} \exists y A(x, y)$, by a proof p. Then we can apply cut elimination to obtain a term t and an S_{2}^{i} proof p^{\prime} of $\forall \vec{x} \exists y \leq t A(x, y)$ that only cuts Σ_{i}^{b}-formulas. Thus, p^{\prime} contains only Σ_{i}^{b} and Π_{i}^{b}-formulas. Next we can directly extract from p^{\prime} a \square_{i}^{p}-algorithm for computing a function g such that for all $\vec{n}, \omega \models A(\vec{n}, g(\vec{n}))$.

For an elegant model-theoretical argument, which is inspired by Visser's unpublished proof of Parson's and Mints' theorem [$\mathrm{Pa} 72, \mathrm{Mi} 71$] that the primitive recursive functions are exactly the provably total functions of $I \Sigma_{1}$, see [Za 93]. QED

Remark 2.3.19 Note that, if for some \sum_{i}^{b}-formula A and some term $t(\vec{x})$, $\forall \vec{x} \exists y \leq t A(\vec{x}, y)$ is true but not necessarily provable in S_{2}^{i}, then we know only that there is a witnessing function in \square_{i+1}^{p}.
Corollary 2.3.20 Let $A(\vec{a})$ be a formula such that S_{2}^{1} proves that A is equivalent to a Σ_{1}^{b} - and to a Π_{1}^{b}-formula. Then A is a polynomial time predicate.

In other words, if S_{2}^{1} proves that some predicate is in $N P \cap \operatorname{co-}-N P$, then it is already in P. We remind the reader that it is an open question whether $N P \cap \operatorname{co-} N P=P$.

Even though we do not need it in the sequel of the dissertation, we cannot resist the temptation to end this introduction to relations between complexity theory and bounded arithmetic with the statement of a beautiful result by Krajíček, Pudlák and Takeuti.
Theorem 2.3.21 For $i \geq 0$, if $T_{2}^{i} \vdash S_{2}^{i+1}$, then $\Sigma_{i+2}^{p}=\Pi_{i+2}^{p}$.
Proof. For the very ingenious argument, see [KPT 89]. QED

2.3.3 Metamathematics for bounded arithmetic

In order to prove Gödel's Incompleteness Theorems for bounded arithmetic, Buss arithmetized the usual notions of metamathematics (see [Bu 86, Chapter 7]). It turns out that most predicates needed can be Δ_{1}^{b}-defined (or sometimes $\exists \Delta_{1}^{b}$-defined) in S_{2}^{1}. Moreover, these definitions are intensionally correct in the sense of [Fe 60], which means that the usual connections between them can be proved in S_{2}^{1}.

Here follows a list of predicates used in the sequel.

- $\operatorname{Seq}(w)$ for " w encodes a sequence";
- Len $(w)=a$ for "if w encodes a sequence, then the length of that sequence is a; otherwise $a=0$ ";
- $\operatorname{Term}(v)$ for " v is the Gödel number of a term";
- Fmla(v) for " v is the Gödel number of a formula";
- $\operatorname{Prf} f_{T}(u, v)$ for $\operatorname{Fmla}(v) \wedge$ " u is the Gödel number of a proof in T of the formula with Gödel number $v^{\prime \prime}$; when T is clear from the context, we drop the subscript.
- $\operatorname{Prov}_{T}(v):=\exists u \operatorname{Prf}(u, v)$; we sometimes abbreviate $\operatorname{Prov}(\ulcorner\varphi\urcorner)$ as $\square \varphi$.

The predicates Seq, Len, Term, and Fmla are Δ_{1}^{b}-definable in S_{2}^{1}, and so is $P r f_{\alpha}$ where the formula α is Δ_{1}^{b} with respect to S_{2}^{1}. The condition on α is not a severe restriction. To any recursively enumerable set one can associate a polynomial time function having that set as its range, therefore one can suitably axiomatize any theory T which has a recursively enumerable set of axioms including BASIC.

Notation 2.3.22 Instead of the usual numerals $S^{k} 0$ of Peano Arithmetic, we use canonical numerals k defined inductively by:

- $\overline{0}=0$;
- $\overline{2} \bar{k}+1=2 \bar{k}+(S 0)$;
- $\overline{2 k+2}=(S S 0) \cdot(k+1)$.

Note that the length of the term \bar{k} is linear in the length of the binary representation of k, a property that the $S^{k} 0$ obviously do not satisfy. The shortness of canonical terms plays a crucial rôle in many proofs, for example in Buss' proof that S_{2}^{1} enjoys provable Σ_{1}^{b}-completeness (see [Bu 86, Theorem 7.4]).
S_{2}^{1} can Σ_{1}^{b}-define a function $\operatorname{Num}(x)$ such that $\operatorname{Num}(x)$ stands for the Gödel number of the term \bar{x}. For ease of reading, we will however abuse notation; thus if $A(x)$ is a formula with free variable x we write $\ulcorner A(\bar{a})\urcorner$ instead of $\operatorname{Sub}(\ulcorner A\urcorner,\ulcorner x\urcorner, N u m(a))$. Sometimes we are even more sloppy and leave out the numeral dashes altogether. In those cases the context should provide enough material for the reader to know what is meant.

Lemma 2.3.23 (cf. Lemma 7.5 of [Bu 86])
Let t be any term with free variables a_{1}, \ldots, a_{k}. Then

$$
S_{2}^{1} \vdash \forall a_{1}, \ldots, a_{k} \operatorname{Prov}\left(\left\ulcorner t\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)=\overline{t\left(a_{1}, \ldots, a_{k}\right)}\right\urcorner\right) .
$$

Proof. We use induction on the complexity of t.

- If t is 0 , then the equality axioms immediately give us $\left.S_{2}^{1} \vdash \operatorname{Prov}(\overline{0}=\overline{0}\urcorner\right)$.
- If t is a variable symbol x, then the equality axioms give us $\left.S_{2}^{1} \vdash \forall x \operatorname{Prov}\left({ }^{(} \bar{x}=\bar{x}\right\urcorner\right)$.
- If $t=S r$, then we have by induction hypothesis

$$
S_{2}^{1} \vdash \forall a_{1}, \ldots, a_{k} \operatorname{Prov}\left(\left\ulcorner r\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)=\overline{r\left(a_{1}, \ldots, a_{k}\right)}\right\urcorner\right) .
$$

Therefore it suffices to show that $S_{2}^{1} \vdash \forall b \operatorname{Prov}(\ulcorner S \bar{b}=\overline{S b}\urcorner)$. In order to be able to apply the formalized version of $\operatorname{PIND}\left(\Sigma_{1}^{b}\right)$ in S_{2}^{1}, we need to find some fixed polynomial P such that the proofs of $S \bar{b}=\overline{S b}$ are of length $\leq P(|b|)$, because then there is a term $t(x)$ for which we can prove $S_{2}^{1} \vdash \forall b \exists y \leq t(b) \operatorname{Prf}(y,\ulcorner S \bar{b}=\overline{S b}\urcorner)$. The polynomial that we need will be quadratic. We leave the exact computation to the reader. Informally, the reasoning inside S_{2}^{1} is as follows:

- We clearly have $\operatorname{Prov}(\ulcorner S \overline{0}=\overline{S 0}\urcorner)$.
- Suppose that $b>0$ is even. By the definition of efficient numerals and the BASIC axioms we immediately have proofs of length linear in $|b|$ of $S \bar{b}=$ $\bar{b}+S 0=\overline{S b}$.
- Suppose that $b>0$ is odd. Then we have a proof from BASIC of length linear in $|b|$ of $S \bar{b}=2 \cdot \overline{\left\lfloor\frac{1}{2} b\right]}+2=2 \cdot S \overline{\left.\frac{1}{2} b\right]}$.
By the induction hypothesis and the BASIC axioms we have a proof of length quadratic in $\left|\left\lfloor\frac{1}{2} b\right\rfloor\right|=|b|-1$ of $S\left[\frac{1}{2} b\right]=\bar{S}\left[\frac{1}{2} b\right]$. Combined, these two give a proof of length quadratic in $|\vec{b}|$ of $S b=S \bar{b}$.
- We leave the cases for $+, \cdot, \#,\left\lceil\frac{1}{2} x\right\rceil$, and $|\mid$ to the reader.

QED

Theorem 2.3.24 (Provable Σ_{1}^{b}-completeness, Buss) Let A be any Σ_{1}^{b}-formula. Let a_{1}, \ldots, a_{k} be all the free variables of A. Then there is a term $t\left(a_{1}, \ldots, a_{k}\right)$ such that

$$
S_{2}^{1} \vdash \forall a_{1}, \ldots, a_{k}\left(A\left(a_{1}, \ldots, a_{k}\right) \rightarrow \exists w \leq \operatorname{tPrf}\left(w,\left\ulcorner A\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)^{\urcorner}\right)\right) .\right.
$$

Proof. We give only a small hint: the reader may look up the full proof in $[\mathrm{Bu} 86$, Theorem 7.4]. We use induction on the complexity of A. The most difficult step is the one for the bounded universal quantifier. So suppose that A is $\forall x \leq|s| B\left(a_{1}, \ldots, a_{k}, x\right)$, and that for all $b \leq|s|$ we have proofs of length polynomial in $\max \left(\left|a_{1}\right|, \ldots,\left|a_{k}\right|,|b|\right)$ of $B\left(a_{1}, \ldots, a_{k}, b\right)$. Then we can combine these $|s|+1$ short proofs in order to construct a proof of length polynomial in $\max \left(\left|a_{1}\right|, \ldots,\left|a_{k}\right|,\left|s\left(a_{1}, \ldots, a_{k}\right)\right|\right)$ of the formula $\forall x \leq|s| B\left(a_{1}, \ldots, a_{k}, x\right)$. QED

Using theorem 2.3.24, it is easy to see that Löb's logic (see definition 2.2.1) is arithmetically sound with respect to S_{2}^{1}. In particular this means that we can, in the standard way, prove Gödel's Second Incompleteness Theorem and its formalized version for S_{2}^{1}.

Theorem 2.3.25 (cf. Theorem 7.10 of [Bu 86$]$)
$S_{2}^{1} \nvdash \neg \operatorname{Prov}\left(\left\ulcorner\perp^{\urcorner}\right)\right.$and $S_{2}^{1} \vdash \operatorname{Prov}\left(\left\ulcorner\operatorname{Prov}\left({ }^{(} \perp^{\urcorner}\right) \rightarrow \perp^{\urcorner}\right) \rightarrow \operatorname{Prov}\left(\left\ulcorner\perp^{\urcorner}\right)\right.\right.$.

Proof. We leave the well-known proofs to the reader. QED

We refer the reader to section 2.6 for the proof of a much stronger result: $\mathrm{I} \Delta_{0}+E X P \forall$ Con (Q).

By the way, Rosser's strengthening of Gödel's Second Incompleteness Theorem is also provable for theories like S_{2}^{1} and $\mathrm{I} \Delta_{0}+\Omega_{1}$. However, we use the "small reflection theorem" to prove it. Thus the reader will have to wait for theorem 3.3.24 of Chapter 3 in order to find Rosser's Theorem as a corollary.

Sometimes, we will use the name I $\Delta_{0}+\Omega_{1}$ for Buss' theory S_{2} (see Definition 2.3.12), in which induction for formulas from the hierarchy of bounded arithmetic formulas in a language containing \# and $\left|\mid\right.$ is allowed. Because S_{2} is a conservative extension of I $\Delta_{0}+\Omega_{1}$, the name change has no repercussions on results that do not hinge on the details of formalization. More formally, we have the following:

Lemma 2.3.26 There is a Δ_{0}-formula $\psi(x, y, z)$ such that $\omega \models x \# y=z \leftrightarrow \psi(x, y, z)$, $\mathrm{I} \Delta_{0}+\Omega_{1}$ proves the BASIC properties of $\#$ for ψ, and

1. $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall x, y \exists z \psi(x, y, z)$ and
2. $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall x, y, z_{1}, z_{2}\left(\psi\left(x, y, z_{1}\right) \wedge \psi\left(x, y, z_{2}\right) \rightarrow z_{1}=z_{2}\right)$.

Similarly there is a Δ_{0}-formula $\chi(x, y)$ defining $\left|\mid\right.$ in $\mathrm{I} \Delta_{0}+\Omega_{1}$, and there is a Δ_{0} formula $\xi(x, y)$ defining $\left\lfloor\frac{1}{2} x\right\rfloor$ in $\mathrm{I} \Delta_{0}+\Omega_{1}$.

Definition 2.3.27 A $\Delta_{0}\left(f_{1}, \ldots, f_{n}\right)$-formula is a bounded formula in the language of arithmetic to which the function symbols f_{1}, \ldots, f_{n} are added.

Lemma 2.3.28

$$
\begin{aligned}
& \mathrm{I} \Delta_{0}+\Omega_{1}+\forall x y z\left((x \# y=z \leftrightarrow \psi(x, y, z)) \wedge(|x|=y \leftrightarrow \chi(x, y)) \wedge\left(\left\lfloor\frac{1}{2} x\right\rfloor=y \leftrightarrow \xi(x, y)\right)\right. \\
& \vdash \mathrm{I} \Delta_{0}\left(\#,| |,\left\lfloor\frac{1}{2} x\right\rfloor\right) \wedge \text { "BASIC". }
\end{aligned}
$$

Proof. As [Bu 86, Theorem 2.2 and Corollary 2.3]. See also [PD 82] for a more general lemma. QED

Definition 2.3.29 (see [Pu 85]). A theory T is sequential if it is a theory with equality, there is a distinguished provably non-empty domain $N(x)$ that satisfies Robinson's Arithmetic Q, and there exists a formula $\beta(t, w, z)$ (" t is the w-th element of the sequence coded by $z^{\prime \prime}$) such that:

$$
\begin{aligned}
T \vdash \forall x, y, v \exists z \forall t, w \quad & {[N(v) \wedge w \leq v} \\
& \rightarrow(\beta(t, w, z) \leftrightarrow((\beta(t, w, x) \wedge w<v) \vee(t=y \wedge w=v)))] .
\end{aligned}
$$

Examples of sequential theories are I Δ_{0}, S_{2}^{i} for $i \geq 1, P A, Z F$, and $G B$.

2.4 Interpretations

Tarski introduced the formal notion of interpretability in [TMR 53]. We give a variant of his definition here.

Let U, V be two Σ_{1}^{b}-axiomatized theories in languages containing finitely many nonlogical symbols. Let the axioms of V be given by the Σ_{1}^{b}-formula α_{V}. An interpretation K of V into U is given by:

- a formula $\delta(x)$ of L_{U} defining the universe, such that $U \vdash \exists x \delta(x)$;
- a function from the relation symbols of L_{V} to formulas of L_{U}, respecting the original arities;
- a function from the function symbols f of L_{V} to formulas ψ_{f} of L_{U}, such that if f is k-ary, then ψ_{f} has $k+1$ free variables and

$$
U \vdash \delta\left(x_{1}\right) \wedge \ldots \wedge \delta\left(x_{k}\right) \rightarrow \exists!y\left(\delta(y) \wedge \psi_{f}\left(x_{1}, \ldots, x_{k}, y\right)\right)
$$

We warn the reader that the image of $=$ need not be $=$.
We can extend K in the obvious way to map all formulas φ of L_{V} into formulas φ^{K} of L_{U}. To do this we relativize all quantifiers to δ while we respect the Boolean connectives. In fact we can, in an intensionally correct way, Δ_{1}^{b}-define in $\mathrm{I} \Delta_{0}+\Omega_{1}$ a function K corresponding to this mapping. For ease of reading, we will write a^{K} even if a is a Gödel number. Thus $U \triangleright V$ can be defined in as follows:

$$
\begin{equation*}
U \triangleright V: \leftrightarrow \exists K\left(\text { " } K \text { is an interpretation" } \wedge \forall a\left(\alpha_{V}(a) \rightarrow \exists p \operatorname{Prf_{U}}\left(p, a^{K}\right)\right)\right) . \tag{2.1}
\end{equation*}
$$

(By abuse of notation we denote by \triangleright both the arithmetization of the interpretability predicate and the corresponding modal operator that we will introduce in section 2.5.)

It would be nice to be able to prove in the theories that we are interested in such as I $\Delta_{0}+\Omega_{1}$ that interpretability gives rise to relative consistency. However it seems that one cannot do this straight-away, but one needs a collection principle:

Definition 2.4.1 $B \Sigma_{1}:=I \Delta_{0}$ plus the scheme

$$
\forall u(\forall x<u \exists y \varphi(x, y) \rightarrow \exists v \forall x<u \exists y<v \varphi(x, y))
$$

for $\varphi \in \Sigma_{1}$.
Indeed we have

$$
\mathrm{B} \Sigma_{1}+\Omega_{1} \vdash U \triangleright V \rightarrow(\operatorname{Con}(U) \rightarrow \operatorname{Con}(V)) .
$$

We leave the proof to the reader.
However, we prefer to make a definitional move. For the remainder of the dissertation, we define $U \triangleright V$ as smooth interpretability (discussed in [Vi 91a]):

$$
\begin{equation*}
U \triangleright V: \leftrightarrow \exists K\left(" K \text { is an interpr." } \wedge \forall u \exists v \forall a<u \exists p<v\left(\alpha_{V}(a) \rightarrow \operatorname{Prf} f_{U}\left(p, a^{K}\right)\right)\right) .(\tag{2.2}
\end{equation*}
$$

Now we do have

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash U \triangleright V \rightarrow(\operatorname{Con}(U) \rightarrow \operatorname{Con}(V)) .
$$

For theories containing $\mathrm{B} \Sigma_{1}+\Omega_{1}$ the definitions of standard interpretability (2.1) and smooth interpretability (2.2) collapse.

In Part III of this dissertation, we are concerned mostly with extensions of $P A \supseteq$ $\mathrm{B} \Sigma_{1}+\Omega_{1}$, thus we may freely use the standard definition. Moreover, for extensions of $P A$ one can, and we will, without loss of generality assume the image of $=$ to $b e=$. This restriction makes life easier, although it is not essential for most results.

We can view interpretability in a semantic way. An interpretation K of V into U determines, in every model \mathcal{M} of U, a new model \mathcal{M}^{K} with underlying set $\{a \in \mathcal{M} \mid \mathcal{M} \vDash$ $\delta(a)\}$. The reader may check that for every $a_{1}, \ldots, a_{k} \in \mathcal{M}^{K}$, we have the following:

$$
\mathcal{M}^{K} \vDash \varphi\left(a_{1}, \ldots, a_{k}\right) \Longleftrightarrow \mathcal{M} \vDash \varphi\left(a_{1}, \ldots, a_{k}\right)^{K} .
$$

For finitely axiomatized theories V, Montague in [Mo65] was the first to explicitly relate the syntactic and semantic definitions of $U \triangleright V$.

It is interesting to note that many famous relative consistency proofs in the mathematical literature arise from interpretations. Thus we have both $Z F \triangleright Z F+C H$ and $Z F C \triangleright Z F C+\neg C H$.

For arithmetical theories extending $P A$, Hájek [Há 71] gave an elegant characterization of interpretability. Because the characterization was implicit already in Orey's [Or 61], many authors refer to it as the Orey-Hájek characterization. In order to describe it we first need two definitions and a lemma.

Definition 2.4.2 $\operatorname{Prov}_{k, T}\left(\left\ulcorner A^{\urcorner}\right)\right.$stands for "there is a proof of A from T in which only axioms with Gödel number $\leq k$ are used".

$$
\operatorname{Con}_{k}(T):=\neg \operatorname{Prov}_{k, T}(\ulcorner\perp\urcorner) .
$$

Definition 2.4.3 A theory T with $T \supseteq I \Sigma_{1}$ in the language of arithmetic is essentially reflexive if for all sentences A and for all $k, T \vdash \operatorname{Prov}_{k, T}\left(\left\ulcorner A^{\urcorner}\right) \rightarrow A\right.$.

Remark 2.4.4 In the literature, different definitions of essential reflexivity abound. For example, [HP 93, Definition III-2.33] is as follows: A theory T with $T \supseteq I \Sigma_{1}$ in the language of arithmetic is essentially reflexive if for each theory $T^{\prime} \supseteq T$ and for all k, $T^{\prime} \vdash \operatorname{Con}_{k}\left(T^{\prime}\right)$.

Lemma 2.4.5 If T is an extension of $P A$ by a primitive recursive set of axioms in the language of $P A$, then T is essentially reflexive.

Proof. See [Ber 90, Theorem 2.6]. A feasible version can be found as our lemma 7.2.5. QED

Theorem 2.4.6 (Orey-Hájek, [Or 61], [Há 71]) Let U and V be primitive recursive extensions of $P A$ in the language of $P A$. Then the following holds:

$$
P A \vdash U \triangleright V \leftrightarrow \forall k \operatorname{Prov}_{U}\left(\left\ulcorner\operatorname{Con}_{k}(V)^{\urcorner}\right) .\right.
$$

Proof. See [Ber 90, Theorem 2.9 and Remark 2.10]. For a feasible version, see lemma 7.3.1 of this dissertation. QED

Definition 2.4.7 A theory V is Π_{1}-conservative over U if for all Π_{1}-sentences π, $V \vdash \pi \Rightarrow U \vdash \pi$.

We abbreviate the formalization of " V is Π_{1}-conservative over U " as $U \triangleright_{\Pi_{1}} V$.
Theorem 2.4.8 Let U and V be primitive recursive extensions of $P A$ in the language of $P A$. Then the following holds:

$$
P A \vdash U \triangleright_{\Pi_{1}} V \leftrightarrow \forall k \operatorname{Prov}_{U}\left(\left\ulcorner\operatorname{Con}_{k}(V)\right\urcorner\right) .
$$

Proof. See [HP 93, Theorem III-2.40]. A feasible version appears as lemma 7.3.2. QED

Theorem 2.4.9 Let U and V be primitive recursive extensions of $P A$ in the same language. Then the following holds:

$$
P A \vdash U \triangleright V \leftrightarrow U \triangleright_{\Pi_{1}} V .
$$

Proof. Immediately from theorem 2.4.6 and theorem 2.4.8. See corollary 7.3.3 for a feasible version. QED

Although the modal principle M (see section 2.5) corresponding to the following theorem was baptized 'Montagna's Principle' in the eighties, the unformalized version of the underlying theorem was proved by Lindström already in the seventies.

Theorem 2.4.10 (Lindström, [Li 79]) Let U and V be primitive recursive extensions of $P A$ in the language of $P A$. Let \mathcal{S} be a primitive recursive set of Σ_{1}^{0}-sentences. Then the following holds:

$$
P A \vdash U \triangleright V \rightarrow U+\mathcal{S} \triangleright V+\mathcal{S}
$$

Proof. We remind the reader that for interpretations between theories extending $P A$, we take the image of $=$ to be $=$.

A precise formal proof can be gleaned from the proof of theorem 6.3.10 in chapter 6. Here we give a sketch with a more model-theoretic flavor. It is easy to see that the following fact implies our theorem:

Let \mathcal{M} be a model of U, and let K be an interpretation of V into the theory of \mathcal{M}; we call the interpreted structure \mathcal{M}^{K}. Then \mathcal{M} can be embedded as an initial segment of \mathcal{M}^{K}.

In order to prove this fact, we define $p i s m(s)$ for " s is a partial isomorphism" and the relation $G(x, y)$ as follows:

$$
\begin{aligned}
& \operatorname{pism}(s):=\operatorname{seq}(s) \wedge(s)_{0}=0^{K} \wedge \forall i<\operatorname{lh}(s)-1\left((s)_{i+1}=S^{K}(s)_{i}\right) \\
& G(j, y):=\exists s\left(\operatorname{pism}(s) \wedge \operatorname{lh}(s)=j+1 \wedge(s)_{j}=y\right)
\end{aligned}
$$

By induction it follows that for every $x \in \mathcal{M}$ there is a unique $y \in \mathcal{M}^{K}$ such that $\mathcal{M} \vDash G(x, y)$. Therefore, there is a function g corresponding to G. It is easy to see that g is an embedding into \mathcal{M}^{K} and that it preserves $0, S,+$ and \cdot.

Now we need only show that the image of \mathcal{M} is an initial segment of \mathcal{M}^{K}. But because $V \supseteq P A$, and $\mathcal{M} \vDash \forall x\left(g(S x)=S^{K}(g(x))\right)$, this is not difficult: we have $\mathcal{M} \vDash \forall x \forall u\left(\delta(u) \wedge u<^{K} g(S x) \rightarrow u<^{K} g(x) \vee u=g(x)\right)$. Now by induction on $x \in \mathcal{M}$ we find that for every $u \in \mathcal{M}^{K}$ such that $\mathcal{M} \vDash u<^{K} g(x)$, there is a $y \in \mathcal{M}$ such that $\mathcal{M} \vDash y<x$ and $\mathcal{M} \models u=g(y)$. QED

For finitely axiomatized theories the situation is different. As reflexivity for such theories would be in contradiction with Gödel's Second Incompleteness Theorem, the Orey-Hájek characterization is not applicable (see however section 2.7).

Instead, we have Friedman's characterization. Readers unfamiliar with tableau provability may find a description in definition 2.8.2. We define

$$
\operatorname{Tabprov}_{T}\left(\left\ulcorner\varphi^{\urcorner}\right):=\neg \operatorname{Tabcon}(T+\neg \varphi) .\right.
$$

Theorem 2.4.11 (Friedman's characterization) Suppose U and V are sequential theories and V is finitely axiomatized. Then

$$
\mathrm{I} \Delta_{0}+E X P \vdash U \triangleright V \leftrightarrow \operatorname{Tabprov}_{\mathrm{I}_{0}+E X P}\left(\left\ulcorner\operatorname{Tabcon}(U) \rightarrow \operatorname{Tabcon}(V)^{\urcorner}\right)\right.
$$

Proof. See [Vi 90a]. QED
It is also clear that for finitely axiomatized theories $U, V, U \triangleright V$ is $\exists \Sigma_{1}^{b}$, so

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash U \triangleright V \rightarrow \square_{Q}(U \triangleright V) .
$$

Examples of finitely axiomatizable sequential theories are I $\Delta_{0}+E X P$ (even verifiably in I $\Delta_{0}+\Omega_{1}$; see lemma 2.8.22), I $\Delta_{0}+S U P E X P$, and S_{2}^{i} and $I \Sigma_{i}$ for $i \geq 1$. At the moment of writing, as far as we heard nobody knows whether I Δ_{0} and $\mathrm{I} \Delta_{0}+\Omega_{1}$ are finitely axiomatizable.

2.5 Interpretability logic

Interpretability logic extends provability logic. The modal formulas $A \triangleright B$ correspond to arithmetical formulas $T+A^{*} \triangleright T+B^{*}$, where T is an arithmetical theory.

Definition 2.5.1 $I L$ contains the provability logic L (see definition 2.2 .1) plus the following five axiom schemes:

J1 $\square(A \rightarrow B) \rightarrow(A \triangleright B)$;
$\mathbf{J 2}(A \triangleright B) \wedge(B \triangleright C) \rightarrow(A \triangleright C)$;
J3 $(A \triangleright C) \wedge(B \triangleright C) \rightarrow(A \vee B \triangleright C)$;
J4 $(A \triangleright B) \rightarrow(\diamond A \rightarrow \diamond B)$;
J5 $\diamond A \triangleright A$.
Definition 2.5.2 $I L M=I L+M$, where M is the axiom $(A \triangleright B) \rightarrow(A \wedge \square C \triangleright B \wedge \square C)$.
Definition 2.5.3 $I L P=I L+P$, where P is the axiom $(A \triangleright B) \rightarrow \square(A \triangleright B)$.
Definition 2.5.4 An $I L$-frame is a frame (W, R), where R is a transitive conversely wellfounded relation on W, with additional relations S_{w} for each $w \in W$, having the following properties:

- S_{w} is a relation on $\left\{w^{\prime} \in W \mid w R w^{\prime}\right\} ;$
- S_{w} is reflexive and transitive;
- if $w R w^{\prime}, w R w^{\prime \prime}$ and $w^{\prime} R w^{\prime \prime}$, then $w^{\prime} S_{w} w^{\prime \prime}$.

Definition 2.5.5 An $I L M$-frame is an $I L$-frame satisfying the following extra condition:

- if $u S_{w} v R z$, then $u R z$.

Definition 2.5.6 A simplified $I L M$-frame is a frame (W, R), where R is a transitive conversely well-founded relation on W, with root b say, with one additional binary relation S such that

- S is reflexive and transitive and $R \subseteq S$;
- if $u S v R z$, then $u R z$.

Definition 2.5.7 An $I L$-model is given by an $I L$-frame ($W, R,\left\{S_{w} \mid w \in W\right\}$) combined with a forcing relation satisfying the following clauses:

- $u \Vdash \square A$ if and only if $\forall v(u R v \Rightarrow v$ ト $A)$;
- $u \Vdash A \triangleright B$ if and only if $\forall v\left(u R v\right.$ and $v \Vdash A \Rightarrow \exists w\left(v S_{u} w\right.$ and $\left.\left.w \Vdash B\right)\right)$.

In [JV 90], de Jongh and Veltman prove that $I L$ is modally sound and complete with respect to $I L$-models, and that $I L M$ is modally sound and complete with respect to $I L$-models on $I L M$-frames.

Visser showed that $I L M$ is already complete with respect to models on simplified $I L M$-frames; for a proof see [Ber 90].

Definition 2.5.8 A T-interpretation is a map * which assigns to every propositional variable p a sentence p^{*} of the language of T, and which is extended to all modal formulas as follows:

1. $(A \triangleright B)^{*}=T+A^{*} \triangleright T+B^{*}$
2. $(\square A)^{*}=\operatorname{Prov}_{T}\left(A^{*}\right)$
3. * commutes with the propositional connectives.

Here \triangleright abbreviates the formalization of (smooth) interpretability.
$I L$ is arithmetically sound with respect to sequential theories extending I $\Delta_{0}+\Omega_{1}$.
Smoryński and Visser proved that $I L P$ is arithmetically sound and complete with respect to the finitely axiomatized theories $G B$ and $A C A_{0}$. Next Visser generalized the result and proved arithmetical soundness of $I L P$ with respect to finitely axiomatized sequential theories extending I $\Delta_{0}+S U P E X P$ (see [Vi 90a]). This means that for such theories T and for all modal formulas A,

$$
I L P \vdash A \Longleftrightarrow \text { for all } T \text {-interpretations } *, T \vdash A^{*} .
$$

Berarducci [Ber 90] and Shavrukov [Sh 88] independently proved that ILM is arithmetically complete with respect to interpretability over $P A$. It is also arithmetically sound (see [Vi 90a]).

2.6 Definable cuts

Because $P A$ proves induction for all first order formulas, no proper cuts of models of $P A$ can be defined by formulas. In the context of weaker theories where induction is restricted to a proper subset of all formulas, on the contrary, definable cuts have proved to be highly useful tools.

For example, in weak theories like $\mathrm{I} \Delta_{0}$, fast growing functions such as \exp are not provably total. For results that one normally derives using the totality of such functions, one can find analogs in weak theories by constructing small cuts of numbers for which some of the fast growing functions in question do have the necessary values. The reader will find a formalization of this intuition in lemma 2.6.9, lemma 2.6.11 and theorem 2.6.12.

Moreover definable cuts provide very natural interpretations in which the domain is restricted, but the original operations are left intact. We give examples of interpretations by definable cuts in lemma 2.6.14 and theorem 2.6.16. Such interpretations in turn give rise to relative consistency results which are provable in theories as weak as $\mathrm{I} \Delta_{0}+\Omega_{1}$.

It is time to give some formal definitions.
Definition 2.6.1 Let $T \supseteq Q$ be a Σ_{1}^{b}-axiomatized theory. A T-cut is a formula I such that:

1. $T \vdash I(0)$,
2. $T \vdash \forall x \forall y(I(y) \wedge x \leq y \rightarrow I(x))$,
3. $T \vdash \forall x(I(x) \rightarrow I(S x))$.

Definition 2.6.2 Let $T \supseteq Q$ be a Σ_{1}^{b}-axiomatized theory. A T-initial segment is a formula J such that:

1. $T \vdash J(0)$,
2. $T \vdash \forall x \forall y(J(y) \wedge x \leq y \rightarrow J(x))$,
3. $T \vdash \forall x \forall y(J(x) \wedge J(y) \rightarrow(J(S x) \wedge J(x+y) \wedge J(x \cdot y)))$.

Remark 2.6.3 Note that if J is a T-initial segment in an arithmetic language, it determines an initial substructure in every model of T. Because J is T-provably closed under $0, S,+$ and - and because the induction axioms of $\mathrm{I} \Delta_{0}$ can be written in Π_{1}^{0}-form (see remark 2.1.6), these substructures will themselves be models of $I \Delta_{0}$. Thus T-initial segments provide interpretations of $\mathrm{I} \Delta_{0}$ into T.

Remark 2.6.4 For cuts I, we frequently write $x \in I$ instead of $I(x)$.
The word cut is not used uniformly in the literature. For example, $\mathrm{I} \Delta_{0}+\Omega_{1}$-cut often refers to a I $\Delta_{0}+\Omega_{1}$-initial segment which is even provably closed under ω_{1} (see e.g. [Vi 90a]). The reason that in many applications such confusion is not harmful is provided by lemma 2.6.6 and lemma 2.6.10.

Lemma 2.6.5 Suppose that $T \supseteq \mathrm{I} \Delta_{0}$ and let I be a T-cut. Then there is a formula J such that

1. $T \vdash \forall x(J(x) \rightarrow I(x)) ;$
2. J is a T-cut;
3. $T \vdash \forall x \forall y(J(x) \wedge J(y) \rightarrow J(x+y))$, i.e. J is closed under + .

Proof. Take

$$
J(x): \leftrightarrow I(x) \wedge \forall y(I(y) \rightarrow I(x+y)) .
$$

It is easy to see that $T \vdash \forall x(J(x) \rightarrow I(x))$ and that J is a T-cut.
For closure under + , reason in $\mathrm{I} \Delta_{0}$ and suppose that $x_{1}, x_{2} \in J$ and that $y \in I$. Then by definition of J we have, first, $x_{1}+x_{2} \in I$. Also $y+x_{1} \in I$, thus $y+\left(x_{1}+x_{2}\right)=$ $\left(y+x_{1}\right)+x_{2} \in I$. We may conclude that $x_{1}+x_{2} \in J$. QED

Lemma 2.6.6 (Solovay's shortening lemma, [So 76b]) Suppose that $T \supseteq \mathrm{I} \Delta_{0}$ and let I be a T-cut. Then there is a formula K such that

1. $T \vdash \forall x(K(x) \rightarrow I(x))$;
2. K is a T-initial segment;

Proof. First construct J from I as in lemma 2.6.5. Next, define

$$
K(x): \leftrightarrow J(x) \wedge \forall y(J(y) \rightarrow J(x \cdot y))
$$

We leave it to the reader to prove that K is indeed the desired T-initial segment. QED
The following lemma 2.6 .8 is used in almost all applications of cuts. Note that it is essential that we use the efficient numerals \bar{x} which are based on the binary expansion of x. First we introduce a notational convention.

Notation 2.6.7 As in Pudlák's papers [Pu 86], we use the following notation:

$$
T \nvdash^{n} \varphi
$$

to denote that there exists a proof of φ in T whose length (to which the length of proof lines contributes) is $\leq n$. Furthermore we use

$$
T \stackrel{|n|}{\stackrel{\mid c}{*}} \varphi(n)
$$

to denote that for some polynomial P we have for all $n, T \xlongequal{P(|n|)} \varphi(n)$. Par abus de langage, we also use these abbreviations in formalized contexts whenever we think that their use will not confuse the reader.
Lemma 2.6.8 (Pudlák) Suppose J is a T-initial segment. Then $T \left\lvert\, \frac{|n|}{*} J(\bar{n})\right.$. Also we have $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall x \operatorname{Prov}_{T}(\ulcorner J(\bar{x})\urcorner)$.

Proof. We give only a sketch, and leave the formal details to the reader. Essentially, in the proof of $J(\bar{x})$, we follow the $|x|$ steps it takes to build \bar{x} from $\overline{0}$. At every step we instantiate either the proof of $\forall y(J(y) \rightarrow J(S y))$ or the proof of $\forall y(J(y) \rightarrow J(S S 0 \cdot y))$ with the appropriate efficient numeral. By using Modus Ponens a total of $|x|$ times, we finally derive $J(\bar{x})$. The length of the proof can evidently be bounded by a polynomial in $|x|$.

By inspection of the proof we see that it can be formalized to get $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash$ $\forall x \operatorname{Prov}_{T}(\ulcorner J(\bar{x})\urcorner)$. Also it is useful to remark that in the proofs of $J(\bar{x})$, only formulas of a fixed complexity depending only on J are used. QED

Lemma 2.6.9 Suppose that $T \supseteq \mathrm{I} \Delta_{0}$. For every k and every T-cut I, there exists an T-initial segment J such that $T \vdash \forall x\left(J(x) \rightarrow I\left(2_{k}^{x}\right)\right)$. (We use functional notation for brevity, but we remind the reader that there are appropriate equivalents using the Δ_{0} formulas that correspond to $2_{k}^{x}=y$.)

Proof. We define I_{0}, \ldots, I_{k} and J_{0}, \ldots, J_{k} by recursion.

- $I_{0}(x): \leftrightarrow I(x) ;$
- for every $i \leq k, J_{i}$ is constructed from I_{i} by lemma 2.6.5;
- $I_{i+1}(x): \leftrightarrow J_{i}\left(2^{x}\right)$.

We prove by induction on i that every I_{i} is a T-cut such that $T \vdash \forall x\left(I_{i}(x) \rightarrow I\left(2_{i}^{x}\right)\right)$. For $i=0$ this is clear. Suppose as induction hypothesis that it holds for i, and reason in T. First we show that $\forall x\left(I_{i+1}(x) \rightarrow I\left(2_{i+1}^{x}\right)\right)$. Suppose $x \in I_{i+1}$, then by definition $2^{x} \in J_{i}$, so because $J_{i} \in I_{i}$ we have $2_{i}^{2^{x}}=2_{i+1}^{x} \in I$. Next we show that I_{i+1} is a T-cut. Again, suppose that $x \in I_{i+1}$, thus $2^{x} \in J_{i}$. Since J_{i} is closed under + , we also have $2^{x}+2^{x}=2^{x+1} \in J_{i}$, thus $x+1 \in I_{i+1}$.

To find the desired J, simply close J_{k} under \cdot by lemma 2.6.6.
(Note that we do not have I $\Delta_{0} \vdash \forall x\left(J(x) \rightarrow J\left(2_{k}^{x}\right)\right.$.) QED
We remind the reader that ω_{1} is defined in definition 2.1.7.
Lemma 2.6.10 Suppose that $T \supseteq \mathrm{I} \Delta_{0}$ and let I be a T-cut. Then there is a formula J such that

1. $T \vdash \forall x(K(x) \rightarrow I(x))$;
2. J is a T-initial segment;
3. $T \vdash \forall x\left(J(x) \rightarrow J\left(\omega_{1}(x)\right)\right)$.

Proof. First take J_{2} as defined in the proof of lemma 2.6.9, and close it off under • by lemma 2.6.6 to get a T-initial segment K. Next define

$$
J(x): \leftrightarrow \exists y\left(K(y) \wedge x \leq 2^{2 v}\right)
$$

We leave it to the reader to show that J is a T-initial segment such that $T \vdash \forall x(J(x) \rightarrow$ $K(x)$).

For closure under ω_{1}, we reason in T and we use the fact, provable by induction, that for $n>1, \omega_{1}\left(2^{2^{n}}\right) \leq 2^{2^{4 \cdot n}}$. Now suppose that $x \in J$. Then for some $y \in K$ (where we may take $y>1$ without loss of generality), $\omega_{1}(x) \leq \omega_{1}\left(2^{2^{\nu}}\right) \leq 2^{2^{4 \cdot v}}$. But because K is closed under + , we have $4 \cdot y \in K$, so by definition $\omega_{1}(x) \in J$. QED

Lemma 2.6.11 Let $\varphi \in \Delta_{0}($ exp $)$. Suppose $\mathrm{I} \Delta_{0}+E X P \vdash \forall x \varphi(x)$. Then there is a k such that $\mathrm{I} \Delta_{0} \vdash \forall x\left(2_{k}^{x} \downarrow \rightarrow \varphi(x)\right)$.

Proof. The proof is reminiscent of Parikh's Theorem (see theorem 2.3.15). Suppose, in order to derive a contradiction, that there is no k such that $\mathrm{I} \Delta_{0} \vdash \forall x\left(2_{k}^{x} \downarrow \rightarrow \varphi(x)\right)$. Then, for a fresh constant c and for all k, $\mathrm{I} \Delta_{0} \nvdash 2_{k}^{c} \downarrow \rightarrow \varphi(c)$. By the compactness theorem, there is a model $\mathcal{M} \models \mathrm{I} \Delta_{0}+\left\{2_{k}^{c} \downarrow \mid k \in \omega\right\}+\neg \varphi(c)$. Next, we define $\mathcal{M}^{*}:=$ $\left\{b \in \mathcal{M} \mid \exists k\left(\mathcal{M} \vDash b<2_{k}^{c}\right)\right\}$. Now $\mathcal{M}^{*} \vDash \mathrm{I} \Delta_{0}+E X P$, so $\mathcal{M}^{*} \vDash \forall x \varphi(x)$, in particular $\mathcal{M}^{*} \vDash \varphi(c)$. But $\mathcal{M}^{*} \subseteq_{e} \mathcal{M}$, so $\mathcal{M} \vDash \varphi(c)$. There we have our contradiction. QED

Wilkie and Paris proved that the Π_{1}-consequences of $I \Delta_{0}+E X P$ can be characterized using I Δ_{0}-initial segments.

Theorem 2.6.12 (Wilkie and Paris [WP 87], Corollary 8.8)

Let $\varphi \in \Delta_{0}(e x p)$. Then the following two statements are equivalent:

1. $\mathrm{I} \Delta_{0}+E X P \vdash \forall x \varphi(x)$
2. There is an $\mathrm{I} \Delta_{0}$-initial segment J such that $\mathrm{I} \Delta_{0} \vdash \forall x(J(x) \rightarrow \varphi(x))$.

Proof.
$1 \rightarrow 2$ Suppose I $\Delta_{0}+E X P \vdash \forall x \varphi(x)$. By lemma 2.6.11, there is a k such that $\mathrm{I} \Delta_{0} \vdash$ $\forall x\left(2_{k}^{x} \downarrow \rightarrow \varphi(x)\right)$. By lemma 2.6.9, there is an $\mathrm{I} \Delta_{0}$-initial segment such that $\mathrm{I} \Delta_{0} \vdash$ $\forall x\left(J(x) \rightarrow 2_{k}^{x} \downarrow\right)$. Combining these two facts, we derive the desired conclusion $\mathrm{I} \Delta_{0} \vdash \forall x(J(x) \rightarrow \varphi(x))$.
$2 \rightarrow 1$ For the other direction, we need lemma 2.8.10. Thus we refer the reader to Corollary 2.8.11.

QED

Lemma 2.6.13 Let $\varphi \in \Delta_{0}(e x p)$. If $\mathrm{I} \Delta_{0}+E X P \vdash \forall x \varphi(x)$, then $\mathrm{I} \Delta_{0} \vdash^{|n|} \varphi(\bar{n})$.
Proof. Suppose I $\Delta_{0}+E X P \vdash \forall x \varphi(x)$. By theorem 2.6.12, there is an I Δ_{0}-initial segment such that $\mathrm{I} \Delta_{0} \vdash \forall x(J(x) \rightarrow \varphi(x))$. Moreover by lemma 2.6.8, we have $\left.\mathrm{I} \Delta_{0}\right|^{|n|} J(\bar{n})$. Thus $\mathrm{I} \Delta_{0} \stackrel{|n|}{*} \varphi(\bar{n})$. QED

We give the most famous examples of interpretations provided by initial segments. One of them has an almost trivial proof, while the second one, on account of the weakness of Robinson's Arithmetic Q, needs a complicated argument.

Lemma 2.6.14 $\mathrm{I} \Delta_{0} \triangleright \mathrm{I} \Delta_{0}+\Omega_{1}$ on an $\mathrm{I} \Delta_{0}$-initial segment.
Proof. This is a particularly easy application of cuts. By lemma 2.6.10, we simply construct an I Δ_{0}-initial segment closed under ω_{1}. Remember that $\mathrm{I} \Delta_{0}$ is a Π_{1} theory, so $\mathrm{I} \Delta_{0} \vdash\left(\mathrm{I} \Delta_{0}+\Omega_{1}\right)^{J}$ (see remark 2.6.3). QED

In order to prove that $Q \triangleright \mathrm{I} \Delta_{0}$ on a Q-initial segment, we need a Δ_{0} "truth definition" (with one extra parameter) for Δ_{0}-formulas. Such a definition was provided by Paris and Dimitracopoulos.

Lemma 2.6.15 (Paris and Dimitracopoulos) There is a Δ_{0}-formula $\Gamma(x, z, u)$ (" x is satisfied by the sequence of numbers z, with bound u) and a constant k such that:

$$
\begin{aligned}
\mathrm{I} \Delta_{0} \vdash & |u| \geq(\max (z)+2)^{k|x|} \rightarrow \\
& " \Gamma(x, z, u) \text { satisfies Tarski's conditions for } x \in \Delta_{0} "
\end{aligned}
$$

Proof. See [PD 82] or [HP 93, Theorem V.5.4] QED

Theorem 2.6.16 (Wilkie) $Q \triangleright I \Delta_{0}$ on a Q-initial segment.
Proof. See [HP 93, Theorem V.5.7]. We give only the skeleton of the proof. There are three steps:

1. Let Q^{\prime} be Q with three additional axioms: associativity of + and \cdot, and leftdistributivity (i.e. $x \cdot(y+z)=x \cdot y+x \cdot z$). Nelson has shown that $Q \triangleright Q^{\prime}$ on a Q-initial segment [Ne 86].
2. Every finite fragment of $\mathrm{I} \Delta_{0}$ can be interpreted in Q^{\prime} via a Q^{\prime}-initial segment.
3. We take a finite fragment T of $\mathrm{I} \Delta_{0}$ which is so strong that:

- T proves the properties of the exponentiation relation;
- T proves Tarski's conditions for the satisfaction formula Γ for Δ_{0}-formulas;
- T proves the least number principle for $\Gamma(x,(y, p), u)$ with y as induction parameter.

Now to be able to prove the least number principle for all Δ_{0}-formulas on an initial segment, it is sufficient to construct by lemma 2.6 .9 a T-initial segment J which is so short that $T \vdash \forall x\left(J(x) \rightarrow 2^{2^{x}} \downarrow\right)$, so that we can replace the scheme by a single axiom.

Finally, we combine all three interpretations. QED

2.7 Cuts may help to characterize interpretability

In this dissertation many theories that we consider are not extensions of $P A$. On the other hand, they are almost all sequential.

For such sequential theories U and V that extend Robinson's arithmetic Q, we can still prove analogs of theorem 2.4.6 and theorem 2.4.9 using definable initial segments.

First we need a definition.
Definition 2.7.1 For V a theory the axioms of which are defined by the Σ_{1}^{b}-formula $\alpha_{V}(y)$, let $V[x]$ be the theory axiomatized by the formula $\alpha_{V}(y) \wedge y \leq x$. Now we can define local interpretability as follows:

$$
U \triangleright_{\text {loc }} V: \Longleftrightarrow \forall x \exists K[U \triangleright V[x] \text { by interpretation } K] .
$$

Of course, if V is finitely axiomatized, $U \triangleright V$ and $U \triangleright_{\text {loc }} V$ are synonimic.

For the sake of legibility we will use quasi-modal abbreviations \square_{U} and \diamond_{U} for $\operatorname{Prov}_{\alpha_{U}}$ and $C o n_{\alpha_{U}}$, where α_{U} is the Σ_{1}^{b}-formula defining the axioms of U.

The following lemma has a proof analogous to the proof of theorem 2.4.10. Let Q^{+}be Q plus the axioms expressing that \leq is a linear order.

Lemma 2.7.2 (Pudlák's Theorem on cuts, see [$\mathbf{P u} \mathbf{8 5])}$ Suppose U is sequential, V extends Q^{+}, and $U \triangleright V$ by interpretation K. Then for every V-initial segment I there is a U-initial segment J such that there is a definable initial embedding from J into I^{K}.

Proof. See [Vi 90a] and [Vi 93]. There it is also stated that the theorem is verifiable in I $\Delta_{0}+\Omega_{1}$. QED

In the sequel of this section we use some abbreviations to improve ease of reading. $\exists J \in U$-cuts stands for the formalization of "there is a U-initial segment J such that". By $\diamond_{x, U}^{J} \top$ we abbreviate the formalization of " J does not contain a proof of \perp using only U-axioms with Gödel number < x ".

Lemma 2.7.3 Let U be any sequential theory. Then we have

$$
\mathrm{I} \Delta_{0}+E X P \vdash \forall x \exists J \in U-c u t s \square_{U} \diamond_{x, U}^{J} \top
$$

Proof. See [Vi 93]. Partial truth predicates for formulas of limited complexity (see section 3.3 and $[\mathrm{Pu} 86, \mathrm{Pu} 87])$ play a crucial rôle in the argument. QED

Theorem 2.7.4 (Visser, [Vi 93])
Let U and V be sequential theories extending Q^{+}. Then we have

$$
\mathrm{I} \Delta_{0}+E X P \vdash U \triangleright_{l o c} V \leftrightarrow \forall x \exists J \in U-c u t s \square_{U} \diamond_{x, V}^{J} \top
$$

Proof.
\rightarrow Work inside $\mathrm{I} \Delta_{0}+E X P$ and suppose $U \triangleright_{\text {loc }} V$. By lemma 2.7.3, we know that $\forall x \exists I \in V$-cuts $\square_{V} \diamond_{x, V}^{I} \top$. For every x, we can apply theorem 2.7.2 to find a U initial segment J such that $\square_{U} \diamond_{x, V}^{J} \top$. Thus we derive $\forall x \exists J \in U$-cuts $\square_{U} \diamond_{x, V}^{J} \top$, as desired.
\leftarrow Work inside $\mathrm{I} \Delta_{0}+E X P$ and suppose $\forall x \exists J \in U$-cuts $\square_{U} \diamond_{x, V}^{J} \top$. For every x we can now carry out a Henkin-construction giving us the desired local interpretation.

QED

Theorem 2.7.5 (Visser, [Vi 93]) Let U and V be sequential theories extending Q^{+}. Then we have

$$
\mathrm{I} \Delta_{0}+E X P \vdash U \triangleright_{l o c} V \leftrightarrow \forall P \in \Pi_{1}\left(\exists I \in V \text {-cuts } \square_{V} P^{I} \rightarrow \exists J \in U-c u t s \square_{U} P^{J}\right)
$$

Proof.
\rightarrow This follows by theorem 2.7.2 formalized in $\mathrm{I} \Delta_{0}+E X P$.
\leftarrow This follows immediately from the \leftarrow-direction of theorem 2.7.4, when we note that $\diamond_{x, V} \top$ is a Π_{1}-formula.

QED

In the next theorem, the quantifier $\exists K$ stands for "there is an interpretation K ".

Theorem 2.7.6 Suppose U and V are sequential theories extending Q^{+}. We have the following scheme of relationships (provable in $\mathrm{I} \Delta_{0}+E X P$) between the various definitions of interpretability. Both arrows pointing down are strict.

```
\existsJ\inU-cuts}\forallx\mp@subsup{\square}{U}{}\mp@subsup{\diamond}{x,V}{J}\mp@subsup{V}{}{\top}\Longleftrightarrow\existsK\forallx\mp@subsup{\square}{U}{}\mp@subsup{\diamond}{x,V}{K}
        \Downarrow
    U\trianglerightV
        \Downarrow
```


Proof.

- The \Rightarrow-direction of $\exists J \in U$-cuts $\forall x \square_{U} \diamond_{x, V}^{J}{ }^{\top} \Longleftrightarrow \exists K \forall x \square_{U} \diamond_{x, V}^{K} \top$ is clear, because every U-initial segment provides an interpretation; the \Leftarrow-direction follows from theorem 2.7.2 as formalized in I $\Delta_{0}+E X P$.
- To prove $\exists J \in U$-cuts $\forall x \square_{U} \diamond_{x, V}^{J}{ }^{\top} \Rightarrow U \triangleright V$, one uses a formalized Henkin construction for a Feferman proof predicate; the argument is analogous to the proof of theorem 6.5.11.
- By definition we have $U \triangleright V \Rightarrow U \triangleright_{\text {loc }} V$.
- $U \triangleright_{\text {loc }} V \Longleftrightarrow \forall x \exists J \in U$-cuts $\square_{U} \diamond_{x, V}^{J} \top$ is just theorem 2.7.4.
- $\forall x \exists J \in U$-cuts $\square_{U} \diamond_{x, V}^{J}{ }^{\top} \Longleftrightarrow \forall x \exists K \square_{U} \diamond_{x, V}^{K}{ }^{\top}$ is proved again by the fact that initial segments provide interpretations and by theorem 2.7.2.
- The arrow $\exists J \in U$-cuts $\forall x \square_{U} \diamond_{x, V}^{J}{ }^{\top} \Rightarrow U \triangleright V$ is strict. For take $U=V=\mathrm{I} \Delta_{0}+\Omega_{1}$ and let J be any I $\Delta_{0}+\Omega_{1}$-initial segment. Then we have of course $\mathrm{I} \Delta_{0}+\Omega_{1} \triangleright \mathrm{I} \Delta_{0}+\Omega_{1}$, but for big enough k (with respect to I $\Delta_{0}+\Omega_{1}$ and J) we have $\square_{I \Delta_{0}+\Omega_{1}} \diamond_{k, 1 \Delta_{0}+\Omega_{1}}^{J} \top \rightarrow$ $\square_{I \Delta_{0}+\Omega_{1}} \perp$, by Visser's adaptation of Löb's Theorem (see [Vi 93, Corollary 4.4]).
- The arrow $U \triangleright V \Rightarrow U \triangleright_{\text {loc }} V$ is strict. For take $U=\mathrm{I} \Delta_{0}+\Omega_{1}$ and $V=\mathrm{I} \Delta_{0}+$ $\Omega_{1}+\left\{\diamond_{n, U}{ }^{\top} \mid n \in \omega\right\}$. Then $U \triangleright_{\text {loc }} V$, but by [Vi 93, Corollary 4.5], U does not interpret V.

2.8 Between $\mathrm{I} \Delta_{0}$ and $\mathrm{I} \Delta_{0}+E X P$

The results of this section are not needed in the subsequent chapters of the dissertation. Instead they appear here to give the flavor of the model-theoretic methods used by Wilkie and Paris in [WP 87]. Also we hope that the reader will gain some understanding of the difference in strength between the theories $\mathrm{I} \Delta_{0}$ and $\mathrm{I} \Delta_{0}+E X P$.

For example, whereas I Δ_{0} interprets I $\Delta_{0}+\Omega_{1}$, it does not interpret $\mathrm{I} \Delta_{0}+E X P$. Thus $\mathrm{I} \Delta_{0}+E X P$ is much stronger that $\mathrm{I} \Delta_{0}$ and $\mathrm{I} \Delta_{0}+\Omega_{1}$. Another advertisement for the strength of $\mathrm{I} \Delta_{0}+E X P$ is the fact that it proves tableau- consistency of $\mathrm{I} \Delta_{0}+\Omega_{1}$.

On the other hand, perhaps surprisingly, $\mathrm{I} \Delta_{0}+E X P$ does not even prove consistency of the extremely weak theory Q. This is caused essentially by the failure of $\mathrm{I} \Delta_{0}+E X P$ to prove a formalization of Gentzen's cut-elimination theorem.

Another interesting question is the following: when is $E X P$ necessary to prove some true Π_{1}-statement? A partial answer is given in subsection 2.8.2: in I $\Delta_{0}+E X P$-proofs of sufficiently simple Π_{1}-sentences, namely those of $\forall \Pi_{1}^{b}$-form, one can get by without $E X P$ and replace it by restricted consistency statements.

2.8.1 $\mathrm{I} \Delta_{0}+E X P$ proves restricted consistency statements

Definition 2.8.1 A k-formula is a formula with $\leq k$ logical connectives. (Note that a k-formula may be arbitrarily long due to the presence of non-standard terms.)

A k-proof is a proof in which only k-formulas appear. $\operatorname{Prov}_{T}(\varphi, k)$ means that there is a k-proof of φ from T. Similarly, $\operatorname{Con}(T, k)$ means that there is no k-proof of a contradiction from T.

Definition 2.8.2 Let T be a set of sentences. We say that a sequence of sets of sets of formulas $\Gamma_{0}, \ldots, \Gamma_{s}$ is a tableau proof of an inconsistency from T if the following conditions hold:

- For each $X \in \Gamma_{s}$, there is an atomic θ such that $\theta \in X$ and $\neg \theta \in X$.
- $X \in \Gamma_{0}$ implies $X \subseteq T \cup$ the set of logical equality axioms.
- For each $X \in \Gamma_{i}$ with $i<s$ one of the following holds:

1. $X \in \Gamma_{i+1}$,
2. $X \cup\{\theta\} \in \Gamma_{i+1}$ for some $\neg \neg \theta \in X$,
3. $X \cup\left\{\neg \theta_{1}\right\}, X \cup\left\{\theta_{2}\right\} \in \Gamma_{i+1}$ for some $\left(\theta_{1} \rightarrow \theta_{2}\right) \in X$,
4. $X \cup\left\{\theta_{1}, \neg \theta_{2}\right\} \in \Gamma_{i+1}$ for some $\neg\left(\theta_{1} \rightarrow \theta_{2}\right) \in X$,
5. $X \cup\{\theta(t)\} \in \Gamma_{i+1}$ for some $\forall x \theta(x) \in X$ and some term t which is free for x in $\theta(x)$,
6. $X \cup\{\neg \theta(y)\} \in \Gamma_{i+1}$ for some $\neg \forall x \theta(x) \in X$ and some variable y which does not occur in any formula in X.

- For each $Y \in \Gamma_{i+1}$ with $i<s$ there is an $X \in \Gamma_{i}$ such that Y is obtained from X by one of the rules 1-6.

We write $\operatorname{Tabcon}(T)$ if there is no tableau proof of an inconsistency from T.

Definition 2.8.3 Let L^{*} be the language of arithmetic where successor, addition and multiplication are relation symbols. The only terms of L^{*} are variables and $\overline{0}$. $\mathrm{I} \Delta_{0}^{*}$ is the reformulation of $\mathrm{I} \Delta_{0}$ in L^{*}, with extra axioms expressing the totality of successor, addition and multiplication. Similarly any formula φ has an obvious L^{*}-translation φ^{*} with the same unbounded quantifier complexity.

Lemma 2.8.4 Suppose $\mathcal{M} \vDash I \Delta_{0}+E X P$. There is a $\Delta_{0}($ exp $)$ formula $T r(a, y)$ such that for every sentence $\varphi \in L^{*}$ and every $a \in \mathcal{M}$,

$$
a \models \varphi \Longleftrightarrow \mathcal{M} \models \operatorname{Tr}\left(a,\left\ulcorner\varphi^{\ulcorner }\right)\right.
$$

(Here we have identified a with the substructure of \mathcal{M} that has universe $\{x \in \mathcal{M} \mid \mathcal{M} \vDash$ $x \leq a\}$. This presents no problem when we work in a relational language.)

Proof. See [PD 82], and cf. lemma 2.6.15. QED

Lemma 2.8.5

$$
\mathrm{I} \Delta_{0}+E X P \vdash \forall a \forall i \exists b\left[b=\omega_{1}^{(i)}(a)\right]
$$

(Here $\omega_{1}^{(i)}(a)$ is defined informally as ω_{1} applied itimes to a.)
Proof. Remember that there is a Δ_{0}-formula $\varphi(a, i, b)$ which expresses $b=\omega_{1}^{(i)}(a)$. The lemma then follows easily by $\Delta_{0}(e x p)$ induction, using an appropriate bound on $\omega_{1}^{(i)}(a)$. QED

Theorem 2.8.6 (Wilkie and Paris [WP 87], Lemma 8.10)

1. $\mathrm{I} \Delta_{0}+E X P \vdash \operatorname{Tabcon}\left(\mathrm{I} \Delta_{0}^{*}+\Omega_{1}^{*}\right)$.
2. If $\sigma \in \Sigma_{2}$, then

$$
\mathrm{I} \Delta_{0}+E X P+\sigma \vdash \operatorname{Tabcon}\left(\mathrm{I} \Delta_{0}^{*}+\Omega_{1}^{*}+\sigma^{*}\right)
$$

Proof. We prove the second, more general, part of the theorem. Suppose that $\sigma=$ $\exists x \forall y \delta(x, y)$, where δ is a Δ_{0}-formula, and reason in $\mathcal{M} \vDash \mathrm{I} \Delta_{0}+E X P+\sigma$. Let a be such that $\forall y \delta(a, y)$. Suppose that $\Gamma_{0}, \ldots, \Gamma_{s}$ is a tableau proof in \mathcal{M} of a contradiction from $\mathrm{I} \Delta_{0}^{*}+\Omega_{1}^{*}+\sigma^{*}$. Take $b=\omega_{1}^{(s+1)}(a+2)$, as is justified by lemma 2.8.5.

Let $\Psi_{i}:=\Gamma_{i} \cap 2^{\Pi_{1} \cup \Sigma_{1}}$.
Define $P(i) \leftrightarrow \exists f: \operatorname{Var}\left(\Gamma_{i}\right) \longmapsto\left\{u \mid u<\omega_{1}^{(i+1)}(a+2)\right\}$ such that

$$
b \models \bigwedge_{X \in \Psi_{i} \varphi \in X} \bigvee_{\varphi} \varphi^{f}
$$

Using the appropriate truth definition, $P(i)$ can be expressed by a $\Delta_{0}(e x p)$ formula. We will use $\Delta_{0}(e x p)$ induction (which is available in $\mathrm{I} \Delta_{0}+E X P$) to prove that $\forall i \leq s P(i)$. This contradicts the fact that Γ_{s} contains both θ and $\neg \theta$ for some atomic θ.

- The base step relies on the observation that if β is a Π_{1} axiom of $\mathrm{I} \Delta_{0}$ then $b \vDash \beta$. Suppose for example that β is the induction axiom

$$
\forall x, z(\psi(x, 0) \wedge \forall y \leq z(\psi(x, y) \rightarrow \psi(x, S y)) \rightarrow \forall y \leq z \psi(x, y))
$$

Let $\beta^{*}\left(x_{0}\right)$ be obtained from β by replacing ψ with ' $x_{0} \vDash \psi(x, y)$ ' (using the truth definition from Lemma 2.8.4). Then $\mathcal{M} \vDash \forall x_{0} \beta^{*}\left(x_{0}\right)$, so $\mathcal{M} \vDash \beta^{*}(b)$, hence $b \vDash \beta$.

- The induction step from $P(i)$ to $P(i+1)$ hinges on the fact that the only time an unbounded quantifier \exists (i.e. $\neg \forall \neg$) is to be eliminated in the tableau proof is on a subformula beginning with \exists of $\mathrm{I} \Delta_{0}^{*}+\Omega_{1}^{*}+\sigma^{*}$; but for the formula $\exists x \forall y \delta(x, y)$ we already know that $b \vDash \forall y \delta(a, y)$; also the formulas $\exists y(y=x+1), \exists y(y=$ $\left.x_{1}+x_{2}\right), \exists y\left(y=x_{1} \cdot x_{2}\right)$, and $\exists y\left(y=\omega_{1}(x)\right)$ present no problem, because by induction hypothesis their free variables can be instantiated by parameters $<\omega_{1}^{(i+1)}(a+2)$.

QED

Domenico Zambella found the following generalization of Theorem 8.2 of [WP 87].
Theorem 2.8.7 Suppose τ is a sentence, $i \geq 1$ and \mathcal{M} is a countable model satisfying

1. $\mathcal{M} \vDash \mathrm{I} \Delta_{0}+\Omega_{1}$, and
2. for all k and for all Π_{i}^{b} formulas φ with parameters a_{1}, \ldots, a_{n} from \mathcal{M},

$$
\mathcal{M} \vDash \forall a_{1}, \ldots, a_{n}\left(\operatorname{Prov}_{\mathrm{I}_{0}+\tau}\left(\left\ulcorner\varphi\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right)\right\urcorner, k\right) \rightarrow \varphi\left(a_{1}, \ldots, a_{n}\right)\right) .
$$

Then there is a model $\mathcal{M}^{*} \models \mathrm{I} \Delta_{0}+\tau$ such that $\mathcal{M} \prec_{\Sigma_{\dot{a}}^{b}} \mathcal{M}^{*}$.
Proof. It is sufficient to find a model \mathcal{M}^{*} such that

$$
\mathcal{M}^{*} \models \operatorname{Diag}_{\Sigma_{i}^{(}}(\mathcal{M})+\mathrm{I} \Delta_{0}+\tau
$$

where in $\operatorname{Diag}_{\Sigma_{i}^{b}}$ new constants c_{a} are used for elements $a \in \mathcal{M}$.
So, in order to derive a contradiction, suppose that $\operatorname{Diag}_{\Sigma_{i}^{b}}(\mathcal{M})+\mathrm{I} \Delta_{0}+\tau$ is inconsistent. Then there is a Σ_{i}^{b}-formula φ and there are $a_{1}, \ldots, a_{n} \in \mathcal{M}$ such that on the one hand $\mathcal{M} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$, but on the other hand $\mathrm{I} \Delta_{0}+\tau \vdash \neg \varphi\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ by a proof in which all formulas have complexity k, for some standard k. This contradicts assumption (2). QED

Corollary 2.8.8 (Wilkie and Paris [WP 87], Theorem 8.2)
Suppose τ is a sentence and \mathcal{M} is a countable model satisfying

1. $\mathcal{M} \models \mathrm{I} \Delta_{0}+\Omega_{1}$, and
2. for all $k, \mathcal{M} \vDash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\tau, k\right)$.

Then there is a model $\mathcal{M}^{*} \models \mathrm{I} \Delta_{0}+\tau$ such that $\mathcal{M} \prec_{\Sigma_{1}^{b}} \mathcal{M}^{*}$.

Proof. In order to be able to apply theorem 2.8.7, it is sufficient to prove that assumption 2 of theorem 2.8.7 is implied by the assumption that for all $k, \mathcal{M} \vDash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\tau, k\right)$.

So suppose in order to derive a contradiction that for some k_{1} and for some Π_{i}^{b} formula φ with parameters a_{1}, \ldots, a_{n} from \mathcal{M},

$$
\begin{equation*}
\mathcal{M} \vDash \operatorname{Prov}_{\mathrm{I}_{0}+\tau}\left(\left\ulcorner\varphi\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right)^{\urcorner}, k_{1}\right),\right. \tag{2.3}
\end{equation*}
$$

but

$$
\begin{equation*}
\mathcal{M} \vDash \neg \varphi\left(a_{1}, \ldots, a_{n}\right) \tag{2.4}
\end{equation*}
$$

Clearly $\neg \varphi\left(a_{1}, \ldots, a_{n}\right)$ is a Σ_{1}^{b}-formula. By inspection of the proof of Σ_{1}^{b}-completeness in $\mathrm{I} \Delta_{0}+\Omega_{1}$ (cf. theorem 2.3.24), we conclude from (2.4) that there is a k_{2} such that $\mathcal{M} \vDash \operatorname{Prov}_{1 \Delta_{0}+\tau}\left(\left\ulcorner\neg \varphi\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right)\right\urcorner, k_{2}\right)$. Together with (2.3), this implies the existence of a k_{3} such that $\mathcal{M} \vDash \neg \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\tau, k_{g}\right)$, contradicting the assumption that for all k, $\mathcal{M} \vDash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\tau, k\right)$. QED

Remark 2.8.9 In assumption (2) of theorem 2.8.7, we may replace the formula $\operatorname{Prov}_{1 \Delta_{0+\tau}}\left(\left\ulcorner\varphi\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right)\right\urcorner, k\right)$ by Tabprov $v_{\Delta_{0+\tau}}\left(\left\ulcorner\varphi\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right)\right\urcorner\right)$. Similarly we may replace $\operatorname{Con}\left(\mathrm{I} \Delta_{0}, k\right)$ in assumption (2) of corollary 2.8 .8 by $\operatorname{Tabcon}\left(\mathrm{I} \Delta_{0}\right)$. (However, for the use of corollary 2.8.8 and theorem 2.8.7 in theorem 2.8.13 and remark 2.8.14, we need the original formulation.)

Also, the assumption that $\mathcal{M} \vDash \mathrm{I} \Delta_{0}+\Omega_{1}$ is not needed for theorem 2.8.7, although it is essential for its corollary 2.8.8.

Lemma 2.8.10 If σ is a Σ_{2}-sentence, then

$$
\forall k\left(\mathrm{I} \Delta_{0}+E X P+\sigma \vdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\Omega_{1}+\sigma, k\right)\right)
$$

Proof. By theorem 2.8.6, we know that

$$
\mathrm{I} \Delta_{0}+E X P+\sigma \vdash \operatorname{Tabcon}\left(\mathrm{I} \Delta_{0}+\Omega_{1}+\sigma\right)
$$

We remind the reader that cut-free proofs can easily be converted into tableau proofs by an algorithm that increases the length of the proofs only polynomially.

Now take some $k \in \omega$. From the formalization of the cut-elimination theorem given in the appendix to [Vi 92], it follows that

$$
\mathrm{I} \Delta_{0}+E X P \vdash \operatorname{Tabcon}\left(\mathrm{I} \Delta_{0}+\Omega_{1}+\sigma\right) \rightarrow \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\Omega_{1}+\sigma, k\right) .
$$

(Indeed every k-proof with code p can be converted into a cut-free proof, and thus also into a tableau proof, whose Gödel number is bounded by 2_{k}^{p}; see definition 2.1.8 for an inductive definition of 2_{k}^{p}.)

We may conclude $\mathrm{I} \Delta_{0}+E X P+\sigma \vdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\Omega_{1}+\sigma, k\right)$. QED
The above lemma is a strengthening of [WP 87, Proposition 8.5]. There it was proved that if σ is a Π_{1}-sentence, then

$$
\forall k\left(\mathrm{I} \Delta_{0}+E X P+\sigma \vdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\sigma, k\right)\right)
$$

Remark 2.8.11 At this point we can provide the postponed proof of one direction of theorem 2.6.12. Let $\varphi \in \Delta_{0}(e x p)$, and suppose that there is an I Δ_{0}-initial segment J such that

$$
\begin{equation*}
\mathrm{I} \Delta_{0} \vdash \forall x(J(x) \rightarrow \varphi(x)) \tag{2.5}
\end{equation*}
$$

We want to prove I $\Delta_{0}+E X P \vdash \forall x \varphi(x)$.
When we inspect the usual proof of $\Delta_{0}(e x p)$-completeness in $\mathrm{I} \Delta_{0}+E X P$, we note that there is a k_{1} such that:

$$
\begin{equation*}
\mathrm{I} \Delta_{0}+E X P \vdash \forall x\left(\neg \varphi(x) \rightarrow \operatorname{Prov}_{1 \Delta_{0}}\left(\ulcorner\neg \varphi(\bar{x})\urcorner, k_{1}\right)\right) . \tag{2.6}
\end{equation*}
$$

Also, because J is an $\mathrm{I} \Delta_{0}$-cut, there is a k_{2} such that $\mathrm{I} \Delta_{0}+E X P \vdash \forall x \operatorname{Prov} v_{\mathrm{H}}\left(\left\ulcorner J(\bar{x})^{\urcorner}, k_{2}\right)\right.$; thus by (2.5), there is a k_{3} such that

$$
\begin{equation*}
\mathrm{I} \Delta_{0}+E X P \vdash \forall x \operatorname{Prov}_{\mathrm{I}_{0}}\left(\ulcorner\varphi(\bar{x})\urcorner, k_{3}\right) . \tag{2.7}
\end{equation*}
$$

Next, we combine (2.6) and (2.7) to find a k such that $\mathrm{I} \Delta_{0}+E X P \vdash \forall x(\neg \varphi(x) \rightarrow$ $\neg \operatorname{Con}\left(\mathrm{I} \Delta_{0}, k\right)$. By lemma 2.8 .10 we finally conclude that indeed $\mathrm{I} \Delta_{0}+E X P \vdash \forall x \varphi(x)$. (Note that we only needed the fact that J is an $\mathrm{I} \Delta_{0}$-cut, not that it is an $\mathrm{I} \Delta_{0}$-initial segment.)

2.8.2 Conservativity

Wilkie and Paris characterize the $\forall \Pi_{1}^{b}$-consequences of $\mathrm{I} \Delta_{0}+E X P$ by providing a basis over I $\Delta_{0}+\Omega_{1}$: if one adds the restricted consistency statements to $\mathrm{I} \Delta_{0}+\Omega_{1}$, one can already derive all $\forall \Pi_{i}^{b}$-consequences of $\mathrm{I} \Delta_{0}+E X P$. We first need a definition.
Definition 2.8.12 A U_{i}-formula is a formula of the form $\forall x \varphi$ where φ is a Π_{i}^{b} formula. Note that all consistency statements for Σ_{1}^{b}-axiomatized theories can be written in U_{1} form.

Theorem 2.8.13 (Wilkie and Paris [WP 87], Theorem 8.6)
Let τ be a Π_{1}-sentence. Then the following two theories have the same U_{1} consequences:

- $T_{1}:=\mathrm{I} \Delta_{0}+E X P+\tau$;
- $T_{2}:=\mathrm{I} \Delta_{0}+\Omega_{1}+\left\{\operatorname{Con}\left(\mathrm{I} \Delta_{0}+\tau, k\right) \mid k \in \omega\right\}$.

Proof. $T_{1} \vdash T_{2}$ follows from lemma 2.8.10. For the U_{1}-conservativity of T_{1} over T_{2}, suppose that

$$
\mathcal{M} \models \mathrm{I} \Delta_{0}+\Omega_{1}+\left\{\operatorname{Con}\left(\mathrm{I} \Delta_{0}+\tau, k\right) \mid k \in \omega\right\}+\neg \forall x \varphi(x),
$$

where $\neg \varphi(x) \in \Sigma_{1}^{b}$. We want to find \mathcal{M}^{\prime} with

$$
\mathcal{M}^{\prime} \models \mathrm{I} \Delta_{0}+E X P+\tau+\neg \forall x \varphi(x)
$$

First we construct, by corollary 2.8 .8 , a model $\mathcal{M}^{*} \succ_{\Sigma_{1}^{b}} \mathcal{M}$ such that

$$
\mathcal{M}^{*} \models \mathrm{I} \Delta_{0}+\tau+\neg \forall x \varphi(x) .
$$

Then by a trick reminiscent of the proof of Parikh's theorem, we let

$$
\mathcal{M}^{\prime}:=\left\{a \in \mathcal{M}^{*} \mid \exists k \in \omega \exists b \in \mathcal{M} \mathcal{M}^{*} \models a<2_{k}^{b}\right\} .
$$

Note that 2_{k}^{b} is defined in \mathcal{M}^{*} for all $k \in \omega$ and $b \in \mathcal{M}$. This depends on the following fact which can be proved using Solovay's cuts, more precisely by inspection of the proof of lemma 2.6.8 and by lemma 2.6.9:

For any standard k there is a standard m such that

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall b \square_{\mathrm{I} \Delta_{0}, m}\left(2_{k}^{b} \downarrow\right)
$$

Now $\mathcal{M} \subseteq \mathcal{M}^{\prime}$ and $\mathcal{M}^{\prime} \models \mathrm{I} \Delta_{0}+E X P$. Since \mathcal{M}^{\prime} is an initial segment of \mathcal{M}^{*}, τ is preserved downwards hence $\mathcal{M}^{\prime} \vDash \tau$.

Moreover there is a $d \in \mathcal{M}$ such that $\mathcal{M} \vDash \neg \varphi(d)$, so by corollary 2.8 .8 part 2 , since $\mathcal{M} \prec_{\Sigma_{1}^{b}} \mathcal{M}^{*}, \mathcal{M}^{*} \models \neg \varphi(d)$; and since \mathcal{M} is an initial segment of $\mathcal{M}^{*}, \mathcal{M}^{\prime} \models \neg \varphi(d)$, i.e. $\mathcal{M}^{\prime} \vDash \neg \forall x \varphi(x)$. QED

Remark 2.8.14 If we use the full strength of theorem 2.8.7 instead of its corollary 2.8.8, we find that if τ is a Π_{1}-sentence, the following two theories have the same U_{i} consequences:

- $T_{1}:=\mathrm{I} \Delta_{0}+E X P+\tau$ and
- $T_{2}:=\mathrm{I} \Delta_{0}+\Omega_{1}+\left\{\operatorname{Prov}_{\mathrm{I}_{0}+\tau}\left(\left\ulcorner\varphi\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right)^{\urcorner}, k\right) \rightarrow \varphi\left(x_{1}, \ldots, x_{n}\right) \mid k \in \omega\right.\right.$, $\varphi \in \Pi_{i}^{b}$ with variables among $\left.x_{1}, \ldots, x_{n}\right\}$.
(In fact, by lemma 2.8.10, $T_{1} \vdash T_{2}$.)

2.8.3 Non-conservativity and incompleteness

Theorem 2.8.15 (Wilkie and Paris [WP 87], Theorem 8.11)

1. $\mathrm{I} \Delta_{0}+E X P$ is not U_{1}-conservative over $\mathrm{I} \Delta_{0}+\Omega_{1}$;
2. If σ is a Σ_{2} sentence consistent with $\mathrm{I} \Delta_{0}+E X P$, then $\mathrm{I} \Delta_{0}+E X P+\sigma$ is not U_{1}-conservative over $\mathrm{I} \Delta_{0}+\Omega_{1}+\sigma$.

Proof. We prove the second statement. Define $T:=\mathrm{I} \Delta_{0}+\Omega_{1}+\sigma$, and construct ψ by diagonalization such that

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \psi \leftrightarrow \neg \operatorname{Tabcon}(T+\psi) .
$$

It is easy to see that $\neg \psi$ is U_{1}. Now suppose that $T \vdash \neg \psi$. Then $T \vdash \neg \operatorname{Tabcon}(T+\psi)$, so by definition $T \vdash \psi$, contradicting the consistency of T. Thus

$$
\mathrm{I} \Delta_{0}+\Omega_{1}+\sigma \nvdash \neg \psi .
$$

On the other hand, $\sigma \wedge \psi$ is Σ_{2}, so by lemma 2.8.6,

$$
\mathrm{I} \Delta_{0}+E X P+\sigma+\psi \vdash \operatorname{Tabcon}\left(\mathrm{I} \Delta_{0}+\Omega_{1}+\sigma+\psi\right)
$$

Therefore by definition of ψ,

$$
\mathrm{I} \Delta_{0}+E X P+\sigma \vdash \neg \psi
$$

QED

Corollary 2.8.16 (Wilkie and Paris [WP 87], Corollary 8.13)

1. $\forall k \exists n \mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}\left(\mathrm{I} \Delta_{0}, k\right) \nvdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}, n\right)$;
2. Suppose π is a Π_{1} sentence consistent with $\mathrm{I} \Delta_{0}+E X P$. Then

$$
\forall k \exists n \mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}\left(\mathrm{I} \Delta_{o}+\pi, k\right) \nvdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\pi, n\right) .
$$

Proof. By theorem 2.8.15, there is a U_{1} sentence ψ such that

$$
\mathrm{I} \Delta_{0}+E X P+\pi+\operatorname{Con}\left(\mathrm{I} \Delta_{0}+\pi, k\right) \vdash \psi
$$

but

$$
\mathrm{I} \Delta_{0}+\Omega_{1}+\pi+\operatorname{Con}\left(\mathrm{I} \Delta_{0}+\pi, k\right) \nvdash \psi
$$

On the other hand $\mathrm{I} \Delta_{0}+E X P+\pi \vdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\pi, k\right)$, so $\mathrm{I} \Delta_{0}+E X P+\pi \vdash \psi$.
By theorem 2.8.13, there is an n such that $\mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}\left(\mathrm{I} \Delta_{0}+\pi, n\right) \vdash \psi$. Therefore

$$
\mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}\left(\mathrm{I} \Delta_{0}+\pi, k\right) \nvdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\pi, n\right) .
$$

QED

Corollary 2.8.17 (Wilkie and Paris [WP 87], Corollary 8.14)

1. $\mathrm{I} \Delta_{0}+E X P \forall \operatorname{Con}\left(\mathrm{I} \Delta_{0}\right)$;
2. If π is a Π_{1} sentence, then $\mathrm{I} \Delta_{0}+E X P+\pi \nvdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\pi\right)$

Proof. We prove the second statement. Suppose that $\mathrm{I} \Delta_{0}+E X P+\pi \vdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\pi\right)$, then by theorem 2.8.13, there is a $k \in \omega$ such that $\mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}\left(\mathrm{I} \Delta_{0}+\pi, k\right) \vdash$ $\operatorname{Con}\left(\mathrm{I} \Delta_{0}+\pi\right)$, contradicting theorem 2.8.16. QED

Corollary 2.8.18 $\mathrm{I} \Delta_{0}+E X P \nvdash \operatorname{Con}(Q)$, but $\mathrm{I} \Delta_{0}+\operatorname{SUPEXP} \vdash \operatorname{Con}(Q)$.
Proof. By theorem 2.6.16, $Q \triangleright \mathrm{I} \Delta_{0}$ on an initial segment. This can be verified in $\mathrm{I} \Delta_{0}+\Omega_{1}$ (see [HP 93, Theorem V.5.12]). Therefore $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Con}(Q) \leftrightarrow \operatorname{Con}\left(\mathrm{I} \Delta_{0}\right)$, so by corollary 2.8.17, I $\Delta_{0}+E X P \nvdash \operatorname{Con}(Q)$.

The fact that $\mathrm{I} \Delta_{0}+S U P E X P \vdash \operatorname{Con}(Q)$ follows from theorem 2.8 .6 , the consideration that as far as $\mathrm{I} \Delta_{0}+E X P$ is concerned, tableau provability and cut free provability are equivalent, and from the fact that the cut-elimination theorem for the predicate calculus can be proved in I $\Delta_{0}+S U P E X P$. QED

Lemma 2.8.19 Let $U \supseteq \mathrm{I} \Delta_{0}+\Omega_{1}$. Then $\mathrm{I} \Delta_{0}+\Omega_{1}$ proves the following: if U is consistent, then U does not interpret $\mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}(U)$.

Proof. The argument is similar to the proof of [Vi 90a, Proposition 6.2.2.2] Reason in $\mathrm{I} \Delta_{0}+\Omega_{1}$ and suppose that $U \triangleright \mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}(U)$ by the interpretation M. Define

$$
\operatorname{Prov}_{W}(x): \Longleftrightarrow \operatorname{Prov}_{\mathrm{I}_{0}+\Omega_{1}+\operatorname{Con}(U)}(x) \wedge \operatorname{Prov}_{U}\left(x^{M}\right)
$$

Because Prov $_{W}$ can be written as an $\exists \Sigma_{1}^{b}$-formula, the principles of L can be verified for \square_{W}. Moreover we have the IL-consequence

$$
W \triangleright W+\neg \operatorname{Con}(W)
$$

See section 2.5 for a definition of $I L$. The reader may enjoy to figure out how to prove $I L \vdash \top \triangleright \square \perp$. Also we have by definition of Prov_{W} :

$$
\operatorname{Prov}_{W}(\neg \operatorname{Con}(W) \rightarrow \neg \operatorname{Con}(U)),
$$

so

$$
\begin{equation*}
W \triangleright W+\neg \operatorname{Con}(U) \tag{2.8}
\end{equation*}
$$

But by definition of Prov_{W}, we have $\operatorname{Prov}_{W}(\operatorname{Con}(U))$, so (2.8) implies $\neg \operatorname{Con}(W)$. Again by definition of Prov_{W}, we conclude that $\neg \operatorname{Con}(U)$. QED

Theorem 2.8.20 $\mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}\left(\mathrm{I} \Delta_{0}\right) \nvdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+E X P\right)$.
Proof. Assume that $\mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}\left(\mathrm{I} \Delta_{0}\right) \vdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+E X P\right)$.
In I $\Delta_{0}+E X P$, one can prove that the set $\left\{x \mid 2_{x}^{x} \downarrow\right\}$ is closed under successor, so it can be shortened to an I $\Delta_{0}+E X P$-cut J closed under ω_{1}. Now

$$
\mathrm{I} \Delta_{0}+E X P \triangleright \mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}\left(\mathrm{I} \Delta_{0}\right)
$$

using the interpretation provided by J. Thus by our starting assumption $\mathrm{I} \Delta_{0}+E X P \triangleright$ $\mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}\left(\mathrm{I} \Delta_{0}+E X P\right)$, contradicting lemma 2.8.19. QED

Remark 2.8.21 Wilkie and Paris [WP 87] show in their Theorem 8.19 that the statement $\operatorname{Con}\left(\mathrm{I} \Delta_{0}\right)$ is even more hopelessly weak than theorem 2.8 .20 suggests, for adding $E X P$ makes no difference. That is,

$$
\mathrm{I} \Delta_{0}+E X P+\operatorname{Con}\left(\mathrm{I} \Delta_{0}\right) \nvdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+E X P\right)
$$

For the next theorem, we need one lemma.
Lemma 2.8.22 $\mathrm{I} \Delta_{0}+E X P$ is finitely axiomatizable.
Proof. See [HP 93, Theorem V.5.6]. The proof uses a Δ_{0} truth definition for $\Delta_{0^{-}}$ formulas (see lemma 2.6.15) and then follows the argument of step 3 from the proof sketch of theorem 2.6.16. QED

Theorem 2.8.23 Q does not interpret $\mathrm{I} \Delta_{0}+E X P$.
Proof. Let $E X P^{*}$ be the finitely axiomatized version of $I \Delta_{0}+E X P$, which exists according to lemma 2.8.22. If $Q \triangleright \mathrm{I} \Delta_{0}+E X P$, then certainly $Q \triangleright E X P^{*}$.

Since both Q and $E X P^{*}$ are finitely axiomatized, we have $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash Q \triangleright E X P^{*}$, so $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Con}(Q) \rightarrow \operatorname{Con}\left(E X P^{*}\right)$, and a fortiori $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}\right) \rightarrow \operatorname{Con}\left(E X P^{*}\right)$, contradicting theorem 2.8.20 QED

Part II

Metamathematics for Bounded Arithmetic

Chapter 3

A small reflection principle for bounded arithmetic

"What a curious feeling!" said Alice,
"I must be shutting up like a telescope!"
And so it was indeed: she was now only ten inches high, and her face brightened up at the thought that she was now the right size for going through the little door into that lovely garden.
(Lewis Carroll, Alice in Wonderland)

$$
\begin{aligned}
& \text { Abstract. We investigate the theory } \mathrm{I} \Delta_{0}+\Omega_{1} \text {, and strengthen [Bu } 86 \text {, The- } \\
& \text { orem 8.6] to the following: if } N P \neq c o-N P \text {, then } \sum \text {-completeness for witness } \\
& \text { comparison formulas is not provable in bounded arithmetic, i.e. } \\
& \qquad \begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \forall \forall b \forall c \quad & (\exists a(\operatorname{Prf}(a, c) \wedge \forall z \leq a \neg \operatorname{Prf}(z, b)) \\
& \rightarrow \operatorname{Prov}(\ulcorner\exists a(\operatorname{Prf}(a, \bar{c}) \wedge \forall z \leq a \neg \operatorname{Prf}(z, \bar{b}))\urcorner)) .
\end{aligned}
\end{aligned}
$$

Next, we study a "small reflection principle" in bounded arithmetic. We prove that for all sentences φ,

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall x \operatorname{Prov}\left(\left\ulcorner\forall y \leq \bar{x}\left(\operatorname{Prf}\left(y, \overline{\ulcorner } \varphi^{\urcorner}\right) \rightarrow \varphi\right)^{\urcorner}\right)\right.
$$

The proof hinges on the use of definable cuts and partial satisfaction predicates akin to those introduced by Pudlák in [Pu 86$]$.

Finally we give some applications of the small reflection principle, showing that the principle can sometimes be invoked in order to circumvent the use of provable Σ-completeness for witness comparison formulas.

3.1 Introduction

A striking feature of Solovay's Theorem that Löb's logic is complete for arithmetical interpretations is its amazing stability. If one sticks to the unimodal propositional language and standard arithmetical interpretations, the result holds (modulo a trivial variation) for any decently axiomatized extension of $\mathrm{I} \Delta_{0}+E X P$. Such stability is in some sense a
weakness: unimodal propositional logic combined with the standard interpretation cannot serve to classify or give information on specific theories in a broad range. Of course this weakness disappears when we extend the modal language, but that is not our subject here (however see [Vi 90a, Bek 91]; [Bek 89]).

Is there life outside the broad range of arithmetical theories satisfying Solovay's Completeness Theorem? Clearly the question is only sensible if the theories under consideration verify Löb's logic, or perhaps some still interesting weakening of it.

Two directions of research come to mind. The first one is to weaken the logic of the arithmetical theory. Specifically one can study theories like Heyting Arithmetic (HA), the constructive version of Peano Arithmetic. It turns out that HA verifies the obvious constructive version of Löb's logic plus a wide variety of extra principles (see [Vi 81, Vi 82, Vi 85]). The only definitive information that we have is a characterization of the closed fragment of HA. For all we know the provability logic corresponding to HA itself could be Π_{2}^{0}-complete. Moreover, extensions of HA have quite different provability logics. Note by the way that provability logics need not be monotonic in their arithmetical theories.

The second direction of research is simply to look at classical arithmetical theories that are strictly weaker than, or even incompatible with, $\mathrm{I} \Delta_{0}+E X P$. It turns out that there are two salient theories of this kind: Paris and Wilkie's I $\Delta_{0}+\Omega_{1}$ and Buss' S_{2}^{1}, both of them satisfying Löb's logic (see [WP 87, Bu 86]). Does Solovay's Theorem still hold for them? At present nobody knows - or to be precise, we haven't heard that anybody knows.

This chapter is a first contribution to an understanding of the difficulties involved in proving or disproving Solovay's Theorem for theories like I $\Delta_{0}+\Omega_{1}$ and S_{2}^{1}. Solovay's proof involves Rosser methods. The problem for us resides in the instances of Π_{1}^{b}-completeness that occur in the proof. Two points are important.

- We do not know whether the instances of Π_{1}^{b}-completeness used in Solovay's proof are provable in our target theories. Buss proved that provability of Π_{1}^{b}-completeness with parameters in S_{2}^{1} implies $N P=c o-N P$ (see [Bu 86]). In section 3.2 we elaborate on this theme. To be specific, we prove that if $N P \neq c o-N P$, then Σ-completeness for witness comparison formulas is not provable in bounded arithmetic, i.e.

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \forall \forall \forall b \forall c & (\exists a(\operatorname{Prf}(a, c) \wedge \forall z \leq a \neg \operatorname{Prf}(z, b)) \\
& \rightarrow \operatorname{Prov}(\ulcorner\exists a(\operatorname{Prf}(a, \bar{c}) \wedge \forall z \leq a \neg \operatorname{Prf}(z, \bar{b}))\urcorner)) .
\end{aligned}
$$

- In many cases we can circumvent the use of instances of Π_{1}^{b}-completeness. Sivejdar discovered the first alternative argument when he surprisingly provided a proof of Rosser's Theorem that genuinely differed from Rosser's own proof (see [Šv 83]). To this end he introduced a principle which we have dubbed Svejdar's principle. In section 3.3 we prove a "small reflection principle" in our target theories from which Švejdar's principle immediately follows. More precisely, we show that for all sentences φ,

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall x \operatorname{Prov}\left(\left\ulcorner\forall y \leq \bar{x}\left(\operatorname{Prf}\left(y, \overline{\ulcorner } \varphi^{\urcorner}\right) \rightarrow \varphi\right)^{\urcorner}\right) .\right.
$$

Švejdar's principle is not sufficient to derive Solovay's Theorem. However, it has been fruitfully exploited in the dogged attempt to use Solovay-like methods to embed larger and larger classes of Kripke models for Löb's logic in our weak arithmetical theories. The state of this dogged art can be found in chapter 5 and [BV 93].
We end section 3.3 with some other applications of the small reflection principle.

In section 3.4, we use the small reflection principle in order to extend Krajíček and Pudlák's result on the injection of inconsistencies into models of $\mathrm{I} \Delta_{0}+E X P$.

Theorem 3.2.7 and theorem 3.3.20, the main results of section 3.2 and section 3.3, were published previously in the technical report [Ve 89], which in turn is based on my master's thesis [Ve 88].

We assume that the reader is familiar with [Bu 86] and [WP 87]. However, most of the definitions we need can be found in section 2.3.

Remark 3.1.1 In cases where confusion seems unlikely, we will sloppily leave out some numeral dashes, in particular deeper nested ones.

$3.2 \quad \Sigma$-completeness and the NP=co-NP problem

In this section we will prove that, under the assumption that $N P \neq c o-N P$, the following holds:

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \forall \forall b \forall c & (\exists a(\operatorname{Prf}(a, c) \wedge \forall z \leq a \neg \operatorname{Prf}(z, b)) \\
& \rightarrow \operatorname{Prov}(\ulcorner\exists a(\operatorname{Prf}(a, \bar{c}) \wedge \forall z \leq a \neg \operatorname{Prf}(z, \bar{b}))\urcorner)) .
\end{aligned}
$$

In the proofs of the lemmas leading up to this result we will frequently, often without mention, make use of the following proposition and its corollary.

Proposition 3.2.1 ($[\mathrm{Bu} 86]$) Suppose A is a closed, bounded formula in the language of S_{2}^{1} and let \mathbf{R} be a consistent theory extending S_{2}^{1}. Then $\mathbf{R} \vdash A$ iff $\omega \models A$.

Corollary 3.2.2 ($[\mathrm{Bu} 86]$, Prop. 8.3) Suppose $A(\vec{a})$ is a bounded formula in the language of S_{2}^{1}, and let \mathbf{R} be a consistent theory extending S_{2}^{1}. If $\mathbf{R} \vdash \forall \vec{x} A(\vec{x})$, then $\omega \models$ $\forall \vec{x} A(\vec{x})$.

In this section, we will use the name $\mathrm{I} \Delta_{0}+\Omega_{1}$ for Buss' theory S_{2} (see Definition 2.3.12), in which induction for formulas from the hierarchy of bounded arithmetic formulas in a language containing $\| \mid,\left\lfloor{ }_{2}^{1} x\right\rfloor$ and \# is allowed. Because S_{2} is conservative over I $\Delta_{0}+\Omega_{1}$, the name change has no repercussions on the results of this section. (In the next section, where we need to construct formalized satisfaction predicates, we will be more careful.)

In order to prove the main theorem of this section, we need to prove a few seemingly farfetched lemmas. Their proofs borrow heavily from the formalization carried out in [Bu 86]. To make these lemmas understandable, we will give some details of the formalization of the predicate Prf. Buss uses a sequent calculus akin to Takeuti's (see [Ta 75]). He considers a proof to be formalized as a tree, of which the root corresponds to the end sequent, and the leaves to the initial sequents of the proof. Every node of the proof tree is labeled by an ordered pair $\langle a, b\rangle$. The second member of this pair codes a sequent, and the first member codes the rule of inference by which this sequent has been derived from the sequents corresponding to the children of the node in question. For leaves, the first member of the corresponding ordered pair codes the axiom of which the initial sequent is an instantiation.

The only extra fact we need here is that logical axioms are all numbered 0 ; in particular, for all terms t, the tree containing just one node labeled $\langle 0,\ulcorner\longrightarrow t=t\urcorner$) is a proof of $\longrightarrow t=t$. Because of a peculiarity in the encoding of trees, by which 0 and 1 are reserved as codes for brackets, Buss encodes the proof just mentioned by $\langle 0,\ulcorner\longrightarrow t=t\rangle+2$.

In the sequel, we will sometimes abuse Buss' conventions in order to keep the formulas legible. Thus, we will write $\left\langle 0,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner\right.$ for Buss' $\left\langle 0,(0 * \overline{\text { Arrow }}) * *\left(\left\ulcorner I_{d}\right\urcorner * \overline{\text { Equals }} *\right.\right.$ $\left.\left.\left.*^{\ulcorner } I_{d}\right\urcorner\right)\right\rangle+2$.

Lemma 3.2.3 Let $\psi(d, b)$ be the formula $\forall z \leq\langle 0,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner \neg \operatorname{Prf}(z, b)$. The predicate represented by ψ is co-NP-complete.

Proof. Straightforwardly, ψ is a Π_{1}^{b}-formula, hence it represents a co-NP predicate. For the other side, viz. co-NP-hardness, begin by supposing $A\left(a_{1}, \ldots, a_{k}\right) \in \operatorname{co}-N P$. We will polynomially reduce A to ψ. (For definitions of the complexity theoretic concepts that we mention, see definition 2.3.7 and definition 2.3.8; and see remark 2.3.10 or [Bu 86, Thm 1.8]).

By provable \sum_{1}^{b}-completeness (see theorem 2.3.24), there is a term $r(\vec{a})$ such that

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \neg A(\vec{a}) \rightarrow \exists z \leq r(\vec{a}) \operatorname{Prf}\left(z,\left\ulcorner\neg A\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)^{\urcorner}\right)\right.
$$

and thus

$$
\omega \models \neg A(\vec{a}) \rightarrow \exists z \leq r(\vec{a}) \operatorname{Prf}\left(z,\left\ulcorner\neg A\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)^{\urcorner}\right)\right.
$$

Because $r(\vec{a}) \leq\ulcorner\overline{r(\vec{a})}\urcorner \leq\langle 0,\ulcorner\longrightarrow \overline{r(\vec{a})}=\overline{r(\vec{a})}\urcorner\rangle$, we also have

$$
\begin{equation*}
\omega \models \neg A(\vec{a}) \rightarrow \exists z \leq\left\langle 0,\left\ulcorner\longrightarrow \overline{r(\vec{a})}=\overline{r(\vec{a})^{\urcorner}}\right\rangle \operatorname{Prf}\left(z,\left\ulcorner\neg A\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)^{\urcorner}\right) .\right.\right. \tag{3.1}
\end{equation*}
$$

On the other hand, by Proposition 3.2.1 and the consistency of $\mathrm{I} \Delta_{0}+\Omega_{1}$, we have

$$
\begin{equation*}
\omega \models \exists z \leq\langle 0,\ulcorner\longrightarrow \overline{r(\vec{a})}=\overline{r(\bar{a})}\urcorner\rangle \operatorname{Prf}\left(z,\left\ulcorner\neg A\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)^{\urcorner}\right) \rightarrow \neg A(\vec{a}) .\right. \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2), we conclude that

$$
\omega \models A(\vec{a}) \leftrightarrow \forall z \leq\left\langle 0,\left\ulcorner\longrightarrow \overline{r(\vec{a})}=\overline{\left.r(\vec{a})^{\urcorner}\right\rangle} \neg \operatorname{Prf}\left(z,\left\ulcorner\neg A\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)^{\urcorner}\right) .\right.\right.\right.
$$

This means by the definition of ψ that

$$
\omega \models A(\vec{a}) \leftrightarrow \psi\left(r(\vec{a}),\left\ulcorner\neg A\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)^{\urcorner}\right) .\right.
$$

As both $\left.{ } \neg \neg A\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right\urcorner$ and $r(\vec{a})$ can be computed from \vec{a} by polynomial time functions, we have reduced the co-NP predicate A to ψ. QED

Lemma 3.2.4 Let $B\left(a_{1}, \ldots, a_{k}\right)$ be a Π_{1}^{b}-formula representing a co-NP complete predicate. If $N P \neq c o-N P$, then

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \nvdash \forall \vec{a}\left(B(\vec{a}) \rightarrow \operatorname{Prov}\left(\left\ulcorner B\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right\urcorner\right)\right) .
$$

Proof. An application of Parikh's Theorem for $\mathrm{I} \Delta_{0}+\Omega_{1}$ (cf. theorem 2.3.15). We leave the details, which are similar to part of the proof of [Bu 86 , Theorem 8.6], to the reader. QED

Lemma 3.2.5 If $N P \neq$ co- $N P$, then

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \nvdash \forall b \forall d & (\forall z \leq\langle 0,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner\rangle \neg \operatorname{Prff}(z, \bar{b}) \\
& \rightarrow \operatorname{Prov}(\ulcorner\forall z \leq\langle 0,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner\rangle \neg \operatorname{Prff}(z, \bar{b})\urcorner) .
\end{aligned}
$$

Proof. Directly from Lemma 3.2.3 and Lemma 3.2.4. QED

Lemma 3.2.6 $\mathrm{I} \Delta_{0}+\Omega_{1}$ proves the following:

$$
\begin{aligned}
\forall b \forall d & \left(\operatorname { P r o v } \left(\left\ulcorner\exists a(\operatorname{Prf}(a,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner) \wedge \forall z \leq a \neg \operatorname{Prf}(z, \bar{b}))^{\urcorner}\right)\right.\right. \\
& \rightarrow \operatorname{Prov}\left(\left\ulcorner\forall z \leq\left\langle 0,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner \neg \operatorname{Prf}(z, \bar{b})^{\urcorner}\right)\right)\right.
\end{aligned}
$$

Proof. It is not difficult to see that for Buss' formalization of Prf, we have the following:

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall d \forall a(\operatorname{Prf}(a,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner) \rightarrow a \geq\langle 0,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner\rangle),
$$

and thus

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall b \forall d & (\exists a(\operatorname{Prf}(a,\ulcorner\longrightarrow \bar{d}=\bar{d}) \wedge \forall z \leq a \neg \operatorname{Prf}(z, b)) \\
& \rightarrow \forall z \leq\langle 0,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner\rangle \operatorname{Prf}(z, b)) .
\end{aligned}
$$

This in turn immediately implies our lemma. QED

Theorem 3.2.7 If $N P \neq \operatorname{co-NP}$, then

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \forall \forall b \forall c & (\exists a(\operatorname{Prf}(a, c) \wedge \forall z \leq a \neg \operatorname{Prf}(z, b)) \\
& \rightarrow \operatorname{Prov}(\ulcorner\exists a(\operatorname{Prf}(a, \bar{c}) \wedge \forall z \leq a \neg \operatorname{Prf}(z, \bar{b}))\urcorner)) .
\end{aligned}
$$

Proof. Suppose that $N P \neq c o-N P$, and suppose, in order to derive a contradiction, that

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall b \forall c & (\exists a(\operatorname{Prf}(a, c) \wedge \forall z \leq a \neg \operatorname{Prf}(z, b)) \\
& \left.\rightarrow \operatorname{Prov}\left(\ulcorner\exists a(\operatorname{Prf}(a, \bar{c}) \wedge \forall z \leq a \neg \operatorname{Prf}(z, \bar{b})))^{\urcorner}\right)\right) .
\end{aligned}
$$

Then, in particular,

$$
\begin{align*}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall b \forall d & (\operatorname{Prf}(\langle 0,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner\rangle,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner) \\
& \wedge \forall z \leq\langle 0,\ulcorner\longrightarrow \bar{d}=d\urcorner\rangle \neg \operatorname{Prff}(z, b) \\
& \left.\rightarrow \operatorname{Prov}\left(\ulcorner\exists a(\operatorname{Prf}(a,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner) \wedge \forall z \leq a \neg \operatorname{Prf}(z, \bar{b})))^{\urcorner}\right)\right) . \tag{3.3}
\end{align*}
$$

We know that

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall d(\operatorname{Prf}(\langle 0,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner\rangle,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner))
$$

Combined with (3.3), this implies the following:

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall b \forall d & (\forall z \leq\langle 0,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner\rangle \neg \operatorname{Prf}(z, b) \\
& \left.\rightarrow \operatorname{Prov}\left(\ulcorner\exists a(\operatorname{Prf}(a,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner) \wedge \forall z \leq a \neg \operatorname{Prf}(z, \bar{b})))^{\urcorner}\right)\right) .
\end{aligned}
$$

Now we apply Lemma 3.2.6 to derive

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \quad \forall b \forall d & (\forall z \leq\langle 0,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner \neg \neg \operatorname{Prf}(z, b) \\
& \rightarrow \operatorname{Prov}\left(\left\ulcorner\forall z \leq\langle 0,\ulcorner\longrightarrow \bar{d}=\bar{d}\urcorner\rangle \neg \operatorname{Prf}(z, \bar{b})^{\urcorner}\right)\right),
\end{aligned}
$$

in contradiction with Lemma 3.2.5. QED

Remark 3.2.8 We can prove that provable Σ_{1}^{0}-completeness fails already for a much simpler Π_{1}^{b}-formula $\chi(a, b, c)$ defined as follows:

$$
\chi(a, b, c):=\forall x \leq c \forall y \leq c\left(a \cdot x^{2}+b \cdot y \neq c\right) .
$$

The fact that Σ_{1}^{0}-completeness fails for χ follows immediately from Lemma 3.2.4 and the following lemma, to which A. Wilkie attracted our attention.

Lemma 3.2.9 (Manders and Adleman, see [MA 78]) The set of equations of the form ($a \cdot x^{2}+b \cdot y=c$), solvable over the natural numbers, with a, b, c positive natural numbers, is NP-complete.

Note that Lemma 3.2.9 implies that the formula $\exists x \leq c \exists y \leq c\left(a \cdot x^{2}+b \cdot y=c\right)$ represents an $N P$-complete predicate, and thus that χ as defined above represents a co$N P$ complete predicate.

3.3 The small reflection principle

In this section, we will present a proof of the fact that $\mathrm{I} \Delta_{0}+\Omega_{1}$ proves the small reflection principle, i.e. for all φ :

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall x \square\left(\square_{x} \varphi \rightarrow \varphi\right),
$$

where $\square \varphi$ is an abbreviation for $\operatorname{Prov}\left({ }^{\ulcorner } \varphi^{\urcorner}\right)$and $\square_{x} \varphi$ is a formalization of the fact that φ has a proof in $\mathrm{I} \Delta_{0}+\Omega_{1}$ of Gödel number $\leq x$. In fact, all arguments that we use can be carried out already in Buss' S_{2}^{1}, as the reader may check for him/herself.

In the proof, we will use the existence of partial truth- (or satisfaction-) predicates $S a t_{n}$ for formulas of length $\leq n$. The intended meaning of $\operatorname{Sat}_{n}(x, w)$ will be "the formula of length $\leq n$ with Gödel number x is satisfied by the assignment sequence coded by w ". Pudlák [Pu 86] has constructed partial truth predicates much like the ones we need. (An analogous construction, where $S a t_{n}$ is related to quantifier depth instead of length, can be found in [Pu 87].)

However, our construction departs from Pudlák's in two ways. Firstly, whereas Pudlák presents his results for theories in relational languages, we allow function symbols.

Secondly and more importantly, I $\Delta_{0}+\Omega_{1}$ is neither finitely nor sparsely axiomatized. Regrettably we cannot even apply to I $\Delta_{0}+\Omega_{1}$ a trick of Pudlák's which turns some nonsparse theories like $P A$ and $Z F$ into sparse ones (see Theorem 5.5. of [Pu 86]). Therefore we introduce new satisfaction predicates $\operatorname{Sat}_{n, \Delta}(x, w)$ with as intended meaning: "the Δ_{0}-formula of length $\leq n$ with Gödel number x is satisfied by the assignment sequence coded by w ". Using these satisfaction predicates, we will be able to prove by short proofs that the Δ_{0}-induction axioms are true.

In order to start the construction of short satisfaction predicates, we need a few more assumptions and definitions. First of all, when formalizing, we view $\mathrm{I} \Delta_{0}+\Omega_{1}$ in a restricted way more akin to Paris and Wilkie [WP 87] than to Buss [Bu 86]: see definition 2.3.1.

For this system, we can define the appropriate Δ_{1}^{b}-predicates $\operatorname{Term}(v)$, $\operatorname{Fmla}(v)$, $\operatorname{Sent}(v), \operatorname{Prf}(u, v)$ in S_{2}^{1}.

In Buss' formalization of sequences, * stands for a function which adds a new element to the end of a sequence; ** stands for a function which concatenates two sequences; and $\beta(t, w)$ stands for the function giving the value of the t-th place in the sequence coded by w.

In this chapter, we denote concatenation of sequences sloppily by juxtaposition, and we leave out some outer parentheses; thus, for example, $y^{\ulcorner } \rightarrow{ }^{\urcorner} z$ stands for Buss's ($0 *$ $\overline{\text { LParen }}) * *(y * \overline{\text { Implies }}) * *(z * \overline{\text { RParen }})$.

Definition 3.3.1 We formally define four concepts that we need in order to construct truth predicates.

- $w={ }_{i} w^{\prime}:=\operatorname{Len}(w)=\operatorname{Len}\left(w^{\prime}\right) \wedge \forall t\left(t \leq \operatorname{Len}(w) \wedge t \neq i \rightarrow \beta(t, w)=\beta\left(t, w^{\prime}\right)\right)$, i.e. the only possible difference between the sequences coded by w and w^{\prime} is at the i-th value;
- $F m a_{n}(v):=F m l a(v) \wedge \operatorname{Len}(v) \leq n$, i.e. v is the Gödel number of a formula of length $\leq n$;
- $\operatorname{Fmla}_{n, \Delta}(v):=\operatorname{Fmla}_{n}(v)$ "and v codes a Δ_{0}-formula";
- Evalseq (x, w) will mean that the sequence coded by w is long enough to evaluate all variables appearing in x, i.e.

$$
\begin{aligned}
\text { Evalseq }(x, w):= & \operatorname{Seq}(w) \wedge(F m l a(x) \vee \operatorname{Term}(x)) \wedge \forall i\left(\text { "the variable } v_{i}\right. \\
& \text { occurs in the term or formula with Gödel number } x \text { " } \\
& \rightarrow \operatorname{Len}(w) \geq i) .
\end{aligned}
$$

Furthermore, we introduce the following two abbreviations:

- Evalseq $_{n}(x, w):=\operatorname{Fmla}_{n}(x) \wedge \operatorname{Evalseq}(x, w) ;$
- Evalseq ${ }_{n, \Delta}(x, w):=\operatorname{Fmla}_{n, \Delta}(x) \wedge \operatorname{Evalseq}(x, w)$;

Next we define, by Buss' method of p-inductive definitions, a function Val such that, if $t\left(v_{i_{1}}, \ldots v_{i_{n}}\right)$ is a term of the (restricted) language of $\mathrm{I} \Delta_{0}+\Omega_{1}$ and w codes a sequence evaluating all variables $v_{i_{1}}, \ldots v_{i_{n}}$ appearing in t, then $\operatorname{Val}\left(\left\ulcorner{ }^{7}\right\urcorner, w\right)$ gives the value of $t\left[\beta\left(i_{1}, w\right), \ldots, \beta\left(i_{n}, w\right)\right]$.

Definition 3.3.2 Let Val satisfy the following conditions:

- $\neg \operatorname{Term}(t) \vee \neg \operatorname{Evalseq}(t, w) \rightarrow \operatorname{Val}(t, w)=0$;
- the p-inductive condition:

$$
\begin{aligned}
& \operatorname{Term}(t) \wedge \operatorname{Evalseq}(t, w) \rightarrow \\
& \quad(t=\ulcorner 0\urcorner \wedge \operatorname{Val}(t, w)=0) \\
& \vee \exists i<t\left(t=\left\ulcorner\left\ulcorner v_{i}\right\urcorner \wedge \operatorname{Val}(t, w)=\beta(i, w)\right)\right. \\
& \vee \exists t_{1}, t_{2}<t\left(\operatorname{Term}\left(t_{1}\right) \wedge \operatorname{Term}\left(t_{2}\right)\right. \\
& \wedge\left(\left(t=\ulcorner S\urcorner t_{1} \wedge \operatorname{Val}(t, w)=S\left(\operatorname{Val}\left(t_{1}, w\right)\right)\right)\right. \\
& \vee\left(t=t_{1}\ulcorner+\urcorner t_{2} \wedge \operatorname{Val}(t, w)=\operatorname{Val}\left(t_{1}, w\right)+\operatorname{Val}\left(t_{2}, w\right)\right) \\
& \left.\vee\left(t=t_{1}\left\ulcorner\cdot{ }^{\urcorner} t_{2} \wedge \operatorname{Val}(t, w)=\operatorname{Val}\left(t_{1}, w\right) \cdot \operatorname{Val}\left(t_{2}, w\right)\right)\right)\right)
\end{aligned}
$$

By induction, we can show that $t \# w$ will be a bound for $\operatorname{Val}(t, w)$. Thus, by $[\mathrm{Bu} 86$, Theorem 7.3], Val is Δ_{1}^{b}-definable (thus provably total) in S_{2}^{1}; furthermore, the definition of Val in S_{2}^{1} is intensionally correct in that properties of Val can be proved in S_{2}^{1} (and thus also in $\mathrm{I} \Delta_{0}+\Omega_{1}$) by the use of induction.

Remark 3.3.3 Note that we cannot construct in $I \Delta_{0}+\Omega_{1}$ a correct valuation function Val for a language that contains \#. For, to any a we can associate a formalized term $f(a)$ given informally as $1 \# 2 \# \ldots$... 2 where the number of 2 's is $|a|$. A correctly defined Val should give $\operatorname{Val}(f(a), w)=\exp (\exp (|a|+1)-2) \geq \exp (a)$ (cf. [Ta 88]). Therefore by Parikh's Theorem (cf. theorem 2.3.15), Val could not be Δ_{0}-definable and provably total in I $\Delta_{0}+\Omega_{1}$.

In the sequel, we will freely make use of induction for $\Delta_{0}(\mathrm{Val})$-formulas in $\mathrm{I} \Delta_{0}+\Omega_{1}$, as is justified by the I $\Delta_{0}+\Omega_{1}$-analogs of Buss' Theorem 2.2 and Corollary 2.3. We will especially need the following lemma.
Lemma 3.3.4 There exists a constant c such that for every term t with free variables among $v_{i_{1}}, \ldots, v_{i_{m}}$ and for every n with $\operatorname{Len}(\ulcorner t\urcorner) \leq n$, we can prove the following by proofs of length $\leq c \cdot n$:

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Evalseq}(\ulcorner t\urcorner, w) \rightarrow \operatorname{Val}(\ulcorner t\urcorner, w)=t\left[\beta\left(i_{1}, w\right), \ldots, \beta\left(i_{m}, w\right)\right] .
$$

Proof. Straightforward by induction on the construction of t. QED
For the definition of satisfaction predicates, we need one more definition.
Definition 3.3.5 We formally define the following:

$$
s(i, x, w):=(\operatorname{Subseq}(w, 1, i) * x) * * \operatorname{Subseq}(w, i+1, \operatorname{Len}(w)+1)
$$

Thus, if w is a sequence of length $\geq i, s(i, x, w)$ denotes the sequence which is identical to w, except that x appears in the i-th place.

Definition 3.3.6 We say that $\operatorname{Sat}_{n}(x, w)$ is a partial definition of truth for formulas of length $\leq n$ in I $\Delta_{0}+\Omega_{1}$ iff $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash$ Evalseq $_{n}(x, w) \rightarrow$

$$
\begin{aligned}
& \left\{\operatorname{Sat}_{n}(x, w) \leftrightarrow\right. \\
& {\left[\exists t, t^{\prime}<x\left(\operatorname{Term}(t) \wedge \operatorname{Term}\left(t^{\prime}\right) \wedge x=t^{\ulcorner }={ }^{\urcorner} t^{\prime} \wedge \operatorname{Val}(t, w)=\operatorname{Val}\left(t^{\prime}, w\right)\right)\right.} \\
& \vee \exists t, t^{\prime}<x\left(\operatorname{Term}(t) \wedge \operatorname{Term}\left(t^{\prime}\right) \wedge x=t^{\ulcorner } \leq{ }^{\urcorner} t^{\prime} \wedge \operatorname{Val}(t, w) \leq \operatorname{Val}\left(t^{\prime}, w\right)\right) \\
& \vee \exists y<x\left(x=\ulcorner\neg\urcorner y \wedge \neg \operatorname{Sat}_{n}(y, w)\right) \\
& \vee \exists y, z<x\left(x=y\left\ulcorner\rightarrow{ }^{\urcorner} z \wedge\left(\operatorname{Sat}_{n}(y, w) \rightarrow \operatorname{Sat}_{n}(z, w)\right)\right)\right. \\
& \vee \exists y, i<x\left(x=\left\ulcorner\forall v_{i}{ }^{`} y \wedge \forall w^{\prime}\left(w=_{i} w^{\prime} \rightarrow \operatorname{Sat}_{n}\left(y, w^{\prime}\right)\right)\right)\right. \\
& \vee \exists y, i, t<x\left(\operatorname{Term}(t) \wedge x=\left\ulcorner\left(\forall v_{i} \leq\right\urcorner t^{\top}\right)\right\urcorner y \wedge \\
& \left.\left.\left.\forall w^{\prime} \leq s(i, \operatorname{Val}(t, w), w)\left(w=_{i} w^{\prime} \wedge \beta(i, w) \leq \operatorname{Val}(t, w) \rightarrow \operatorname{Sat}_{n}\left(y, w^{\prime}\right)\right)\right)\right]\right\}
\end{aligned}
$$

We denote the part between brackets [] on the right hand side of the equivalence by $\Sigma\left(S a t_{n} ; x, w\right)$; note that these are just Tarski's conditions.

Similarly, we say that $\operatorname{Sat}_{n, \Delta}(x, w)$ is a partial definition of truth for Δ_{0}-formulas of length $\leq n$ in $\mathrm{I} \Delta_{0}+\Omega_{1}$ iff $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash$ Evalseq $_{n, \Delta}(x, w) \rightarrow$

$$
\begin{aligned}
& \left\{\operatorname{Sat}_{n, \Delta}(x, w) \leftrightarrow\right. \\
& \quad\left[\exists t, t^{\prime}<x\left(\operatorname{Term}(t) \wedge \operatorname{Term}\left(t^{\prime}\right) \wedge x=t^{\ulcorner }={ }^{\urcorner} t^{\prime} \wedge \operatorname{Val}(t, w)=\operatorname{Val}\left(t^{\prime}, w\right)\right)\right. \\
& \left.\quad \vee \exists t, t^{\prime}<x\left(\operatorname{Term}(t) \wedge \operatorname{Term}\left(t^{\prime}\right) \wedge x=t^{\ulcorner } \leq\right\urcorner t^{\prime} \wedge \operatorname{Val}(t, w) \leq \operatorname{Val}\left(t^{\prime}, w\right)\right) \\
& \quad \vee \exists y<x\left(x=\ulcorner\neg\urcorner \wedge \wedge \neg \operatorname{Sat} t_{n, \Delta}(y, w)\right) \\
& \quad \vee \exists y, z<x\left(x=y^{\ulcorner } \rightarrow \neg z \wedge\left(\operatorname{Sat}_{n, \Delta}(y, w) \rightarrow \operatorname{Sat}_{n, \Delta}(z, w)\right)\right) \\
& \quad \vee \exists y, i, t<x\left(\operatorname{Term}(t) \wedge x=\left\ulcorner\left(\forall v_{i} \leq\right\urcorner t^{\ulcorner }\right)\right\urcorner y \wedge \\
& \left.\left.\left.\forall w^{\prime} \leq s(i, \operatorname{Val}(t, w), w)\left(w=_{i} w^{\prime} \wedge \beta(i, w) \leq \operatorname{Val}(t, w) \rightarrow \operatorname{Sat}_{n, \Delta}\left(y, w^{\prime}\right)\right)\right)\right]\right\}
\end{aligned}
$$

We denote the part between brackets [] on the right hand side of the equivalence by $\Sigma_{\Delta}\left(S a t_{n, \Delta} ; x, w\right)$. Note that the only difference between $\Sigma\left(S a t_{n} ; x, w\right)$ and $\Sigma_{\Delta}\left(\operatorname{Sat}_{n, \Delta} ; x, w\right)$ is that in the latter, the disjunct for the unbounded quantifier \forall is left out.

In the proof of the main theorem of this section, we will reason inside I $\Delta_{0}+\Omega_{1}$, and we will need the existence of Gödel numbers representing formulas $S a t_{n}$ that provably satisfy the conditions of the preceding definition. Therefore, in the unformalized proofs below, we take care that the formulas $S a t_{n}$ and the proofs that they have the right properties be bounded by suitable terms. The following lemmas provide us with such formulas. In [$\mathrm{Pu} 86, \mathrm{Pu} 87]$ Pudlák proves similar lemmas for a language without function symbols. Below, we sketch the adaptation of his method to our case. The parallel construction of a $\Delta_{0}\left(V a l,| |,\left\lfloor\frac{1}{2} x\right\rfloor\right.$, \#)-formula $S a t_{n, \Delta}$ which works for Δ_{0}-formulas is particular to this dissertation. We use the formula $S a t_{n, \Delta}$ only in our proof that $S a t_{n}$ preserves the Δ_{0} induction axioms, but there its use is essential.

Lemma 3.3.7 There exist formulas $\operatorname{Sat}_{n}(x, w)$ for $n=0,1,2, \ldots$ of length linear in n, and such that, by a proof of length linear in n,

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \text { Evalseq }_{n+1}(x, w) \rightarrow\left(\operatorname{Sat}_{n+1}(x, w) \leftrightarrow \Sigma\left(\operatorname{Sat}_{n} ; x, w\right)\right)
$$

Proof. $S a t_{n}$ is constructed by recursion. We can define $S a t_{0}$ arbitrarily, as there are no formulas of length ≤ 0. If we have the formula $S a t_{k}$, we obtain $S a t_{k+1}$ by substituting $S a t_{k}$ for $S a t_{n}$ in the formula $\Sigma\left(\operatorname{Sat}_{n} ; x, w\right)$ defined in Definition 3.3.6.

Remember that we have to ensure that the length of the formula $S a t_{n}$ grows linearly in n. However, if we straightforwardly used $\Sigma\left(S a t_{n} ; x, w\right)$ as defined above, the length of Sat_{n} would grow exponentially in n, because $\Sigma\left(\operatorname{Sat}_{n} ; x, w\right)$ contains more than one occurrence of $S a t_{n}$.

Ferrante and Rackoff (in [FR 79, Chapter 7]) describe a general technique for writing short formulas, due to Fischer and Rabin. Using these techniques, one can replace $\Sigma\left(S a t_{n} ; x, w\right)$ by a formula $\Sigma^{\prime}\left(S a t_{n} ; x, w\right)$ which contains only one occurrence of $S a t_{n}$, and which is equivalent to $\Sigma\left(S a t_{n} ; x, w\right)$ in a very weak theory - say predicate logic plus the axiom $S 0 \neq 0$.

Ferrante and Rackoff use the inclusion of \leftrightarrow in the language of the theory in an essential way. However, Solovay sent us a different construction of short formulas which circumvents the use of \leftrightarrow. With his kind permission, we present a sketch of his proof.

Solovay's basic idea is to shift attention from sets to characteristic functions. Without restriction of generality, we may assume that we work with unary predicates $\operatorname{Sat}_{n}(x)$ instead of $\operatorname{Sat}_{n}(x, w)$. Let

$$
F_{n}(x, y):=\left(y=S 0 \wedge \operatorname{Sat}_{n}(x)\right) \vee\left(y=0 \wedge \neg \operatorname{Sat}_{n}(x)\right) .
$$

If we can find a formula H_{n} equivalent to F_{n} of length proportional to n, it will be easy to define using this formula our desired formula $S a t_{n+1}$.

Let L be the language of $\mathrm{I} \Delta_{0}+\Omega_{1}$ enriched with a new binary predicate letter G. We can find a formula Φ of L in prenex normal form, having only the variables x and y free, such that if G is interpreted as F_{n}, then Φ is interpreted as F_{n+1}. We show how to find a formula Ψ which is equivalent to Φ and which has only one occurrence of G. Assume that Φ starts with the string of quantifiers $\left(Q_{1} x_{1}\right) \ldots\left(Q_{r} x_{r}\right)$, and that there are k occurrences of G in the matrix of Φ, say $G\left(t_{1}, m_{1}\right), \ldots, G\left(t_{n}, m_{k}\right)$. The formula Ψ will have the form

$$
\left(Q_{1} x_{1}\right) \ldots\left(Q_{r} x_{r}\right)\left(\exists y_{1}\right) \ldots\left(\exists y_{k}\right)[M \wedge S]
$$

Here y_{1}, \ldots, y_{k} are fresh variables (for the moment - in the final definition we will be less liberal with variables). The formula M is obtained from the matrix of Φ by replacing each
occurrence of $G\left(t_{i}, m_{i}\right)$ by $m_{i}=y_{i} . S^{\prime}$ job is to ensure that the y_{i} 's are chosen correctly. It is defined as follows.

$$
S:=\forall w_{1} \exists w_{2}\left[G\left(w_{1}, w_{2}\right) \wedge \bigwedge_{i=1}^{k}\left(w_{1}=t_{i} \rightarrow w_{2}=y_{i}\right)\right] .
$$

If we define H_{n+1} from H_{n} using Ψ, we get a formula of length proportional to $n \log n$, because at every step we introduce fresh variables in order to avoid clashes. There are however tricks to get by with a finite set of variables, as the reader may enjoy to figure out (or to look up in [FR 79, Chapter 7]).

We will write $\Sigma^{\prime}\left(S a t_{n} ; x, w\right)$ for the equivalent of $\Sigma\left(S a t_{n} ; x, w\right)$ resulting from an application of the techniques described above. The length of $S a t_{n}$ thus constructed via iterated application of Σ^{\prime} to $S a t_{0}$ is indeed linear in n. Moreover, for all n, the shape of the proof of $\Sigma\left(\operatorname{Sat}_{n} ; x, w\right) \leftrightarrow \Sigma^{\prime}\left(S a t_{n} ; x, w\right)$ is the same for all n. Thus, the proofs of $\Sigma\left(\operatorname{Sat}_{n} ; x, w\right) \leftrightarrow \Sigma^{\prime}\left(\operatorname{Sat}_{n} ; x, w\right)$ grow linearly in n. Hence, as $\operatorname{Sat}_{n+1}(x, w) \equiv \Sigma^{\prime}\left(\operatorname{Sat}_{n} ; x, w\right)$, we have the following by proofs of length linear in n :

$$
\begin{equation*}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Sat}_{n+1}(x, w) \leftrightarrow \Sigma\left(\operatorname{Sat}_{n} ; x, w\right) \tag{3.4}
\end{equation*}
$$

QED

Lemma 3.3.8 $\mathrm{I} \Delta_{0}+\Omega_{1}$ proves by a proof of length of the order of n^{2} that the formula Sat $_{n}$ as constructed in Lemma 3.3.7 is a partial definition of truth for formulas of length $\leq n$.

Proof. We want short proofs showing that $S a t_{n}$ is a partial definition of truth for formulas of length $\leq n$ in $\mathrm{I} \Delta_{0}+\Omega_{1}$, i.e.

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Evalseq}_{n}(x, w) \rightarrow\left(\operatorname{Sat}_{n}(x, w) \leftrightarrow \Sigma\left(\operatorname{Sat}_{n} ; x, w\right)\right) .
$$

By (3.4), it suffices to show that, by proofs of length of the order n^{2},

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Evalseq}_{n}(x, w) \rightarrow\left(\operatorname{Sat}_{n}(x, w) \leftrightarrow \operatorname{Sat}_{n+1}(x, w)\right) .
$$

This can be proved by external induction on n. In fact, when we define

$$
\Phi_{n}:=\forall x \forall w\left(\text { Evalseq }_{n}(x, w) \rightarrow\left(\operatorname{Sat}_{n}(x, w) \leftrightarrow \operatorname{Sat}_{n+1}(x, w)\right)\right),
$$

the proofs of $\Phi_{n} \rightarrow \Phi_{n+1}$ in I $\Delta_{0}+\Omega_{1}$ will have a shape which does not depend on n. (We refer those readers who seek elucidation by examples to [Pu 86 , Lemma 5.1].) We can observe that every proof in I $\Delta_{0}+\Omega_{1}$ of $\Phi_{n} \rightarrow \Phi_{n+1}$ is the instantiation of a single proof scheme. Thus, the length of the proofs of $\Phi_{n} \rightarrow \Phi_{n+1}$ increases only linearly in n, so that the length of the proof in I $\Delta_{0}+\Omega_{1}$ of

$$
\forall x \forall w\left(\operatorname{Evalseq}_{n}(x, w) \rightarrow\left(\operatorname{Sat}_{n}(x, w) \leftrightarrow \operatorname{Sat}_{n+1}(x, w)\right)\right),
$$

is of the order n^{2}. QED

Lemma 3.3.9 There exist formulas $\operatorname{Sat}_{n, \Delta}(x, w)$ for $n=0,1,2, \ldots$ of lengths linear in n, and such that $\mathrm{I} \Delta_{0}+\Omega_{1}$ proves by proofs of length linear in n that $\operatorname{Sat}_{n+1, \Delta}(x, w) \leftrightarrow$ $\Sigma_{\Delta}\left(\operatorname{Sat}_{n, \Delta} ; x, w\right)$. The resulting formulas $\operatorname{Sat}_{n, \Delta}(x, w)$ are $\Delta_{0}($ Val $)$-formulas.

Proof. Completely analogous to the proof of Lemma 3.3.7. Because $\Sigma_{\Delta}\left(\operatorname{Sat}_{n, \Delta} ; x, w\right)$ contains only bounded quantifiers, and because all quantifiers introduced by the Solovay method can be bounded, the resulting formulas are indeed $\Delta_{0}($ Val $)$. QED

Lemma 3.3.10 $\mathrm{I} \Delta_{0}+\Omega_{1}$ proves by a proof of length of the order of n^{2} that the formula Sat $n_{n, \Delta}(x, w)$ as constructed in Lemma 3.3.9 is a partial definition of truth for Δ_{0}-formulas of length $\leq n$.

Proof. We adapt the proof of Lemma 3.3.8, incorporating the fact that we are concerned with Δ_{0}-formulas only. Thus instead of Φ_{n}, we define

$$
\Phi_{n, \Delta}:=\forall x \forall w\left(\text { Evalseq}_{n, \Delta}(x, w) \rightarrow\left(\operatorname{Sat}_{n, \Delta}(x, w) \leftrightarrow \operatorname{Sat}_{n+1, \Delta}(x, w)\right)\right) .
$$

The proof of $\Phi_{n, \Delta} \rightarrow \Phi_{n+1, \Delta}$ runs along the same lines as the proof of $\Phi_{n} \rightarrow \Phi_{n+1}$, using the extra fact that if $x=y\left\ulcorner\rightarrow{ }^{\ulcorner } z\right.$ and $F_{m l a}^{n+1, \Delta}(x)$, then $\operatorname{Fmla}_{n, \Delta}(y)$ and $F m l_{n, \Delta}(z)$, etc. QED

We now show that the partial definitions of truth can, by proofs of quadratic length, be proven to satisfy Tarski's conditions, which justifies their name.

Lemma 3.3.11 (cf. $[\mathrm{Pu} 86, \mathrm{Pu} 87])$ There exists a constant c such that for every formula φ with free variables among $v_{i_{1}}, \ldots, v_{i_{m}}$ and for every n with $\operatorname{Len}\left(\left\ulcorner\varphi \varphi^{\urcorner}\right) \leq n\right.$, we can prove the following by proofs of length $\leq c \cdot n^{2}$:

$$
\begin{equation*}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall w\left(\operatorname { E v a l s e q } \left(\left\ulcorner\varphi^{\urcorner}, w\right) \rightarrow\left(\operatorname{Sat}_{n}\left(\left\ulcorner\varphi^{\urcorner}, w\right) \leftrightarrow \varphi\left[\beta\left(i_{1}, w\right), \ldots, \beta\left(i_{m}, w\right)\right]\right)\right)\right.\right. \tag{3.5}
\end{equation*}
$$

and, if φ is a Δ_{0}-formula, we can also prove the following by proofs of length $\leq c \cdot n^{2}$:

$$
\begin{equation*}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall w\left(\operatorname{Evalseq}(\ulcorner\varphi\urcorner, w) \rightarrow\left(\operatorname{Sat}_{n, \Delta}(\ulcorner\varphi\urcorner, w) \leftrightarrow \varphi\left[\beta\left(i_{1}, w\right), \ldots, \beta\left(i_{m}, w\right)\right]\right)\right)(\tag{3.6}
\end{equation*}
$$

Proof. By cases. If φ is an atomic formula $t \leq t^{\prime}$ of length $\leq n$ and with free variables among $v_{i_{1}}, \ldots, v_{i_{m}}$, Lemma 3.3.8 implies that we can prove the following by proofs of length linear in n :

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall w & \left(\text { Evalseq } \left(\left\ulcorner t \leq t^{\prime\urcorner}, w\right)\right.\right. \\
& \rightarrow\left(\operatorname{Sat}_{n}\left(\left\ulcorner t \leq t^{\prime}, w\right) \leftrightarrow \operatorname{Val}\left(\left\ulcorner t^{\urcorner}, w\right) \leq \operatorname{Val}\left(\left\ulcorner t^{\prime}\right\urcorner, w\right)\right)\right)\right.
\end{aligned}
$$

By Lemma 3.3.4, we can then conclude that we can prove the following by proofs of length linear in n :

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall w & \left(\text { Evalseq }\left(\left\ulcorner t \leq t^{\prime}\right\urcorner, w\right)\right. \\
& \rightarrow\left(\operatorname{Sat}_{n}\left(\left\ulcorner t \leq t^{\prime ᄀ}, w\right) \leftrightarrow\left(t \leq t^{\prime}\right)\left[\beta\left(i_{1}, w\right), \ldots, \beta\left(i_{m}, w\right)\right]\right)\right)
\end{aligned}
$$

The case for $t=t^{\prime}$ is analogous.
For the non-atomic cases, we define

$$
\Psi_{k}(\psi):=\forall w\left(\operatorname{Evalseq}(\ulcorner\psi\urcorner, w) \rightarrow\left(\operatorname{Sat}_{k}(\ulcorner\psi\urcorner, w) \leftrightarrow \psi\left[\beta\left(i_{1}, w\right), \ldots, \beta\left(i_{m}, w\right)\right]\right)\right) .
$$

Every formula φ of length $\leq n$ is constructed from atomic formulas in at most n steps. Therefore, we would like to prove the following in $\mathrm{I} \Delta_{0}+\Omega_{1}$ by proofs of length linear in k :

1. $\Psi_{k-1}(\psi) \rightarrow \Psi_{k}(\neg \psi)$ for $\operatorname{Len}(\ulcorner\neg \psi\urcorner) \leq k$;
2. $\Psi_{k-1}(\psi) \wedge \Psi_{k-1}(\chi) \rightarrow \Psi_{k}(\psi \rightarrow \chi)$ for $\operatorname{Len}(\ulcorner\psi \rightarrow \chi\urcorner) \leq k$;
3. $\Psi_{k-1}(\psi) \rightarrow \Psi_{k}\left(\forall v_{i} \psi\right)$ for $\operatorname{Len}\left(\left\ulcorner\forall v_{i} \psi\right\urcorner\right) \leq k$;
4. $\Psi_{k-1}(\psi) \rightarrow \Psi_{k}\left(\left(\forall v_{i} \leq t\right) \psi\right)$ for $\operatorname{Len}\left(\left\ulcorner\left(\forall v_{i} \leq t\right) \psi^{\top}\right) \leq k\right.$.

If we can find these short proofs, then we have for every formula φ of length $\leq n$ a proof of $\Psi_{n}(\varphi)$ of length of the order of n^{2}, and we are done. We will leave the easy proofs of the four cases to the reader. QED

Lemma 3.3.12 I $\Delta_{0}+\Omega_{1}$ proves by a proof of length of the order of n^{2} that Sat ${ }_{n}$ preserves the logical rules (Modus Ponens and Generalization) for formulas of length $\leq n$, i.e.

$$
\left.\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Evalseq}_{n}\left(y^{\ulcorner } \rightarrow{ }^{\urcorner} z, w\right) \wedge \operatorname{Sat}_{n}(y, w) \wedge \operatorname{Sat}_{n}\left(y^{\ulcorner } \rightarrow\right\urcorner z, w\right) \rightarrow \operatorname{Sat}_{n}(z, w)
$$

and

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Evalseq}_{n}\left(\left\ulcorner\forall v_{i}\right\urcorner y, w\right) \wedge \forall w^{\prime}\left(w=_{i} w^{\prime} \rightarrow \operatorname{Sat}_{n}\left(y, w^{\prime}\right)\right) \rightarrow \operatorname{Sat}_{n}\left(\left\ulcorner\forall v_{i}\right\urcorner y, w\right)
$$

Proof. Immediately from Lemma 3.3.8. QED
Lemma 3.3.13 I $\Delta_{0}+\Omega_{1}$ proves by a proof of length of the order of n^{2} that Sat ${ }_{n}$ preserves the logical axioms and the equality axioms for formulas of length $\leq n$, e.g. axiom scheme (1) of [WP 87]:

PW1 I $\Delta_{0}+\Omega_{1} \vdash$ Evalseq $\left.\left._{n}\left(y^{\ulcorner } \rightarrow\left({ }^{\urcorner} z^{\ulcorner } \rightarrow{ }^{\urcorner} y^{\ulcorner }\right)\right\urcorner, w\right) \rightarrow \operatorname{Sat}_{n}\left(y^{\ulcorner } \rightarrow\left({ }^{\urcorner} z^{\ulcorner } \rightarrow{ }^{\urcorner} y^{\ulcorner }\right)\right\urcorner, w\right)$
Similarly, the other propositional schemes (2) and (3) are preserved. Corresponding to axiom schemes (4), (5), and (6) we have the following:
PW4 (Corresponding to axiom (4) of (WP 87])

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash & \text { Evalseq }\left(\left\ulcorner\forall v_{i}\right\urcorner y \rightarrow \operatorname{Sub}\left(y,\left\ulcorner v_{i}\right\urcorner, t\right), w\right) \wedge \operatorname{SubOK}\left(y,\left\ulcorner v_{i}\right\urcorner, t\right) \\
& \rightarrow \operatorname{Sat}_{n}\left(\left\ulcorner\forall v_{i}\right\urcorner y \rightarrow \operatorname{Sub}\left(y,\left\ulcorner v_{i}\right\urcorner, t\right), w\right),
\end{aligned}
$$

where $\operatorname{SubOK}\left(y,\left\ulcorner v_{i}{ }^{\urcorner}, t\right)\right.$ is Buss' formalization of "the term with Gödel number t is free for the variable v_{i} in the (term or) formula with Gödel number y ".

PW5 (Corresponding to axiom (5) of [WP 87])

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash & \text { Evalseq } \left.\left.\left._{n}\left(\left\ulcorner\forall v_{i}(\urcorner y^{\ulcorner } \rightarrow\right\urcorner z^{\ulcorner }\right) \rightarrow(\urcorner y \rightarrow \forall v_{i}{ }^{\urcorner} z^{\ulcorner }\right)\right\urcorner, w\right) \\
& \wedge \text { " } v_{i} \text { does not appear free in the formula with Gödel nr. } y \text { " } \\
& \left.\left.\left.\rightarrow \operatorname{Sat}_{n}\left(\left\ulcorner\forall v_{i}(\urcorner y^{\ulcorner } \rightarrow\right\urcorner z^{\ulcorner }\right) \rightarrow(\urcorner y \rightarrow \forall v_{i} z^{\ulcorner }\right)\right\urcorner, w\right) .
\end{aligned}
$$

PW 6 (Corresponding to axiom (6) of [WP 87])

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \text { Evalseq }_{n}\left(v_{1}^{\ulcorner }={ }^{\urcorner} v_{1}, w\right) \rightarrow \operatorname{Sat}_{n}\left(v_{1}\ulcorner=\urcorner v_{1}, w\right)
$$

and

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash & \text { Evalseq} \left.\left.\left._{n}\left(v_{i}{ }^{\ulcorner }=\right\urcorner v_{j}{ }^{\ulcorner } \rightarrow(\urcorner y\ulcorner\neg\urcorner z^{\ulcorner }\right)\right\urcorner, w\right) \\
& \left.\left.\left.\wedge{\operatorname{SubOOK}\left(y,\left\ulcorner v_{i}\right\urcorner,\left\ulcorner v_{j}\right\urcorner\right) \wedge \operatorname{Somesub}\left(z, y,\left\ulcorner v_{i}\right\urcorner,\left\ulcorner v_{j}\right\urcorner\right)} \rightarrow \operatorname{Sat}_{n}\left(v_{i}{ }^{\ulcorner }={ }^{\urcorner} v_{j} v^{\ulcorner } \rightarrow(\urcorner y^{\ulcorner } \rightarrow\right\urcorner z^{\ulcorner }\right)\right\urcorner, w\right),
\end{aligned}
$$

where Somesub $\left(z, y,\left\ulcorner v_{i}\right\urcorner,\left\ulcorner v_{j}\right\urcorner\right)$ is the formalization of "the formula with Gödel number z is the result of substituting the term v_{j} for some of the occurrences of v_{i} in the formula with Gödel number y ".

Proof. For the propositional axiom schemes (PW1), (PW2) and (PW3), the results follow almost immediately from Lemma 3.3.8. For (PW4), we need proofs in I $\Delta_{0}+\Omega_{1}$ of length of the order of n^{2} of the following "call by name $=$ call by value" lemma:

$$
\begin{gathered}
\text { Evalseq }\left(\left\ulcorner\forall v_{i}\right\urcorner y \rightarrow \operatorname{Sub}\left(y,\left\ulcorner{ }^{\ulcorner } v_{i}\right\urcorner, t\right), w\right) \wedge \operatorname{SubOK}\left(y,\left\ulcorner v_{i}\right\urcorner, t\right) \\
\left.\rightarrow \operatorname{Sat}_{n}\left(\operatorname{Sub}\left(y,{ }^{\ulcorner } v_{i}\right\urcorner, t\right), w\right) \leftrightarrow \operatorname{Sat}_{n}(y, s(i, \operatorname{Val}(t, w), w)) .
\end{gathered}
$$

This can be proved by induction on n, in a way similar to the proof of Lemma 3.3.8. The rest of (PW4) then follows by Lemma 3.3.8 itself.

For (PW5), we need proofs in I $\Delta_{0}+\Omega_{1}$ of length of the order of n^{2} of the following:

$$
\begin{aligned}
& \text { Evalseq } \left.\left.\left.\left.\left(\left\ulcorner\forall v_{i}(\urcorner y\ulcorner \urcorner\right\urcorner z^{\ulcorner }\right) \rightarrow(\urcorner y^{\ulcorner } \rightarrow \forall v_{i}\right\urcorner z^{\ulcorner }\right)\right\urcorner, w\right) \\
& \wedge{ }^{\prime} v_{i} \text { does not appear free in the formula with Gödel number } y \text { " } \wedge w={ }_{i} w^{\prime} \\
& \rightarrow\left[\operatorname{Sat}_{n}(y, w) \leftrightarrow \operatorname{Sat}_{n}\left(y, w^{\prime}\right)\right] .
\end{aligned}
$$

This can also be proved by induction on n; again, the rest of (PW5) follows by Lemma 3.3.8.

The first equality axiom of (PW6) is proved immediately by Lemma 3.3.8. The second one has a proof similar to that of (PW4). QED

Lemma 3.3.14 I $\Delta_{0}+\Omega_{1}$ proves by a proof of length of the order of n^{2} that Sat ${ }_{n}$ preserves the basic non-logical axioms for formulas of length $\leq n$, e.g.

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \text { Evalseq }_{n}(\ulcorner 0 \leq 0 \wedge \neg S 0 \leq 0\urcorner, w) \rightarrow \operatorname{Sat}_{n}(\ulcorner 0 \leq 0 \wedge \neg S 0 \leq 0\urcorner, w) .
$$

Similarly for the other five basic axioms relating the symbols $0, S,+, \cdot$ and \leq of the language.

Proof. Immediately by Lemma 3.3.8 and Lemma 3.3.4. QED

Lemma 3.3.15 I $\Delta_{0}+\Omega_{1}$ proves by a proof of length of the order of n^{2} that Sat $t_{n, \Delta}$ agrees with Sat ${ }_{n}$ on Δ_{0}-formulas of length $\leq n$, i.e.

$$
\text { Evalseq }_{n, \Delta}(x, w) \rightarrow\left[\operatorname{Sat}_{n, \Delta}(x, w) \leftrightarrow \operatorname{Sat}_{n}(x, w)\right] .
$$

Proof. By induction on n as in the proof of Lemma 3.3.10. Here, we take

$$
\Phi_{n}:=\forall x \forall w\left(\text { Evalseq }_{n, \Delta}(x, w) \rightarrow\left(\operatorname{Sat}_{n, \Delta}(x, w) \leftrightarrow \operatorname{Sat}_{n}(x, w)\right)\right) .
$$

As in Lemma 3.3.10, we use the fact that if $x=y^{\ulcorner } \rightarrow^{\urcorner} z$ and $F m a_{n+1, \Delta}(x)$, then $F m l_{n, \Delta}(y)$ and $F m l_{n, \Delta}(z)$, etc. QED

Lemma 3.3.16 $\mathrm{I} \Delta_{0}+\Omega_{1}$ proves by a proof of length of the order of n^{2} that Sat ${ }_{n}$ preserves the Δ_{0}-induction axioms of length $\leq n$, i.e.

$$
\begin{aligned}
& \left.\left.\left.\left.\left.\operatorname{Fmla}_{n, \Delta}(y) \wedge \text { Evalseq}_{n}\left(\operatorname{Sub}\left(y,\left\ulcorner v_{1}\right\urcorner, 0\right)^{\ulcorner } \wedge \forall v_{1}(\urcorner\right\urcorner^{\ulcorner } \rightarrow\right\urcorner\right\urcorner \operatorname{Sub}\left(y,\left\ulcorner v_{1}\right\urcorner, S v_{1}\right)^{\ulcorner }\right) \rightarrow \forall v_{1}\right\urcorner y, w\right) \\
& \left.\left.\left.\left.\rightarrow \operatorname{Sat}_{n}\left(\operatorname{Sub}\left(y,{ }^{\ulcorner } v_{1}\right\urcorner, 0\right)^{\ulcorner } \wedge \forall v_{1}(\urcorner y \rightarrow{ }^{\ulcorner } \rightarrow\right\urcorner \operatorname{Sub}\left(y,\left\ulcorner v_{1}\right\urcorner, S v_{1}\right)^{\ulcorner }\right) \rightarrow \forall v_{1}\right\urcorner y, w\right) .
\end{aligned}
$$

Proof. We work in I $\Delta_{0}+\Omega_{1}$ and assume

$$
\left.\left.\operatorname{Fmla}_{n, \Delta}(y) \wedge \operatorname{Evalseq}_{n}\left(S u b\left(y,\left\ulcorner v_{1}\right\urcorner, 0\right)\left\ulcorner\wedge \forall v_{1}(\urcorner y \rightarrow\right\urcorner \operatorname{Sub}\left(y,\left\ulcorner v_{1}\right\urcorner, S v_{1}\right)^{\ulcorner }\right) \rightarrow \forall v_{1}\right\urcorner y, w\right) .
$$

Because $S a t_{n}$ is a partial satisfaction predicate for formulas of length $\leq n$, we can, by a proof of length of the order of n^{2}, prove that the formula

$$
\left.\left.\left.\operatorname{Sat}_{n}\left(\operatorname{Sub}\left(y,\left\ulcorner v_{1}\right\urcorner, 0\right)^{\ulcorner } \wedge \forall v_{1}(\urcorner y \rightarrow{ }^{\ulcorner } \operatorname{Sub}\left(y,{ }^{\ulcorner } v_{1}\right\urcorner, S v_{1}\right)^{\ulcorner }\right) \rightarrow \forall v_{1}\right\urcorner y, w\right)
$$

is equivalent to the following formula:

$$
\begin{aligned}
& \operatorname{Sat}_{n}\left(\operatorname{Sub}\left(y,\left\ulcorner v_{1}\right\urcorner, 0\right), w\right) \wedge \forall w^{\prime}\left(w^{\prime}={ }_{1} w \rightarrow\left(\operatorname{Sat}_{n}\left(y, w^{\prime}\right) \rightarrow \operatorname{Sat}_{n}\left(\operatorname{Sub}\left(y,\left\ulcorner v_{1}\right\urcorner, S v_{1}\right), w^{\prime}\right)\right)\right) \\
& \rightarrow \forall w^{\prime}\left(w^{\prime}={ }_{1} w \rightarrow \operatorname{Sat}_{n}\left(y, w^{\prime}\right)\right) .
\end{aligned}
$$

This formula in turn is equivalent to:

$$
\begin{aligned}
& \operatorname{Sat}_{n}\left(\operatorname{Sub}\left(y,\left\ulcorner v_{1}\right\urcorner, 0\right), w\right) \wedge \forall x\left(\operatorname{Sat}_{n}(y, s(1, x, w)) \rightarrow \operatorname{Sat}_{n}\left(\operatorname{Sub}\left(y,\left\ulcorner v_{1}\right\urcorner, S v_{1}\right), s(1, x, w)\right)\right) \\
& \quad \rightarrow \forall x \operatorname{Sat}_{n}(y, s(1, x, w)),
\end{aligned}
$$

where $s(1, x, w)$ is as defined in Definition 3.3.5. This last formula is then, by a proof of length of the order of n^{2} of a "call by name = call by value" lemma analogous to the one proved in Lemma 3.3.13, equivalent to the following formula:

$$
\begin{aligned}
& \operatorname{Sat}_{n}(y, s(1,0, w)) \wedge \forall x\left(\operatorname{Sat}_{n}(y, s(1, x, w)) \rightarrow \operatorname{Sat}_{n}(y, s(1, S x, w))\right) \\
& \rightarrow \forall x \operatorname{Sat}_{n}(y, s(1, x, w))
\end{aligned}
$$

This looks almost like an instance of induction. However, because $\operatorname{Sat} t_{n}$ is not Δ_{0},we replace it by its $\Delta_{0}\left(\operatorname{Val}, \#,| |,\left\lfloor\frac{1}{2} x\right\rfloor\right)$-equivalent $S a t_{n, \Delta}$, as is allowed by Lemma 3.3.15 and the assumption $\operatorname{Fmla}_{n, \Delta}(y)$, and we obtain the equivalent formula

$$
\begin{aligned}
& \operatorname{Sat}_{n, \Delta}(y, s(1,0, w)) \wedge \forall x\left(\operatorname{Sat}_{n, \Delta}(y, s(1, x, w)) \rightarrow \operatorname{Sat}_{n, \Delta}(y, s(1, S x, w))\right) \\
& \rightarrow \forall x \operatorname{Sat}_{n, \Delta}(y, s(1, x, w)) .
\end{aligned}
$$

As a true instance of $\Delta_{0}\left(\right.$ Val, \#, $\left.| |,\left\lfloor\frac{1}{2} x\right\rfloor\right)$-induction, the formula above is at last provable from the assumptions. QED

Now that we have the partial truth predicates in hand, we can proceed with the proof proper of the main theorem of this chapter. We suppose that the reader is familiar with I $\Delta_{0}+\Omega_{1}$-cuts and I $\Delta_{0}+\Omega_{1}$-initial segments, and also with Solovay's method of shortening cuts (see definition 2.6.1, definition 2.6.2 and lemma 2.6.6).

We have the following:
Lemma 3.3.17 If K is an $\mathrm{I} \Delta_{0}+\Omega_{1}$-initial segment, then

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall x \operatorname{Prov}(\ulcorner K(\bar{x})\urcorner)
$$

where \bar{x} stands for the "efficient numeral" based on the binary expansion of x.

Proof. See lemma 2.6.8. It is not difficult to see that the proofs of $K(\bar{x})$ are of length of the order $|x|^{2}$.

However, in the formalized context in which we will use the result, the length of the formula K and the length of the proof $p_{1}(K)$ of $\forall y(K(y) \rightarrow K(S y))$ and the proof $p_{2}(K)$ of $\forall y(K(y) \rightarrow K(S S 0 \cdot y))$ also play a part in the computation of the length of the total proof, thereby making the length of the total proof of the order $|x|^{2} \cdot|K|+\left|p_{1}(K)\right|+\left|p_{2}(K)\right|$.

In fact, if we analyze the proof we find that

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall J \forall x(\square(J \text { "is an initial segment" }) \rightarrow \square(J(\bar{x}))) .
$$

QED

Definition 3.3.18 We formally define the following:

$$
\begin{aligned}
\operatorname{LPrf} & (u,\ulcorner\chi\urcorner):= \\
& \text { " } u \text { codes a proof of } \chi \text { in } \mathrm{I} \Delta_{0}+\Omega_{1} \text { involving only } \\
& \text { formulas of length } \leq v \text { ". }
\end{aligned}
$$

Lemma 3.3.19 The following is provable in $\mathrm{I} \Delta_{0}+\Omega_{1}$:

$$
\forall x \operatorname{Prov}\left(\left\ulcorner\forall y \leq \bar{x}\left(\operatorname{Prf}\left(y, \overline{{ }^{\digamma} \varphi^{\urcorner}}\right) \leftrightarrow \operatorname{LPrf} f_{|x|}\left(y, \overline{\left\ulcorner\varphi^{\urcorner}\right.}\right)\right)\right\urcorner\right)
$$

Proof. Formalize the following observation: if a formula v occurs in a proof y where $y \leq x$, then $\operatorname{Len}(v) \leq|v| \leq|y| \leq|x|$. QED

Theorem 3.3.20 (Small reflection) For all sentences φ the following holds:

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall x \operatorname{Prov}\left(\left\ulcorner\forall y \leq \bar{x}\left(\operatorname{Prf}\left(y,\left\ulcorner^{\ulcorner } \varphi^{\urcorner}\right) \rightarrow \varphi\right)^{\urcorner}\right)\right.\right.
$$

Proof. By Lemma 3.3.19, it suffices to prove

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall x \operatorname{Prov}\left(\left\ulcorner\forall y \leq \bar{x}\left(\operatorname{LPr} f_{|x|}\left(y, \overline{\varphi^{\prime}}\right) \rightarrow \varphi\right)^{\urcorner}\right)\right.
$$

We reason inside $\mathrm{I} \Delta_{0}+\Omega_{1}$, and we take an x which we shall use to make a cut. The idea behind the proof is to find a Gödel number K_{x} standing for a formalized "Provinitial segment" such that we have

$$
\operatorname{Prov}\left(K_{x}(\bar{x})^{\ulcorner } \rightarrow \forall y \leq \bar{x}\left(\operatorname{LPrf} f_{|x|}\left(y, \overline{\ulcorner } \varphi^{\urcorner}\right) \rightarrow \varphi\right)^{\urcorner}\right) .
$$

(By abuse of notation we write $K_{x}(\bar{x})$ for the Gödel number that results by the appropriate application of the substitution function to K_{x}). In the construction of the Prov-initial segment K_{x}, we will need the formalized versions of the lemmas which we proved above about the existence and the properties of partial satisfaction predicates for formulas of length smaller than some standard numeral n. In our formalized context, $|x|$ plays the rôle of "standard numeral", as will become clear when we define K_{x}. Again by abuse of notation, we let $\operatorname{Sat}_{|x|}(v, w)$ stand for a Gödel number instead of a formula; we will use the appropriate formalizations of lemmas we proved about the formulas $\operatorname{Sat}_{n}(v, w)$ to derive formalized facts about the Gödel number $\operatorname{Sat}_{|x|}(v, w)$.

Keeping these cautionary remarks in mind, we start the proof by defining the Gödel number J_{x} of a formalized "Prov-cut" (later to be shortened to the Prov-initial segment K_{x} that we need) as follows:

$$
J_{x}(s):=\left\ulcorner\forall y, v \leq s\left(\operatorname{LPrf}_{|x|}(y, v) \rightarrow \forall w\left(\operatorname{Evalseq}(v, w) \rightarrow{ }^{`} \operatorname{Sat}_{|x|}(v, w)^{\ulcorner }\right)\right)\right\urcorner .
$$

By the formalized version of Lemma 3.3.7, we may assume that this Gödel number exists, because the length of $\operatorname{Sat}_{|x|}(v, w)$ is linear in $|x|$. (Note that we are reasoning inside I $\Delta_{0}+\Omega_{1}$ all the time!) It is not difficult to prove directly from the definition of J_{x} (and from the fact that J_{x} is small enough) that the following holds:

$$
\left.\left.\operatorname{Prov}\left(J_{x}(\overline{0})\left\ulcorner\wedge \forall y \forall z(\urcorner J_{x}(z)^{\ulcorner } \wedge y \leq z \rightarrow\right\urcorner J_{x}(y)^{\ulcorner }\right)\right\urcorner\right) .
$$

To prove that J_{x} is closed under successor, we remark that

$$
\operatorname{Prov}\left(\left\ulcorner\operatorname{LPrf} f_{|x|}(y, v) \rightarrow \operatorname{Len}(v) \leq|x|\right\urcorner\right) .
$$

Therefore, we can formalize Lemmas 3.3.12, 3.3.13, 3.3.14 and 3.3.16 to conclude by a proof of length of the order $|x|^{2}$ that $\operatorname{Sat}_{|x|}(v, w)$ is preserved by all logical and non-logical axioms and rules for formulas of length $\leq|x|$, and thus indeed,

$$
\left.\operatorname{Prov}\left(\left\ulcorner\forall y(\urcorner J_{\boldsymbol{x}}(y)\ulcorner\rightarrow\urcorner J_{\boldsymbol{x}}(S y)^{\ulcorner }\right)\right\urcorner\right),
$$

proving J_{x} to be a Prov-cut.
By a formalization of the proof of Lemma 2.6.6, we can shorten the Prou-cut J_{x} to a Prov-initial segment K_{x} of length linear in $|x|$. The proof that K_{x} is a Prov-initial segment is of length polynomial in $|x|$.

Carefully analyzing the proof of Lemma 3.3.17 (see the remark at the end of that proof), we find, by proofs of length polynomial in $|x|$,

$$
\operatorname{Prov}\left(K_{x}(\bar{x})\right) \wedge \operatorname{Prov}\left(K_{x}\left(\overline{\ulcorner } \varphi^{\bar{\imath}}\right)\right)
$$

And thus, because we have $\left.\operatorname{Prov}\left(\left\ulcorner\forall y(\urcorner K_{x}(y)\ulcorner\rightarrow\urcorner J_{x}(y)^{\ulcorner }\right)\right\urcorner\right)$, we conclude that, by definition of J_{x}, we have the following:

$$
\left.\operatorname{Prov}\left(\left\ulcorner\forall y \leq \bar{x}\left(\operatorname{LPrf} f_{|x|}\left(y, \overline{\ulcorner } \varphi^{\bar{\imath}}\right) \rightarrow \forall w\left(\text { Evalseq }\left(\overline{\ulcorner } \varphi^{\urcorner}, w\right) \rightarrow\right\urcorner \operatorname{Sat}_{|x|}\left(\overline{\ulcorner } \varphi^{\urcorner}, w\right)^{\ulcorner }\right)\right)\right\urcorner\right) .
$$

Because we have $\operatorname{Prov}\left(\left\ulcorner\forall y \leq \bar{x}\left(\left.\operatorname{LPrf}\right|_{|x|}\left(y, \overline{\ulcorner } \bar{\varphi}^{\top}\right) \rightarrow F m l a_{|x|}\left(\overline{\ulcorner } \varphi^{\urcorner}\right)\right)\right\urcorner\right)$, we can apply the formalized version of Lemma 3.3.11, taking note that φ is a sentence. Therefore,

$$
\operatorname{Prov}\left(\left\ulcorner\forall y \leq \bar{x}\left(\operatorname{LPrf} f_{|x|}\left(y, \overline{\ulcorner } \varphi^{\urcorner}\right) \rightarrow \forall w\left(\operatorname{Evalseq}\left(\left\ulcorner\overline{\varphi^{\urcorner}}, w\right) \rightarrow \varphi\right)\right)\right\urcorner\right) .\right.
$$

This in turn is equivalent to the desired

$$
\operatorname{Prov}\left(\left\ulcorner\forall y \leq \bar{x}\left(\operatorname{LPrf} f_{|x|}\left(y, \overline{\ulcorner } \overline{\varphi^{\urcorner}}\right) \rightarrow \varphi\right)\right\urcorner\right) .
$$

Stepping out of $\mathrm{I} \Delta_{0}+\Omega_{1}$ again, we conclude that indeed

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall x \operatorname{Prov}\left(\left\ulcorner\forall y \leq \bar{x}\left(\operatorname{LPr} f_{|x|}\left(y, \overline{\Gamma^{\top}}\right) \rightarrow \varphi\right)^{\urcorner}\right) .\right.
$$

QED

Remark 3.3.21 Looking carefully at the proof of Theorem 3.3.20, we notice that it is also possible to derive the following result, which is a little bit stronger:

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall v\left(\operatorname{Sent}(v) \rightarrow \forall x \operatorname{Prov}\left(\left\ulcorner\forall y \leq \bar{x}\left(\operatorname{LPrf} f_{|x|}\left(y,{ }^{\ulcorner } v\right\urcorner\right) \rightarrow\right\urcorner v\ulcorner)\right\urcorner\right)
$$

Theorem 3.3.20 and its proof can also be adapted for the case that φ is a formula instead of a sentence (or in the stronger result mentioned above: Fmla(v) instead of Sent(v)).

Corollary 3.3.22 (Švejdar's principle is provable in $\mathrm{I} \Delta_{0}+\Omega_{1}$)
For all sentences φ, ψ, we have the following:

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \square \varphi \rightarrow \square(\square \psi \leq \square \varphi \rightarrow \psi),
$$

i.e.

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \exists x \operatorname{Prf}\left(x,\left\ulcorner\varphi^{\urcorner}\right) \rightarrow \operatorname{Prov}\left(\left\ulcorner\exists y \left(\operatorname{Prf}\left(y,\left\ulcorner\overline{{ }^{\prime} \overline{\urcorner}}\right) \wedge \forall z \leq y \neg \operatorname{Prf}\left(z,\left\ulcorner^{\ulcorner } \varphi^{\top}\right)\right) \rightarrow \psi^{\urcorner}\right) .\right.\right.\right.\right.
$$

Proof. We work inside I $\Delta_{0}+\Omega_{1}$ and suppose $\operatorname{Prf}\left(x,\left\ulcorner\varphi \varphi^{\urcorner}\right)\right.$. By provable Σ_{1}^{b}-completeness, this implies

$$
\operatorname{Prov}\left(\left\ulcorner\operatorname{Prf}\left(\bar{x}, \overline{\ulcorner }, \overline{\varphi^{\urcorner}}\right)^{\urcorner}\right) .\right.
$$

Hence, we have

$$
\operatorname{Prov}\left(\ulcorner\exists y(\operatorname{Prf}(y, \overline{\ulcorner } \overline{\psi\urcorner}) \wedge \forall z \leq y \neg \operatorname{Prf}(z, \overline{\ulcorner } \bar{\varphi}\urcorner)) \rightarrow \exists y \leq x \operatorname{Prf}\left(y, \overline{\ulcorner } \psi^{\top}\right)^{\urcorner}\right) .
$$

Theorem 3.3.20 gives

$$
\operatorname{Prov}(\ulcorner\exists y \leq \bar{x} \operatorname{Prf}(y,\ulcorner\bar{\psi}) \rightarrow \psi\urcorner) ;
$$

therefore, we have the following:

$$
\operatorname{Prov}\left(\left\ulcorner\exists y \left(\operatorname{Prf}\left(y,\left\ulcorner\overline{\psi^{\urcorner}}\right) \wedge \forall z \leq y \neg \operatorname{Prf}\left(z,\left\ulcorner\overline{\varphi^{\top}}\right)\right) \rightarrow \psi^{\urcorner}\right) .\right.\right.\right.
$$

Jumping outside I $\Delta_{0}+\Omega_{1}$ again, we conclude that

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \exists x \operatorname{Prf}\left(x,\left\ulcorner\varphi^{\urcorner}\right) \rightarrow \operatorname{Prov}\left(\left\ulcorner\exists y \left(\operatorname{Prf}\left(y,\left\ulcorner\bar{\psi}^{\overline{\urcorner}}\right) \wedge \forall z \leq y \neg \operatorname{Prf}\left(z,\left\ulcorner\varphi^{\overline{ }}\right)\right) \rightarrow \psi^{\urcorner}\right)\right.\right.\right.\right.
$$

QED

Remark 3.3.23 Analogously to remark 3.3.21, we may strengthen Švejdar's principle to the following:

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Sent}(u) \wedge \operatorname{Sent}(v) \wedge \operatorname{Prov}(u) \rightarrow \operatorname{Prov}\left(\left\ulcorner\operatorname{Prov}(v) \leq \operatorname{Prov}(u) \rightarrow{ }^{\urcorner} v\right) .\right.
$$

Švejdar introduced a modal system in order to study generalized Rosser sentences, and he derived the formalized version of Rosser's Theorem in it [Šv 83]. Because of Corollary 3.3 .22 , Švejdar's system is sound with respect to I $\Delta_{0}+\Omega_{1}$, and Rosser's Theorem holds in $I \Delta_{0}+\Omega_{1}$.

Below, we use an argument similar to Švejdar's to derive a more general theorem. For the case of $P A$, this theorem has been proved by Montagna and Bernardi (see [JM 87]).

Theorem 3.3.24 (Montagna-Bernardi in $\mathrm{I} \Delta_{0}+\Omega_{1}$) For every function h which is Σ_{1}^{b}-definable in $\mathrm{I} \Delta_{0}+\Omega_{1}$ and maps sentences to sentences, there is a sentence C such that

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Prov}(\ulcorner C\urcorner) \leftrightarrow \operatorname{Prov}(h(\ulcorner C\urcorner)) .
$$

Proof. Define C by diagonalization such that

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash C \leftrightarrow \operatorname{Prov}\left(h\left(\left\ulcorner C^{\urcorner}\right)\right) \leq \operatorname{Prov}\left(\left\ulcorner C^{\urcorner}\right) .\right.\right.
$$

Reason inside $\mathrm{I} \Delta_{0}+\Omega_{1}$ and assume first that $\left.\operatorname{Prov}\left({ }^{\ulcorner } C\right\urcorner\right)$. Then by definition,

$$
\operatorname{Prov}\left({ }^{\ulcorner } \operatorname{Prov}\left(h\left(\left\ulcorner C^{\urcorner}\right)\right) \leq \operatorname{Prov}\left(\left\ulcorner C^{\urcorner}\right)\right\urcorner\right) .\right.
$$

Meanwhile Corollary 3.3 .22 gives

$$
\operatorname{Prov}\left(\ulcorner C ^ { \urcorner }) \rightarrow \operatorname { P r o v } \left(\left\ulcorner\operatorname{Prov}\left(h\left(\left\ulcorner C^{\urcorner}\right)\right) \leq \operatorname{Prov}(\ulcorner C\urcorner) \rightarrow h(\ulcorner C\urcorner)\right\urcorner\right) .\right.\right.
$$

Combined, these two yield $\left.\operatorname{Prov}\left({ }^{\ulcorner } C^{\urcorner}\right) \rightarrow \operatorname{Prov}\left(h\left({ }^{\ulcorner } C\right\urcorner\right)\right)$.
For the other side, we assume that $\operatorname{Prov}(h(\ulcorner C\urcorner))$. This implies $\operatorname{Prov}(\ulcorner\operatorname{Prov}(h(\ulcorner C\urcorner))\urcorner)$, and thus

$$
\operatorname{Prov}\left(\left\ulcorner\operatorname { P r o v } \left(h\left(\left\ulcorner C^{\urcorner}\right)\right) \leq \operatorname{Prov}\left(\left\ulcorner C^{\urcorner}\right) \vee \operatorname{Prov}(\ulcorner C\urcorner) \leq \operatorname{Prov}\left(h\left(\left\ulcorner C^{\urcorner}\right)\right)\right\urcorner\right) .\right.\right.\right.
$$

By definition of C, we derive

$$
\operatorname{Prov}(\ulcorner C \vee \operatorname{Prov}(\ulcorner C\urcorner) \leq \operatorname{Prov}(h(\ulcorner C\urcorner))\urcorner) .
$$

Now we apply Corollary 3.3 .22 to conclude that, because

$$
\operatorname{Prov}(h(\ulcorner C\urcorner)) \rightarrow \operatorname{Prov}(\ulcorner\operatorname{Prov}(\ulcorner C\urcorner) \leq \operatorname{Prov}(h(\ulcorner C\urcorner)) \rightarrow C\urcorner),
$$

indeed $\operatorname{Prov}(h(\ulcorner C\urcorner)) \rightarrow \operatorname{Prov}(\ulcorner C\urcorner)$. QED
Note that the formalized version of Rosser's Theorem follows immediately from this construction. If we take R such that

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash R \leftrightarrow \operatorname{Prov}(\ulcorner\neg R\urcorner) \leq \operatorname{Prov}(\ulcorner R\urcorner),
$$

we derive $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Prov}(\ulcorner R\urcorner) \leftrightarrow \operatorname{Prov}(\ulcorner\neg R\urcorner)$, and thus $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Prov}(\ulcorner R\urcorner) \rightarrow$ $\operatorname{Prov}\left(\left\ulcorner\perp^{\urcorner}\right)\right.$and $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{Prov}(\ulcorner\neg R\urcorner) \rightarrow \operatorname{Prov}\left(\left\ulcorner\perp^{\urcorner}\right)\right.$.

3.4 Injection of small (but not too small) inconsistency proofs

Using the small reflection principle, we can strengthen Hájek's, Solovay's and Krajíček and Pudlák's results on the injection of inconsistencies into models of $\mathrm{I} \Delta_{0}+E X P$ [Há 83 , So 89 , KP 89]. Instead of only injecting an inconsistency proof, we also take care to respect a fair number of consistency statements. Moreover, we do not need full exponentiation in our original model.

We cannot immediately apply the lemmas of [KP 89], but the essential steps in our proof are the same as in their article. We first apply Pudlák's version of Gödel's Second Incompleteness Theorem (see [Pu 86 , Theorem 3.6]) to show that we can indeed inject an inconsistency proof; then we use the Omitting Types Theorem to prevent extra elements from creeping into the lower part of the new model that contains our injected inconsistency proof.

Theorem 3.4.1 Let $\mathbf{T} \supseteq \mathrm{I} \boldsymbol{\Delta}_{\mathbf{0}}+\boldsymbol{\Omega}_{\mathbf{1}}$ be a Σ_{1}^{b}-axiomatized theory for which the small reflection principle (see Theorem 3.3.20) is provable in $\mathrm{I} \Delta_{0}+\Omega_{1}$. Let $\operatorname{Con}_{T}(x)$ be a formalization of the consistency of \mathbf{T} up to proofs of length x. Let \mathcal{M} be a nonstandard countable model of $\mathrm{I} \Delta_{0}+\Omega_{1}$. Let a, c be nonstandard elements of \mathcal{M} such that the following conditions hold:

- $\exp \left(a^{c}\right) \in \mathcal{M}$,
- $\mathcal{M} \vDash \operatorname{Con}_{T}\left(a^{k}\right)$ for all $k<\omega$.

Then there exists a countable model \mathcal{K} of T such that $a \in \mathcal{K}$ and

1. $\mathcal{M}|a=\mathcal{K}| a$,
2. $\mathcal{M} \mid \exp \left(a^{k}\right) \subseteq \mathcal{K}$ for all $k<\omega$,
3. $\mathcal{K} \models \neg \operatorname{Con}_{T}\left(a^{c}\right)$,
4. $\mathcal{K} \vDash \operatorname{Con}_{T}\left(a^{k}\right)$ for all $k<\omega$,
5. $\mathcal{K} \models 2^{a^{c}} \downarrow$.

Proof. Define $\mathcal{N}:=\left\{x \in \mathcal{M} \mid x<\exp \left(a^{k}\right)\right.$ for some $\left.k<\omega\right\}$. Then $\exp \left(a^{c}\right) \in \mathcal{M} \backslash \mathcal{N}$, thus \mathcal{M} is a proper end-extension of \mathcal{N}. Therefore, by Theorem 1 of [WP 89], $\mathcal{N} \vDash \mathrm{B} \Sigma_{1}$. (Remember that $\mathrm{B} \Sigma_{1}$ is $\mathrm{I} \Delta_{0}+$ the scheme $\forall t(\forall x<t \exists y \varphi(x, y) \rightarrow \exists a \forall x<t \exists y<a \varphi(x, y)$) for $\varphi \in \Sigma_{1}^{0}$.) Also, it is easy to see that $\mathcal{N} \models \Omega_{1}$.

On the other hand, one of our assumptions is that $\mathcal{M} \vDash \operatorname{Con}_{T}\left(a^{k}\right)$ for all $k<$ ω. By Δ_{0}-overspill we conclude that there is a nonstandard $d<c$ in \mathcal{M} such that $\mathcal{M} \vDash \operatorname{Con}_{T}\left(a^{d}\right)$. Thus, by Theorem 3.6 of [Pu 86], there is a $k<\omega$ such that $\mathcal{M} \vDash$ $\operatorname{Con}_{T+-\operatorname{Con}_{T}\left(a^{d}\right)}\left(a^{\frac{d}{k}}\right)$, so certainly $\mathcal{M} \vDash \operatorname{Con}_{T+-\operatorname{Con}_{T}\left(a^{c}\right)}\left(a^{\frac{d}{k}}\right)$. Indeed, because $\frac{d}{k}$ is nonstandard, we even have $\mathcal{N} \vDash \operatorname{Con}(\mathrm{U})$, where $\mathrm{U}:=\mathbf{T}+\neg \operatorname{Con}_{T}\left(a^{c}\right)$.

At this point we need some definitions analogous to the ones in [KP 89]. Let $L(\mathcal{N})$ be the language of arithmetic expanded with domain constants for the elements of \mathcal{N}. We define a translation t from $L(\mathcal{N})$ to \mathcal{N} by $t\left(A\left(a_{1}, \ldots, a_{k}\right)\right):=\left\ulcorner A\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right\urcorner$, where \bar{a}_{i} is the efficient numeral of a_{i}. We need one more definition:

$$
\mathbf{U}^{*}:=\left\{A(\vec{a}) \in L(\mathcal{N}) \mid \mathcal{N} \vDash \operatorname{Prov}_{U}(t(A(\vec{a})))\right\} .
$$

It is easy to show that U^{*} is closed under the rules of predicate logic; that $\mathrm{U} \subseteq \mathrm{U}^{*}$; and that $\operatorname{Diag}(\mathcal{N}) \subseteq \mathrm{U}^{*}$. Also, because $\mathcal{N} \vDash \operatorname{Con}(\mathbf{U})$, we can conclude that U^{*} is consistent.

Moreover, by the small reflection principle for $\mathrm{I} \Delta_{0}+\Omega_{1}$, we have

$$
\mathcal{N} \models \forall x \operatorname{Prov}_{U}\left(\left\ulcorner\operatorname{Con}_{T}(|\bar{x}|)\right\urcorner\right),
$$

thus for all $k<\omega, \operatorname{Con}_{T}\left(a^{k}\right) \in \mathrm{U}^{*}$.
Finally, using Solovay's cuts, we can show that $\left.\mathcal{N} \vDash \forall x \operatorname{Prov}_{U}\left({ }^{(} 2^{x} \downarrow\right\urcorner\right)$, thus $2^{a^{c}} \downarrow \in \mathbf{U}^{*}$.
We construct the required model \mathcal{K} by the Omitting Types Theorem in order to take care that \mathcal{K} will contain no new elements below a. Let τ be the type in $L(\mathcal{N})$ defined by

$$
\tau(x):=\{x \leq a\} \cup\{x \neq b|b \in \mathcal{M}| a\} .
$$

Claim 1: \mathbf{U}^{*} locally omits τ.

Proof. Take any $A(x)$, and suppose that for all $b \leq a$ in \mathcal{N} we have $\mathbf{U}^{*} \vdash \neg A(b)$, and that $\mathrm{U}^{*} \vdash A(x) \rightarrow x \leq a$. We want to show that $\mathrm{U}^{*} \vdash \neg \exists x A(x)$. By definition of U^{*}, it is sufficient to prove the following:

$$
\mathcal{N} \models \forall b \leq a \operatorname{Prov}_{U}\left(\ulcorner \neg A (\overline { b }) ^ { \urcorner }) \rightarrow \operatorname { P r o v } _ { U } \left(\left\ulcorner\forall x \leq a \neg A(\bar{x})^{\urcorner}\right) .\right.\right.
$$

So, suppose $\mathcal{N} \models \forall b \leq a \operatorname{Prov}_{U}\left({ }^{\ulcorner } \neg A(\bar{b})^{\urcorner}\right)$. By B Σ_{1}, there is a $q \in \mathcal{N}$ such that

$$
\mathcal{N} \vDash \forall b \leq a \exists p<q \operatorname{Pr} f_{U}(p,\ulcorner\neg A(\bar{b})\urcorner) .
$$

Now we can use $\Delta_{0}\left(\omega_{1}\right)$-induction to show that we can combine these proofs for all $b \leq a$ into one proof p of $\forall x \leq a \neg A(x)$, where $|p| \leq a \cdot(|q|+k \cdot|a|) \leq a^{m}$ for some standard k, n, m, thus $p \in \mathcal{N}$. We conclude that indeed $\mathcal{N} \vDash \operatorname{Prov}_{U}(\ulcorner\forall x \leq a \neg A(x)\urcorner)$. QED

At last we can construct a model \mathcal{K} of U^{*} omitting τ. Using the facts that we proved about U^{*}, we conclude that \mathcal{K} satisfies all the properties that we want.

QED
In Theorem 3.4.1, we require that $\mathbf{T} \supseteq \mathrm{I} \Delta_{0}+\Omega_{1}$ is a Σ_{1}^{b}-axiomatized theory for which the small reflection principle is provable in $\mathrm{I} \Delta_{0}+\Omega_{1}$. Examples of such theories are finite extensions of $\mathrm{I} \Delta_{0}+\Omega_{1}$ itself, $\mathrm{I} \Delta_{0}+E X P$ and $P A$. We hope to give an exact characterization of theories amenable to methods analogous to those of section 3.3, [Pu 86] and $[\mathrm{Pu} 87]$ in a later paper.

Theorem 3.4.1 is only a slight extension of [KP 89, Theorem 2.1]. We use the small reflection principle only to show that the length of injected inconsistency proofs can be bounded from below as well as from above.

A variation on the proof of theorem 3.4.1 gives the following theorem. Its proof contains a more surprising use of the small reflection theorem than the proof of theorem 3.4.1: In theorem 3.4.3 we use it even in our application of the Omitting Types Theorem.

Recently, some papers (see [WP 89, Ad 90, Ad 93]) appeared that partially answer the end extension problem, which was formulated by Kirby and Paris in 1977 as follows: does every model of $\mathrm{I} \Delta_{0}+\mathrm{B} \Sigma_{1}$ have a proper end extension to a model of $\mathrm{I} \Delta_{0}$? The theorem below gives a sufficient condition for a countable model of $\mathrm{I} \Delta_{0}+\mathrm{B} \Sigma_{1}$ to have a proper end extension to a model of $\mathrm{I} \Delta_{0}$: if the model additionally satisfies $\Omega_{1}+\operatorname{Con}\left(\mathrm{I} \Delta_{0}\right)$ and provable completeness for Π_{2}^{b}-formulas, then it does have such an end extension.

First we need a definition.
Definition 3.4.2 $\mathrm{C}_{2}^{b}(\mathrm{U})$ is the scheme

$$
A\left(a_{1}, \ldots, a_{k}\right) \rightarrow \operatorname{Prov}_{U}\left(\left\ulcorner A\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)^{\urcorner}\right)\right.
$$

for $A\left(a_{1}, \ldots, a_{k}\right) \in \Pi_{2}^{b}$.
Theorem 3.4.3 Let $\mathbf{U} \supseteq \mathbf{Q}$ be a Σ_{1}^{b}-axiomatized theory, and suppose \mathcal{N} is a countable model of $\mathrm{B} \Sigma_{1}+\Omega_{1}+\Pi_{2}^{b}(\mathrm{U})+\operatorname{Con}(\mathrm{U})$, then there exists a countable model \mathcal{K} of U such that \mathcal{K} is an end-extension of \mathcal{N}.

Proof. Define \mathbf{U}^{*} from \mathbf{U}, \mathcal{N} exactly as in the proof of Theorem 3.4.1. Again, we construct the required model \mathcal{K} of U^{*} using the Omitting Types Theorem. This time, we define for all $a \in \mathcal{N}$ the type τ_{a} in $L(\mathcal{N})$ by:

$$
\tau_{a}(x):=\{x \leq a\} \cup\{x \neq b|b \in \mathcal{M}| a\}
$$

Claim 2: U* locally omits τ_{a} for all $a \in \mathcal{N}$.
Proof. Take any $a \in \mathcal{N}$ and any formula $A(x)$. As in the proof of Claim 1, it is sufficient to show the following:

$$
\mathcal{N} \models \forall b \leq a \operatorname{Prov}_{U}(\ulcorner\neg A(\bar{b})\urcorner) \rightarrow \operatorname{Prov}_{U}\left(\left\ulcorner\forall x \leq \bar{a} \neg A(\bar{x})^{\urcorner}\right) .\right.
$$

So, suppose

$$
\mathcal{N} \models \forall b \leq a \operatorname{Prov}_{U}\left(\left\ulcorner\neg A(\bar{b})^{\urcorner}\right) .\right.
$$

By $\mathrm{B} \Sigma_{1}$, there is a $q \in \mathcal{N}$ such that

$$
\mathcal{N} \models \forall b \leq a \exists p<q \operatorname{Prf_{U}}(p,\ulcorner\neg A(\bar{b})\urcorner) .
$$

Now by $\mathrm{C}_{2}^{b}(\mathrm{U})$, we derive

$$
\mathcal{N} \vDash \exists q \operatorname{Prov}_{U}\left(\left\ulcorner\forall b \leq \bar{a} \exists p<\bar{q} \operatorname{Prf} f_{U}(p,\ulcorner\neg A(\bar{b})\urcorner)\right\urcorner\right) .
$$

Therefore by the small reflection principle,

$$
\mathcal{N} \models \operatorname{Prov}_{U}(\ulcorner\forall b \leq \bar{a} \neg A(\bar{b})\urcorner) .
$$

QED
We can now construct a countable model \mathcal{K} of \mathbf{U}^{*} omitting all τ_{a} for $a \in \mathcal{N}$. As before, it is easy to see that $\mathbf{U} \subseteq \mathrm{U}^{*}$ so $\mathcal{K} \models \mathrm{U}$.

By the way, note that by the small reflection principle for $\mathrm{I} \Delta_{0}+\Omega_{1}$, or simply by the isomorphism, we have $\operatorname{Con}_{U}(|\bar{x}|) \in \mathrm{U}^{*}$ and thus $\mathcal{K} \models \operatorname{Con}_{U}(|\bar{x}|)$ for all $x \in \mathcal{N}$. QED

Chapter 4

Provable completeness for Σ_{1}-sentences implies something funny, even if it fails to smash the polynomial hierarchy

But what's so blessed-fair that fears no blot?
Thou mayst be false and yet I know it not.

Shakespeare, Sonnets, no. 92

4.1 Introduction

In chapter 3, we proved that, if $N P \neq$ co- $N P$, then \sum-completeness for witness comparison formulas is not provable in bounded arithmetic, i.e.

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \forall \forall b \forall c & (\exists a(\operatorname{Prf}(a, c) \wedge \forall z \leq a \neg \operatorname{Prf}(z, b)) \\
& \left.\rightarrow \operatorname{Prov}\left(\ulcorner\exists a(\operatorname{Prf}(a, \bar{c}) \wedge \forall z \leq a \neg \operatorname{Prf}(z, \bar{b})))^{\urcorner}\right)\right) .
\end{aligned}
$$

The above result does not give any information about Σ_{1}-sentences. If bounded arithmetic would prove completeness for Σ_{1}-sentences, then we could adapt Solovay's Completeness Theorem and prove that L is the provability logic of bounded arithmetic.

In this chapter we show that provable completeness for all Σ_{1}-sentences is unlikely. Unfortunately we have to work under an assumption (namely $P \neq N P \cap c o-N P$) in which complexity theorists have less faith than in the assumption $N P \neq c o-N P$ that we used in chapter 3.

4.2 If S_{2}^{1} proves completeness for all Σ_{1}-sentences, then $\mathbf{N P} \cap \mathbf{c o - N P}=\mathbf{P}$

Theorem 4.2.1 Let $k \geq 1$. If $\Delta_{k}^{p} \neq \Sigma_{k}^{p} \cap \Pi_{k}^{p}$, then there is a sentence σ of the form $\exists x \varphi(x)$, where φ is a Π_{k}^{b}-formula, such that

$$
S_{2}^{k} \nvdash \sigma \rightarrow \operatorname{Prov}_{S_{2}^{k}}(\ulcorner\sigma\urcorner)
$$

Proof. We prove the theorem for $k=1$. For $k>1$ the proofs are analogous.
Suppose that $P \neq N P \cap c o-N P$. Let the Σ_{1}^{b}-formula $A(x)$ represent a predicate in $N P \cap c o-N P$, but not in P. Thus there is a Σ_{1}^{b}-formula $B(x)$ that represents the complement of A. Now define $C(x, y):=(y=0 \wedge A(x)) \vee(y=1 \wedge B(x))$.

It is easy to see that $\omega \models \forall x \exists y \leq 1 C(x, y)$. Now let σ be the Σ_{1} sentence defined by $\sigma:=\exists x \forall y \leq 1 \neg C(x, y)$, and suppose that

$$
S_{2}^{1} \vdash \sigma \rightarrow \operatorname{Prov}(\ulcorner\sigma\urcorner),
$$

which is equivalent to

$$
S_{2}^{1} \vdash \forall x\left(\exists y \leq 1 C(x, y) \vee \exists y \operatorname{Prf}\left(y,\left\ulcorner\sigma^{\urcorner}\right)\right) .\right.
$$

Next, by Buss' main theorem, we find a polynomial time function f such that

$$
\omega \models \forall x(C(x, f(x)) \vee \operatorname{Prf}(f(x),\ulcorner\sigma\urcorner)) .
$$

But σ, being a false sentence, is not provable in S_{2}^{1}, so we have actually

$$
\omega \models \forall x C(x, f(x)) .
$$

This means that f is the characteristic function of A, hence A is in P, contrary to our assumption. QED

Chapter 5

On the provability logic of bounded arithmetic

С доказуемости мысом крайним -

(Марина Цветаева, Новогоднее, 1925)

Happy furthermost cape of provability-
(Marina Tsvetaeva, New Year's Poem, 1925, translation Joseph Brodsky)

Abstract

Let $\operatorname{PL} \Omega$ be the provability logic of $\mathrm{I} \Delta_{0}+\Omega_{1}$. We prove some containments of the form $L \subseteq \mathrm{PL} \Omega \subset T h(\mathcal{C})$ where L is the provability logic of $P A$ and \mathcal{C} is a suitable class of Kripke frames.

5.1 Introduction

In this chapter we develop techniques to build various sets of highly undecidable sentences in $\mathrm{I} \Delta_{0}+\Omega_{1}$. Our results stem from an attempt to prove that the modal logic of provability in I $\Delta_{0}+\Omega_{1}$, here called $\operatorname{PL} \Omega$, is the same as the modal logic L of provability in $P A$. It is already known that $L \subseteq \mathrm{PL} \Omega$. We prove here some strict containments of the form $\operatorname{PL} \Omega \subset T h(\mathcal{C})$ where \mathcal{C} is a class of Kripke frames.

Stated informally the problem is whether the provability predicates of $I \Delta_{0}+\Omega_{1}$ and $P A$ share the same modal properties. It turns out that while $\mathrm{I} \Delta_{0}+\Omega_{1}$ certainly satisfies all the properties needed to carry out the proof of Gödel's second incompleteness theorem (namely $L \subseteq \mathrm{PL} \Omega$), the question whether $L=\mathrm{PL} \Omega$ might depend on difficult issues of computational complexity. In fact if $\mathrm{PL} \Omega \neq L$, it would follow that $\mathrm{I} \Delta_{0}+\Omega_{1}$ does not prove its completeness with respect to Σ_{1}^{0}-formulas, and a fortiori I $\Delta_{0}+\Omega_{1}$ does not prove the Matijasevič-Robinson-Davis-Putnam theorem (every r.e. set is diophantine, see [Ma 70], [DPR 61]). On the other hand if I $\Delta_{0}+\Omega_{1}$ did prove its completeness with respect to Σ_{1}^{0}-formulas, it would follow not only that $L=\mathrm{P} L \Omega$, but also that $N P=$ $c o-N P$. The possibility remains that $L=\mathrm{PL} \Omega$ and that one could give a proof of this fact without making use of provable Σ_{1}^{0}-completeness in its full generality. Such a project is not without challenge due to the ubiquity of Σ_{1}^{0}-completeness in the whole area of provability logic.

We begin by giving the definitions of $\mathrm{PL} \Omega$. For the definitions of L and T-interpretation, we refer the reader to section 2.2.

Definition 5.1.1 Let $\mathrm{PL} \Omega$ be the provability logic of $\mathrm{I} \Delta_{0}+\Omega_{1}$, i.e. $\mathrm{PL} \Omega$ is the set of all those modal formulas A such that for all I $\Delta_{0}+\Omega_{1}$-interpretations ${ }^{*}, \mathrm{I} \Delta_{0}+\Omega_{1} \vdash A^{*}$.

It is easy to see that $\mathrm{PL} \Omega$ is deductively closed (with respect to modus ponens and necessitation), so we can write $\mathrm{PL} \Omega \vdash A$ for $A \in \mathrm{PL} \Omega$. Our results arise from an attempt to answer the following:

Question 5.1.2 Is $P L \Omega=L$? (Where we have identified L with the set of its theorems.)
The soundness side of the question, namely $L \subseteq P L \Omega$, has already been answered positively. This depends on the fact that any reasonable Σ_{1}^{b}-axiomatized theory which is at least as strong as Buss' theory S_{2}^{1} satisfies the derivability conditions needed to prove Gödel's incompleteness theorems (provided one uses efficient coding techniques and employs binary numerals). For the completeness side of the question, namely $\mathrm{PL} \Omega \subseteq L$, we will investigate whether we can adapt Solovay's proof that L is the provability logic of $P A$.

We assume that the reader is familiar with the Kripke semantics for L (see definition 2.2.2) and with the method of Solovay's proof as described in [So 76]. In particular we need the following:

Theorem 5.1.3 $L \vdash A$ iff A is forced at the root of every finite tree-like Kripke model. (It is easy to see that A will then be forced at every node of every finite tree-like Kripke model.)

Solovay's method is the following: if $L \nvdash A$, then the countermodel (K, \prec, \Vdash) provided by the above theorem is used to construct a $P A$-interpretation * for which $P A \nvdash A^{*}$.

The reason Solovay's proof is difficult to adapt to $\mathrm{I} \Delta_{0}+\Omega_{1}$ is that it is not known whether I $\Delta_{0}+\Omega_{1}$ satisfies provable Σ_{1}^{0}-completeness (see definition 5.2.1) which is used in an essential way in Solovay's proof.

5.2 Arithmetical preliminaries

Definition 5.2.1 Let Γ be a set of formulas. We say that a (Σ_{1}^{b}-axiomatized) theory T satisfies provable Γ-completeness, if for every formula $\sigma(\vec{x}) \in \Gamma, T \vdash \sigma\left(x_{1}, \ldots, x_{n}\right) \rightarrow$ $\operatorname{Prov}_{T}\left(\left\ulcorner\sigma\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right)\right\urcorner\right)$.

It is known that $P A$, as well as any reasonable theory extending I $\Delta_{0}+$ EXP, satisfies provable Σ_{1}^{0}-completeness.

De Jongh, Jumelet and Montagna [JMM 91] showed that Solovay's result can be extended to all reasonable Σ_{1}^{0}-sound theories T satisfying provable Σ_{1}^{0}-completeness. More precisely it is sufficient that the provability predicate of T provably satisfies the axioms of Guaspari and Solovay's modal witness comparison logic R^{-}. So Solovay's result holds for $Z F, \mathrm{I} \Sigma_{n}$ and $\mathrm{I} \Delta_{0}+\mathrm{EXP}$.

On the other hand it is known that if $N P \neq c o-N P$, then I $\Delta_{0}+\Omega_{1}$ does not satisfy provable Σ_{1}^{0}-completeness or even provable Δ_{0}-completeness. In chapter 3 we proved that, if $N P \neq c o-N P, \mathrm{I} \Delta_{0}+\Omega_{1}$ does not even satisfy provable completeness for the single
Σ_{1}^{0}-formula $\sigma(u, v) \equiv \exists x\left(\operatorname{Prf}_{I \Delta_{0}+\Omega_{1}}(x, u) \wedge \forall y<x \neg \operatorname{Pr} f_{I \Delta_{0}+\Omega_{1}}(y, v)\right)$. (See also chapter 4 for a related result.)

In view of the above difficulties, we try to do without Σ_{1}^{0}-completeness. In the rest of this section we state some results about $\mathrm{I} \Delta_{0}+\Omega_{1}$ which in some cases allow us to dispense with the use of Σ_{1}^{0}-completeness. The following proposition is proved by [WP 87] (see also theorem 2.3.24):

Theorem 5.2.2 I $\Delta_{0}+\Omega_{1}$ satisfies provable Σ_{1}^{b}-completeness.
By abuse of notation we will denote by $\square A$ both the arithmetization of the provability predicate of $\mathrm{I} \Delta_{0}+\Omega_{1}$ and the corresponding modal operator. $\diamond A$ is defined as $\neg \square \neg A$ and $\square^{+} A$ as $\square A \wedge A$. If $A(x)$ is an arithmetical formula, we will write $\forall x \square(A(x))$ as an abbreviation for the arithmetical sentence which formalizes the fact that for all x there is a I $\Delta_{0}+\Omega_{1}$-proof of $A(\bar{x})$, where \bar{x} is the binary numeral for x. If A and B are arithmetical sentences, $\square A \leq \square B$ denotes the witness comparison sentence

$$
\exists x\left(\operatorname{Prf}_{I \Delta_{0}+\Omega_{1}}(x,\ulcorner A\urcorner) \wedge \forall y<x \neg \operatorname{Prf}_{I \Delta_{0}+\Omega_{1}}\left(y,\left\ulcorner B^{\urcorner}\right)\right) .\right.
$$

Similarly $\square A<\square B$ denotes

$$
\exists x\left(\operatorname { P r f } _ { I \Delta _ { 0 } + \Omega _ { 1 } } \left(x,\left\ulcorner A^{\urcorner}\right) \wedge \forall y \leq x \neg \operatorname{Prf}_{I \Delta_{0}+\Omega_{1}}\left(y,\left\ulcorner B^{\urcorner}\right)\right) .\right.\right.
$$

$\square_{k} A$ is a formalization of the fact that A has a proof in I $\Delta_{0}+\Omega_{1}$ of Gödel number $\leq k$. So $\square A<\square B$ can be written as $\exists x\left(\square_{x} A \wedge \neg \square_{x} B\right)$. (Note that all the above definitions are only abbreviations for some arithmetical formulas and are not meant to correspond to an enrichment of the modal language.)

Remark 5.2.3 Since the proof predicate can be formalized by a Σ_{1}^{b}-formula, we have $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \square A \rightarrow \square \square A$ and $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \square_{x} A \rightarrow \square \square_{x} A$.

We suppose that the reader is familiar with I $\Delta_{0}+\Omega_{1}$-initial segments (see definition 2.6.2). Given an I $\Delta_{0}+\Omega_{1}$-initial segment $I, \mathrm{I} \Delta_{0}+\Omega_{1}$ can formalize the fact that I defines a model of I $\Delta_{0}+\Omega_{1}$. It follows that for any arithmetical sentence θ we have:

Proposition 5.2.4 $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \square(\theta) \rightarrow \square\left(\theta^{I}\right)$, where θ^{I} is obtained from θ by relativizing all the quantifiers to I.

Note that if a Σ_{1}^{0}-formula is witnessed in an initial segment, then it is witnessed in the universe. Thus we have:

Remark 5.2.5 For every I $\Delta_{0}+\Omega_{1}$-initial segment I, and every Σ_{1}^{0}-formula $\sigma\left(x_{1}, \ldots, x_{n}\right)$, $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash x_{1} \in I \wedge \ldots \wedge x_{n} \in I \wedge \sigma^{I}\left(x_{1}, \ldots, x_{n}\right) \rightarrow \sigma\left(x_{1}, \ldots, x_{n}\right)$.

The use of binary numerals is essential for the following proposition (see lemma 2.6.8 and (Pu 86]):

Proposition 5.2.6 For any $\mathrm{I} \Delta_{0}+\Omega_{1}$-initial segment I, $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall x \square(x \in I)$.
Making use of an efficient truth predicate, we proved the following result in section 3.3:
Theorem 5.2.7 (Small reflection principle) $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall k \square\left(\square_{k} A \rightarrow A\right)$.

An immediate corollary is the following principle (originally stated by Švejdar for $P A$; see corollary 3.3.22 for a proof):

Corollary 5.2.8 (Švejdar's principle) $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \square A \rightarrow \square(\square B \leq \square A \rightarrow B)$.
Using Solovay's technique of shortening of cuts, it is easy to prove the following:
Proposition 5.2.9 There is an $\mathrm{I} \Delta_{0}+\Omega_{1}$-initial segment J, such that for each Σ_{1}^{0}-formula $\sigma\left(x_{1}, \ldots, x_{n}\right)$ we have: $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash J\left(x_{1}\right) \wedge \ldots \wedge J\left(x_{n}\right) \wedge \sigma^{J}\left(x_{1}, \ldots, x_{n}\right) \rightarrow \square \sigma\left(x_{1}, \ldots, x_{n}\right)$.

Proof. The proof is similar to the proof of provable Σ_{1}^{b}-completeness for I $\Delta_{0}+\Omega_{1}$ (see theorem 2.3.24 and [WP 87]). Therefore we only give a sketch of the proof. By induction on the structure of the formula, one can prove that for each Δ_{0} - formula A with free variables x_{1}, \ldots, x_{n}, there are k, l and m such that

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash & \forall \\
& \forall x_{1}, \ldots, x_{n} \leq x\left(y=\exp \left(\exp \left(|\ulcorner A\urcorner|^{k} \cdot|x|^{l}\right)+m\right)\right. \\
& \left.\wedge A\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists z \leq y \operatorname{Pr} f_{I \Delta_{0}+\Omega_{1}}\left(z,\left\ulcorner A\left(\bar{x}_{1}, \ldots, \bar{x}_{2}\right)\right\urcorner\right)\right) .
\end{aligned}
$$

Now let J be the initial segment, which can be obtained by Solovay's shortening methods (cf. lemma 2.6.6, lemma 2.6.9), such that

- $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall x\left(J(x) \rightarrow \exists z\left(z=2^{x}\right)\right)$ and
- $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall x, y\left(J(x) \wedge J(y) \rightarrow J(x+y) \wedge J(x \cdot y) \wedge J\left(2^{|x| \cdot|y|}\right)\right)$.

For this initial segment, we have for all Δ_{0}-formulas A,

$$
\begin{aligned}
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash & \forall x_{1}, \ldots, x_{n}\left(J\left(x_{1}\right) \wedge \ldots \wedge J\left(x_{n}\right)\right. \\
& \wedge A\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists z \operatorname{Pr} f_{I \Delta_{0}+\Omega_{1}}\left(z,\left\ulcorner A\left(\bar{x}_{1}, \ldots, x_{2}\right)^{\urcorner}\right)\right) .
\end{aligned}
$$

The result immediately follows. QED
In the sequel of this chapter ' J ' will always refer to the initial segment of proposition 5.2.9.

Corollary 5.2.10 If $S_{i}(i=1, \ldots, k)$ are Σ_{1}^{0}-sentences, then

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \square\left(\bigvee_{i} S_{i}\right) \rightarrow \square\left(\bigvee_{i} \square^{+} S_{i}\right)
$$

Proof. Let J be as in proposition 5.2.9. Work in $\mathrm{I} \Delta_{0}+\Omega_{1}$ and suppose $\square\left(\mathrm{V}_{i} S_{i}\right)$ holds. Since J (provably) defines a model of I $\Delta_{0}+\Omega_{1}$, it follows $\square\left(\mathrm{V}_{i} S_{i}^{J}\right)$. By proposition 5.2.9 and remark 5.2.5 $\square\left(S_{i}^{J} \rightarrow \square^{+} S_{i}\right)$ and the desired result follows. QED

The above corollary was originally proved by Albert Visser [Vi 91b] as a consequence of the following more general result:

Theorem 5.2.11 (Visser's principle) If S and $S_{i}(i=1, \ldots, k)$ are Σ_{1}^{0}-sentences, then $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \square\left(\bigwedge_{i}\left(S_{i} \rightarrow \square S_{i}\right) \rightarrow S\right) \rightarrow \square S$.

5.3 Trees of undecidable sentences

We will rephrase the problem of whether $\operatorname{PL} \Omega=L$ as a problem concerning the existence of suitable trees of undecidable senctences.

Let \mathcal{C} be a class of finite tree-like strict partial orders. Without loss of generality we assume that for all $(K, \prec) \in \mathcal{C}, K=\{1, \ldots, n\}$ for some $n \in \omega$, and 1 is the root (i.e. the least element of K). By $T h(\mathcal{C})$ we denote the set of all those modal formulas that are forced at the root of every Kripke model whose underlying tree belongs to \mathcal{C}. Let \preceq be the non-strict partial order associated to \prec.

Definition 5.3.1 Given a tree (K, \prec) with root 1 and underlying set $K=\{1, \ldots, n\}$, we say that (K, \prec) can be embedded (or simulated) in I $\Delta_{0}+\Omega_{1}$ if there are arithmetical sentences L_{1}, \ldots, L_{n} (one for each node) such that, letting \square denote formalized provability from I $\Delta_{0}+\Omega_{1}$, the conjunction of the following sentences is consistent with I $\Delta_{0}+\Omega_{1}$:

1. L_{1}
2. $\square^{+}\left(L_{1} \vee \ldots \vee L_{n}\right)$
3. $\square^{+}\left(L_{i} \rightarrow \neg L_{j}\right)$ for $i \neq j$ in K
4. $\square^{+}\left(L_{i} \rightarrow \diamond L_{j}\right)$ for $i \prec j$ in K
5. $\square^{+}\left(L_{i} \rightarrow \square \neg L_{j}\right)$ for $i \nprec j$ in K

The following lemma is inspired by Solovay's proof of the fact that L is the provability logic of $P A$.

Lemma 5.3.2 In order for $P L \Omega \subseteq T h(\mathcal{C})$ to be the case it suffices that every tree $(K, \prec) \in \mathcal{C}$ can be embedded in $\mathrm{I} \Delta_{0}+\Omega_{1}$.

Proof. Suppose $A \notin T h(\mathcal{C})$. Then there is a Kripke model ($K, \prec, \Vdash)$ such that $(K, \prec) \in \mathcal{C}, K=\{1, \ldots, n\}, 1$ is the least element of K, and $1 \Vdash \neg A$. By our hypothesis there exists a model M of $\mathrm{I} \Delta_{0}+\Omega_{1}$ and sentences L_{1}, \ldots, L_{n} satisfying, inside the model M, the conditions 1-5 of definition 5.3.1. Define a $\mathrm{I} \Delta_{0}+\Omega_{1}$-interpretation * by setting, for every atomic propositional letter $p, p^{*} \equiv \bigvee_{i r p} L_{i}$. It is then easy to verify by induction on the complexity of the modal formula B, that for every $i \in K$:

- i ॥ $B \Rightarrow M \vDash \square^{+}\left(L_{i} \rightarrow B^{*}\right)$;
- $i \Vdash \neg B \Rightarrow M \vDash \square^{+}\left(L_{i} \rightarrow \neg B^{*}\right)$.

The induction step for \square is based on condition 4 and the following consequence of conditions 2 and 5 of definition 5.3.1:

$$
M \models \square^{+}\left(L_{i} \rightarrow \square\left(\bigvee_{j>i} L_{j}\right)\right)
$$

Since $1 \Vdash \neg A$, it follows that $M \models \neg A^{*}$, hence $\mathrm{I} \Delta_{0}+\Omega_{1} \nvdash A^{*}$ as desired. QED

Corollary 5.3.3 If every finite tree (K, \prec) can be embedded in $\mathrm{I} \Delta_{0}+\Omega_{1}$, then $P L \Omega=L$.

Figure 5.1: The trees W, X, Y

Proof. Let \mathcal{C} be the class of all finite trees. If our hypothesis is satisfied, then $L \subseteq \mathrm{PL} \Omega \subseteq T h(\mathcal{C})=L . \mathrm{QED}$

It can be easily verified that the sufficient condition of lemma 5.3.2 is also necessary. For, suppose that some tree $(K, \prec) \in \mathcal{C}$ with root 1 and underlying set $K=\{1, \ldots, n\}$ cannot be embedded in $\mathrm{I} \Delta_{0}+\Omega_{1}$. Then the negation of the conjunction of $1-5$ (see definition 5.3.1) is easily seen to be in $\mathrm{PL} \Omega \backslash \operatorname{Th}(\mathcal{C})$.

Thus $\mathrm{PL} \Omega \subseteq T h(\mathcal{C})$ iff every $(K, \prec) \in \mathcal{C}$ can be embedded in $\Delta_{0}+\Omega_{1}$. Hence a very natural question to ask is:

Question 5.3.4 Which finite trees can be embedded in $\mathrm{I} \Delta_{0}+\Omega_{1}$?
Note that a complete answer to the above question, although interesting by itself, may not suffice to characterize $\operatorname{PL} \Omega$. In fact if \mathcal{C} is the set of all finite trees that can be embedded in $\mathrm{I} \Delta_{0}+\Omega_{1}$, we can in general only conclude $\mathrm{PL} \Omega \subseteq T h(\mathcal{C})$.

In order to describe the results proved in this chapter and in previous papers, we need to define what it means for a tree to omit another tree.

Definition 5.3.5 Let $\left(T_{1}, \prec_{1}\right)$ and ($\left.T_{2}, \prec_{2}\right)$ be (strict) partial orders. An homomorphic embedding of $\left(T_{1}, \prec_{1}\right)$ into $\left(T_{2}, \prec_{2}\right)$ is an injective map $f: T_{1} \rightarrow T_{2}$ such that for all $x, y \in T_{1}, x \prec_{1} y \leftrightarrow f(x) \prec_{2} f(y)$. If there is no homomorphic embedding of T_{1} into T_{2} we say that T_{2} omits T_{1}.

If we try to adapt Solovay's proof to $I \Delta_{0}+\Omega_{1}$ in the most straightforward manner, the only trees that we can embed in I $\Delta_{0}+\Omega_{1}$ are the linear trees, namely trees omitting (K, \prec) where $K=\{1,2,3\}, 1 \prec 2,1 \prec 3$ and 2 is incomparable with 3 .

A first improvement can be achieved using Švejdar's principle: let \mathcal{C}_{1} be the class of all trees that omit the tree $\mathbf{W}=(W, \prec)$, the least strict partial order with underlying set $W=\{1,2,3,4\}$ such that $1 \prec 2,1 \prec 3 \prec 4$ (see Figure 1). In [Ve 88] it was proved that for trees in \mathcal{C}_{1} Solovay's proof can be adapted using Svejdar's principle. In other words, $\mathrm{PL} \Omega \subseteq T h\left(\mathcal{C}_{1}\right)$. Moreover it was proved that the inclusion is a strict one.

In subsequent unpublished work I showed, using both Švejdar's and Visser's principles, that $\mathrm{PL} \Omega$ is included in the modal theory of \mathcal{C}_{2}, the class of all trees of height ≤ 3.

A new improvement [BV 91] was achieved by analogous techniques but using a different definition of the Solovay constants. In this way it was proved that $\mathrm{PL} \Omega \subseteq \operatorname{Th}\left(\mathcal{C}_{3}\right)$, where \mathcal{C}_{3} is the class of all trees that omit the tree $\mathbf{X}=(X, \prec)$, the least strict partial order with underlying set $X=\{1,2,3,4,5\}$ such that $1 \prec 2 \prec 4 \prec 5,1 \prec 2 \prec 3$.

Finally in Section 5.4 of the present chapter, we improve these earlier results, by proving:

Theorem 5.3.6 $P L \Omega \subseteq T h\left(\mathcal{C}_{4}\right)$, where \mathcal{C}_{4} is the class of trees that omit the tree $\mathbf{Y}=$ (Y, \prec), the least strict partial order with underlying set $Y=\{1,2,3,4,5,6\}$ such that $1 \prec 2 \prec 3 \prec 5,1 \prec 2 \prec 4 \prec 6$.

In particular, theorem 5.3.6 implies that we can embed \mathbf{X}. Note that the trees in \mathcal{C}_{4} can have an arbitrarily large number of bifurcation points, but each bifurcation point except the root can have at most one immediate successor which is not a leaf. The root can have any number of immediate successors which are not leaves.

On the other hand, we prove in Section 5.5 that for many classes \mathcal{C} of trees (and especially for the classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{4}$ defined above), we cannot have $\mathrm{PL} \Omega=\operatorname{Th}(\mathcal{C})$. Therefore, all inclusions mentioned above are strict. More precisely we prove that if $\mathrm{PL} \Omega=\operatorname{Th}(\mathcal{C})$, then every binary tree can be homomorphically embedded in some tree belonging to \mathcal{C}. So it is unlikely that $\mathrm{PL} \Omega$ is the theory of a class of trees, unless $\mathrm{PL} \Omega=L$.

5.4 Upper bounds on $\mathrm{PL} \Omega$

Our task in this section will be to prove $\mathrm{PL} \Omega \subseteq T h\left(\mathcal{C}_{4}\right)$ using lemma 5.3.2.
Definition 5.4.1 Given $(K, \prec) \in \mathcal{C}_{4}$, we say that $i \in K$ is a special node, iff i is a leaf, and some brother of i is not a leaf.

For example, in the tree \mathbf{X} of Figure 1, the only special node is 3 .
Definition 5.4.2 Let $(K, \prec) \in \mathcal{C}_{4}$. Without loss of generality assume that
$K=\{1, \ldots, n\}$ and 1 is the root. Let J be the initial segment of proposition 5.2.9. By a self-referential construction based on the diagonal lemma, we can simultaneously define sentences
L_{1}, \ldots, L_{n}, and auxiliary functions v, w, S, such that the following holds:

1. If $i \in K$ is not special, let $w(i)=\mu x \square_{x} \neg L_{i}$ (with the convention that $w(i)=\infty$ if $\diamond L_{i}$); if $i \in K$ is special $w(i)=\mu x \in J \square_{x} \neg L_{i}$ (with the convention that $w(i)=\infty$ if $\diamond^{J} L_{i}$). We agree that ∞ is a specific element greater than any integer. Note that the definition of w can be formalized in $\mathrm{I} \Delta_{0}+\Omega_{1}$.
2. If j is an immediate successor of i in (K, \prec), let $v(i, j)=w(j)$; otherwise $v(i, j)=\infty$.
3. $S: K \longrightarrow K$ is defined as follows: $S(i)=i$ if for no $j \in K$ we have $v(i, j)<\infty$; otherwise among all the $j \in K$ with $v(i, j)<\infty$, pick one for which $v(i, j)$ is minimal, and set $S(i)=S(j)$. (Note that there exists at most one such j because if $w(j)=w\left(j^{\prime}\right)<\infty$, then there is one single proof of both $\neg L_{j}$ and $\neg L_{j^{\prime}}$, so $j=j^{\prime}$.)
4. $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash L_{i} \leftrightarrow \square \neg L_{1} \wedge i=S(1)$.

The important point to observe, is that the definition of S can be formalized in I $\Delta_{0}+\Omega_{1}$ and that $\mathrm{I} \Delta_{0}+\Omega_{1}$ proves that $S(1)$ is always defined. This depends on the fact that, although S is defined in a recursive way, to compute $S(1)$ one only needs a standard number of recursive calls, namely at most d where d is the height of the tree (K, \prec) (in fact at each recursive call we climb one step up in the tree). Note also that S depends self-referentially on L_{1}, \ldots, L_{n}. Finally note that, if a, b are distinct immediate successors of i, then the statement $v(i, a)<v(i, b)$ is equivalent to a witness comparison sentence in which some quantifiers are relativised to J. In particular, if a and b are not special, then $v(i, a)<v(i, b)$ is equivalent to the Σ_{1}^{0}-sentence $\square \neg L_{a}<\square \neg L_{b}$.

Remark 5.4.3 The main differences with Solovay's construction are the following: 1) we do not use an extra node 0 (but this is a minor point since we could define L_{0} as $\diamond L_{1}$).
2) In our construction we can only jump one step at a time, namely at each recursive call S we can only move from one point to some immediate successor (but this is also an inessential difference). 3) While Solovay employs a primitive recursive function from ω to K whose definition is not directly formalizable in I $\Delta_{0}+\Omega_{1}$, we use instead a function $S: K \rightarrow K$ which is provably total in $\mathrm{I} \Delta_{0}+\Omega_{1}$. 4) We jump to a special node $i \in K$ only if we find a proof of $\neg L_{i}$ belonging to the initial segment J.

Given (K, \prec) as above, we will show that L_{1}, \ldots, L_{n} constitute an embedding of (K, \prec) in $\mathrm{I} \Delta_{0}+\Omega_{1}$. We need the following lemma.

Lemma 5.4.4 Let L_{1}, \ldots, L_{n} and (K, \prec) be as in definition 5.4.2. Then:

1. $\vdash \square \neg L_{1} \rightarrow L_{1} \vee \ldots \vee L_{n}$.
2. $\vdash L_{i} \rightarrow \neg L_{j}$ for $i \neq j$ in K;
3. $\vdash L_{i} \rightarrow \square \neg L_{i}$ for $i \in K$.
4. L_{1} is consistent with $\mathrm{I} \Delta_{0}+\Omega_{1}$;
5. If $j, j^{\prime} \in K$ are brothers, then $\vdash \square \neg L_{j} \leftrightarrow \square \neg L_{j^{\prime}}$.
6. $\vdash L_{i} \rightarrow \diamond L_{j}$ for $i \prec j$ in K.
7. $\vdash L_{j} \rightarrow \square \neg L_{i}$ for $i \prec j$ in K;
8. If i is above (i.e. \succeq) a brother of j, then $\vdash L_{i} \rightarrow \square \neg L_{j}$; if moreover j is a leaf, then $\vdash L_{j} \rightarrow \square \neg L_{i}$.
9. Let $j \succ 1$ be an immediate successor of the root 1. Then $\vdash L_{1} \rightarrow \square \square\left(\neg L_{j}\right)$;
10. $\vdash L_{1} \rightarrow \square^{+}\left(L_{i} \rightarrow \square \neg L_{j}\right)$ whenever i, j are incomparable nodes of K;
where ' \vdash ' stands for $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash$ '.
Proof. It will be clear from the context at which places we reason inside I $\Delta_{0}+\Omega_{1}$.
(1) and (2) are clear from the definition of the sentences L_{i} and the fact that $S: K \longrightarrow K$ is a total function.
(3). L_{i} implies that $\square \neg L_{1} \wedge i=S(1)$. If $i=1$, $\square \neg L_{i}$ follows immediately; otherwise we have $w(i)<\infty$, and therefore $\square \neg L_{i}$.
(4). If L_{1} is inconsistent with I $\Delta_{0}+\Omega_{1}$, then $\square \neg L_{1}$ holds in the standard model, so by (1), one of the sentences L_{i} must hold in the standard model. This is absurd since each of these sentences implies its own inconsistency.
(5). First note that $\vdash \square_{x} \neg L_{j} \rightarrow \square\left(x \in J \wedge \square_{x} \neg L_{j}\right)$. Thus, regardless of whether j is special or not, $\vdash \square \neg L_{j} \rightarrow \square\left(w(j)=\mu x \square_{x} \neg L_{j}\right)$. Since j and j^{\prime} are brothers, $\vdash L_{j^{\prime}} \rightarrow$
$w\left(j^{\prime}\right)<w(j)$ (because $j^{\prime}=S(1)$ implies $\left.w\left(j^{\prime}\right)<w(j)\right)$. Therefore $\vdash \square \neg L_{j} \rightarrow \square\left(L_{j^{\prime}} \rightarrow\right.$ $\left.\square \neg L_{j^{\prime}}<\square \neg L_{j}\right)$. On the other hand by Švejdar's principle

$$
\vdash \square \neg L_{j} \rightarrow \square\left(\square \neg L_{j^{\prime}}<\square \neg L_{j} \rightarrow \neg L_{j^{\prime}}\right)
$$

and we can conclude $\vdash \square \neg L_{j} \rightarrow \square \neg L_{j^{\prime}}$.
(6). Löb's logic L proves $\diamond A \wedge \square(A \rightarrow \diamond B) \rightarrow \diamond B$. Hence by arithmetical soundness $\vdash \diamond L_{u} \wedge \square\left(L_{u} \rightarrow \diamond L_{v}\right) \rightarrow \diamond L_{v}$. It follows that in the proof of (6) we can assume without loss of generality that j is an immediate successor of i. Working inside $\mathrm{I} \Delta_{0}+\Omega_{1}$, assume L_{i}. Then $i=S(1)$. Hence $w(j)=\infty$. Now if j is not a special node, then $w(j)=\infty \leftrightarrow \diamond L_{j}$ and we are done. If j is a special node, from $w(j)=\infty$ we can only conclude $\nabla^{J} L_{j}$, so we need an additional argument. This is provided by point (5). In fact by definition of special node, i has certainly one immediate successor j^{\prime} which is not special. Hence from L_{i} we can derive $\diamond L_{j^{\prime}}$ reasoning as above. By point (5), $\diamond L_{j} \leftrightarrow \diamond L_{j^{\prime}}$ and we are done.
(7) can be derived through the chain of implications: $L_{j} \rightarrow \square \neg L_{j} \rightarrow \square \square \neg L_{j} \rightarrow \square \neg L_{i}$, where the last implication uses point (6).
(8). Let i be above a brother of j. Then by (5), (7) and (3) $\vdash L_{i} \rightarrow \square \neg L_{j}$ as desired. To prove the second part, assume further that j is a leaf. We need to show $\vdash L_{j} \rightarrow \square \neg L_{i}$. We can assume that i is strictly above a brother j^{\prime} of j (for if i itself is a brother of j the desired result follows from (3) and (5)). But then j must be a special node, and therefore $w(j)=\mu x \in J \square_{x} \neg L_{j}$. So $w(j)<w\left(j^{\prime}\right)$ is equivalent to a Σ_{1}^{0}-formula relativized to J, namely $w(j)<w\left(j^{\prime}\right) \leftrightarrow \exists x \in J\left(\operatorname{Prf}_{I \Delta_{0}+\Omega_{1}}\left(x,\left\ulcorner\neg L_{j}{ }^{\urcorner}\right) \wedge \forall y \leq x \neg \operatorname{Prf}_{I \Delta_{0}+\Omega_{1}}\left(y,\left\ulcorner\neg L_{j^{\prime}}{ }^{`}\right)\right)\right.\right.$. Thus by the properties of the initial segment J (and by theorem 5.2.6),

$$
\vdash w(j)<w\left(j^{\prime}\right) \rightarrow \square w(j)<w\left(j^{\prime}\right)
$$

Now the desired result follows by observing that $\vdash L_{j} \rightarrow w(j)<w\left(j^{\prime}\right)$ (as $\vdash j=S(1) \rightarrow$ $\left.w(j)<w\left(j^{\prime}\right)\right)$ and $\vdash L_{i} \rightarrow w\left(j^{\prime}\right)<w(j)$.
(9). By (1) and (3), $\vdash L_{1} \rightarrow \square\left(\bigvee_{i \succ 1} L_{i}\right)$. So to prove $\vdash L_{1} \rightarrow \square \square \neg L_{j}$, it suffices to show that for each $i \succ 1$ we have $\vdash \square\left(L_{i} \rightarrow \square \neg L_{j}\right)$. This follows from (8), (3) and (7).
(10). If the incomparable nodes i and j are in one of the situations covered by point (8), then $\vdash L_{i} \rightarrow \square \neg L_{j}$, and a fortiori $\vdash L_{1} \rightarrow \square^{+}\left(L_{i} \rightarrow \square \neg L_{j}\right)$ as desired. Since (K, \prec) omits \mathbf{Y}, (8) can always be applied except when the largest node (with respect to \preceq) below i and j is 1 (the root). So assume that this is the case. By (2), we have $\vdash L_{1} \rightarrow\left(L_{i} \rightarrow \square \neg L_{j}\right)$. In order to show that also $\vdash L_{1} \rightarrow \square\left(L_{i} \rightarrow \square \neg L_{j}\right)$, we will take in account the properties of the initial segment J (see proposition 5.2.9). Let i^{\prime}, j^{\prime} be the least nodes with $1 \prec i^{\prime} \preceq i$ and $1 \prec j^{\prime} \preceq j$. So i^{\prime} and j^{\prime} are brothers. It follows from (9) that $\vdash L_{1} \rightarrow \square\left(\square \neg L_{i^{\prime}}\right)$. Therefore, by proposition $5.2 .4, \vdash L_{1} \rightarrow \square\left(\square^{J} \neg L_{i^{\prime}}\right)$. In the presence of $\square^{J} \neg L_{i^{\prime}}$, the sentence $w\left(i^{\prime}\right)<w\left(j^{\prime}\right)$ is equivalent to a Σ_{1}^{0}-sentence relativized to J. Therefore, by proposition 5.2.9, $\vdash L_{1} \rightarrow \square\left(w\left(i^{\prime}\right)<w\left(j^{\prime}\right) \rightarrow \square\left(w\left(i^{\prime}\right)<w\left(j^{\prime}\right)\right)\right)$. The desired result now follows from the fact that L_{i} provably implies $i=S(1)$ which entails $w\left(i^{\prime}\right)<w\left(j^{\prime}\right)$, while L_{j} provably implies $w\left(j^{\prime}\right)<w\left(i^{\prime}\right)$. QED

Corollary 5.4.5 If (K, \prec) and L_{1}, \ldots, L_{n} are as above, then the conjunction of the following sentences is consistent with $\mathrm{I} \Delta_{0}+\Omega_{1}$:

1. L_{1}
2. $\square^{+}\left(L_{1} \vee \ldots \vee L_{n}\right)$.
3. $\square^{+}\left(L_{i} \rightarrow \neg L_{j}\right)$ for $i \neq j$ in K.
4. $\square^{+}\left(L_{i} \rightarrow \diamond L_{j}\right)$ for $i \prec j$ in K.
5. $\square^{+}\left(L_{i} \rightarrow \square \neg L_{j}\right)$ for $i \nprec j$ in K.

Proof. By (1) and (3) of lemma 5.4.4, and noting that $\vdash \square \neg L_{1} \rightarrow \square \square \neg L_{1}$, we derive $\vdash L_{1} \rightarrow \square^{+}\left(L_{1} \vee \ldots \vee L_{n}\right)$. Next, (3) implies that $\vdash L_{1} \rightarrow \square^{+}\left(L_{i} \rightarrow \neg L_{j}\right)$ for $i \neq j$ in K. By (6) we have $L_{1} \rightarrow \square^{+}\left(L_{i} \rightarrow \diamond L_{j}\right)$ for $i \prec j$ in K. Finally the corollary follows by (10) and (4).

Note that the derivation of corollary 5.4.5 from lemma 5.4.4 follows from a straightforward argument which can even be formalized in the decidable theory L^{ω}. (The axioms of L^{ω} are all the theorems of L and all the instances of $\square A \rightarrow A$. The only rule is modus ponens.) QED

We have thus shown that every tree of \mathcal{C}_{4} can be embedded in I $\Delta_{0}+\Omega_{1}$. Thus:
Theorem 5.4.6 $P L \Omega \subseteq T h\left(\mathcal{C}_{4}\right)$.

5.5 Disjunction property

In this section we prove the following:
Theorem 5.5.1 If $P L \Omega=T h(\mathcal{C})$, where \mathcal{C} is a class of finite trees, then every binary tree can be homomorphically embedded in some tree belonging to \mathcal{C}.

In particular, since the binary tree \mathbf{Y} cannot be embedded in any member of \mathcal{C}_{4}, it will follow that the inclusion $\mathrm{PL} \Omega \subseteq T h\left(\mathcal{C}_{4}\right)$ is strict.

We will use the fact that $\operatorname{PL} \Omega$ has the 'disjunction property' as proved by Franco Montagna (personal communication).

Definition 5.5.2 A modal theory P has the disjunction property if for every pair of modal sentences A and B, if $P \vdash \square A \vee \square B$, then $P \vdash A$ or $P \vdash B$.

It is known that L has the disjunction property.
Theorem 5.5.3 (Montagna) $P L \Omega$ has the disjunction property.
Proof. Suppose that for some $\mathrm{I} \Delta_{0}+\Omega_{1}$-interpretations ${ }^{\circ}$ and ${ }^{\bullet}$ we have $\mathrm{I} \Delta_{0}+\Omega_{1} \nvdash A\left(\vec{p}^{\circ}\right)$ and I $\Delta_{0}+\Omega_{1} \nvdash B\left(\vec{p}^{\bullet}\right)$, where \vec{p} contains all propositional variables occurring in the modal formulas A and B. We have to prove that there is an $\mathrm{I} \Delta_{0}+\Omega_{1}$ - interpretation * such that $\mathrm{I} \Delta_{0}+\Omega_{1} \nvdash(\square A \vee \square B)^{*}$

By multiple diagonalization, define for all $p_{i} \in \vec{p}$ an arithmetical formula p_{i}^{*} such that

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash p_{i}^{*} \leftrightarrow\left(\square A\left(\vec{p}^{*}\right) \leq \square B\left(\vec{p}^{*}\right) \wedge p_{i}^{0}\right) \vee\left(\square B\left(\vec{p}^{*}\right)<\square A\left(\vec{p}^{*}\right) \wedge p_{i}^{\bullet}\right)
$$

We will show that $\mathrm{I} \Delta_{0}+\Omega_{1} \forall(\square A \vee \square B)^{*}$. So suppose, to derive a contradiction, that $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \square A\left(\vec{p}^{*}\right) \vee \square B\left(\vec{p}^{*}\right)$. Then

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \square A\left(\vec{p}^{*}\right) \leq \square B\left(\vec{p}^{*}\right) \vee \square B\left(\vec{p}^{*}\right)<\square A\left(\vec{p}^{*}\right)
$$

Thus, because I $\Delta_{0}+\Omega_{1}$ is a true theory, either

1. $\square A\left(\vec{p}^{*}\right) \leq \square B\left(\vec{p}^{*}\right)$ and $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash p_{i}^{*} \leftrightarrow p_{i}^{\circ}$ for all i (by definition of \vec{p}^{*}), or
2. $\square B\left(\vec{p}^{*}\right)<\square A\left(\vec{p}^{*}\right)$ and $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash p_{i}^{*} \leftrightarrow p_{i}^{*}$ for all i.

In case 1 , we have $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash A\left(\vec{p}^{*}\right)$, so I $\Delta_{0}+\Omega_{1} \vdash A\left(\vec{p}^{\circ}\right)$, contradicting our assumption. Similarly, case 2 contradicts the assumption $\mathrm{I} \Delta_{0}+\Omega_{1} \nvdash B\left(\vec{p}^{\bullet}\right)$.

QED
In order to prove theorem 5.5 .1 we need the following definition.
Definition 5.5.4 We define D_{n} by induction.

- $D_{0}=T$
- $D_{i+1}(\vec{p}, r)=\diamond\left(D_{i}(\vec{p}) \wedge \square^{+} r\right) \wedge \diamond\left(D_{i}(\vec{p}) \wedge \square^{+} \neg^{\prime}\right)$, where \vec{p} is of length i, and all propositional variables in (\vec{p}, r) are different.

The main property of the formulas D_{n} is expressed by the following lemma.
Lemma 5.5.5 If \mathbf{K} is a finite tree-like Kripke model with root k such that $k \Vdash D_{n}$, then we can homomorphically embed (see definition 5.3.5) the full binary tree \mathbf{T}_{n} of height n (and $2^{n+1}-1$ nodes) into \mathbf{K}.

Proof. By induction on n.
Base case. Trivial: \mathbf{T}_{0} contains only one point.
Induction step. Suppose that $k \Vdash D_{i+1}(\vec{p}, r)$, i.e.

$$
k \Vdash \diamond\left(D_{i}(\vec{p}) \wedge \square^{+} r\right) \wedge \diamond\left(D_{i}(\vec{p}) \wedge \square^{+} \neg r\right) .
$$

Then there are nodes k_{1}, k_{2} such that $k \preceq k_{1}, k \preceq k_{2}, k_{1} \Vdash D_{i}(\vec{p}) \wedge \square^{+} r$ and $k_{2} \Vdash$ $D_{i}(\vec{p}) \wedge \square^{+} \neg r$. By the induction hypothesis, we can homomorphically embed a copy of the full binary tree \mathbf{T}_{i} of bifurcation depth i into the subtree of \mathbf{K} that consists of all points $\succeq k_{1}$. Analogously, we can homomorphically embed a copy of \mathbf{T}_{i} into the subtree of \mathbf{K} of points $\succeq k_{2}$.

Because $k_{1} \Vdash \square^{+} r$ and $k_{2} \Vdash \square^{+} \neg r$, we may conclude that k_{1} and k_{2} are incomparable and that the two images of T_{i} are disjoint. Therefore, we can combine both homomorphic embeddings into one and subsequently map the root of \mathbf{T}_{i+1} to k. Thus an homomorphic embedding of \mathbf{T}_{i+1} into \mathbf{K} is produced.

QED
Theorem 5.5.1 is now an immediate consequence of the following:
Theorem 5.5.6 Let \mathcal{C} be a class of finite trees such that $\operatorname{Th}(\mathcal{C})$ has the disjunction property. Then for every $n, \operatorname{Th}(\mathcal{C}) \cup\left\{D_{n}\right\}$ is consistent. Therefore every binary tree (thus every tree) can be homomorphically embedded in some member of \mathcal{C}.

Proof. Let $P=T h(\mathcal{C})$. Note that $P \supseteq L$. We prove by induction on n that $P \cup\left\{D_{n}\right\}$ is consistent.

Base case. Trivial.
Induction step. Suppose as induction hypothesis that for \vec{p} consisting of i different propositional variables, $P \cup\left\{D_{i}(\vec{p})\right\}$ is consistent. In order to derive a contradiction, suppose that $P \vdash \neg D_{i+1}(\vec{p}, r)$, that is

$$
P \vdash \square\left(\square^{+} r \rightarrow \neg D_{i}(\vec{p})\right) \vee \square\left(\square^{+} \neg r \rightarrow \neg D_{i}(\vec{p})\right) .
$$

Then by the disjunction property, either

1. $P \vdash \square^{+} r \rightarrow \neg D_{i}(\vec{p})$ or
2. $P \vdash \square^{+} \neg r \rightarrow \neg D_{i}(\vec{p})$.

We show that 1 cannot hold. By the induction hypothesis, $P \nvdash \neg D_{i}(\vec{p})$. Since r does not appear in $D_{i}(\vec{p})$, we can take $r=T$. But then $P \vdash \square^{+} r$, so $P \nvdash \square^{+} r \rightarrow \neg_{i}(\vec{p})$.

By an analogous proof, we can show that 2 cannot hold, which gives the desired contradiction.

QED
Note that in the proof of the fact that $\operatorname{Th}(\mathcal{C}) \cup\left\{D_{n}\right\}$ is consistent we have only used the fact that $T h(\mathcal{C})$ is a consistent modal theory extending L and satisfying the disjunction property. The same proof can therefore be applied to $\operatorname{PL} \Omega$, yielding:

Proposition 5.5.7 $P L \Omega \cup\left\{D_{n}\right\}$ is consistent.
Remark 5.5.8 For a strengthening of proposition 5.5.7 due to Berarducci, we refer the reader to [BV 93].

We are now able to strengthen theorem 5.5.1 as follows:
Theorem 5.5.9 If there exists a binary tree H which cannot be homomorphically embedded in any member of \mathcal{C}, then $T h(\mathcal{C}) \nsubseteq P L \Omega$.

Proof. Under our assumption there is some n such that the full binary tree of height n cannot be embedded in any member of \mathcal{C}. Hence $T h(\mathcal{C}) \cup\left\{D_{n}\right\}$ is inconsistent. On the other hand $\mathrm{PL} \Omega \cup\left\{D_{n}\right\}$ is consistent. QED

Part III

Metamathematics for Peano Arithmetic

Chapter 6

Feasible interpretability

Sometimes we see a cloud that's dragonish:
A vapour sometime like a bear or lion,
A tower'd citadel, a pendent rock,
A forked mountain, or blue promontory
With trees upon't, that nod unto the world
And mock our eyes with air...

Shakespeare, Anthony and Cleopatra

Abstract

In $P A$, or even in $\mathrm{I} \Delta_{0}+E X P$, we can define the concept of feasible interpretability. Informally stated, U feasibly interprets V (notation $U \triangleright_{f} V$) iff: for some interpretation, U proves the interpretations of all axioms of V by proofs of length polynomial in the length of those axioms. Here both U and V are Σ_{1}^{b}-axiomatized theories. Many interpretations encountered in everyday mathematics (e.g. the interpretation of $Z F+\mathbf{V}=\mathbf{L}$ into $Z F$) are feasible. However, by fixed point constructions we can find theories that are interpretable in $P A$ in the usual sense but not by a feasible interpretation. By making polynomial analogs of the usual proofs, we show that the bimodal interpretability logic $I L M$ is sound for feasible interpretability over the base theory $P A$. Here, $A \triangleright B$ is translated as $P A+A^{*} \triangleright_{f} P A+B^{*}$, where * is the translation. Moreover, we can prove in $P A$ a polynomial version of Orey's theorem for feasible interpretability. This paves the way for a polynomial adaptation of Berarducci's proof of arithmetical completeness of $I L M$ with respect to $P A$. Thus, we show that $I L M$ is arithmetically sound and complete with respect to feasible interpretability over $P A$.

6.1 Introduction

In this chapter, we investigate a novel concept of interpretability - we call it feasible interpretability - in which the complexity of proofs associated to the interpretation is bounded.

The concept was invented by Albert Visser, who called it effective interpretability in his paper [Vi b].

In order to define this concept, we slightly change the usual definition of interpretability (see section 2.4). First we give a half-formal definition of $U \triangleright_{f} V$ (pronounced as " U feasibly interprets $V^{\prime \prime}$:

$$
\begin{array}{r}
U \triangleright_{f} V \leftrightarrow \exists K \exists P(\text { " } K \text { is an interpretation and Pis a polynomial" } \wedge \\
\left.\forall a\left(\alpha_{V}(a) \rightarrow \exists p\left("|p| \leq P(|a|) " \wedge \operatorname{Prf} f_{U}\left(p, a^{K}\right)\right)\right)\right) \tag{6.1}
\end{array}
$$

If we want to formalize this concept, we need an evaluation function for coded polynomials and we need to be able to prove that the exp of this function is total. We remind the reader that $\exp ($ the values of polynomials in $|x|)$ corresponds to the values of \#-terms in x, where $x \# y=\exp (|x| \cdot|y|)$ as in definition 2.3.2. Thus, since there is an evaluation function for formalized terms containing \# that is provably total in I $\Delta_{0}+E X P$, we see that the formalization of feasible interpretability can be carried out in $\mathrm{I} \Delta_{0}+E X P$. We will not carry out the details, and for ease of reading we will keep using the half-formal definition (6.1).

However, it is clear that the formula $U \triangleright_{f} V$ is Σ_{2}^{0}. As we know that, for reasonable theories U extending $P A,\{A \mid U \triangleright U+A\}$ is a Π_{2}^{0}-complete predicate, it would be interesting to find out whether $\left\{A \mid U \triangleright_{f} U+A\right\}$ is Σ_{2}^{0}-complete. Chapter 7 provides a positive answer to this question.

In [Vi b], Visser gave proof sketches to show that $I L M$ is arithmetically sound with respect to feasible interpretability over $P A$. Moreover, he gave an Orey-Hájek like characterization for feasible interpretability over $P A^{*}$, where $P A^{*}$ is defined as follows:
C is an axiom of $P A^{*}$ iff C is the conjunction of the first n axioms of $P A$ for some n.

He then surmised that, using this characterization, Berarducci's arguments from [Ber 90] could be adapted to show that $I L M$ is the modal interpretability logic for feasible interpretability over $P A^{*}$.

In this chapter, we show that $I L M$ is indeed arithmetically sound and complete with respect to feasible interpretability over $P A$ itself.

The rest of the chapter is organized as follows. In section 6.2, we show that some wellknown interpretations from the contexts of set theory and bounded arithmetic are feasible. For the subsequent sections, the horizon is narrowed down to Peano Arithmetic. Thus we prove in section 6.3 and section 6.5 that $I L M$ is exactly the modal interpretability logic for feasible interpretability over $P A$. Section 6.4, meanwhile, gives two counterexamples to show that, for reasonable theories U extending $P A$, feasible interpretability over U is a definitely stricter concept than normal interpretability.

6.2 Feasible interpretations in various settings

For an intuitive introduction to feasible interpretability, it is useful to define feasible interpretability also for settings other than arithmetic. The informal definition is as follows.
$U \triangleright_{f} V$ if and only if there is an interpretation K of V into U which is feasible,
i.e. for which there is a polynomial P such that for all axioms φ of V, there is a proof of length $\leq P(|\varphi|)$ in U of φ^{K}

Here $|\varphi|$ denotes the length of φ. In this section, we look at some well-known interpretations from different settings and show that they are feasible. As a first remark, it is clear that every interpretation of a finitely axiomatized theory into some other theory is feasible: a constant polynomial, namely the maximum of the lengths of the proofs of the interpreted axioms, suffices. We will prove an easy lemma which can be used to show that many well-known interpretations are feasible. First we state some conditions on the length of formulas and proofs.

Remark 6.2.1 Of course the definitions of $|\varphi|$ and of the lengths of proofs depend on the setting. For example, it is not always convenient to define $|\varphi|$ as "the length of the binary expression of the Gödel number of φ ". In all examples in the rest of the chapter, the length measure is polynomially related to the length of the binary expression of the Gödel number.

In general, we have to keep in mind that a few conditions on the definition of the lengths of formulas and proofs are necessary to make lemma 6.2.2 applicable.

The length of formulas should be defined in such a way that the following conditions hold:

1. $|\neg \psi| \geq|\psi|+1$,
2. $|\psi \circ \chi| \geq|\psi|+|\chi|+1$ for $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$,
3. $|Q x \psi| \geq|\psi|+1$ for $Q \in\{\forall, \exists\}$, and
4. for all formulas $\varphi,|\varphi| \geq 2$.

The last of these conditions is not necessary, but it just simplifies the computations by allowing us to work with polynomials $P(n)$ of the form n^{d} only.

Moreover, we suppose that the proof system and the corresponding length of a proof is defined in such a way that applications of \wedge-rules and Modus Ponens do not make the proofs explode to gargantuan proportions; e.g. we suppose that we do not use a tableau system or a sequent calculus. A sufficient condition is the following.

There is a constant c such that the following conditions hold:

1. if $|A| \leq|B|$, and we have a proof of length l_{A} of the formula A, and a proof of length $l_{A \rightarrow B}$ of $A \rightarrow B$, then there is a proof of length $\leq l_{A}+l_{A \rightarrow B}+c \cdot|B|$ of the formula B; and
2. if $|A|,|B| \leq|C|$, and we have a proof of length l_{A} of A, a proof of length l_{B} of B and a proof of length $l_{A \wedge B \rightarrow C}$ of $A \wedge B \rightarrow C$, then we have a proof of length $\leq l_{A}+l_{B}+l_{A \wedge B \rightarrow C}+c \cdot|C|$ of the formula C.

Lemma 6.2.2 Let L be a language and U a theory satisfying the conditions in Remark 6.2.1. Let F be a function from L into L_{U} such that
there is a polynomial P such that for all $\varphi \in L,|F(\varphi)| \leq P(|\varphi|)$. (This is always the case when L is finite.)

Moreover, suppose that the following four conditions hold:

1. $U \vdash^{P(|\varphi|)} F(\varphi)$ for all atomic $\varphi \in L$;
2. $U \vdash^{P(|\neg \psi|)} F(\psi) \rightarrow F(\neg \psi)$ for all $\psi \in L$;
3. $U \vdash^{P(|\psi \circ \chi|)} F(\psi) \wedge F(\chi) \rightarrow F(\psi \circ \chi)$ for all $\psi, \chi \in L$ and $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$;
4. $U \stackrel{P(|Q x \psi|)}{ } F(\psi) \rightarrow F(Q x \psi)$ for all $\psi \in L$ and $Q \in\{\forall, \exists\}$.

Then there is a polynomial R such that for all $\varphi \in L, U \vdash F(\varphi)$ by a proof of length $\leq R(|\varphi|)$.

Proof. We do not need to find the smallest possible polynomial bound R, which makes the proof quite simple. Take a constant $d \geq 2$ such that

1. for all $n \geq 2, P(n) \leq n^{d}$ and
2. for all $\varphi \in L, c \cdot|F(\varphi)| \leq|\varphi|^{d}$, where c is as in Remark 6.2.1 in the condition on the length of proofs.

Define the polynomial $R(n):=n^{d+2}$. We will prove by induction on the construction of φ that for all $\varphi \in L, U \vdash F(\varphi)$ by a proof of length $\leq R(|\varphi|)$.

Basic step By the assumption we know that for atomic formulas $\varphi, U \vdash F(\varphi)$ by a proof of length $\leq P(|\varphi|)$. But by definition of $d, P(|\varphi|) \leq|\varphi|^{d} \leq|\varphi|^{d+2}$.
ᄀ-step Suppose as induction hypothesis that $U \vdash F(\psi)$ by a proof of length $\leq|\psi|^{d+2}$. By assumption, $U \vdash F(\psi) \rightarrow F(\neg \psi)$ by a proof of length $\leq P(|\neg \psi|) \leq|\neg \psi|^{d}$ (where the last inequality holds because of clause 1 of the definition of d). Therefore by the first clause in the condition on the length of proofs in Remark 6.2.1, we have $U \vdash F(\neg \psi)$ by a proof of length $\leq|\psi|^{d+2}+|\neg \psi|^{d}+c \cdot|F(\neg \psi)| \leq|\psi|^{d+2}+|\neg \psi|^{d}+|\neg \psi|^{d}$ (where the last inequality holds by clause 2 of the definition of d). Since we assume that $|\neg \psi| \geq|\psi|+1$, we have $|\psi|^{d+2}+|\neg \psi|^{d}+|\neg \psi|^{d} \leq|\neg \psi|^{d+2}$ by an easy computation using the binomial theorem and the fact that $d \geq 2$.

Connective step Let $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$. Suppose as induction hypothesis that $U \vdash$ $F(\psi)$ by a proof of length $\leq|\psi|^{d+2}$, and $U \vdash F(\chi)$ by a proof of length $\leq|\chi|^{d+2}$. By assumption, $U \vdash F(\psi) \wedge F(\chi) \rightarrow F(\psi \circ \chi)$ by a proof of length $\leq P(|\psi \circ \chi|) \leq|\psi \circ \chi|^{d}$.
The second clause in the condition on the length of proofs in Remark 6.2.1 now implies that $U \vdash F(\psi \circ \chi)$ by a proof of length $\leq|\psi|^{d+2}+|\chi|^{d+2}+|\psi \circ \chi|^{d}+c$. $|F(\psi \circ \chi)| \leq|\psi|^{d+2}+|\chi|^{d+2}+|\psi \circ \chi|^{d}+|\psi \circ \chi|^{d}$ (where the last inequality holds by clause 2 in the definition of d).
Since we assume that $|\psi \circ \chi| \geq|\psi|+|\chi|+1$, we can again use the binomial theorem to show that $|\psi|^{d+2}+|\chi|^{d+2}+|\psi \circ \chi|^{d}+|\psi \circ \chi|^{d} \leq|\psi \circ \chi|^{d+2}$, as desired.

Quantifier step The quantifier steps are analogous to the \neg-step, so we leave them to the reader.

QED

Remark 6.2.3 For applications of lemma 6.2.2, we usually take $F(\psi)$ to be a schema involving ψ and ψ^{K}, where K is an interpretation. When we want to prove that some interpretation K of V into U is feasible, we can often use lemma 6.2.2 in the following way. Suppose all but a finite number of axioms of V have the form $\Phi(\psi)$, where Φ is a formula scheme. The feature we need in order to apply lemma 6.2.2 is the fact that both $|\Phi(\psi)|$ and $\left|\psi^{K}\right|$ are polynomial in $|\psi|$.

An adapted version of lemma 6.2 .2 works in case attention is restricted to Δ_{0}-formulas. An example of a function F for which the Δ_{0}-version of lemma 6.2.2 could be applied is the scheme $F(\psi):=\psi \leftrightarrow \psi^{K}$ for $\psi \in \Delta_{0}$, where K is a fixed interpretation such that $\left|\psi^{K}\right|$ is polynomial in $|\psi|$.

As a first example, in which we do not yet need lemma 6.2.2, we will show that the usual interpretation of I $\Delta_{0}+\Omega_{1}$ into I Δ_{0} by a cut is feasible.

Theorem 6.2.4 I $\Delta_{0} D_{f} \mathrm{I} \Delta_{0}+\Omega_{1}$ by a cut.
Proof. Let J be a cut constructed by Solovay's methods such that $\mathrm{I} \Delta_{0}$ proves that J is a cut closed under,$+ \cdot$, and ω_{1} (see lemma 2.6.10). Define φ^{J} to be the formula φ with all quantifiers restricted to J. It is well-known that J is an interpretation of $\mathrm{I} \Delta_{0}+\Omega_{1}$ into I Δ_{0}; so to show that it is a feasible interpretation, it suffices to find a polynomial P such that for all Δ_{0}-formulas φ, the following holds: by proofs of length $\leq P(|\ulcorner\varphi\urcorner|)$:

$$
\mathrm{I} \Delta_{0} \vdash^{P(|\ulcorner\varphi\urcorner|)}[\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \forall x \varphi(x)]^{J} .
$$

First, it is easy to see that there is a polynomial P_{1} such that for all Δ_{0}-formulas φ,
 a polynomial P_{2} such that for all Δ_{0}-formulas φ, the following holds:

$$
\mathrm{I} \Delta_{0} \vdash^{P_{2}(\mid\ulcorner\varphi \cdot \mid)} \forall a[\varphi(0) \wedge \forall x \leq a(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \forall x \leq a \varphi(x)] .
$$

In fact one uses only the induction axiom for $\forall x \leq a \varphi(x)$, the fact that $\forall a \forall x(S x \leq a \rightarrow$ $x \leq a$), and some predicate logic. Combining P_{1} with P_{2}, we then find a polynomial P_{3} such that for all Δ_{0}-formulas φ, the following holds:

$$
\mathrm{I} \Delta_{0} \stackrel{P_{3}(| |\ulcorner\varphi \mid)}{ }(\forall a[\varphi(0) \wedge \forall x \leq a(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \forall x \leq a \varphi(x)])^{J} .
$$

Now it is easy to find a polynomial P from P_{3} such that for all Δ_{0}-formulas φ, the following holds:

$$
\left.\mathrm{I} \Delta_{0}\right|^{P(\mid\ulcorner\varphi\urcorner)}[\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \forall x \varphi(x)]^{J} .
$$

We use only the fact that $\forall a(a \leq a)$ and some predicate logic. Thus, J is a feasible interpretation of I $\Delta_{0}+\Omega_{1}$ into I Δ_{0}. QED

Next, we will prove that the usual interpretation of $Z F+\mathrm{V}=\mathrm{L}$ into $Z F$ is feasible. Because $Z F$ consists of a finite list of axioms plus the schemata of separation and replacement, we can restrict our attention to feasibly proving these schemata relativized to the universe \mathbf{L} of constructible sets. We will first prove that the schema of separation relativized to \mathbf{L} follows feasibly from the reflection theorem for \mathbf{L}, and then give a feasible proof of the reflection theorem itself. Finally we give a proof of the schema of replacement relativized to \mathbf{L}. For the reflection schema, we will try to follow the elegant proof in terms of closed unbounded collections, which unfortunately becomes much less elegant when forced into the strait-jacket of the calculation of lengths. We will not stray far from the straightforward presentation given in [Ku 80], where all details about the constructible universe that we omit here can be found. The length $|\varphi|$ of a formula φ of $Z F$ is defined as the number of appearances of symbols in φ; without loss of generality, we can take the length of all variables to be 1 . Likewise, we define the length of a proof in $Z F$ to be the total number of symbols appearing in the proof. In the following lemmas, quantifiers in greek letters range over the ordinals, while those in roman letters range over all sets.

The next lemma corresponds to lemma IV.2.5 of [Ku 80].

Lemma 6.2.5 $Z F$ proves the following by proofs of length polynomial in $|\varphi|$:

$$
\begin{array}{ll}
\forall z, \vec{v} \in \mathbf{L} & \left\{x \in z \mid \varphi^{\mathbf{L}}(x, z, \vec{v})\right\} \in \mathbf{L} \rightarrow \\
& \forall z, \vec{v} \in \mathbf{L} \exists y \in \mathbf{L}\left[x \in y \leftrightarrow x \in z \wedge \varphi^{\mathbf{L}}(x, z, \vec{v})\right]
\end{array}
$$

Proof. Immediate; note that $(x \in y)^{\mathbf{L}}:=x \in y$, so the succedent is feasibly equivalent to the comprehension schema for φ, relativized to L. QED

The following lemma corresponds to a part of lemma VI.2.1 of [Ku 80].
Lemma 6.2.6 $Z F$ proves the following by proofs of length polynomial in $|\varphi|$:

$$
\begin{array}{ll}
\left(\forall \alpha \exists \beta>\alpha \forall z, x, \vec{v} \in \mathbf{L}_{\beta}\right. & \left.\left[\varphi^{\mathbf{L}}(x, z, \vec{v}) \leftrightarrow \varphi^{\mathbf{L}_{\beta}}(x, z, \vec{v})\right]\right) \rightarrow \\
& \forall z, \vec{v} \in \mathbf{L}\left\{x \in z \mid \varphi^{\mathbf{L}}(x, z, \vec{v})\right\} \in \mathbf{L}
\end{array}
$$

Proof. It is easy to see that the usual proof in $Z F$ is feasible: suppose

1. $\forall \alpha \exists \beta>\alpha \forall z, x, \vec{v} \in \mathbf{L}_{\beta}\left[\varphi^{\mathbf{L}}(x, z, \vec{v}) \leftrightarrow \varphi^{\mathbf{L}_{\beta}}(x, z, \vec{v})\right]$ and
2. $z, \vec{v} \in \mathrm{~L}$

From 2 it follows that there is an α such that $z, \vec{v} \in \mathbf{L}_{\alpha}$. Now let $\beta>\alpha$ be such that $\forall x \in \mathbf{L}_{\boldsymbol{\beta}}\left[\varphi^{\mathbf{L}}(x, z, \vec{v}) \leftrightarrow \varphi^{\mathbf{L}_{\boldsymbol{\beta}}}(x, z, \vec{v})\right]$. Then, using the fact that \mathbf{L} is transitive and that $x \in z$ is absolute for $\mathbf{L}_{\beta}, \mathrm{L}$, we find that

$$
\left\{x \in z \mid \varphi^{\mathbf{L}}(x, z, \vec{v})\right\}=\left\{x \in \mathbf{L}_{\beta} \mid(x \in z \wedge \varphi(x, z, \vec{v}))^{\mathbf{L}_{\boldsymbol{\beta}}}\right\} \in \operatorname{Def}\left(\mathbf{L}_{\beta}\right)=\mathbf{L}_{\beta+1}
$$

so $\left\{x \in z \mid \varphi^{\mathbf{L}}(x, z, \vec{v})\right\} \in \mathbf{L}$. QED
From lemma 6.2.5 and lemma 6.2.6, we conclude that in order to feasibly prove the comprehension schema, we only need polynomial length proofs of

$$
\forall \alpha \exists \beta>\alpha \forall z, x, \vec{v} \in \mathbf{L}_{\beta}\left[\varphi^{\mathbf{L}}(x, z, \vec{v}) \leftrightarrow \varphi^{\mathbf{L}_{\boldsymbol{\beta}}}(x, z, \vec{v})\right] .
$$

For a proof of this reflection theorem, we need a few more definitions.
Definition 6.2.7 A collection \mathcal{C} of ordinals is

- unbounded iff $\forall \alpha \exists \beta>\alpha(\beta \in \mathcal{C})$;
- closed iff $\forall a(a \neq \emptyset \wedge a \subseteq \mathcal{C} \rightarrow \sup a \in \mathcal{C})$;
- closed unbounded (c.u.b.) iff \mathcal{C} is both closed and unbounded.

Lemma 6.2.8 $Z F \vdash$ "If \mathcal{C} and \mathcal{D} are c.u.b., then $\mathcal{C} \cap \mathcal{D}$ is c.u.b. as well"
Proof. An easy application of lemma II. 6.8 of [Ku 80]. QED

Definition 6.2.9 A collection \mathcal{C} of ordinals is a closed unbounded φ-mirror iff

1. \mathcal{C} is closed unbounded, and
2. L_{α} reflects φ for all ordinals $\alpha \in \mathcal{C}$, i.e.
$\forall \alpha\left(\alpha \in \mathcal{C} \rightarrow \forall \vec{v} \in \mathbf{L}_{\alpha}\left[\varphi^{\mathbf{L}}(\vec{v}) \leftrightarrow \varphi^{\mathbf{L}_{\alpha}}(\vec{v})\right]\right)$

Suppose φ is a formula and \mathcal{D} is a first-order definable collection of ordinals. Using definition 6.2.7, we are able to construct new first-order formulas $C U B_{\mathcal{D}}, C U B_{\mathcal{D}, \varphi}$ and $R E F_{\varphi}$ with the following intended meanings:

1. $C U B_{\mathcal{D}}:=$ " \mathcal{D} is closed unbounded"
2. $C U B_{\mathcal{D}, \varphi}$:=" \mathcal{D} is a closed unbounded φ-mirror"
3. $R E F_{\varphi}:=$ "there is some collection of ordinals that is a closed unbounded φ-mirror"

The next lemma roughly corresponds to theorem IV.7.5 of [Ku 80].
Lemma 6.2.10 (Reflection theorem) ZF proves the following by proofs of length polynomial in $|\varphi|$:

$$
\forall \alpha \exists \beta>\alpha \forall z, x, \vec{v} \in \mathbf{L}_{\beta}\left[\varphi^{\mathbf{L}}(x, z, \vec{v}) \leftrightarrow \varphi^{\mathbf{L}_{\boldsymbol{\beta}}}(x, z, \vec{v})\right]
$$

Proof. First we note that $Z F$ proves $\left(\alpha<\beta \rightarrow \mathbf{L}_{\alpha} \subseteq \mathbf{L}_{\beta}\right)$, "if γ is a limit ordinal, then $\mathbf{L}_{\gamma}=\bigcup_{\alpha<\gamma} \mathbf{L}_{\alpha}$ " and $\mathbf{L}=\bigcup_{\alpha \in O R} \mathbf{L}_{\alpha}$.

We will prove the reflection theorem by induction on the construction of φ. A straightforward application of lemma 6.2.2 implies that for the reflection theorem to have a proof of length polynomial in $|\varphi|$, it is sufficient to find a polynomial bounding the lengths of the induction steps. Thus, we need to find a polynomial P such that by proofs of length $\leq P(|\varphi|)$, resp. $\leq P(|\neg \psi|)$, resp. $\leq P(|\psi \circ \chi|)$, resp. $\leq P(|Q x \psi|), Z F$ proves the following:

1. for atomic φ :

$$
\forall \alpha \exists \beta>\alpha \forall z, x \in \mathbf{L}_{\beta}\left[\varphi^{\mathbf{L}}(x, z) \leftrightarrow \varphi^{\mathbf{L}_{\boldsymbol{\beta}}}(x, z)\right] \wedge C U B_{O R, \varphi}
$$

2. the \neg-step:

$$
\begin{aligned}
& \forall \alpha \exists \beta>\alpha \forall \vec{v} \in \mathbf{L}_{\beta}\left[\psi^{\mathbf{L}}(\vec{v}) \leftrightarrow \psi^{\mathbf{L}_{\beta}}(\vec{v})\right] \wedge R E F_{\psi} \\
& \forall \alpha \exists \beta>\alpha \forall \vec{v} \in \mathbf{L}_{\beta}\left[\neg \psi^{\mathbf{L}}(\vec{v}) \leftrightarrow \neg \psi^{\mathbf{L}_{\boldsymbol{\beta}}}(\vec{v})\right] \wedge R E F_{\neg \psi}
\end{aligned} \rightarrow
$$

3. the connective step, where $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$:

$$
\begin{aligned}
& \forall \alpha \exists \beta>\alpha \forall \vec{v} \in \mathbf{L}_{\beta}\left[\psi^{\mathbf{L}}(\vec{v}) \leftrightarrow \psi^{\mathbf{L}_{\beta}}(\vec{v})\right] \wedge R E F_{\psi} \wedge \\
& \forall \alpha \exists \beta>\alpha \forall \vec{w} \in \mathbf{L}_{\beta}\left[\chi^{\mathbf{L}}(\vec{w}) \leftrightarrow \chi^{\mathbf{L}_{\beta}}(\vec{w})\right] \wedge R E F_{\chi} \\
& \forall \alpha \exists \beta>\alpha \forall \vec{v} \in \mathbf{L}_{\beta}\left[\psi^{\mathbf{L}} \circ \chi^{\mathbf{L}}(\vec{v}, \vec{w}) \leftrightarrow \psi^{\mathbf{L}_{\beta}} \circ \chi^{\mathbf{L}_{\beta}}(\vec{v}, \vec{w})\right] \wedge R E F_{\psi \circ \chi}
\end{aligned} \rightarrow
$$

4. the quantifier step, where $Q \in\{\exists, \forall\}$:

$$
\begin{array}{ll}
\forall \alpha \exists \beta>\alpha \forall z, \vec{v} \in \mathbf{L}_{\beta}\left[\psi^{\mathbf{L}}(z, \vec{v}) \leftrightarrow \psi^{\mathbf{L}_{\boldsymbol{\beta}}}(z, \vec{v})\right] \wedge R E F_{\psi} & \rightarrow \\
\forall \alpha \exists \beta>\alpha \forall v \in \mathbf{L}_{\beta}\left[Q z \in \mathbf{L} \psi^{\mathbf{L}}(z, \vec{v}) \leftrightarrow Q z \in \mathbf{L}_{\boldsymbol{\beta}} \psi^{\mathbf{L}_{\boldsymbol{\beta}}}(z, \vec{v})\right] & \wedge R E F_{Q_{z} \psi}
\end{array}
$$

Finding polynomials bounding the lengths of the proofs of 1,2 and 3 is very easy: we can use the feasibly provable fact that atomic formulas are absolute for any $\mathbf{L}_{\alpha}, \mathbf{L}$, some propositional reasoning independent on the specific ψ, χ, and an application of lemma 6.2 .8 for step 3. We will show how the proofs of the \exists-case in step 4 can be bounded by a polynomial; we can then find a bound for the \forall-step by rewriting \forall as $\neg \exists \neg$ and using the bounds for the \neg-step and the \exists-step.

Define

$$
\mathcal{D}:=\left\{\beta \mid \forall \vec{v} \in \mathbf{L}_{\beta}\left[\exists z \in \mathbf{L} \psi^{\mathbf{L}}(z, \vec{v}) \rightarrow \exists z \in \mathbf{L}_{\beta} \psi^{\mathbf{L}}(z, \vec{v})\right]\right\} .
$$

It is easy to see that $Z F$ proves the following by proofs of length polynomial in $|\exists z \psi|$:

$$
\begin{aligned}
& \forall \alpha \exists \beta>\alpha \forall z, \vec{v} \in \mathbf{L}_{\beta}\left[\psi^{\mathbf{L}}(z, \vec{v}) \leftrightarrow \psi^{\mathbf{L}_{\beta}}(z, \vec{v})\right] \wedge C U B_{C_{\psi}, \psi} \wedge C U B_{\mathcal{D}} \rightarrow \\
& \forall \alpha \exists \beta>\alpha \forall \vec{v} \in \mathbf{L}_{\beta}\left[\exists z \in \mathbf{L} \psi^{\mathbf{L}}(z, \vec{v}) \leftrightarrow \exists z \in \mathbf{L}_{\beta} \psi^{\mathbf{L}}(z, \vec{v})\right] \wedge C U B_{C_{\psi} \cap \mathcal{D}, \exists z \psi}
\end{aligned}
$$

In fact, we only use lemma 6.2 .8 and the fact that $\forall \beta\left(\mathrm{L}_{\beta} \subseteq \mathrm{L}\right)$. Thus we need to find a polynomial P such that $Z F \vdash C U B_{\mathcal{D}}$ by a proof of length $\leq P(|\exists z \psi|)$. Immediately from the definition, it is clear that $Z F \vdash$ " \mathcal{D} is closed" by a proof of length polynomial in $|\exists z \psi|$. Thus, it suffices to show by a proof of length polynomial in $|\exists z \psi|$ that $Z F$ proves that \mathcal{D} is unbounded, that is:

$$
\forall \alpha \exists \beta>\alpha \forall \vec{v} \in \mathbf{L}_{\beta}\left[\exists z \in \mathbf{L} \psi^{\mathbf{L}}(z, \vec{v}) \rightarrow \exists z \in \mathbf{L}_{\beta} \psi^{\mathbf{L}}(z, \vec{v})\right],
$$

i.e.

$$
\forall \alpha \exists \beta>\alpha \forall \vec{v} \in \mathbf{L}_{\beta} \exists z \in \mathbf{L}_{\beta}\left[\exists z \in \mathbf{L} \psi^{\mathbf{L}}(z, \vec{v}) \rightarrow \psi^{\mathbf{L}}(z, \vec{v})\right] .
$$

We will reason in $Z F$, taking care that all steps are applications of general $Z F$-theorem schemas that do not depend on the specific formula ψ. Take any ordinal α. We know using only predicate logic that

$$
\forall \vec{v} \in \mathbf{L}_{\alpha} \exists z \in \mathbf{L}\left[\exists z \in \mathbf{L} \psi^{\mathbf{L}}(z, \vec{v}) \rightarrow \psi^{\mathbf{L}}(z, \vec{v})\right] ;
$$

therefore,

$$
\forall \vec{v} \in \mathbf{L}_{\alpha} \exists!\alpha_{\vec{v}}\left(\alpha_{\vec{v}}=\bigcap\left\{\beta>\alpha \mid \exists z \in \mathbf{L}_{\beta}\left[\exists z \in \mathbf{L} \psi^{\mathbf{L}}(z, \vec{v}) \rightarrow \psi^{\mathbf{L}}(z, \vec{v})\right]\right\}\right)
$$

by the unrelativized replacement and union axioms, there is a β_{1} such that $\beta_{1}=\sup \left\{\alpha_{\vec{v}} \mid \vec{v} \in\right.$ $\left.\mathbf{L}_{\alpha}\right\}$. Continuing in this way, we can define by recursion a sequence β_{p} for $p \in \omega$, where for all $p \in \omega$,

$$
\begin{equation*}
\forall \vec{v} \in \mathbf{L}_{\beta_{p}} \exists z \in \mathbf{L}_{\beta_{p+1}}\left[\exists z \in \mathbf{L} \psi^{\mathbf{L}}(z, \vec{v}) \rightarrow \psi^{\mathbf{L}}(z, \vec{v})\right] \tag{6.2}
\end{equation*}
$$

Define $\beta:=\sup \left\{\beta_{p} \mid p \in \omega\right\}$. Because $\alpha=\beta_{0}<\beta_{1}<\beta_{2}<\ldots$, we infer that β is a limit ordinal $>\alpha$. Now using (6.2) and the fact that $\mathbf{L}_{\beta}=\bigcup_{\gamma<\beta} \mathbf{L}_{\gamma}$, we find that

$$
\forall \vec{v} \in \mathbf{L}_{\beta} \exists z \in \mathbf{L}_{\beta}\left[\exists z \in \mathbf{L} \psi^{\mathbf{L}}(z, \vec{v}) \rightarrow \psi^{\mathbf{L}}(z, \vec{v})\right]
$$

as desired. QED

Lemma 6.2.11 For all $\varphi, Z F$ feasibly proves the comprehension schema for φ, relativized to \mathbf{L}; i.e. by proofs of length polynomial in $|\varphi|, Z F$ proves the following:

$$
\forall z, \vec{v} \in \mathbf{L} \exists y \in \mathbf{L} \forall x \in \mathbf{L}\left[x \in y \leftrightarrow x \in z \wedge \varphi^{\mathbf{L}}(x, z, \vec{v})\right]
$$

Proof. Combine lemmas 6.2.5, 6.2.6 and 6.2.10. QED

Lemma 6.2.12 For all $\varphi, Z F$ feasibly proves the replacement schema for φ, relativized to \mathbf{L}; i.e. by proofs of length polynomial in $|\varphi|, Z F$ proves the following:

$$
\begin{aligned}
\forall a, \vec{v} \in \mathbf{L} & \forall x \in a \exists!y \in \mathbf{L} \varphi^{\mathbf{L}}(x, y, \vec{v}) \rightarrow \\
& \left.\exists c \in \mathbf{L} \forall y \in \mathbf{L}\left(y \in c \leftrightarrow \exists x \in a \varphi^{\mathbf{L}}(x, y, \vec{v})\right)\right]
\end{aligned}
$$

Proof. We already have feasible proofs of the relativized comprehension schema for the formula $y \in b \wedge \exists x \in a \varphi(x, y, \vec{v})$. So we can (feasibly) prove that it suffices to show the following by proofs of length polynomial in $|\varphi|$:

$$
Z F \vdash \forall a, \vec{v} \in \mathbf{L}\left[\forall x \in a \exists!y \in \mathbf{L} \varphi^{\mathbf{L}}(x, y, \vec{v}) \rightarrow \exists b \in \mathbf{L}\left(\forall x \in a \exists y \in b \varphi^{\mathbf{L}}(x, y, \vec{v})\right)\right]
$$

The last proof works, as in lemma 6.2.10, by general theorem schemas of $Z F$ that do not depend on the specific φ. Work in $Z F$ and suppose $a, \vec{v} \in \mathbf{L}$ and $\forall x \in a \exists!y \in \mathbf{L} \varphi^{\mathbf{L}}(x, y, \vec{v})$. Now

$$
\forall x \in a \exists!\beta_{x}\left(\beta_{x}=\bigcap\left\{\alpha \mid \exists y \in \mathbf{L}_{\alpha} \varphi^{\mathbf{L}}(x, y, \vec{v})\right\}\right) ;
$$

then by replacement and the union axiom we find β such that $\beta=\bigcup\left\{\beta_{x} \mid x \in a\right\}$, and we let b be L_{β}. Then

$$
\forall x \in a \exists y \in b \varphi^{\mathbf{L}}(x, y, \vec{v})
$$

QED

Theorem 6.2.13 $Z F \triangleright_{f} Z F+\mathbf{V}=\mathbf{L}$
Proof. We take the usual interpretation ${ }^{\mathbf{L}}$ of $Z F+\mathbf{V}=\mathbf{L}$ into $Z F$. Because $Z F$ is axiomatized by a finite list of axioms plus the schemata of comprehension and replacement, the lemmas 6.2.11 and 6.2.12 immediately imply that ${ }^{\mathbf{L}}$ is a feasible interpretation. QED

Remark 6.2.14 Looking carefully at the proofs of the lemmas leading up to theorem 6.2.13 and using an analog of lemma 6.2.2 for polynomial time instead of polynomial length, one can observe that theorem 6.2 .13 can be strengthened: the proofs in $Z F$ of the interpreted $Z F+\mathbf{V}=\mathbf{L}$-axioms $\varphi^{\mathbf{L}}$ are not only of length polynomial in $|\varphi|$. There is even a deterministic polynomial time Turing machine M such that if the input of M is the code of an axiom φ of $Z F+\mathbf{V}=\mathbf{L}$, then M outputs the code of a $Z F$-proof of $\varphi^{\mathbf{L}}$.

It is a known result that $P R A \vdash \operatorname{Con}(Z F) \rightarrow \operatorname{Con}(Z F+\mathbf{V}=\mathbf{L})$ (see [Sm 77, Corollary 5.2.4]). One of the referees suggested that by theorem 6.2 .13 this could perhaps be strengthened to $\mathrm{I} \Delta_{0}+\exp \vdash \operatorname{Con}(Z F) \rightarrow \operatorname{Con}(Z F+\mathrm{V}=\mathrm{L})$. The observation about the polynomial time computability of the proofs of the interpreted axioms, however, even leads to the conjecture that $\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \forall a\left(\alpha_{Z F+\mathbf{V}=\mathbf{L}}(a) \rightarrow \exists p \operatorname{Prf} f_{Z F}\left(p, a^{\mathbf{L}}\right)\right)$, where $\alpha_{Z F+\mathbf{V}=\mathbf{L}}$ is a Δ_{1}^{b}-formula axiomatizing $Z F+\mathbf{V}=\mathbf{L}$ (cf. [Bu 86, Theorem 5.6]). Then, by a standard argument (involving Parikh's Theorem), we would have I $\Delta_{0}+\Omega_{1} \vdash \operatorname{Con}(Z F) \rightarrow$ $\operatorname{Con}(Z F+\mathbf{V}=\mathbf{L})$.

Contrary to our expectations, the usual interpretation of $Z F+\mathbf{V} \neq \mathbf{L}$ into $Z F(M)$ (by forcing with generic extensions), although much more complex, is still feasible. We checked this following the lines of the proof in [Ku 80]. Our proof relies so heavily on the many details of Kunen's proof, that it would be incomprehensible to readers not conversant with that book. Therefore, we do not give it here.

In the literature there are also proofs of $Z F \triangleright Z F+\mathrm{V} \neq \mathrm{L}$ and $Z F+A C \triangleright Z F+A C+$ $\neg C H$ which entirely avoid the use of the transitive countable collection M. A sketch of such a proof can be found in [Co 66, Section IV.11], and a completely different full proof
in [VH 72, Ch. V, VI]. It appears that these proofs can also be analyzed to show that the interpretations in question are feasible.

Other well-known interpretations, such as the one of $P A$ into $Z F$, and those of I $\Delta_{0}+\Omega_{n}$ into Q [HP 93, Section V.5] are also feasible, as the reader may check for her/himself. All in all it seems that the only examples of theories U and V such that $U \triangleright V$ but not $U \triangleright_{f} V$ are contrived theories obtained by fixed-point constructions like the ones in section 6.4. It would be nice to find a more natural counterexample.

It would also be interesting to investigate severely restricted kinds of interpretability which do distinguish between interpretations used in everyday mathematics. For example, one could restrict the complexity of formulas allowed to occur in the proofs of the interpreted axioms.

Sam Buss suggested the following restricted definition of feasible interpretability to us:

$$
\begin{gather*}
U \triangleright_{f m} V \leftrightarrow \exists K \exists M(\text { " } K \text { is an interpretation and } M \text { is a deterministic } \\
\text { polynomial time Turing Machine" } \left.\wedge \forall a\left(\alpha_{V}(a) \rightarrow \operatorname{Prf} f_{U}\left(M(a), a^{K}\right)\right)\right) . \tag{6.3}
\end{gather*}
$$

This definition is more in line with the conventional use of the word "feasible" in the context of polynomial time computability. The clause $\operatorname{Prf} f_{U}\left(M(a), a^{K}\right)$ in (6.3) is a P-like formula, while the clause $\exists p\left("|p| \leq P(|a|)\right.$ " $\wedge \operatorname{Prf} f_{U}\left(p, a^{K}\right)$) in the definition of feasible interpretability used in this chapter is an $N P$-like formula. However, all interpretations considered in this section can also be shown to be feasible in Buss' sense: as in remark 6.2.14, we only need an easy analog of lemma 6.2.2.

6.3 Soundness of $I L M$ for feasible interpretability over $P A$

In this section, we restrict our attention to feasible interpretability over $P A$. We show that the modal interpretability logic $I L M$ is $P A$-sound even if the intended meaning of $A \triangleright B$ is " $P A+A$ feasibly interprets $P A+B$ ". The definition of $I L M$ can be found in section 2.5 .

Definition 6.3.1 A feasibility interpretation is a map * which assigns to every propositional variable p a sentence p^{*} of the language of $P A$, and which is extended to all modal formulas as follows:

1. $(A \triangleright B)^{*}=P A+A^{*} \triangleright_{f} P A+B^{*}$
2. $(\square A)^{*}=\operatorname{Prov}_{P A}\left(A^{*}\right)$
3. * distributes over the boolean connectives.

Here \triangleright_{f} abbreviates the formalization of feasible interpretability.
We will prove that $I L M$ is arithmetically sound for feasible interpretability, i.e. that for all modal formulas A, if $I L M \vdash A$, then for all feasibility interpretions *, $P A \vdash A^{*}$. Thus, we have to check that the axioms J 1 to J 5 are valid in $P A$ when $A \triangleright B$ is read as $P A+A \triangleright_{f} P A+B$. Whenever possible, we will prove generalizations of these axioms to theories $U, V \supseteq P A$. Also we prove a generalization of the property M, where an infinite set of Σ_{1}^{0}-sentences can be added on both sides instead of one \square-sentence only.

Lemma 6.3.2 PA proves all feasibility translations of $J 1$ to $J 5$.
Proof. The proofs for J1 through J4 can be found almost verbatim in [Vi b]. We reason in $P A$.

J1 Suppose for some theory V and some p that $\operatorname{Prf} f_{V}\left(p,{ }^{\ulcorner } A^{\urcorner}\right)$. Then by the identity interpretation and the polynomial bound $P(n)=n+|p|, V \triangleright_{f} V+A$. So in particular, if $\square_{P A}(A \rightarrow B)$, then $P A+A \triangleright_{f} P A+A+B$, and surely $P A+A \triangleright_{f}$ $P A+B$.

J2 Suppose

- $U \triangleright_{f} V$ by interpretation K_{1} and polynomial P_{1}, and
- $V \triangleright_{f} W$ by the interpretation K_{2} and polynomial P_{2}.

As in the usual case, $U \triangleright W$ by the interpretation $K_{1} \circ K_{2}$. We need to show that there is a polynomial bound for the proofs of the translated axioms. So let b code an axiom of W, and p a proof in V of $b^{K_{2}}$ with $|p| \leq P_{2}(|b|)$.
If we take the K_{1} - translations of all formulas appearing in the proof coded by p, and add some intermediate steps, we can construct a U-proof of $\left(b^{K_{2}}\right)^{K_{1}}$ from K_{1}-translations of axioms of V as assumptions; the number of steps in this proof will be $\leq k \cdot|p|$, where k is a constant depending on the translation K_{1}. Now we only have to add proofs of the translated V-axioms; the axioms themselves have codes of length $\leq|p|$, so their K_{1}-translations have proofs with codes of length $\leq P_{1}(|p|) \leq P_{1}\left(P_{2}(|b|)\right)$.
All in all, even in the worst case where the U-proof of $\left(b^{K_{2}}\right)^{K_{1}}$ consists wholly of assumptions, there is a q with $|q| \leq k \cdot P_{2}(|b|) \cdot P_{1}\left(P_{2}(|b|)\right)$ such that $\operatorname{Prf}_{U}\left(q,\left(b^{K_{2}}\right)^{K_{1}}\right)$. In particular, if $P A+A \triangleright_{f} P A+B$ and $P A+B \triangleright_{f} P A+C$, then $P A+A \triangleright_{f} P A+C$.

J3 Suppose

- $U+A \triangleright_{f} V$ by interpretation K_{1} and polynomial P_{1}, and
- $U+B \triangleright_{f} V$ by interpretation K_{2} and polynomial P_{2}.

As in the usual case, we have $U+A \vee B \triangleright V$ by the disjunctive interpretation M which equals K_{1} in case A holds and equals K_{2} in case $\neg A$ holds. To find a polynomial bound, we observe that for all $C, \vdash A \rightarrow\left(C^{M} \leftrightarrow C^{K_{1}}\right)$ and $\vdash \neg A \rightarrow\left(C^{M} \leftrightarrow C^{K_{2}}\right)$ by proofs of length $\leq P(|C|)$, where the polynomial P depends on K_{1} and K_{2}. Now suppose that c codes an axiom of V, that p_{1} codes a $U+A$-proof of $c^{K_{1}}$ with $\left|p_{1}\right| \leq P_{1}(|c|)$, and that p_{2} codes a $U+B$-proof of $c^{K_{2}}$ with $\left|p_{2}\right| \leq P_{2}(|c|)$. But then there is a constant k such that

- we can find p_{1}^{\prime} such that $\operatorname{Pr} f_{U}\left(p_{1}^{\prime},\left\ulcorner A \rightarrow{ }^{\urcorner} c^{M}\right)\right.$ with $\left|p_{1}^{\prime}\right| \leq k \cdot\left(|c|+P(|c|)+P_{1}(|c|)\right)$; and
- we can find p_{2}^{\prime} such that $\operatorname{Prf} f_{U}\left(p_{2}^{\prime},\left\ulcorner\neg A \wedge B \rightarrow{ }^{\urcorner} c^{M}\right)\right.$ with $\left|p_{2}^{\prime}\right| \leq k \cdot(|c|+P(|c|)+$ $\left.P_{2}(|c|)\right)$.

Combining p_{1}^{\prime} and p_{2}^{\prime} and their respective polynomial bounds, we find p and P^{\prime} such that $\operatorname{Prf} f_{U}\left(p,\left\ulcorner A \vee B \rightarrow{ }^{\urcorner} c^{M}\right)\right.$ with $|p| \leq P^{\prime}(|c|)$. Thus $U+A \vee B \triangleright_{f} V$.
In particular, we have: if $P A+A \triangleright_{f} P A+C$ and $P A+B \triangleright_{f} P A+C$, then $P A+A \vee B \triangleright_{f} P A+C$.

J4 Because $\left(P A+A \triangleright_{f} P A+B\right) \rightarrow(P A+A \triangleright P A+B)$, we have by the soundness of J 4 for normal interpretability immediately $\left(P A+A \triangleright_{f} P A+B\right) \rightarrow(\diamond A \rightarrow \diamond B)$.

J5 In an easier variation of lemma 6.5.11, we use a claim proved in [Vi 91b], which is stated in our chapter as lemma 6.5.10. Suppose β is a Σ_{1}^{b}-formula axiomatizing a subset U of a Σ_{1}^{b}-language L. We will prove that $\mathrm{I} \Delta_{0}+\Omega_{1}+\nabla_{\beta} T \nabla_{f} U$ i.e. $\mathrm{I} \Delta_{0}+\Omega_{1}+\nabla_{U}{ }^{\top} \nabla_{f} U$.
By lemma 6.5.10, there is a polynomial P_{1} such that

$$
\begin{aligned}
P A \vdash & \square_{\mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}(\beta)} \operatorname{Con}(\beta) \rightarrow \\
& \exists K \forall a \in \operatorname{Sent}(L)\left[\mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}(\beta) \vdash^{P_{1}(|a|)}\left(\left\ulcorner\square_{\beta} a \rightarrow\right\urcorner a^{K}\right)\right] .
\end{aligned}
$$

Of course we also know that $P A \vdash \square_{I \Delta_{0}+\Omega_{1}+\operatorname{Con}(\beta)} \operatorname{Con}(\beta)$, so

$$
P A \vdash \exists K \forall a \in \operatorname{Sent}(L)\left[I \Delta_{0}+\Omega_{1}+\operatorname{Con}(\beta) \vdash^{P_{1}(|a|)}\left(\left\ulcorner\square_{\beta} a \rightarrow\right\urcorner^{K}\right)\right] .
$$

On the other hand, by provable Σ_{1}^{b}-completeness there exists a polynomial P_{2} such that

$$
P A \vdash \forall a\left(\beta(a) \rightarrow\left[\mathrm{I} \Delta_{0}+\Omega_{1}+\operatorname{Con}(\beta) \vdash^{P_{2}(|a|)}\left(\left\ulcorner\square_{\beta} a\right\urcorner\right)\right]\right) .
$$

Combining the last two results, we have a polynomial P_{3} such that

$$
P A \vdash \exists K \forall a\left(\beta(a) \rightarrow\left[I \Delta_{0}+\Omega_{1}+\operatorname{Con}(\beta) \vdash^{P_{3}(|a|)}\left(a^{K}\right)\right]\right),
$$

so $P A \vdash\left(\mathrm{I} \Delta_{0}+\Omega_{1}+\nabla_{\beta} \top\right) \triangleright_{f} U$. In particular, we have for any sentence A :

$$
P A \vdash\left(\mathrm{I} \Delta_{0}+\Omega_{1}+\diamond_{P A} A\right) \triangleright_{f} P A+A,
$$

thus

$$
P A \vdash\left(P A+\diamond_{P A} A\right) \triangleright_{f} P A+A .
$$

QED
We want to prove that Montagna's principle M holds for feasible interpretability over $P A$ in its general version, where we can add an infinite set of Σ_{1}^{0}-sentences on both sides. In order to ensure that the usual arguments can indeed be polynomialized, we do not formulate the proof in the usual model-theoretic way, and we give many details that are not given in most proofs of Montagna's property for normal interpretability over $P A$. The example we give in theorem 6.4.1 of a set \mathcal{S} of formulas such that $P A \vdash P A \triangleright P A+\mathcal{S}$ but $\omega \not \vDash P A \triangleright_{f} P A+\mathcal{S}$ also relies heavily on these details.

Suppose $U \supseteq P A, V \supseteq P A$. Now suppose $U \triangleright_{f} V$ by the interpretation K (preserving $=$) with domain δ, and polynomial P. We want to find a polynomial Q such that for every Σ_{1}^{0}-sentence σ there is a $U+\sigma$-proof p of σ^{K} with $|\ulcorner p\urcorner| \leq Q\left(\left|{ }^{\ulcorner } \sigma^{\urcorner}\right|\right)$. First, we need some definitions and lemmas. Fix U, V, K, P as given above.

Definition 6.3.3 Define $p i s m(s)$ for " s is a partial isomorphism" and the function $G(j, y)$ as follows:

$$
\begin{aligned}
& \operatorname{pism}(s):=\operatorname{seq}(s) \wedge(s)_{0}=0^{K} \wedge \forall i<\operatorname{lh}(s)-1\left((s)_{i+1}=S^{K}(s)_{i}\right) \\
& G(j, y):=\exists s\left(\operatorname{pism}(s) \wedge \operatorname{lh}(s)=j+1 \wedge(s)_{j}=y\right)
\end{aligned}
$$

Lemma 6.3.4 $U \vdash \forall j \exists!s(\operatorname{pism}(s) \wedge \operatorname{lh}(s)=j+1)$ and thus $U \vdash \forall j \exists!y G(j, y)$. Therefore, there is a function g corresponding to G.

Proof. By induction. QED

Lemma 6.3.5 U proves that g is injective, and $U \vdash \forall j \forall y(G(j, y) \rightarrow \delta(y))$.
Proof. By induction. QED

Lemma 6.3.6 U proves that g preserves $0, S,+, \cdot$, and \leq.
Proof. We will give some of the preservation proofs. It follows immediately from the definition of $\operatorname{pism}(s)$ that $U \vdash g(0)=0^{K}$ and $U \vdash \forall x\left(g(S x)=S^{K}(g(x))\right)$.

We now prove by induction that g preserves + . (The proof for \cdot is analogous, and in the case of \leq we can use the fact that \leq is expressible via + .)

We have $U \vdash g(x+0)=g(x)=g(x)+{ }^{K} 0^{K}=g(x)+{ }^{K} g(0)$ and $U \vdash g(x+y)=$ $g(x)+{ }^{K} g(y) \rightarrow g(x+S y)=g(S(x+y))=S^{K}(g(x+y))=S^{K}\left(g(x)+{ }^{K} g(y)\right)=g(x)+{ }^{K}$ $S^{K}(g(y))=g(x)+{ }^{K} g(S y)$, So by induction on $y, U \vdash \forall x \forall y\left(g(x+y)=g(x)+{ }^{K} g(y)\right)$. QED

Lemma 6.3.7 The range of g is 'closed downwards', i.e. $U \vdash \forall x \forall u\left(\delta(u) \wedge u<^{K} g(x) \rightarrow\right.$ $\exists y<x(u=g(y)))$.

Proof. Before we start the proof proper, we note a useful fact. V includes $P A$ and K is an interpretation of V into U. Thus, as

1. $P A \vdash \forall x \forall u(u<x+1 \rightarrow u<x \vee u=x)$ and
2. $U \vdash \forall x\left(g(x)+{ }^{K} 1^{K}=g(x+1)\right)$, we also have
3. $U \vdash \forall x \forall u\left(\delta(u) \wedge u<{ }^{K} g(x+1) \rightarrow u<^{K} g(x) \vee u=g(x)\right)$.

Now we can start with the proof by induction on x that $U \vdash \forall x \forall u\left(\delta(u) \wedge u<^{K} g(x) \rightarrow\right.$ $\exists y<x(u=g(y)))$.
$\mathbf{x}=\mathbf{0}$ We have $U \vdash \neg \exists u\left(\delta(u) \wedge u<^{K} g(0)\right)$, so $U \vdash \forall u\left(\delta(u) \wedge u<^{K} g(0) \rightarrow \exists y<0(u=\right.$ $g(y))$).

Induction step Work in U and suppose $\forall u\left(\delta(u) \wedge u<^{K} g(x) \rightarrow \exists y<x(u=g(y))\right)$ (induction hypothesis). Moreover, suppose $\delta(u) \wedge u<^{K} g(x+1)$. Then, by 3, $u<^{K} g(x) \vee u=g(x)$. So by the induction hypothesis $\exists y<x(u=g(y)) \vee u=g(x)$, i.e. $\exists y<x+1(u=g(y))$.

QED

Remark 6.3.8 Let $I(x)$ be the formula $\exists y(x=g(y))$. Note that if $U \forall \forall x \delta(x)$, then U does not prove that I defines a cut. For, suppose that $U \vdash I(0) \wedge \forall x(I(x) \rightarrow I(x+$ $1)$). Then induction gives $U \vdash \forall x \exists y(x=g(y))$, thus, by lemma 6.3.5, $U \vdash \forall x \delta(x)$, contradicting our assumption.

On the other hand, by the previous lemma we do have $U \vdash \forall x \forall u\left(\delta(u) \wedge I(x) \wedge u<^{K}\right.$ $x \rightarrow I(u))$.

Lemma 6.3.9 For all formulas $\varphi \in \Delta_{0}, U$ proves the following by proofs of length polynomial in $\left|\left\ulcorner\varphi\left(x_{1}, \ldots, x_{n}\right)\right\urcorner\right|$:

$$
\varphi\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow\left(\varphi^{K}\right)\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)
$$

Proof. By induction on the construction of φ. We will see below that the proofs for the atomic formulae ψ are obviously of length linear in $\mid\ulcorner\psi\urcorner$, and that all induction steps follow a given proof scheme in which the particular formulas at hand can be plugged in. So, because every φ has at most $\mid \Gamma \varphi\urcorner \mid$ subformulas, there is a polynomial R such that for all φ, the U - proof of $\varphi\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow\left(\varphi^{K}\right)\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)$ is of length $\leq R\left(\left.\right|^{\ulcorner } \varphi^{\urcorner} \mid\right)$. We will do the atomic step and the $\forall x \leq t$-step of the proof, and leave the others to the reader.

Atomic step By lemma 6.3.6, we have for all terms t by proofs of length polynomial in $|\ulcorner t\urcorner|:$

$$
U \vdash \forall x_{1}, \ldots, x_{n}\left(g\left(t\left(x_{1}, \ldots, x_{n}\right)\right)=\left(t^{K}\right)\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)\right) .
$$

So suppose φ is the formula $t_{1}\left(x_{1}, \ldots, x_{n}\right)=t_{2}\left(x_{1}, \ldots, x_{n}\right)$ where x_{1}, \ldots, x_{n} include all variables appearing in t_{1} and t_{2}. Then, because U proves that g is an injective function,

$$
\begin{aligned}
t_{1}\left(x_{1}, \ldots, x_{n}\right) & =t_{2}\left(x_{1}, \ldots, x_{n}\right) \\
\leftrightarrow g\left(t_{1}\left(x_{1}, \ldots, x_{n}\right)\right) & =g\left(t_{2}\left(x_{1}, \ldots, x_{n}\right)\right) \\
\leftrightarrow\left(t_{1}^{K}\right)\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right) & =\left(t_{2}^{K}\right)\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right) \\
\leftrightarrow\left(\left(t_{1}\right.\right. & \left.\left.=t_{2}\right)^{K}\right)\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)
\end{aligned}
$$

$\forall \mathbf{x} \leq \mathbf{t}$-step Suppose that $\varphi\left(x_{1}, \ldots, x_{n}\right)=\forall x \leq t\left(x_{1}, \ldots, x_{n}\right) \psi\left(x, x_{1}, \ldots, x_{n}\right)$, and that $U \vdash \psi\left(x, x_{1}, \ldots, x_{n}\right) \leftrightarrow\left(\psi^{K}\right)\left(g(x), g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)$ (induction hypothesis). We will use the fact that, because of lemmas 6.3.5, 6.3.6 and 6.3.7, by proofs of length polynomial in $|\ulcorner t\urcorner|$:

$$
\begin{aligned}
U \vdash \forall u, x_{1}, \ldots, x_{n} & \left(\exists x\left[x \leq t\left(x_{1}, \ldots, x_{n}\right) \wedge u=g(x)\right]\right. \\
& \left.\leftrightarrow \delta(u) \wedge u \leq^{K} t^{K}\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)\right) .
\end{aligned}
$$

Thus, we have the following equivalences by proofs of length polynomial in $\left|\left\ulcorner\varphi\left(x_{1}, \ldots, x_{n}\right)\right\urcorner\right|:$

$$
\begin{aligned}
U \vdash & \varphi\left(x_{1}, \ldots, x_{n}\right) \\
& \leftrightarrow \forall x \leq t\left(x_{1}, \ldots, x_{n}\right) \psi\left(x, x_{1}, \ldots, x_{n}\right) \\
& \leftrightarrow \forall x \leq t\left(x_{1}, \ldots, x_{n}\right)\left(\psi^{K}\right)\left(g(x), g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right) \quad \text { (by ind. hyp.) } \\
& \leftrightarrow \forall u\left(\delta(u) \wedge u \leq t^{K}\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right) \rightarrow \psi^{K}\left(u, g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)\right) \\
& \left.\leftrightarrow(\forall x \leq t \psi)^{K}\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right) \quad \text { (by def. of } K\right) \\
& \leftrightarrow(\varphi)^{K}\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right) . \text { QED } \quad
\end{aligned}
$$

Now we can finish the proof of the uniform version of Montagna's property M for feasible interpretability.

Theorem 6.3.10 Suppose

- U satisfies full induction,
- V extends $P A$ in its language and
- $U \triangleright_{f} V$ by interpretation K (preserving =) and polynomial P.

Then there is a polynomial Q such that for every Σ_{1}^{0}-sentence σ there is a $U+\sigma$-proof p of σ^{K} with $|\ulcorner p\urcorner| \leq Q(|\ulcorner\sigma\urcorner|)$.

Thus, $U+\mathcal{S} \triangleright_{f} V+\mathcal{S}$ where \mathcal{S} is a finite or infinite Σ_{1}^{b}-set of Σ_{1}^{0}-sentences.
Proof. Suppose $\sigma \in \mathcal{S}$ is the Σ_{1}^{0}-sentence $\exists x \varphi(x)$, where $\varphi \in \Delta_{0}$. By lemma 6.3.9, there is a polynomial R such that we can prove the following by a proof of length $\leq R(|\ulcorner\sigma\urcorner|)$:

$$
\begin{aligned}
U \vdash \exists x \varphi(x) & \rightarrow \exists x \varphi^{K}(g(x)) \\
& \rightarrow \exists y\left(\delta(y) \wedge \varphi^{K}(y)\right) \\
& \rightarrow(\exists x \varphi(x))^{K} .
\end{aligned}
$$

Now we have $U+\mathcal{S} \triangleright_{f} V+\mathcal{S}$ by the interpretation K and polynomial $Q:=P+R$. QED

All results of this section also hold if we add the function symbol exp to the language of U and V, which we need in theorem 6.4.1. Let g be as defined in lemma 6.3.4. We will only give the result which needs some adaptation. The following preservation lemma corresponds to lemma 6.3.6:

Lemma 6.3.11 Suppose exp $\in L_{U}$. Then U proves that g preserves $0, S,+, \cdot, \leq$, and exp.
Proof. We already have a preservation proof for • by lemma 6.3.6. Preservation of exp then follows in the same way as preservation of + was proved from preservation of S in lemma 6.3.6. QED

6.4 Interpretability does not imply feasible interpretability

Theorem 6.4.1 There is a set \mathcal{S} of $\Delta_{0}(e x p)$-sentences such that $P A \vdash P A \triangleright P A+\mathcal{S}$, but $\omega \not \vDash P A \triangleright_{f} P A+\mathcal{S}$.

Proof. Define by Gödel's diagonalization theorem (or rather by the free variable version as formulated by Montague) a $\Delta_{0}(e x p)$-formula $\varphi(y)$ such that

$$
P A \vdash \varphi(y) \leftrightarrow \forall x \leq y \neg \operatorname{Prf}\left(x,\left\ulcorner\varphi(\bar{y})^{\urcorner}\right) .\right.
$$

It is easy to see that if we diagonalize directly, there is a polynomial O such that for each $n,|n|<\mid\left\ulcorner\varphi(\bar{n})^{\urcorner} \mid \leq O(|n|)\right.$. Moreover, if $\varphi(\bar{n})$ were false, then by definition we would have a proof of the $\Delta_{0}(e x p)$-sentence $\varphi(\bar{n})$; so $\varphi(\bar{n})$ must be true. But then, since $\varphi(\bar{n})$ is $\Delta_{0}(e x p)$, we have the following:

1. $P A$ proves $\varphi(\bar{n})$, though
2. because $\varphi(\bar{n})$ is true, $P A$ does not prove $\varphi(\bar{n})$ by any proof whose Gödel number is of length $\leq n$.

Define $\mathcal{S}:=\{\varphi(\bar{n}) \mid n \in \omega\}$. Then, by the identity interpretation, $\omega \models P A \triangleright P A+\mathcal{S}$. Actually, as in [JM 88, section 6], we even have $P A \vdash \forall y \operatorname{Prov}(\ulcorner\varphi(\bar{y})\urcorner)$, so $P A \vdash P A \triangleright$ $P A+\mathcal{S}$.

Now suppose, in order to derive a contradiction, that $\omega \models P A \triangleright_{f} P A+\mathcal{S}$ by interpretation K and polynomial P. Thus, for all n,

$$
P A \vdash \varphi(\bar{n})^{K} \text { by a proof of length } \leq P\left(\mid\left\ulcorner\varphi(\bar{n})^{\urcorner} \mid\right)\right. \text {. }
$$

We also know by lemma 6.3 .9 (with $U=V=P A$) that there is a polynomial R such that for every n,

$$
P A \vdash \varphi(\bar{n}) \leftrightarrow \varphi(\bar{n})^{K} \text { by a proof of length } \leq R(|\ulcorner\varphi(\bar{n})\urcorner|) \text {. }
$$

Now we can construct from R and P a polynomial Q such that for all n,

$$
P A \vdash \varphi(\bar{n}) \text { by a proof of length } \leq Q(|\ulcorner\varphi(\bar{n})\urcorner|) \text {. }
$$

However, there will be n such that $n>Q(O(|n|)) \geq Q\left(\left.\right|^{\ulcorner } \varphi(\bar{n})^{\urcorner} \mid\right)$, and we have a contradiction with 2. QED

A salient feature of the counterexample above is the trivial identity interpretation by which $P A$ interprets $P A+\mathcal{S}$. To prove that interpretability does not imply feasible interpretability, it is not essential that the set of formulas added to $P A$ be infinite like \mathcal{S} above. In theorem 6.4 .2 we show a counterexample where one sentence can be normally but not feasibly interpreted over $P A$. Of course in this case the normal interpretation cannot be the identity. The counterexample also shows that in general we cannot feasibly merge two compatible cases of feasible interpretability; i.e. it is not true that if $U \triangleright_{f} V$, $U \triangleright_{f} B$ and $U \triangleright V+B$, then $U \triangleright_{f} V+B$ (take $U=V=P A, B=A(n)$ or $B=E^{*}$ as below in the proof of theorem 6.4.2).

Theorem 6.4.2 There is a sentence A such that $\omega \vDash P A \triangleright P A+A$, but $\omega \not \vDash P A \triangleright_{f}$ $P A+A$.

In order to prove theorem 6.4.2, we need a well-known result and its proof, given in theorem 6.4.4 below. Solovay proved that the set $\{A \mid P A \triangleright P A+A\}$ is Π_{2}^{0}-complete [So 76b]. This result inspired Hájek to prove that, for every n, the set $\left\{A \mid A\right.$ is Π_{n+1}^{0}-conservative over $P A$ \} is also Π_{2}^{0}-complete [Há 79b].

We have adapted the proof of theorem 6.4.4 from Visser's unpublished rendition of an alternative proof by Lindström of Hájek's general result (see [Vi 90b]). First we need a definition.

Definition 6.4.3 Define $\square_{U, x} B$ for "there is a proof of the formula B which only uses those axioms of U with Gödel number $\leq x$." Then define $\square_{U}^{*} B:=\exists x \square_{U, x} B$.

Theorem 6.4.4 Suppose U is a theory extending $P A$ in the language of $P A$, such that for all $B, P A \vdash \forall x \square_{U}\left(\square_{U, x} B \rightarrow B\right)$ (reflection for U). Then for every Π_{2}-predicate $P(x)$, there is a formula A such that

$$
P A \vdash \diamond_{U} \top \rightarrow \forall x((U \triangleright U+A(x)) \leftrightarrow P(x)) .
$$

Proof.
The proof is taken almost verbatim from [Vi 90b].
Let $P(x)$ be any Π_{2}-predicate, say $P(x)=\forall x S(x, y)$, with $S \in \Sigma_{1}^{0}$. Pick R by diagonalization such that $P A \vdash R(x, y) \leftrightarrow S(x, y) \preceq \square_{U} R(x, y)$. Let $Q(x, y):=\square_{U} R(x, y) \preceq$ $S(x, y)$. Now we can prove the following:

$$
\begin{equation*}
P A \vdash \forall x \forall y\left(\square_{U} R(x, y) \leftrightarrow S(x, y) \vee \square_{U} \perp\right) . \tag{6.4}
\end{equation*}
$$

In order to prove (6.4), work inside $P A$ and suppose $\square_{U} R(x, y)$. Then either $R(x, y)$ or $Q(x, y)$ holds. In case that $R(x, y)$ holds we have $S(x, y)$ by definition. In case that $Q(x, y)$ holds we have $\square_{U} Q(x, y)$ by Σ_{1}^{0}-completeness, and hence by definition both $\square_{U} R(x, y)$ and $\square_{U} \neg R(x, y)$, thus $\square_{U} \perp$.

For the other direction, suppose $S(x, y)$. Again we have either $R(x, y)$ or $Q(x, y)$. From $R(x, y)$ we find $\square_{U} R(x, y)$ by Σ_{1}^{0}-completeness. From $Q(x, y)$ we immediately derive $\square_{U} R(x, y)$. Finally $\square_{U} \perp$ gives $\square_{U} R(x, y)$ as well. This finishes the proof of (6.4).

Define A by diagonalization such that $P A \vdash A(x) \leftrightarrow \square_{U}^{*} \neg A(x) \preceq \exists y \neg R(x, y)$. Note that by (6.4) we have $P A \vdash \diamond_{U} \top \rightarrow \forall x\left[\forall y \square_{U} R(x, y) \rightarrow P(x)\right]$ and $P A \vdash \forall x[P(x) \rightarrow$ $\forall y \square_{U} R(x, y)$. For this A, we can prove

$$
\begin{equation*}
P A \vdash \diamond_{U} \top \rightarrow \forall x((U \triangleright U+A(x)) \leftrightarrow P(x)) . \tag{6.5}
\end{equation*}
$$

First note that reflection for U allows us to apply the Orey-Hájek theorem in order to conclude that $P A \vdash \forall x\left(\forall y \square_{U} \diamond_{U, y} A(x) \leftrightarrow(U \triangleright U+A(x))\right)$.

We start the proof proper of (6.5). Work in $P A$ and suppose $\diamond_{U} \top$.
\rightarrow-side Pick any x and suppose $U \triangleright U+A(x)$. Then by the Orey-Hájek theorem $\forall y \square_{U} \diamond_{U, y} A(x)$. We will prove $\forall y \square_{U} R(x, y)$. Pick any y. We have $\square_{U}[Q(x, y) \rightarrow$ $\neg R(x, y)$]; therefore by definition of A,

$$
\square_{U}\left[Q(x, y) \rightarrow \neg A(x) \vee \square_{U, y} \neg A(x)\right]
$$

and hence by reflection

$$
\square_{U}[Q(x, y) \rightarrow \neg A(x)] .
$$

But then there is a v such that

$$
\square_{U, v}[Q(x, y) \rightarrow \neg A(x)],
$$

so by Σ_{1}^{0} - completeness

$$
\square_{U} \square_{U, v}[Q(x, y) \rightarrow \neg A(x)] .
$$

Also by Σ_{1}^{0}-completeness, there is a w such that

$$
\square_{U}\left[Q(x, y) \rightarrow \square_{U, w} Q(x, y)\right] .
$$

Combining the previous two facts, we find a u such that

$$
\square_{U}\left[Q(x, y) \rightarrow \square_{U, u} \neg A(x)\right],
$$

and thus, by the assumption, $\square_{U} \neg Q(x, y)$. It follows that

$$
\square_{U}\left[\square_{U} R(x, y) \rightarrow R(x, y)\right]
$$

hence by Löb's theorem $\square_{U} R(x, y)$. We may conclude $\forall y \square_{U} R(x, y)$, thus, because we have $\nabla_{U}{ }^{\top}$, we conclude $P(x)$.
\leftarrow side Pick an x and suppose $P(x)$. Then $\forall y \square_{U} R(x, y)$ and thus $\forall y \square_{U}(\forall z<y R(x, z))$.
It follows by definition of A that

$$
\forall y \square_{U}\left(\square_{U, y} \neg A(x) \rightarrow A(x)\right) .
$$

On the other hand, we have

$$
\forall y \square_{U}\left(\square_{U, y} \neg A(x) \rightarrow \neg A(x)\right)
$$

by reflection, hence $\forall y \square_{U}\left(\diamond_{U, y} A(x)\right)$. But then by the Orey-Hájek theorem $U \triangleright$ $U+A(x)$.

This finishes the proof of (6.5), and thus of the theorem. QED
Proof of theorem 6.4.2. Let $P(x)$ be some Π_{2}^{0}-complete formula, say $P(x)=\forall y S(x, y)$, with $S \in \Sigma_{1}^{0}$. Define the formulas R and A by diagonalization such that

$$
P A \vdash R(x, y) \leftrightarrow S(x, y) \preceq \square_{P A} R(x, y)
$$

and

$$
P A \vdash A(x) \leftrightarrow \square_{P A}^{*} \neg A(x) \preceq \exists y \neg R(x, y),
$$

where \square^{*} is as defined in definition 6.4.3.
Carrying out the proof of theorem 6.4.4 in True Arithmetic, and taking the theory U mentioned there to be $P A$, we find the following result: if $P A$ is consistent (as we believe it to be), then

$$
\omega \models \forall x((P A \triangleright P A+A(x)) \leftrightarrow P(x)) .
$$

Now suppose, to derive a contradiction, that

$$
\omega \models \forall x\left[(P A \triangleright P A+A(x)) \leftrightarrow\left(P A \triangleright_{f} P A+A(x)\right)\right] .
$$

Then

$$
\omega \models \forall x\left[\left(P A \triangleright_{f} P A+A(x)\right) \leftrightarrow P(x)\right] .
$$

However, it is easy to see that $P A \triangleright_{f} P A+A(x)$ is a Σ_{2}^{0}-predicate, contradicting the Π_{2}^{0}-completeness of P. Therefore, there is an $n \in \omega$ such that

- $\omega \models P A \triangleright P A+A(\bar{n})$ but
- $\omega \nLeftarrow P A \triangleright_{f} P A+A(\bar{n})$.

By this method we do not immediately find the value of a particular n that works, however.
A. Visser pointed out that we can make a specific counterexample in a more direct way using the Lindström method. Because $\{e \mid e$ is the Gödel number of a sentence E such that $\left.\neg\left(P A \triangleright_{f} P A+E\right)\right\} \in \Pi_{2}^{0}$, we can construct a formula A as in theorem 6.4.4 for which the following holds: for all sentences E,

$$
\omega \vDash \neg\left(P A \triangleright_{f} P A+E\right) \leftrightarrow P A \triangleright P A+A(\ulcorner E\urcorner)
$$

Now let E^{*} be the sentence constructed by the fixed point theorem such that

$$
P A \vdash E^{*} \leftrightarrow A\left(\left\ulcorner E^{*}\right\urcorner\right)
$$

Then

$$
\omega \models \neg\left(P A \triangleright_{f} P A+E^{*}\right) \leftrightarrow P A \triangleright P A+E^{*} .
$$

Therefore,

$$
\omega \models P A \triangleright P A+E^{*} \text { and } \omega \not \models P A \triangleright_{f} P A+E^{*} .
$$

Incidentally, such a specific counterexample can also be constructed by a straightforward adaptation to Π_{2}^{0} of a theorem of Myhill (see [Od 89, Proposition III.6.2]).

6.5 $I L M$ is the logic of feasible interpretability over $P A$

In this section, we will show that Berarducci's proof of the arithmetic completeness of $I L M$ with respect to interpretability over $P A$ can be adapted to prove that $I L M$ is also arithmetically complete with respect to feasible interpretability over $P A$.

We have already proved in section 6.3 that for all modal formulas in the language of $I L M$ we have:
if $I L M \vdash \varphi$, then for all feasibility interpretations *, $P A \vdash \varphi^{*}$.
Therefore, we will only need to show the converse:
if $I L M \nvdash \varphi$, then there is a feasibility interpretation * such that $P A \nvdash \varphi^{*}$.
We suppose that the reader has a copy of [Ber 90] at hand in order to follow the original proofs. For the lemmas 6.5.5 up to 6.5.7, knowledge of [Pu 86$],[\mathrm{Pu} 87]$ or chapter 3 will be helpful to the reader. As in [Pu 87], we take the logical complexity of a formula to be its quantifier depth. We can then adapt the results obtained in [Pu 87] to find for every standard n a formula $S a t_{n}$, a satisfaction predicate for formulas of logical complexity $\leq n$, such that $S a t_{n}$ is of length linear in n. Subsequently, we can find proofs of length quadratic in n of the Tarski conditions and of the truth lemma for these satisfaction predicates $S a t_{n}$. Moreover, all these results can be formalized in $P A$. In the formalized case, we read $S a t_{n}$ and True ${ }_{n}$ as Gödel numbers found as function value in n. We will not go into the details here but refer the reader to the papers by Pudlák and to chapter 3.

We apologize to the reader that in this chapter Fmla_{n}, Sat $_{n}$ and True $_{n}$ have different meanings than in chapter 3: here the complexity measure is logical complexity, not length.

First, we (re)define some of the concepts that we use in the subsequent lemmas.

Definition 6.5.1 Formally, we define the following concepts:

- Sent(a) for " a is the Gödel number of a sentence";
- Fmla(a) for " a is the Gödel number of a formula";
- $F m a_{n}(a)$ for " a is the Gödel number of a formula of logical complexity $\leq n$ ";
- $C l(a)$ for "the Gödel number of the universal closure of the formula with Gödel number a "; note that $C l$ denotes a function;
- Indax (b) for " b is the Gödel number of an induction axiom of logical complexity $\leq n "$, i.e.

$$
\begin{aligned}
\operatorname{Indax}_{n}(b) \Longleftrightarrow & F m a_{n}(b) \wedge \exists y[F m l a(y) \wedge \\
& \left.\left.\left.b=\operatorname{Sub}\left(y,\left\ulcorner v_{1}\right\urcorner,{ }^{\ulcorner } 0^{\urcorner}\right)^{\ulcorner } \wedge \forall v_{1}(\urcorner y^{\ulcorner } \rightarrow{ }^{\urcorner} \operatorname{Sub}\left(y,{ }^{\ulcorner } v_{1}\right\urcorner,\left\ulcorner S v_{1}\right\urcorner\right)^{\ulcorner }\right) \rightarrow \forall v_{1}\right\urcorner y .
\end{aligned}
$$

We need to discriminate between a few different kinds of restricted provability, as defined below. In this section, provability means provability in $P A$, unless we explicitly state otherwise.

Definition 6.5.2 We formally define the following:

- $\operatorname{BPrf}_{n}(x, y)$ for " x codes a proof of the formula coded by y, where only formulas of logical complexity $\leq n$ appear in the proof";
- $W \vdash^{P(n)} x$ for " x codes a formula that is provable in W by a proof of length $\leq P(n)$ " where P is a polynomial;
- $W \vdash^{|n|}(x)$ for "there is a polynomial P such that" $\forall n \exists p\left(|p| \leq P(|n|) \wedge \operatorname{Prf} f_{W}(p, x)\right)$;
- $\operatorname{Prov}_{n}(x)$ for " x codes a formula that is provable by a proof which only uses those axioms of $P A$ with Gödel number $\leq n "$; abbreviation $\square_{n} \varphi$ for $\operatorname{Prov}_{n}\left(\left\ulcorner\varphi^{\urcorner}\right)\right.$;
- $\operatorname{Prov}_{W, v}(x)$ for " x codes a formula that is provable by a proof which only uses those axioms of W with Gödel number $\leq n " ;$ abbreviation $\square_{W, n} \varphi$ for $\operatorname{Prov}_{W, n}(\ulcorner\varphi\urcorner)$.

In the context of satisfaction predicates $\operatorname{Sat}_{n}(x, w)$, we need a few more concepts.
Definition 6.5.3 We formally define the following:

- $\operatorname{Evalseq}(w, x)$ for " w encodes an evaluation sequence for the formula or term with Gödel number x; i.e. the length of the sequence w exceeds any i for which a variable v_{i} occurs in the formula or term coded by $x "$;
- $s^{*}(i, x, w)$ for "the sequence which is identical to w, except that x appears in the i-th place"; note that s^{*} denotes a function;
- $\operatorname{True}_{n}(x)$ for $\forall w\left(\operatorname{Evalseq}(w, x) \rightarrow \operatorname{Sat}_{n}(x, w)\right)$, where Sat_{n} is as in [Pu 87];

Remark 6.5.4 When we prove formalized results, we read $T r u e_{n}$ as a Gödel number just as $S a t_{n}$. So in that case the appropriate definition is as follows:

$$
\operatorname{True}(x) \text { for }\left\ulcorner\forall w\left(\operatorname{Evalseq}(w, x) \rightarrow{ }^{`} \operatorname{Sat}_{n}(x, w)^{\ulcorner }\right)\right\urcorner .
$$

Lemma 6.5.5 (feasible subformula property) There are polynomials P and Q such that

$$
P A \vdash \forall k \forall a\left(F m l a(a) \rightarrow P A \xlongequal{P(|k|+|a|)}\left[\operatorname{Prov}_{k}(a) \rightarrow \exists q\left(B \operatorname{Prf}_{Q(|k|+|a|)}(q, a)\right)\right]\right)
$$

Proof. In [Ta 75] Takeuti gives a proof of the free-cut elimination theorem for $P A$, where $P A$ is formulated as a Gentzen system. In order to be able to use Takeuti's method, we first transform Hilbert proofs that use only axioms of Gödel number $\leq k$ into associated Gentzen proofs of length linear in the length of the original proofs, in which all non-logical axioms have Gödel number $\leq k$ and the induction rule is only applied to formulas of Gödel number $\leq k$.

Free cut-elimination then works in such a way that all principal formulas of induction inferences in the new free cut-free proof are substitution instances of principal formulas of induction inferences in the old proof. From this result one derives a proof of the corresponding subformula property: all formulas in the free cut-free proof of a are substitution instances of subformulas of either a principal formula of the induction rule for a formula of length $\leq|k|$, or an axiom of Q, or a itself.

At this point we can transform the Gentzen proof back into a Hilbert proof, again with only a linear increase in the length of the proofs and of the axioms occuring. We can then formalize the proof of the subformula property in $P A$: we find a polynomial Q such that

$$
P A \vdash \forall k \forall a\left(\operatorname{Prov}_{k}(a) \rightarrow \exists q\left(B \operatorname{Prf}_{Q(|k|+|a|)}(q, a)\right)\right) .
$$

But then it is easy to see that there is a polynomial P such that

$$
P A \vdash \forall k \forall a\left(F m l a(a) \rightarrow P A \xlongequal{P(|k|+|a|)}\left[\operatorname{Prov}_{k}(a) \rightarrow \exists q\left(B P r f_{Q(|k|+|a|)}(q, a)\right)\right]\right),
$$

as desired. QED

Lemma 6.5.6 There is a polynomial P such that

$$
P A \vdash \forall k \forall a\left(F m l a(a) \rightarrow P A \stackrel{P(|k|+|a|)}{ }\left[\exists q B P r f_{|k|+|a|}(q, a) \rightarrow \operatorname{True}_{|k|+|a|}(a)\right]\right)
$$

Proof. First, we work informally by induction on the construction of q. We work in $P A$, and we take any k and an a such that a is the Gödel number of a formula. We have to prove by polynomial length proofs (where the polynomial is fixed in advance) that True ${ }_{|k|+|a|}$ preserves the axioms and rules as applied to formulas of logical complexity $\leq|k|+|a|$.

As an example, we show how this works for the induction schema. We take v_{1} as the induction variable in all our instances of the induction axioms. So suppose b codes an induction axiom of logical complexity $\leq|k|+|a|$, e.g. $b=\left(\operatorname{Sub}\left(y,{ }^{\ulcorner } v_{1}\right\urcorner,\ulcorner 0\urcorner\right)\left\ulcorner\wedge \forall v_{1}(\urcorner y\ulcorner\rightarrow\right.$ $\left.\left.{ }^{\urcorner} \operatorname{Sub}\left(y,\left\ulcorner v_{1}\right\urcorner,\left\ulcorner S v_{1}\right\urcorner\right)\ulcorner) \rightarrow \forall v_{1}\right\urcorner y\right)$. We have to prove the following by a proof of length polynomial in $n:=|k|+|a|$:

$$
\begin{equation*}
\operatorname{True} e_{n}\left(S u b\left(y,\left\ulcorner v_{1}\right\urcorner,\left\ulcorner 0^{\urcorner}\right)\left\ulcorner\wedge \forall v_{1}(\urcorner y^{\ulcorner } \rightarrow\right\urcorner \operatorname{Sub}\left(y,\left\ulcorner v_{1}\right\urcorner,\left\ulcorner S v_{1}\right\urcorner\right)^{\ulcorner }\right) \rightarrow \forall v_{1}{ }^{\urcorner} y\right) . \tag{6.6}
\end{equation*}
$$

By a proof of length quadratic in n of the Tarski properties for $S a t_{n}$ and a proof of length quadratic in n of a call by name / call by value lemma for $S a t_{n}$ (cf. the proofs of lemmas 3.3.12 and 3.3.16, but remember that a different complexity measure was used
there), we can find a proof of length polynomial in n that (6.6) is equivalent to the following:

$$
\begin{align*}
\forall w\left[\operatorname { S a t } _ { n } (y , s ^ { * } (1 , 0 , w)) \wedge \forall x \left(\operatorname{Sat}_{n}\left(y, s^{*}(1, x, w)\right) \rightarrow\right.\right. & \left.\operatorname{Sat}_{n}\left(y, s^{*}(1, S x, w)\right)\right) \rightarrow \\
& \forall x\left(\operatorname{Sat}_{n}\left(y, s^{*}(1, x, w)\right)\right] . \tag{6.7}
\end{align*}
$$

The formulas (6.7) are themselves instances of induction of length linear in n, so they are provable by proofs of length linear in n. A polynomial of the form $P(n)=c \cdot n^{3}$ should now suffice to carry out the proofs of (6.6).

Again, we can formalize the argument to derive the following:

$$
P A \vdash \forall k \forall a\left(F m l a(a) \rightarrow P A \stackrel{P(|k|+|a|)}{\vdash}\left[\forall b\left(\operatorname{Indax}_{|k|+|a|}(b) \rightarrow \operatorname{True}_{|k|+|a|}(b)\right)\right]\right) .
$$

Similarly, we can show by polynomially short proofs that the other axioms of logical complexity $\leq|k|+|a|$ are true, and that the rules preserve truth. We leave these proofs and their formalizations to the reader. QED

Lemma 6.5.7 There is a polynomial P such that

$$
P A \vdash \forall k \forall a\left(F m l a(a) \rightarrow P A \vdash^{P(|k|+|a|)}\left(\operatorname{True}_{|k|+|a|}(a)^{\ulcorner } \rightarrow{ }^{\urcorner} C l(a)\right)\right.
$$

Proof. By a formalized Tarski's snowing lemma; cf. lemma 3.3.11. QED
The following theorem corresponds to the reflection theorem 1.6 in [Ber 90].

Theorem 6.5.8 (feasible reflection theorem)

There is a polynomial P such that

$$
P A \vdash \forall k \forall a\left(\operatorname{Sent}(a) \rightarrow P A \vdash^{P(|k|+|a|)}\left(\left\ulcorner\operatorname{Prov}_{k}(a) \rightarrow\right\urcorner a\right)\right)
$$

Proof. Combine lemmas 6.5.5, 6.5.6 and 6.5.7. QED
In the following lemmas and theorems, $\exists K$ abbreviates
$\exists K$ (" K codes an interpretation" $\wedge \ldots$).
The next lemma was proved by Albert Visser [Vi 91a, section 6, Claim 3] in the course of a formalized Henkin construction in $\mathrm{I} \Delta_{0}+\Omega_{1}$.

Lemma 6.5.9 Suppose $U \supseteq \mathrm{I} \Delta_{0}+\Omega_{1}$ and β axiomatizes some subset of a Σ_{1}^{b}-language L. Then there is an r such that

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \square_{U} \operatorname{Con}(\beta) \rightarrow \exists K \forall a \in \operatorname{Sent}(L) \exists p<\omega_{1}^{r}(a) \operatorname{Prf} f_{U}\left(p,\left\ulcorner\square_{\beta} a \rightarrow\right\urcorner a^{K}\right)
$$

Proof. See [Vi 91b]. QED

In remark 2.3.3, we pointed out that the values of ω_{1}-terms in a correspond to \exp (the values of polynomials in $|a|)$. Therefore, lemma 6.5.9 implies the following lemma:

Lemma 6.5.10 Suppose $U \supseteq I \Delta_{0}+\Omega_{1}$ and β axiomatizes some subset of a Σ_{1}^{b}-language L. Then there is a polynomial P such that

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \square_{U} \operatorname{Con}(\beta) \rightarrow \exists K \forall a \in \operatorname{Sent}(L) U \vdash^{P(|a|)}\left(\left\ulcorner\square_{\beta} a \rightarrow\right\urcorner^{K}\right) .
$$

The following theorem corresponds to Orey's theorem; see for example [Ber 90, Theorem 2.9]

Theorem 6.5.11 (feasible Orey's theorem) Suppose that $U \supseteq P A$ and W is given by a set of axioms defined by the Σ_{1}^{b}-formula α. Then

$$
P A \vdash \forall x\left[U \mid \stackrel{|x|}{*}\left(\left\ulcorner\diamond_{\alpha, x} \top^{\urcorner}\right)\right] \rightarrow U \triangleright_{f} W .\right.
$$

Proof. Work in PA and suppose

$$
\forall x\left[U \left||x| *\left(\left\ulcorner\diamond_{\alpha, x} \top^{\urcorner}\right)\right] .\right.\right.
$$

In U, we will do a Henkin construction for the Feferman proof predicate for W. First define:

$$
\beta(x):=\alpha(x) \wedge \diamond_{\alpha, x+1} \top
$$

As in Feferman's original proof, we can prove that

$$
\square_{U} \operatorname{Con}(\beta)
$$

(For, reason in U and suppose $\operatorname{Prf} f_{\beta}(x, \perp)$, then for the axiom of β coded by the biggest Gödel number y to appear in x we have $\alpha(y) \wedge \neg \diamond_{\alpha, y+1} \top$, thus $\neg \beta(y)$: a contradiction.)

On the other hand, by provable Σ_{1}^{b}-completeness for $\alpha(a)$ and by the assumption $\forall x\left[U \left\lvert\, \frac{|x|}{*}\left(\left\ulcorner\diamond_{\alpha, x} \top\right\urcorner\right)\right.\right]$, we have a polynomial P_{1} given in advance such that:

$$
\forall a\left(\alpha(a) \rightarrow\left[U \vdash^{P_{1}(|a|)}\left(\left\ulcorner\alpha(a) \wedge \diamond_{\alpha, x+1} \top^{\urcorner}\right)\right)\right] .\right.
$$

So, by definition of β, we have the following for a polynomial P_{2} fixed in advance:

$$
\begin{equation*}
\forall a\left(\alpha (a) \rightarrow \left[U \vdash^{P_{2}(|a|)}\left(\left\ulcorner\beta(a)^{\urcorner}\right)\right] .\right.\right. \tag{6.8}
\end{equation*}
$$

But, using $\square_{U} \operatorname{Con}(\beta)$ we can apply lemma 6.5.10 to first derive, for a polynomial P_{3} fixed in advance:

$$
\exists K \forall a \in \operatorname{Sent}(L)\left[U \vdash^{P_{3}(|a|)}\left(\left\ulcorner\square_{\beta} a \rightarrow\right\urcorner a^{K}\right)\right],
$$

and thus for a polynomial P_{4} fixed in advance:

$$
\begin{equation*}
\exists K \forall a \in \operatorname{Sent}(L)\left[U \stackrel{P_{4}(|a|)}{ }\left(\ulcorner\beta(a) \rightarrow\urcorner^{K}\right)\right] . \tag{6.9}
\end{equation*}
$$

Finally we can combine 6.8 and 6.9 to get the desired conclusion that there is a polynomial P given in advance such that

$$
\exists K \forall a\left(\alpha(a) \rightarrow\left[U \vdash \vdash^{P(|a|)}\left(a^{K}\right)\right)\right]
$$

i.e. $U \triangleright_{f} W$. QED

Now we can start the proof of the arithmetical completeness of $I L M$ with respect to feasible interpretations (cf. definition 6.3.1) over $P A$.

Theorem 6.5.12 If ILM $\forall B$, then there is a feasibility interpretation* such that $P A \nvdash$ B^{*}.

The proof will in most places be identical to the one in [Ber 90]. First we will sketch the outline of the proof, then we will prove the propositions that we need in the feasible case but differ essentially from those used in [Ber 90].

Proof sketch. Suppose $I L M \nvdash B$, and take, by modal completeness of $I L M$ with respect to simplified models (see definition 2.5.6), a provably primitive recursive ILMKripke model $V=\langle V, R, S, b, \Vdash>$, with $b=1$ and $1 \Downarrow B$. Extend V with a new root 0 with $0 R x$ for all $x \in V$, as in definition 5.1 of [Ber 90]. Adapting definition 5.2 of [Ber 90], we define a feasibility interpretation * such that for all propositional variables p,

$$
p^{*}:=" \exists x \in V \cup\{0\}: L=x \wedge x \Vdash p ",
$$

where L is defined as the limit of the Solovay function F, which is in turn defined in definition 5.7 of [Ber 90]. We want to prove the following:

$$
\begin{equation*}
\text { whenever } 1 \nvdash A \text {, then } P A \nvdash A^{*} \text {, } \tag{6.10}
\end{equation*}
$$

Then we will be done, as we have chosen V such that $1 \Downarrow \forall B$. To prove (6.10), we need to prove in $P A$ a few properties of F and its limit L. Subsequently we need to prove by induction on the construction of the formula that for all formulas A, the feasibility interpretation * respects A, i.e.

$$
\begin{aligned}
& P A \vdash \forall x \in V\left(x \Vdash A \wedge L=x \rightarrow A^{*}\right) \text { and } \\
& P A \vdash \forall x \in V\left(x \Vdash \neg A \wedge L=x \rightarrow \neg A^{*}\right) .
\end{aligned}
$$

It is clear from the definition of F that * is faithful on atomic formulas. Moreover, the induction steps for the propositional connectives and \square immediately follow from the proofs in [Ber 90]. Even the "negative" induction step for \triangle has a straightforward proof:

Work in $P A$ and suppose $x \in V, x \Vdash \neg(A \triangleright B)$, and $L=x$; then by part 2 in the proof of lemma 5.6 of [Ber 90] and by the induction hypothesis, $\neg\left(A^{*} \triangleright\right.$ $\left.B^{*}\right)$. But then surely $\neg\left(A^{*} \triangleright_{f} B^{*}\right)$, thus, as ${ }^{*}$ is a feasibility interpretation, $\neg(A \triangleright B)^{*}$.
For the "positive" direction, we need two extra lemmas. First we will prove in $P A$ that F satisfies a feasible adaptation of Berarducci's property S, which we then use to finish the induction step for D.

For $x \in V$, let $\operatorname{rank}(x, n)$, the rank of x at stage n, be defined as in definition 5.7 of [Ber 90]. The following proposition is an analog of proposition 5.14 in [Ber 90].

Proposition 6.5.13 (\mathbf{F} has feasible property S) PA proves the following:

$$
\begin{aligned}
P A \vdash & \forall x \in V \cup\{0\}[L=x \rightarrow \\
& \left.P A \left\lvert\, \frac{|k|}{*}\left(\left\ulcorner\forall y, z \in V \cup\{0\}\left(L=y \wedge x R z \wedge y S z \rightarrow \diamond_{k} L=z\right)\right\urcorner\right)\right.\right]
\end{aligned}
$$

Proof. We will prove the proposition by combining a few facts that are easy to check. For brevity's sake, we will leave out " $\in V \cup\{0\}$ " after quantifiers $\forall x, \forall y, \forall z$.

Fact $\left.1 P A \vdash P A\right|^{|k|}\left(\left\ulcorner\forall y\left(L=y \rightarrow \diamond_{\bar{k}} L=y\right)\right\urcorner\right)$
Proof. Immediately from the reflection theorem 6.5.8. The formula $L=y$ has a fixed length, so the polynomial found in the proof of the reflection theorem in this case depends only on $|k|$. QED

Fact $\left.2 P A \vdash P A\right|^{|k|}(\ulcorner\forall y(L=y \rightarrow \forall n(\bar{k}<\operatorname{rank}(y, n)))\urcorner)$
Proof. Immediately from fact 1 and the definition of rank. The appearance of k as an efficient numeral keeps the length of the proof polynomial in $|k|$. (This is also the case in the other facts below) QED

Fact $3 P A \vdash P A \left\lvert\, \frac{|k|}{*}\left(\left\ulcorner\forall z\left(\square_{\bar{k}} L \neq z \rightarrow \exists m \forall n \geq m(\operatorname{rank}(z, n) \leq \bar{k})\right)\right\urcorner\right)\right.$
Proof. Immediately from the definition of rank. QED

Fact $\left.4 P A \vdash P A\right|^{|k|}\left(\left\ulcorner\forall y \forall z\left(L=y \wedge \square_{\bar{k}} L \neq z \rightarrow \exists n(F(n)=y \wedge n\right.\right.\right.$ codes $y \wedge \operatorname{rank}(z, n) \leq$ $\left.\left.\bar{k} \wedge \operatorname{rank}(z, n)<\operatorname{rank}(y, n)))^{\urcorner}\right)\right)$
Proof. From the definition of limit and fact 3: just take n big enough. We can take care that n codes y because we have an infinitely repetitive primitive recursive coding of the elements of $V \cup\{0\}$. Finally, to prove $\operatorname{rank}(z, n)<\operatorname{rank}(y, n)$, we use fact 2. QED

Fact 5 We have the following:

$$
\begin{aligned}
P A \vdash & \forall x\left(L=\left.x \rightarrow P A\right|^{|k|}\left(\left\ulcorner\forall y \forall z \left(L=y \wedge \square_{\bar{k}}^{*} L \neq z \wedge x R z \wedge y S z \rightarrow\right.\right.\right.\right. \\
& \exists n(n \operatorname{codes} y \wedge \operatorname{rank}(z, n)<\operatorname{rank}(y, n) \wedge \operatorname{rank}(z, n) \leq \bar{k} \\
& \left.\left.\wedge F(\operatorname{rank}(z, n)) \operatorname{SxR} R \wedge F(\operatorname{rank}(z, n)) R z)))^{\urcorner}\right)\right)
\end{aligned}
$$

Proof. For the part up to $\operatorname{rank}(z, n) \leq \bar{k}$, we use fact 4. For the last two conjuncts, we use the S-monotonicity of F and the property corresponding to M of Veltman $I L M$-frames. QED

Fact 6 We have the following:

$$
\begin{array}{rll}
P A \vdash \forall x\left(L=\left.x \rightarrow P A\right|^{|k|} \quad\right. & \left(\left\ulcorner\forall y \forall z \left(L=y \wedge \square_{\bar{k}} L \neq z \wedge x R z \wedge y S z \rightarrow\right.\right.\right. \\
& \left.\exists n(F(n)=y \wedge F(n+1)=z))^{\urcorner}\right)
\end{array}
$$

Proof. Immediate from fact 5 and the definition of the function F, clause 2. QED

Now we can wrap up the proof: we see that $\exists n(F(n)=y \wedge F(n+1)=z)$ is inconsistent with $L=y$, so in fact we have what we were looking for:

$$
P A \vdash \forall x\left[L=x \rightarrow P A \vdash^{|k|}\left(\left\ulcorner\forall y \forall z\left(L=y \wedge x R z \wedge y S z \rightarrow \diamond_{\bar{k}} L=z\right)^{\urcorner}\right)\right]\right.
$$

QED
The following proposition corresponds to part 1 of Lemma 5.6 of [Ber 90].
Proposition 6.5.14 (positive induction step for \triangleright) Let* be the feasibility interpretation defined in the proof sketch of theorem 6.5.12. Suppose as induction hypothesis that

$$
\begin{aligned}
& P A \vdash \forall y\left(L=y \rightarrow\left(y \Vdash A \leftrightarrow A^{*}\right)\right) \text { and } \\
& P A \vdash \forall z\left(L=z \rightarrow\left(z \Vdash B \leftrightarrow B^{*}\right)\right) .
\end{aligned}
$$

Then

$$
P A \vdash \forall x\left(L=x \wedge x \Vdash A \triangleright B \rightarrow(A \triangleright B)^{*}\right) .
$$

Proof. Let b be such that

$$
\begin{aligned}
& P A \vdash \forall y\left(L=y \rightarrow\left(y \Vdash A \leftrightarrow A^{*}\right)\right) \text { and } \\
& P A \vdash \forall z\left(L=z \rightarrow\left(z \Vdash B \leftrightarrow B^{*}\right)\right),
\end{aligned}
$$

both by proofs that use axioms of Gödel number up to b. Moreover suppose c is such that

$$
P A \vdash \forall z\left(z \Vdash B \rightarrow \square_{c}(z \Vdash B)\right) ;
$$

for this, any $c \geq$ the Gödel number of the biggest axiom of Robinson's arithmetic Q will do. Define $d:=\max (b, c)$. By theorem 6.5.11, the feasible version of Orey's theorem, it is sufficient to prove the following:

$$
P A \vdash \forall x\left(L=x \wedge x \Vdash A \triangleright B \rightarrow \forall k \geq d P A \vdash^{|k|}\left(\left\ulcorner A^{*} \rightarrow \diamond_{\bar{k}} B^{*}\right\urcorner\right) .\right.
$$

Again, we will state a list of easily provable facts from which the result immediately follows.

Fact $1 P A \vdash \forall x\left(L=x \wedge x \Vdash A \triangleright B \rightarrow \square\left[A^{*} \rightarrow \exists y(L=y \wedge x R y \wedge y \Vdash A \wedge x \Vdash A \triangleright B)\right]\right)$
Proof. $L=x \rightarrow \square \exists y(L=y \wedge x R y)$ by property $(\neg R), \square\left(A^{*} \wedge L=y \rightarrow y \Vdash A\right)$ by the induction hypothesis, and $\square(x \Vdash A \triangleright B)$ by provable Σ_{1}^{0}-completeness. QED

Fact $2 P A \vdash \forall x\left(L=x \wedge x \Vdash A \triangleright B \rightarrow \square\left[A^{*} \rightarrow \exists y \exists z(L=y \wedge x R y \wedge y \Vdash A \wedge x \Vdash\right.\right.$ $A \triangleright B \wedge x R z \wedge y S z \wedge z \Vdash B)$])
Proof. From fact 1 and the definition of $x \Vdash A \triangleright B$. QED

Fact $3 P A \vdash \forall z \forall k \geq d P A \nmid \stackrel{|k|}{*}\left(z \Vdash B \rightarrow \square_{\bar{k}} z \Vdash B\right)$
Proof. From the definition of d, and the fact that k appears only as efficient numeral. QED

Fact $4 P A \vdash \forall x\left(L=x \wedge x \Vdash A \triangleright B \rightarrow \forall k \geq d P A \nmid \vdash^{|k|}\left(\left\ulcorner A^{*} \rightarrow \exists y \exists z(L=y \wedge x R y \wedge\right.\right.\right.$ $\left.\left.\left.x R z \wedge y S z \wedge \diamond_{\bar{k}} L=z \wedge \square_{\bar{k}} z \Vdash B\right)^{\urcorner}\right)\right)$
Proof. From fact 2 for $A^{*} \rightarrow \exists y \exists z(L=y \wedge x R y \wedge x R z \wedge y S z \wedge z$ ト $B)$; fact 3 for a proof of length polynomial in k of $z \Vdash B \rightarrow \square_{\bar{k}} z \Vdash B$), and proposition 6.5.13 for a proof of length polynomial in $|k|$ of $L=y \wedge x R y \wedge x R z \wedge y S z \rightarrow \diamond_{\bar{k}} L=z$. QED

Fact $5 P A \vdash \forall x\left(L=x \wedge x \Vdash A \triangleright B \rightarrow \forall k \geq d P A \vdash^{|k|}\left(\left\ulcorner A^{*} \rightarrow \exists z \diamond_{\bar{k}}(L=z \wedge z \Vdash B)^{\urcorner}\right)\right)\right.$ Proof. If k is large enough (and $k \geq d$ will do), then by an easily formalized property of modus ponens, we have the following by proofs of length polynomial in $|k|: P A \vdash \forall z\left(\left[\square_{k}(z \Vdash B \rightarrow L \neq z) \wedge \square_{k} z \Vdash B\right] \rightarrow \square_{k} L \neq z\right)$, and thus $P A \vdash \forall z\left(\diamond_{k} L=z \wedge \square_{k} z \Vdash B \rightarrow \diamond_{k}(L=z \wedge z \Vdash B)\right)$. This argument can be formalized and combined with fact 4 to derive fact 5. QED

Fact $6 P A \vdash \forall x\left(L=x \wedge x \Vdash A \triangleright B \rightarrow \forall k \geq d P A \vdash^{|k|}\left(\left\ulcorner A^{*} \rightarrow \diamond_{\bar{k}} B^{*}\right\urcorner\right)\right.$
Proof. From fact 5 and the induction hypothesis; the fact that $k \geq d$ is used at this place. We also use that $P A \vdash \forall k \geq d\left[\left.P A\right|^{|k|}\left(\exists z \diamond_{\bar{k}}(L=z \wedge z \Vdash B) \rightarrow \diamond_{\bar{k}} \exists z(L=\right.\right.$ $z \wedge z$ پ $B)$)].
QED

From fact 6 and the feasible version of Orey's theorem, we may indeed derive

$$
P A \vdash \forall x\left(x \Vdash A \triangleright B \wedge L=x \rightarrow(A \triangleright B)^{*}\right),
$$

as desired.
QED
Proof sketch of theorem 6.5.12, continued. Concluding by induction that * respects all formulas A, we have proved that $I L M \forall B^{*}$. Therefore, $I L M$ is arithmetically complete with respect to feasible interpretability over $P A$.

QED.

Chapter 7

The complexity of feasible interpretability

How is it that life is orderly and you are content, a little cynical perhaps but on the whole just so, and then without warning you find the solid floor is a trapdoor and you are now in another place whose geography is uncertain and whose customs are strange?
(Jeanette Winterson, The Passion)

Abstract. We prove that there is a Σ_{1}-formula ξ such that
$\{e \mid P A$ feasibly interprets $P A+\xi(\bar{e})\}$
is Σ_{2}-complete. The method of proof that we use combines a recursiontheoretical reduction and an adaptation of some lemmas from Lindström's paper [Li 84].

7.1 Introduction

In this chapter, we continue our investigation of feasible interpretability begun in chapter 6 . We remind the reader of the half-formal definition of feasible interpretability:

$$
\begin{array}{r}
U \triangleright_{f} V \leftrightarrow \exists K \exists P(\text { " } K \text { is an interpretation and } P \text { is a polynomial" } \wedge \\
\left.\forall a\left(\alpha_{V}(a) \rightarrow \exists p\left("|p| \leq P(|a|) " \wedge \operatorname{Prf} f_{U}\left(p, a^{K}\right)\right)\right)\right) . \tag{7.1}
\end{array}
$$

Similarly, we define a concept of feasible Π_{1}-conservativity, given as

$$
\begin{array}{r}
U \triangleright_{\Pi_{1} f} V \leftrightarrow \exists P\left(" P \text { is a polynomial" } \wedge \forall x \forall y \left(\operatorname{Fmla}_{\Pi_{1}}(x) \wedge \operatorname{Prf} f_{V}(y, x)\right.\right. \\
\left.\left.\rightarrow \exists p\left("|p| \leq P(|y|) " \wedge \operatorname{Prf} f_{U}(p, x)\right)\right)\right) .
\end{array}
$$

In section 6.2 we show that many interpretations encountered in everyday mathematics are feasible. For example, we have both $Z F C \triangleright_{f} Z F C+C H$ and $Z F C \triangleright_{f} Z F C+\neg C H$. All in all it seems that the only examples of theories U and V such that $U \triangleright V$ but not $U \triangleright_{f} V$ are contrived sets of sentences obtained by fixed-point constructions. Moreover, \triangleright and \triangleright_{f} turn out to behave rather similarly with respect to their modal-logical properties.

However, when we study the definitional complexity of feasible interpretability, the difference with normal interpretability is striking. It is clear from (7.1) that the formula $U \triangleright_{f} V$ is Σ_{2}^{0}. On the other hand Solovay in [So 76b] proved that $\{A \mid P A \triangleright P A+A\}$ is Π_{2}^{0}-complete. This result in turn inspired Hájek to prove that, for every n, the set $\{A \mid A$ is Π_{n+1}^{0}-conservative over $\left.P A\right\}$ is Π_{2}^{0}-complete [Há 79b].

Bearing in mind Rogers' observation in [Rog 67] that "almost all arithmetical sets with intuitively simple definitions that have been studied [...] have proved to be Σ_{n}^{0}-complete or Π_{n}^{0}-complete (for some n)", we would like to know whether feasible interpretability is complete for some level of the arithmetical hierarchy.

Indeed, it turns out that there is a Σ_{1}^{0}-formula ξ such that $\left\{e \mid P A \triangleright_{f} P A+\xi(\bar{e})\right\}$ is Σ_{2}^{0}-complete, as we prove in section 7.6. From our methods we immediately derive that $\left\{e \mid P A \triangleright P A+\xi(\bar{e})\right.$ but not $\left.P A \triangleright_{f} P A+\xi(\bar{e})\right\}$ is not only inhabited, but even rather wildly so - to be explicit, it is Π_{2}^{0}-complete. Thus the two completeness results provide some precise evidence for the observation that normal interpretability and feasible interpretability over $P A$ have substantially different extensions.

The formula ξ that we use for the Σ_{2}^{0}-completeness results is as simple as possible. More precisely, it is easy to show that for any Π_{1}^{0}-formula $\xi(x),\left\{e \mid P A \triangleright_{f} P A+\xi(\bar{e})\right\}$ is equal to $\{e \mid P A \vdash \xi(\bar{e})\}$, which is recursively enumerable.

The rest of the chapter is organized as follows. In section 7.2 we give some preliminaries on partial truth definitions and some notational conventions. In section 7.3 we characterize feasible interpretability in terms of feasible Π_{1}-conservativity. Section 7.4 contains the main novelty of this chapter, namely a recursion-theoretical reduction by which we show that the set of (possibly infinite) theories feasibly interpretable over $P A$ is Σ_{2}^{0}-complete.

Lindström provided in [Li 84] a general method by which one can replace every recursively enumerable set Y of Σ_{n}^{0}-sentences by a single Σ_{n}^{0}-sentence σ such that $P A+\sigma$ has the same Π_{n}^{0}-consequences as $P A+Y$. In section 7.5 , we prove a feasible version of Lindström's lemmas. The proofs in this section are fairly straightforward.

Finally, in section 7.6 , we apply the methods of section 7.5 to the possibly infinite, but still suitably simple, sets of formulas constructed in section 7.4. Thus, using the characterization of feasible interpretability over $P A$ as feasible Π_{1}-conservativity, we prove that there is a Σ_{1}^{0}-formula $\xi(x)$ such that $\left\{e \mid P A \triangleright_{f} P A+\xi(\bar{e})\right\}$ is Σ_{2}^{0}-complete.

The chapter is almost self-contained. However, for some details of proofs we refer the reader to chapter 6 , and we suppose that the reader is at least slightly familiar with the terminology used in [Bu 86].

7.2 Preliminaries and notation

We use Pudlák's notation $T \vdash^{n} \varphi$ and $\left.T\right|^{|n|} \varphi(n)$ as discussed in notation 2.6.7.
We will also sloppily leave out some Gödel brackets and numeral dots, in particular deeper nested ones. We use efficient numerals \bar{n} of length linear in $|n|$.

We suppose that all theories mentioned in the sequel are Σ_{1}^{b}-axiomatized.
Definition 7.2.1 $\operatorname{Prov}_{k, T}\left({ }^{(} A^{\urcorner}\right)$stands for "there is a proof of A from T in which only axioms with Gödel number $\leq k$ are used".

$$
\operatorname{Con}_{k}(T):=\neg \operatorname{Prov}_{k, T}(\ulcorner\perp\urcorner) .
$$

In this chapter we use two kinds of partial truth predicates. Pudlák in [Pu 87] introduced the first kind that we need. His $T_{r u e}^{n}$ are truth predicates of length linear in n
which work for quantifier depth $\leq n$. Pudlák works with a relational language, whereas in chapter 3, the standard language of arithmetic including function symbols was used. In the present chapter, as in chapter 6, we use Pudlák's complexity measure, namely the logical complexity and not the length of formulas. We have the following Tarski lemma:

Lemma 7.2.2 There is a polynomial P such that for all sentences A of length $\leq|k|$,

$$
P A \stackrel{P(|k|)}{\stackrel{T r}{ } \operatorname{Tr}_{|k|}(A) \leftrightarrow A . ~}
$$

Proof. See [Pu 87]. (cf. chapter 3. Pudlák works with a relational language, whereas in chapter 3, the standard language of arithmetic including function symbols was used.)

QED
Lemma 7.2.2 can be formalized to get:

Lemma 7.2.3

$$
P A \vdash \exists P \forall k \forall a\left(\operatorname{Sent}(a) \rightarrow P A \xlongequal{P(|k|+|a|)}\left(\operatorname{True}_{|k|+|a|}(a) \leftrightarrow a\right)\right) .
$$

Definition 7.2.4 A theory T in the language of arithmetic is feasibly essentially reflexive if there is a polynomial P such that for all sentences A and for all k,

$$
T \vdash^{P(|k|+|A|)}\left(\operatorname{Prov}_{k, T}(\ulcorner A\urcorner) \rightarrow A\right) .
$$

Lemma 7.2.5 $P A$ is feasibly essentially reflexive, even provably so, i.e. we have:

$$
P A \vdash \exists P \forall k \forall a\left(\operatorname{Sent}(a) \rightarrow P A \vdash^{P(|k|+|a|)}\left(\operatorname{Prov}_{k, P A}(a) \rightarrow \operatorname{True}|k|+|a|(a)\right)\right),
$$

thus

$$
P A \vdash \exists P \forall k \forall a\left(\operatorname{Sent}(a) \rightarrow P A \vdash^{P(|k|+|a|)}\left(\operatorname{Prov}_{k, P A}(a) \rightarrow a\right)\right) .
$$

Proof. See theorem 6.5.8 and lemma 7.2.3. QED
We will need a similar result in section 7.5. First we need two definitions.
Definition 7.2.6 We say that a set A is sparse if there exists a polynomial P such that for every n the number of elements of A having length $\leq n$ is bounded by $P(n)$.

Definition 7.2.7 A Σ_{1}^{b}-formula α defines a provably sparse relation if there is a polynomial P such that for all q,

$$
P A \vdash^{P(|q|)} \forall z\left(\alpha(z) \wedge z \leq \bar{q} \rightarrow \bigvee_{x \leq \bar{q} \wedge \alpha(x)} z=\bar{x}\right)
$$

Lemma 7.2.8 Let A be an extension of $P A$ by a provably sparse set of axioms in the language of $P A$. Then we have

$$
A \stackrel{|m|}{\stackrel{\mid m}{*}} \forall u, v \leq \bar{m}\left(\operatorname{Prf}_{A}(v, u) \rightarrow \operatorname{True}_{|m|}(u)\right)
$$

Proof. Suppose the set of new axioms over $P A$ is given by the Σ_{1}^{b}-formula α. The proof uses lemma 6.5.5 and lemma 6.5.6. In order to apply lemma 6.5.5, we work in $P A$ and first transform proofs with Gödel number $\leq m$ of u from A into $P A_{m}$-proofs of (par abus de langage)

$$
\left.\left(\bigwedge_{x \leq \bar{m} \wedge \alpha(x)} x\right)^{\ulcorner } \rightarrow\right\urcorner u ;
$$

this can be done polynomially in $|m|$.
Next we apply lemma 6.5 .5 and lemma 6.5.6. Finally we note that, due to the provable sparsity of the set of new axioms defined by α, we have

$$
A \vdash^{|m|} \operatorname{True}_{|m|}\left(\bigwedge_{x \leq \bar{m} \wedge \alpha(x)} x\right)
$$

Thus we derive the lemma. We leave the details, e.g. of formalization of $\Lambda_{x \leq \bar{m} \wedge \alpha(x)} x$, to the reader.

QED
The second kind of partial truth predicates that we use are the standard ones related to the levels of the arithmetical hierarchy.

Lemma 7.2.9 For all $i \geq 1$ there are partial truth definitions $T_{r u e_{\Sigma_{i}}}$ and $T_{r u e_{\Pi_{i}}}$ such that the Tarski lemmas have short proofs. More precisely, there is a polynomial P such that:

- for all Π_{i}-sentences $\pi, P A \vdash^{P(|\pi|)} \pi \leftrightarrow \operatorname{True}_{\Pi_{i}}(\ulcorner\pi\urcorner)$, and
- for all Σ_{i}-sentences $\sigma, P A \xlongequal{\stackrel{P(|\sigma|)}{ }} \sigma \leftrightarrow \operatorname{True}_{\Sigma_{i}}(\ulcorner\sigma\urcorner)$.

Proof. Visser in [Vi 92] gives a $\Delta_{0}(e x p)$ definition of satisfaction for Δ_{0}-formulas. It is easy to construct from this partial truth definitions $\operatorname{True}_{\Sigma_{i}}$ and $T r u e_{\Pi_{i}}$ of length linear in i. We leave the reader the easy but tedious task of showing that the Tarski lemmas indeed have short proofs. QED

We also need a result relating the two kinds of partial truth definitions.
Lemma 7.2.10 Let $\Gamma_{i} \in\left\{\Sigma_{i}, \Pi_{i}\right\}$. Then

Proof. We leave the proof to the reader. QED

7.3 Characterizations of feasible interpretability

In section 7.6, we will use a characterization which says that, over suitable theories, feasible interpretability is equivalent to feasible Π_{1}-conservativity. We prove a formalized version of this equivalence in corollary 7.3.3.

Non-feasible versions of all three characterizations below are well-known. We proved a feasible version of Orey's Theorem in chapter 6.

We have the following Orey-Hájek-style characterization of feasible interpretability. (Provably sparse relations are defined in definition 7.2.7.)

Lemma 7.3.1 (Feasible Orey-Hájek characterization) Suppose $U \supseteq I \Sigma_{1}$ and V is an extension of $P A$ by a provably sparse set of axioms in the language of $P A$. Then

$$
P A \vdash\left[U \vdash^{|x|} \operatorname{Con}_{x}(U)\right] \rightarrow\left(U \triangleright_{f} V \leftrightarrow\left[U \vdash^{|x|} \operatorname{Con}_{x}(V)\right]\right) .
$$

Proof.
\rightarrow We first state a useful fact. We axiomatize each $P A_{k}$ using only one induction axiom.
To be precise, there is a function $i \mapsto\left\ulcorner\theta_{i}{ }^{\urcorner}\right.$, with $\mid\left\ulcorner\theta_{i}{ }^{\urcorner} \mid\right.$polynomial in i, definable in $I \Sigma_{1}$, and a Σ_{1}^{b}-formula $\alpha_{x, V}^{*}$ (standing for the axiom set that contains the induction axiom for $\theta_{|x|}$ plus the sparse set of remaining axioms of V) such that

$$
I \Sigma_{1} \vdash \forall x, z\left(\alpha_{x, V}^{*}(z) \rightarrow z \leq x\right)
$$

and

$$
I \Sigma_{1} \vdash \forall x\left(\operatorname{Prov}_{x, V}(\perp) \rightarrow \operatorname{Prov}_{\alpha_{x, V}^{*}}(\perp)\right)
$$

Therefore we have, by instantiation,

$$
\begin{equation*}
P A \vdash\left[U \vdash_{*}^{|x|} \operatorname{Prov}_{x, V}(\perp) \rightarrow \operatorname{Prov}_{\alpha_{x, V}}(\perp)\right] \tag{7.2}
\end{equation*}
$$

We now start our proof proper by reasoning in $P A$ and assuming that

$$
\begin{equation*}
U \stackrel{|x|}{*} \operatorname{Con}_{x}(U) \tag{7.3}
\end{equation*}
$$

If $U \triangleright_{f} V$ by interpretation K, then there is a polynomial R such that

$$
\forall x \forall z \leq x\left(\alpha_{x, V}^{*}(z) \rightarrow U \vdash^{R(|x|)} z^{K}\right)
$$

Because $\alpha_{x, V}^{*}$ singles out a provably sparse set, we have provable completeness, thus we derive

$$
\begin{equation*}
U \vdash^{|x|} \forall z \leq x\left(\alpha_{x, V}^{*}(z) \rightarrow U \vdash^{R(|x|)} z^{K}\right) . \tag{7.4}
\end{equation*}
$$

Next we want to find a polynomial Q such that

$$
\begin{equation*}
U \left\lvert\, \frac{|x|}{\stackrel{*}{*}} \operatorname{Prov}_{\alpha_{x, V}^{*}}(\perp) \rightarrow \neg \operatorname{Con}_{2} Q_{Q(|x|)}(U) .\right. \tag{7.5}
\end{equation*}
$$

So reason inside U and suppose $\operatorname{Prf}_{\alpha_{\dot{x}, V}}(q, \perp)$. If we take K-translations of all formulas in q and add some intermediate steps, we find a quasi- U-proof p of \perp that still depends on some assumptions z^{K} where $\alpha_{x, V}^{*}(z)$. But, since $z \leq x$, we know by (7.4) that these z^{K} have U-proofs of length $\leq R(|x|)$. We add these proofs to p in order to find a U-proof p^{\prime} of \perp that uses only U-axioms of length $\leq Q(|x|)$ for some polynomial Q given in advance. Stepping out of U again, we find that indeed (7.5) holds.
However, by (7.3) we have $U \stackrel{|x|}{*} \operatorname{Con}_{2} Q(|x|)(U)$, so (7.5) gives $U \left\lvert\, \frac{|x|}{*} \neg \operatorname{Prov}_{\alpha_{x, V}^{*}}(\perp)\right.$.
By (7.2) we finally conclude $U \stackrel{|x|}{*} \operatorname{Con}_{x}(V)$.
\leftarrow For this direction, which is a feasible version of Orey's Theorem, we do not need the assumption $U \left\lvert\, \frac{|x|}{*} C_{0}(U)\right.$, nor do we need the provable sparsity of V over $P A$. We make the desired interpretation by a feasible Henkin construction for a Feferman proof predicate of V. For details of the proof we refer the reader to theorem 6.5.11.
QED

Lemma 7.3.2

$$
P A \vdash\left[V \stackrel{|x|}{*} \operatorname{Con}_{x}(V)\right] \rightarrow\left(U \triangleright_{n_{1} f} V \leftrightarrow\left[\left.U\right|^{|x|} \operatorname{Con}_{x}(V)\right]\right) .
$$

Proof.
\rightarrow Reason in $P A$ and suppose that $U \triangleright_{\Pi_{1} f} V$ and $V \left\lvert\, \frac{|x|}{*} \operatorname{Con}_{x}(V)\right.$. Because $\operatorname{Con}_{x}(V)$ is a Π_{1}-sentence, this immediately gives us $U \left\lvert\, \frac{|x|}{*} C o n_{x}(V)\right.$.
\leftarrow This direction of the proof does not depend on the assumption $\left.V\right|^{|x|} C o n_{x}(V)$.
So, reason in $P A$ and suppose that $U \left\lvert\, \frac{|x|}{*} \operatorname{Con}_{x}(V)\right., F m a_{\Pi_{1}}(x) \wedge \operatorname{Pr} f_{V}(y, x)$. (We will use without mention the fact that $x \leq y$.) First we analyze the proof of Σ_{1-}^{b} completeness, and we note that there is a fixed m - to be explicit, m is the Gödel number of the largest axiom of Robinson's Arithmetic Q - for which we have the following:

$$
\begin{equation*}
U \left\lvert\, \frac{|x|}{*} \operatorname{Con}_{m}(V+x) \rightarrow x .\right. \tag{7.6}
\end{equation*}
$$

Because the axioms of V are recognized in a Σ_{1}^{b}-way, we can again invoke provable Σ_{1}^{b}-completeness to show that $\operatorname{Prf} f_{V}(y, x)$ implies

$$
\begin{equation*}
U \stackrel{|y|}{*} \neg \operatorname{Con}_{y}(V+\neg x) . \tag{7.7}
\end{equation*}
$$

By our assumption $U \stackrel{|x|}{*} C_{o n}(V)$ we have $U \left\lvert\, \frac{|y|}{*} \operatorname{Con}_{\max (m, y)}(V)\right.$, which we may combine with (7.7) to derive $U \stackrel{|y|}{*} \operatorname{Con}_{m}(V+x)$, thus by (7.6) $U \left\lvert\, \frac{|y|}{*} x\right.$, as desired. QED

Corollary 7.3.3 If $U \supseteq I \Sigma_{1}$ and V is an extension of $P A$ by a provably sparse set of axioms, then

$$
P A \vdash\left[U \left\lvert\, \frac{|x|}{*} \operatorname{Con}_{x}(U)\right.\right] \wedge\left[V \left\lvert\, \frac{|x|}{*} \operatorname{Con}_{x}(V)\right.\right] \rightarrow\left(U \triangleright_{f} V \leftrightarrow U \triangleright_{\Pi_{1} f} V\right)
$$

Proof.
\rightarrow By the \rightarrow-direction of lemma 7.3.1 and the \leftarrow-direction of lemma 7.3.2; we do not need the assumption $V \left\lvert\, \frac{|x|}{*} \operatorname{Con}_{x}(V)\right.$.
\leftarrow By the \rightarrow-direction of lemma 7.3.2 and the \leftarrow-direction of lemma 7.3.1; we do not need the assumption $U \left\lvert\, \frac{|x|}{*} \operatorname{Con}_{x}(U)\right.$.
QED
Because $P A$ is provably feasibly essentially reflexive, we have the following useful characterization for feasible interpretability over $P A$:
Corollary 7.3.4 For all formulas A, B in the language of $P A$,

$$
P A \vdash P A+A \triangleright_{f} P A+B \leftrightarrow P A+A \triangleright_{\Pi_{1} f} P A+B .
$$

Proof. Immediately from lemma 7.2.5 and corollary 7.3.3 QED

7.4 The set of Σ_{1}^{b}-axiomatized theories feasibly interpretable over $P A$ is Σ_{2}-complete

In this section, we will prove that the set of theories that can be feasibly interpreted in $P A$ is Σ_{2}-complete. We assume that each Σ_{1}^{b}-axiomatized theory is given by a code of a non-deterministic polynomial time Turing machine that accepts exactly the Gödel numbers of axioms of the theory in question, and we suppose that the coding of Turing machines is standard, e.g. as in [BDG 87].

By the way, the reduction that we use to prove theorem 7.4.1 can be easily adapted to yield a slightly alternative proof of Hájek's theorem that $\{e \mid$ the deterministic Turing machine coded by e works in polynomial time\} is Σ_{2}-complete (cf. [Há 79a]).

Let us turn to the technicalities. Take some Gödel numbering which codes formulas in the language of arithmetic (which for our purpose includes a function symbol exp) as binary numbers. L_{e} stands for the language accepted by the Turing machine with code e. By writing out the definitions we see that $E:=\{e \mid e$ codes a deterministic Turing machine such that $P A$ feasibly interprets $P A+$ the set of formulas whose codes are in $\left.L_{e}\right\}=\{e \mid \exists K \exists P \forall x \forall y(x$ is an axiom of $P A$ or y is an accepting computation of e on $\left.\left.x \rightarrow \exists z\left(|z| \leq P(|x|) \wedge \operatorname{Prf}\left(z, x^{K}\right)\right)\right)\right\}$ is in Σ_{2}.

It is well-known that $\left\{e \mid W_{e}\right.$ finite $\}$ is Σ_{2}-complete (cf [So 87]). So in order to prove that E is in fact Σ_{2}-complete, the following theorem suffices.

Theorem 7.4.1 There is a total recursive function F such that for all e :
$\quad W_{e}$ is finite
$\Leftrightarrow F(e)$ codes a non-deterministic polynomial time Turing machine such
that $P A$ feasibly interprets $P A+$ the set of formulas whose codes are in $L_{F(e)}$.

In order to prove this theorem, we first introduce a definition and prove a lemma.
Definition 7.4.2 Define by Gödel's diagonalization theorem (or rather by the free variable version as formulated by Montague) a $\Delta_{0}(e x p)$-formula $\varphi(y)$ such that

$$
P A \vdash \varphi(y) \leftrightarrow \forall|x| \leq \exp (|y|) \neg \operatorname{Prf}(x,\ulcorner\varphi(\bar{y})\urcorner) .
$$

This fixed point is a bounded analog to the fixed point that Gödel used to prove his First Incompleteness Theorem. Informally, every $\varphi(\bar{n})$ says "I am not provable by any short proof". Part of the proof of the following lemma is reminiscent of Gödel's argument. It is almost identical to the proof of theorem 6.4.1.

Lemma 7.4.3 For any $N P$-subset X of the natural numbers defined by a Σ_{1}^{b}-formula α, we have

$$
X \text { is finite } \Leftrightarrow P A \triangleright_{f} P A+\{\varphi(\bar{n}) \mid \alpha(n)\} .
$$

Proof.

- It is easy to see that there is a polynomial O such that for each $n,|n|<\mid\left\ulcorner\varphi(\bar{n})^{\urcorner} \mid \leq\right.$ $O(|n|)$.
- If $\varphi(\bar{n})$ were false, then by definition we would have a proof of the $\Delta_{0}(e x p)$-sentence $\varphi(\bar{n})$; so $\varphi(\bar{n})$ must be true. But then, since $\varphi(\bar{n})$ is $\Delta_{0}(\exp)$, we have the following:

1. $P A$ proves $\varphi(\bar{n})$, though
2. because $\varphi(\bar{n})$ is true, $P A$ does not prove $\varphi(\bar{n})$ by any proof whose Gödel number is of length $\leq 2^{|n|}$.

- If X is finite, then it is obvious that $P A \triangleright_{f} P A+\{\varphi(\bar{n}) \mid \alpha(n)\}$.
- Suppose X is infinite and $P A \triangleright_{f} P A+\{\varphi(\bar{n}) \mid \alpha(n)\}$ by interpretation K and polynomial P. Thus, for all $n \in X$,

$$
P A \xlongequal{P(\mid r \varphi(\bar{n})\urcorner \mid)} \varphi(\bar{n})^{K} .
$$

Since φ is $\Delta_{0}(e x p)$, we also know by lemma 3.10 of [Ve 93] (with $U=V=P A$) that there is a polynomial R such that for every $n \in X$,

$$
P A \upharpoonright^{R(|\ulcorner\varphi(\bar{n})\urcorner|)} \varphi(\bar{n}) \leftrightarrow \varphi(\bar{n})^{K} .
$$

Now can construct from R and P a polynomial Q such that for all $n \in X$,
$P A \xlongequal{Q(|\ulcorner\varphi(\bar{n})\urcorner|)} \varphi(\bar{n})$.
However, there will be n such that $2^{|n|}>Q(O(|n|)) \geq Q(|\ulcorner\varphi(\bar{n})\urcorner|)$, and we have a contradiction with 2.

QED

Now we can prove the theorem by giving an appropriate reduction F.
Proof. For e, t given, we describe the behavior of the deterministic Turing machine coded by $F(e)$ on input t. In the rest of the proof we will sloppily mention the codes instead of the machines or functions that they code. As usual, $|s|$ stands for the number of symbols that s consists of.

IF t is not of the form $\left.{ }^{\ulcorner } \varphi(\bar{s})\right\urcorner$ for any s,
THEN we halt and reject t;
ELSE we find the s such that t is of the form $\left.{ }^{\ulcorner } \varphi(\bar{s})\right\urcorner$;
first we simulate the behavior of e on inputs $1, \ldots,|s|$, for at most $|s|$ steps each.

IF $|s|>|s-1|$ AND
e halts on $|s|$ within $|s|$ steps, OR there is an $i \leq|s|-1$ such that
e halts on i within $|s|$ steps AND
e does not halt on i within $|s|-1$ steps,
THEN we halt and accept t; ELSE we halt and reject t.

We want to show that F is the required function. To this end, first define $s_{e}(i):=$ the smallest s such that

- $i \leq|s|$ and
- e halts on i within $|s|$ steps.

Now we prove the theorem.
(\Rightarrow) Suppose W_{e} is finite, say $W_{e}=\left\{i_{1}, \ldots, i_{n}\right\}$.
Then $L_{F(e)}=\left\{\left\ulcorner\varphi\left(\overline{s_{e}\left(i_{1}\right)}\right)\right\urcorner, \ldots,\left\ulcorner\varphi\left(\overline{s_{e}\left(i_{n}\right)}\right)\right\urcorner\right\}$. By lemma 7.4 .3 we know that $P A \triangleright_{f}$ $P A+\left\{\varphi\left(\overline{s_{e}\left(i_{1}\right)}\right), \ldots, \varphi\left(\overline{s_{e}\left(i_{n}\right)}\right)\right\}$.
(\Leftarrow) Suppose W_{e} is infinite. We know that for all $i \in W_{e}, i \leq\left|s_{e}(i)\right|$. So the set $\left.L_{F(e)}=\left\{{ }^{\ulcorner } \varphi\left(\overline{s_{e}(i)}\right)\right\urcorner \mid i \in W_{e}\right\}$ is an infinite set, and by lemma 7.4.3 we do not have $P A \triangleright_{f} P A+\left\{\varphi\left(\overline{s_{e}(i)}\right) \mid i \in W_{e}\right\}$.

QED

Corollary 7.4.4 There is a total recursive function F such that for all e :
W_{e} is infinite
$\Leftrightarrow F(e)$ codes a non-deterministic polynomial time Turing machine such that PA interprets PA + the set of formulas whose codes are in $L_{F(e)}$, but does not feasibly interpret this set.

Proof. We can take the reduction F as in the proof of theorem 7.4.1. The \leftarrow-direction follows immediately from the old proof. For the \rightarrow-direction, we only have to remember the additional fact that $P A \vdash \varphi(\bar{n})$ for every n. QED

In section 7.6 , we will replace the possibly infinite sets $L_{F(e)}$ by a single sentence $\xi(\bar{e})$ which is just as strong as far as feasible interpretability over $P A$ is concerned. In order to do this we make use of two properties of $L_{F(e)}$ which make it suitable for replacement:

1. it is easy to compute whether $y \in L_{F(e)}$, thus, because we know already that $P A$ is Δ_{1}^{b}-axiomatized, $P A+L_{F(e)}$ is Δ_{1}^{b}-axiomatized as well; and
2. $L_{F(e)}$ is only sparsely populated (see definition 7.2.6).

We now proceed to make these properties more precise and to prove them for our $L_{F(e)}$.
Remark 7.4.5 Note that, if we take some standard coding of Turing machines (see e.g. [BDG 87]), then to compute whether $t \in L_{F(e)}$ takes only time polynomial in $|t|+|e|$, for:

- to compute whether t is of the form $\left.{ }^{\ulcorner } \varphi(\bar{s})\right\urcorner$ and, if it is, to find this s, takes time polynomial in $|t|$;
- to simulate the behavior of e on inputs $1, \ldots,|s|$, for at most $|s|$ steps each takes time polynomial in $|s|+|e| \leq|t|+|e|$;
- to see whether $|s|>|s-1|$ takes time linear in $|s| \leq|t|$;
- to see whether e halts on some $i \leq|s|$ within $|s|$ but not within $|s|-1$ steps takes time polynomial in $|s|+|e| \leq|t|+|e|$.

Remark 7.4.6 Note that for every e, the set $L_{F(e)}$ is sparse. More precisely, all members of $L_{F(e)}$ are of the form $\left.{ }^{\ulcorner } \varphi(\bar{s})\right\urcorner$ for some s such that $|s|>|s-1|$ (i.e. there is a k such that $s=2^{k}$).

Generalizations of theorem 7.4.1 By some slight adaptations, the proof of theorem 7.4.1 immediately gives rise to other results. We mention two directions of generalization.

- Sam Buss suggested the following restricted definition of feasible interpretability to us:

$$
\begin{aligned}
& U \triangleright_{f m} V \leftrightarrow \exists K \exists M \text { ("Kis an interpretation and } M \text { is a determ. } \\
& \text { pol. time Turing Machine" } \left.\wedge \forall a\left(\alpha_{V}(a) \rightarrow \operatorname{Prf}\left(M(a), a^{K}\right)\right)\right) .
\end{aligned}
$$

This definition is more in line with the conventional use of the word "feasible" in the context of polynomial time computability. The clause $\operatorname{Prf} f_{U}\left(M(a), a^{K}\right)$ is a P like formula, while the clause $\exists p$ (" $|p| \leq P(|a|)$ " $\wedge \operatorname{Prf} f_{U}\left(p, a^{K}\right)$) in the definition of feasible interpretability used in this dissertation is an $N P$-like formula.
It is easily seen that under the new definition, $E^{\prime}:=\{e \mid e$ codes a deterministic Turing machine such that $P A$ "feasibly" interprets $P A+$ the set of formulas whose codes are in $\left.L_{e}\right\}=\{e \mid \exists K \exists P$-time polynomial Turing machine $M \forall x \forall y(x$ is an axiom of $P A$ or y is an accepting computation of e on $\left.\left.x \rightarrow \operatorname{Prf}\left(M(x), x^{K}\right)\right)\right\}$ is in $\Sigma_{\mathbf{2}}$. Moreover, by inspection of the proofs of lemma 7.4.3 and theorem 7.4.1, we see that E^{\prime} is in fact Σ_{2}-complete.

- We could also define feasible interpretability by bounding the length of proofs used in terms of other standard function classes than the polynomials; e.g. the linear functions or the exponential functions would be a good choice. In the latter case we have to adapt the fixed point of lemma 7.4.3 in order to diagonalize out of the function class, but we still get Σ_{2}-completeness of the set of theories "feasibly" interpretable over $P A$.

7.5 Lindström's general lemmas polynomialized

Let A be an extension of $P A$ by a provably sparse set of axioms in the language of $P A$, where the set of axioms of A is given by the Σ_{1}^{b}-formula α. We give a definition from [Li 84], and we adapt some of the lemmas from that paper.

Definition 7.5.1 Let Γ be either Π or Σ. For every $i \geq 1$, we define the following:

$$
\left[\Gamma_{i}\right]_{\alpha}(x, y):=\forall u, v \leq y\left(\operatorname{Fmla}_{\Gamma_{i}}(u) \wedge \operatorname{Prf}_{\alpha(z) \mathrm{V} z=x}(v, u) \rightarrow \operatorname{Tr}\left(e_{\Gamma_{i}}(u)\right)\right.
$$

The following lemma corresponds to [Li 84, Lemma 1].
Lemma 7.5.2 Let Γ be either Π or Σ. Then $\left[\Gamma_{i}\right]_{\alpha}(x, y)$ is a Γ_{i}-formula such that

1. $P A \vdash\left[\Gamma_{i}\right]_{\alpha}(x, y) \wedge z \leq y \rightarrow\left[\Gamma_{i}\right]_{\alpha}(x, z)$;
2. For every e and every $\varphi, A+\left.\varphi(\bar{e})\right|^{|m|}\left[\Gamma_{i}\right]_{\alpha}\left(\left\ulcorner\varphi(\bar{e})^{\urcorner}, \bar{m}\right)\right.$
3. For every e and every φ, there is a polynomial P such that if $\psi \in \Gamma_{i}$ and $A+\varphi(\bar{e}) \vdash \psi$ via a proof coded by q, then $A+\left[\Gamma_{i}\right]_{\alpha}\left(\Gamma \varphi(\bar{e})^{\urcorner}, \bar{q}\right) \vdash^{P(|q|)} \psi$.

Proof.

1. See [Li 84, Lemma 1].
2. By lemma 7.2 .8 , we have

$$
A+\varphi(\bar{e}) \vdash^{|m|} \forall u, v \leq \bar{m}\left(\operatorname{Prf}_{\left.\alpha(z) \mathrm{v}_{\mathbf{z}}=r \varphi(\bar{e})\right\urcorner}(v, u) \rightarrow \operatorname{True}_{|m|}(u)\right) .
$$

Moreover, we have by lemma 7.2.10:

$$
A{\stackrel{|m|}{*} \forall u\left(F m l a_{\Gamma_{i}}(u) \wedge \operatorname{True}_{|m|}(u) \rightarrow \operatorname{Tr}^{\mid m e_{\Gamma_{i}}}(u)\right), ~}_{\text {and }}
$$

so indeed

$$
A+\varphi(\bar{e}) \stackrel{|m|}{*}\left[\Gamma_{i}\right]_{\alpha}(\ulcorner\varphi(\bar{e})\urcorner, \bar{m}) .
$$

3. Suppose $\psi \in \Gamma_{i}$ and $A+\varphi(\bar{e}) \vdash \psi$, via a proof coded by q. Then there is a polynomial P_{1} given in advance such that

$$
A \vdash^{P_{1}(|q|)} F m l a_{\Gamma_{i}}(\ulcorner\psi\urcorner) \wedge \operatorname{Pr} f_{\alpha(z) \vee_{z}=\ulcorner\varphi(\bar{e})\urcorner}(\bar{q},\ulcorner\psi\urcorner),
$$

thus by definition of $\left[\Gamma_{i}\right]_{\alpha}$, there is a polynomial P_{2} given in advance such that

$$
A+\left[\Gamma_{i}\right]_{\alpha}\left(\ulcorner \varphi (\overline { e }) ^ { \urcorner } , \overline { q }) \Vdash ^ { P _ { 2 } (| q |) } \operatorname { T r u e } _ { \Gamma _ { i } } \left(\left\ulcorner\psi^{\urcorner}\right) .\right.\right.
$$

So by lemma 7.2.9, there is a polynomial P given in advance such that

$$
A+\left[\Gamma_{i}\right]_{\alpha}(\ulcorner\varphi(\bar{e})\urcorner, \bar{q}) \vdash^{P(|q|)} \psi .
$$

QED

The fixed points that we define below in definition 7.5 .3 were introduced by Lindström in his paper [Li 84]. Our lemmas 7.5.4 and 7.5.5 are analogous to [Li 84, lemma 2]. The difference is that we keep track of the lengths of the proofs.

Definition 7.5.3 Let $i \geq 1$ and $\chi \in \Sigma_{i}$ be given. Define ξ by diagonalization such that

$$
P A \vdash \xi(\bar{e}) \leftrightarrow \exists y\left(\neg\left[\Pi_{i}\right]_{\alpha}(\ulcorner\xi(\bar{e})\urcorner, y) \wedge \forall z \leq y \chi(\bar{e}, z)\right) .
$$

Dually, let $i \geq 1$ and $\chi \in \Pi_{i}$ be given. Define θ by diagonalization such that

$$
P A \vdash \theta(\bar{e}) \leftrightarrow \forall y\left(\left[\Sigma_{i}\right]_{\alpha}\left(\left\ulcorner\theta(\bar{e})^{\urcorner}, y\right) \rightarrow \chi(\bar{e}, y)\right) .\right.
$$

Lemma 7.5.4 If $\chi(x, y)$ is a Σ_{i}-formula, then $\xi(x)$ is also Σ_{i} and the following holds:

1. For all $e, A+\xi(\bar{e}) \mid \stackrel{|m|}{*} \forall z \leq \bar{m} \chi(\bar{e}, z)$.
2. For every e, there is a polynomial P such that if $\pi \in \Pi_{i}$ and $A+\xi(\bar{e}) \vdash \pi$ via a proof coded by q, then $A+\forall z \leq \bar{q} \chi(\bar{e}, z) \vdash^{P(|q|)} \pi$.

Proof.

1. Take e fixed. By lemma 7.5.2(2) we have

$$
A+\xi(\bar{e}) \vdash^{|m|}\left[\Pi_{i}\right]_{\alpha}(\ulcorner\xi(\bar{e})\urcorner, \bar{m}),
$$

so by lemma 7.5.2(1), we have

$$
\begin{equation*}
A+\left.\xi(\bar{e})\right|^{|m|} \forall z \leq \bar{m}\left[\Pi_{i}\right]_{\alpha}\left(\left\ulcorner\xi(\bar{e})^{\urcorner}, z\right)\right. \tag{7.8}
\end{equation*}
$$

Now by definition of ξ,

$$
\begin{equation*}
A+\left.\xi(\bar{e})\right|^{|m|} \exists y\left(\neg\left[\Pi_{i}\right]_{\alpha}(\xi(\bar{e}), y) \wedge \forall z \leq y \chi(\bar{e}, z)\right) \tag{7.9}
\end{equation*}
$$

From (7.8) and (7.9), we finally conclude that

$$
A+\left.\xi(\bar{e})\right|_{*} ^{|m|} \forall z \leq \bar{m} \chi(\bar{e}, z) .
$$

2. Suppose $\pi \in \Pi_{i}$ and

$$
\begin{equation*}
A+\xi(\bar{e}) \vdash \pi \text { via a proof coded by } q \tag{7.10}
\end{equation*}
$$

then by lemma 7.5.2(3), we have a polynomial P_{1} given in advance such that

$$
\begin{equation*}
A+\left[\Pi_{i}\right]_{\alpha}(\xi(\bar{e}), \bar{q}) \vdash^{P_{1}(|q|)} \pi . \tag{7.11}
\end{equation*}
$$

By definition of ξ, we have a polynomial P_{2} fixed in advance such that

$$
\begin{equation*}
A+\forall z \leq\left.\bar{q} \chi(\bar{e}, z)\right|^{P_{2}(|q|)} \xi(\bar{e}) \vee\left[\Pi_{i}\right]_{\alpha}(\xi(\bar{e}), q) . \tag{7.12}
\end{equation*}
$$

From (7.10), (7.11) and (7.12) we conclude that there is a polynomial P given in advance such that $A+\forall z \leq\left.\bar{q} \chi(\bar{e}, z)\right|^{P(|q|)} \pi$.

QED

We state the next lemma for reasons of symmetry only: it will not be used in the sequel.

Lemma 7.5.5 If $\chi(x, y)$ is a Π_{i}-formula, then $\theta(x)$ is also Π_{i} and the following holds:

1. For all $e, A+\left.\theta(\bar{e})\right|^{|m|} \chi(\bar{e}, \bar{m})$.
2. For every e, there is a polynomial P such that if $\sigma \in \Sigma_{i}$ and $A+\left.\theta(\bar{e})\right|^{|q|} \sigma$, then $A+\forall z \leq \bar{q} \chi(\bar{e}, z) \vdash^{P(|q|)} \sigma$.

Proof. We leave the proof, which is similar to the proof of lemma 7.5.4, to the distrustful reader. QED

7.6 Feasible interpretability is Σ_{2}-complete

The result of section 7.4 is not yet entirely satisfactory: we seek an elegant result that corresponds more neatly to the idea that feasible interpretability is Σ_{2}-complete. In order to do this, we would like to be able to replace each possibly infinite set $L_{F(e)}$ of codes of axioms accepted by a Turing machine with code e by an instance $\xi(\bar{e})$ of a single formula ξ. Moreover, we would like this replacement to be such that $L_{F(e)}$ and $\xi(\bar{e})$ have the same status with respect to feasible interpretability over $P A$. Luckily, one of the fixed points of section 7.5 can do our job.

Definition 7.6.1 Let α be a Σ_{1}^{b}-formula defining the set of axioms of $P A$.
By remark 7.4.5, the relation $y \in L_{F(e)}$ is polynomial-time computable, so by [Bu 86 , Theorem 3.2] it is Δ_{1}^{b}-definable in $\mathrm{I} \Delta_{0}+\Omega_{1}$. This means that there are a Σ_{1}^{b}-formula $\eta(e, y)$ and a Π_{1}^{b}-formula $\nu(e, y)$ that both correspond to the relation $y \in L_{F(e)}$ and such that I $\Delta_{0}+\Omega_{1} \vdash \eta(e, y) \leftrightarrow \nu(e, y)$.

Now we define $\chi(e, y):=\eta(e, y) \rightarrow \operatorname{True}_{\Sigma_{1}}(y)$. Clearly χ is Σ_{1}^{0}. We define ξ as given by definition 7.5 .3 for $i=1$ and this χ. To be explicit, ξ is defined by diagonalization such that

$$
P A \vdash \xi(\bar{e}) \leftrightarrow \exists y\left(\neg\left[\Pi_{1}\right]_{\alpha}(\ulcorner\xi(\bar{e})\urcorner, y) \wedge \forall z \leq y \chi\left(\eta(\bar{e}, z) \rightarrow \operatorname{True}_{\Sigma_{1}}(z)\right)\right) .
$$

Definition 7.6.2 For every e, let X_{e} be the set of $\Delta_{0}(e x p)$-formulas whose Gödel numbers are contained in $L_{F(e)}$.

Lemma 7.6.3 For all e, the following holds:

1. $P A+\xi(\bar{e}) \triangleright_{f} P A+X_{e} ;$
2. $P A+X_{e} \triangleright_{\Pi_{1} f} P A+\xi(\bar{e})$.

Proof.

1. Suppose that $\varphi \in X_{e}$. Because $\eta \in \Sigma_{1}^{b}$, we have

$$
\begin{equation*}
P A \left\lvert\, \frac{|\varphi|}{*} \eta(\bar{e},\ulcorner\varphi\urcorner) .\right. \tag{7.13}
\end{equation*}
$$

Next, by lemma 7.5.4.1, we have

$$
\begin{equation*}
P A+\xi(\bar{e}) \left\lvert\, \frac{|\varphi|}{*} \eta\left(\bar{e},\left\ulcorner\varphi^{\urcorner}\right) \rightarrow \operatorname{True}_{\Sigma_{1}}\left(\left\ulcorner\varphi^{\urcorner}\right) .\right.\right.\right. \tag{7.14}
\end{equation*}
$$

Combining (7.13) and (7.14), we derive $P A+\xi(\bar{e}) \stackrel{|\varphi|}{*} \operatorname{True}_{\Sigma_{1}}(\ulcorner\varphi\urcorner)$. Thus by lemma 7.2.9, $P A+\left.\xi(\bar{e})\right|^{|\varphi|} \varphi$. So we certainly have $P A+\xi(\bar{e}) \triangleright_{f} P A+X_{e}$.
2. Suppose $\pi \in \Pi_{1}$ and $P A+\xi(\bar{e}) \vdash \pi$ by a proof with Gödel number q. Then by lemma 7.5.4(2), we have a polynomial P_{1} fixed in advance such that

$$
\begin{equation*}
P A+\forall z \leq \bar{q} \chi(\bar{e}, z) \vdash^{P_{1}(|q|)} \pi . \tag{7.15}
\end{equation*}
$$

Also we have a polynomial P_{2} given in advance such that

$$
\begin{equation*}
P A+\left.X_{e}\right|^{P_{2}(|q|)} \forall z \leq \bar{q} \chi(\bar{e}, z) \tag{7.16}
\end{equation*}
$$

The reason for this is as follows. By a formalized version of remark 7.4.6, X_{e} provably contains only formulas $\varphi(\bar{s})$ where s is a power of 2 , i.e.

$$
P A \vdash \eta(\bar{e}, \bar{z}) \rightarrow \bigvee_{k \leq|z|} z=\left\ulcorner\varphi\left(2^{k}\right)^{\urcorner}\right.
$$

Moreover by Δ_{1}^{b}-completeness (see $[\mathrm{Bu} 86]$) we have a polynomial P_{3} such that for all $n\left(n \notin X_{e} \Rightarrow P A+\left.X_{e}\right|^{P_{3}(|n|)} \neg \eta(\bar{e}, \bar{n})\right)$, so there is a polynomial P_{4} given in advance such that

$$
P A \vdash \stackrel{P_{4}(|q|)}{ } \forall z\left(\eta(\bar{e}, z) \wedge z \leq \bar{q} \rightarrow \underset{x \leq q \wedge x \in X_{e}}{ } z=\bar{x}\right)
$$

Also, $P A \stackrel{\mid n}{*}_{|n|}^{*} \varphi(\bar{n}) \rightarrow \operatorname{True}_{\Sigma_{1}}(\ulcorner\varphi(\bar{n})\urcorner)$, thus $P A+X_{e} \mid \stackrel{|q|}{*} \forall z \leq \bar{q}(\eta(\bar{e}, z) \rightarrow$ $\operatorname{True}_{\Sigma_{1}}(z)$).
From (7.15) and (7.16), we conclude that there is a polynomial P given in advance such that $P A+X_{e} \vdash^{P(|q|)} \pi$, as desired.

QED

Corollary 7.6.4 For all e, the following holds:

1. $P A+\xi(\bar{e}) \triangleright P A+X_{e}$;
2. $P A+X_{e} \triangleright P A+\xi(\bar{e})$.

Proof. Directly from lemma 7.6.3. Alternatively, see Lindström's original nonfeasible argument in [Li 93, lemma 5]. QED

Theorem 7.6.5 $\left\{e \mid P A \triangleright_{f} P A+\xi(\bar{e})\right\}$ is Σ_{2}-complete.
Proof. By theorem 7.4.1, we have for all $e: W_{e}$ is finite $\Longleftrightarrow P A \triangleright_{f} P A+X_{e}$. By inspection of lemma 7.2 .8 we see that for all $e, P A+X_{e}$ is feasibly essentially reflexive. Therefore corollary 7.3 .3 gives for all e :

$$
P A \triangleright_{f} P A+X_{e} \Longleftrightarrow P A \triangleright_{\Pi_{1} f} P A+X_{e}
$$

Combining this with lemma 7.6.3 finally gives us for all e :

$$
W_{e} \text { is finite } \Longleftrightarrow P A \triangleright_{\Pi_{1} f} P A+\xi(\bar{e})
$$

thereby giving a reduction from the Σ_{2}-complete set $\left\{e \mid W_{e}\right.$ is finite $\}$ to the set $\left\{e \mid P A \triangleright_{f}\right.$ $P A+\xi(\bar{e})\}$. QED

Theorem 7.6.6 $\left\{e \mid P A \triangleright P A+\xi(\bar{e}) \wedge \neg\left(P A \triangleright_{f} P A+\xi(\bar{e})\right)\right\}$ is Π_{2}-complete.

Proof. It is easy to see that $P A \triangleright P A+\xi(\bar{e}) \wedge \neg\left(P A \triangleright_{f} P A+\xi(\bar{e})\right)$, being a conjunction of two Π_{2}-formulas, is again a Π_{2}-formula.

From corollary 7.4.4, we conclude that for all e, W_{e} is infinite if and only if

$$
P A \triangleright P A+X_{e} \wedge \neg\left(P A \triangleright_{f} P A+X_{e}\right) .
$$

But by lemma 7.6.3 and corollary 7.6.4, we find that W_{e} is infinite if and only if $P A \triangleright P A+$ $\xi(\bar{e}) \wedge \neg\left(P A \triangleright_{f} P A+\xi(\bar{e})\right)$. Thus we have reduced the Π_{2}-complete set $\left\{e \mid W_{e}\right.$ is infinite $\}$ to $\left\{e \mid P A \triangleright P A+\xi(\bar{e}) \wedge \neg\left(P A \triangleright_{f} P A+\xi(\bar{e})\right)\right\}$. QED

Generalizations of theorem 7.6.5 We can generalize theorem 7.6.5 on lines suggested at the end of section 7.4. However in this case it would not be a good choice to define feasible interpretability by bounding the length of proofs by linear functions.

Bibliography

[Ad 90] Z. Adamowicz. End-extending models of $\mathrm{I} \Delta_{0}+E X P+B \Sigma_{1}$. Fundamenta Mathematicae 136 (1990) 133-145.
[Ad 93] Z. Adamowicz. A contribution to the end-extension problem and the Π_{1} conservativeness problem. Annals of Pure and Applied Logic 61 (1993) 3-48.
[BDG 87] J.L. Balcázar, J. Díaz and J. Gabarró. Structural Complexity I. Springer Verlag, Berlin, 1987.
[Bek 89] L.D. Beklemishev. On the classification of propositional provability logics. Math. USSR Izvestiya 35 (1990) 247-275.
[Bek 91] L.D. Beklemishev. On bimodal provability logics for Π_{1}-axiomatized extensions of arithmetical theories. ITLI Prepublication Series, X-91-09, University of Amsterdam, Amsterdam (1991).
[Ben 62] J.H. Bennett. On Spectra. Ph.D. thesis, Princeton University, 1962.
[Ber 90] A. Berarducci. The interpretability logic of Peano Arithmetic. The Journal of Symbolic Logic 55 (1990) 1059-1089.
[BV 91] A. Berarducci and L.C. Verbrugge. On the metamathematics of weak theories. ITLI Prepublication Series for Mathematical Logic and Foundations, ML-91-02, University of Amsterdam, 1991.
[BV 93] A. Berarducci and R. Verbrugge. On the Provability Logic of Bounded Arithmetic. Annals of Pure and Applied Logic 61 (1993) 75-93.
[Bu 86] S.R. Buss. Bounded Arithmetic. Bibliopolis, edizioni di filosofia e scienze, Napoli, 1986.
[BS 90] S.R. Buss and P.J. Scott (editors). Feasible Mathematics. Birkhäuser, Boston, 1990.
[Co 64] A. Cobham. The intrinsic computational difficulty of functions. In: Y. BarHillel (editor), Logic, Methodology and Philosophy of Science II. North-Holland, Amsterdam, 1964, pp. 24-30.
[Co 66] P.J. Cohen. Set Theory and the Continuum Hypothesis. Benjamin, New York, 1966.
[DPR 61] M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential diophantine equations. Annals of Mathematics 74 (1961) 425-436.
[Di 80] C. Dimitracopoulos. Matijasevič's Theorem and Fragments of Arithmetic. Ph.D. thesis, Manchester University, 1980.
[Fe 60] S. Feferman. Arithmetization of metamathematics in a general setting. Fund. Math. 49 (1960) 35-92.
[FR 79] J. Ferrante and C.W. Rackoff. The Computational Complexity of Logical Theories. Springer-Verlag, Berlin, 1979.
[Gö 31] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte Mathematik und Physik 38 (1931) 173-198.
[GS 79] D. Guaspari and R.M. Solovay. Rosser sentences. Annals of Mathematical Logic 16 (1979) 81-99.
[Há 71] P. Hájek. On interpretability in set theories. Commentationes Mathematicae Universitatis Carolinae 12 (1971) 73-79.
[Há 72] P. Hájek. On interpretability in set theories II. Commentationes Mathematicae Universitatis Carolinae 13 (1972) 445-455.
[Há 79a] P. Hájek, Arithmetical hierarchy and complexity of computation. Theoretical Computer Science 8 (1979) 227-237.
[Há 79b] P. Hájek, On partially conservative extensions of arithmetic. In: M. Boffa et al. (editors), Logic Colloquium 78, North-Holland, Amsterdam, 1979, pp. 225-234.
[Há 83] P. Hájek. On a new notion of partial conservativity. In: E. Börger et al.(editors), Logic Colloquium 83 vol. 2, Springer-Verlag, Berlin, 1983, pp. 217-232.
[HP 93] P. Hájek and P. Pudlák. Metamathematics of First-order Arithmetic. SpringerVerlag, Berlin, 1993.
[HS 84] A.L. Hayward and J.J. Sparkes. The Concise English Dictionary. Omega Books, Hertfordshire, 1984.
[Hi 1899] D. Hilbert. Grundlagen der Geometrie. Teubner, Leipzig, 1899.
[Ho 79] D. Hofstadter. Gödel, Escher and Bach: An Eternal Golden Braid. Harvester Press, Sussex, 1979.
[Jo 87] D.H.J. de Jongh. A simplification of a completeness proof of Guaspari and Solovay. Studia Logica 46 (1987) 187-192.
[JM 87] D.H.J. de Jongh and F. Montagna. Generic generalized Rosser fixed points. Studia Logica 46 (1987) 193-203.
[JM 88] D.H.J. de Jongh and F. Montagna. Provable fixed points. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 34 (1988) 229-250.
[JV 88] D.H.J. de Jongh and F. Veltman. Intensional Logic. Lecture notes, Philosophy Department, University of Amsterdam, Amsterdam, 1988.
[JV 90] D.H.J. de Jongh and F. Veltman. Provability logics for relative interpretability. In: P.P. Petkov (editor), Mathematical Logic (Proceedings, Chaika, Bulgaria, 1988). Plenum Press, New York, 1990, pp. 31-42.
[JMM 91] D.H.J. de Jongh, M. Jumelet and F. Montagna. On the proof of Solovay's theorem. Studia Logica 50 (1991) 51-70.
[JM 91] D.H.J. de Jongh and F. Montagna. Rosser orderings and free variables. Studia Logica 50 (1991), pp.71-80.
[Ka 89] M. B. Kalsbeek. An Orey Sentence for Predicative Arithmetic. ITLI Prepublication Series, X-89-01, University of Amsterdam, Amsterdam, 1989.
[KH 82] C.F. Kent and B.R. Hodgson. An arithmetical characterization of NP. Theoretical Computer Science 21 (1982) 255-267.
[KP 89] J. Krajiček and P. Pudlák. On the structure of initial segments of models of arithmetic. Archives of Mathematical Logic 28 (1989) 91-98.
[KPT 89] J. Krajícek, P. Pudlák and G. Takeuti. Bounded arithmetic and the polynomial hierarchy. Annals of Pure and Applied Logic 52 (1991) 143-153.
[Kr 51] G. Kreisel. On the interpretation of non-finitist proofs I. Journal of Symbolic Logic 16 (1951) 241-267.
[Kr 52] G. Kreisel. On the interpretation of non-finitist proofs II. Journal of Symbolic Logic 17 (1952) 43-58.
[Kr 58] G. Kreisel. Mathematical significance of consistency proofs. Journal of Symbolic Logic 23 (1958) 155-182.
[Ku 80] K. Kunen. Set Theory: An Introduction to Independence Proofs. North-Holland, Amsterdam, 1980.
[Li 79] P. Lindström. Some results on interpretability. In: F.V. Jensen et al. (editors), Proceedings from the 5th Scandinavian Logic Symposium. Aalborg University Press, Aalborg, 1979, pp. 329-361.
[Li 84] P. Lindström. On partially conservative sentences and interpretability. Proceedings of the American Mathematical Society, vol. 91 (1984), pp. 436-443.
[Li 93] P. Lindström. On Σ_{1} and Π_{1} sentences and degrees of interpretability. Annals of Pure and Applied Logic 61 (1993) 175-193.
[Lö 55] M.H. Löb. Solution of a problem of Leon Henkin. Journal of Symbolic Logic 20 (1955) 115-118.
[MS 73] A. Macintyre and H. Simmons. Gödel's diagonalization technique and related properties of theories. Colloquium Mathematicum 28 (1973) 165-180.
[MA 78] K. Manders and L. Adleman. NP-complete decision problems for binary quadratics. Journal of Computer System Sciences 16 (1978) 168-184.
[Ma 70] Yu. V. Matijasevich. Enumerable sets are Diophantine. Doklady Akad. Nauk SSSR 191 (1970) 279-282 (in Russian. English translation: Soviet Math. Doklady 1970, 354-357.)
[Mi 71] G.E. Mints. Quantifier-free and one-quantifier systems. In: Yu. V. Matijasevich and A.O. Slisenko (editors), Zapiski Nauchnykh Seminarov 20 (1971) 115-133 (in Russian. English translation: Journal of Soviet Mathematics 1 (1973) 211226.)
[Mo 65] R. Montague. Interpretability in terms of models. Indagationes Mathematicae 27 (1965) 467-476.
[Ne 86] E. Nelson. Predicative Arithmetic. Math. Notes 32, Princeton University Press, Princeton, 1986.
[Od 89] P. Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam, 1989.
[Or 61] S. Orey. Relative interpretations. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 7 (1961) 146-153.
[Pa 71] R. Parikh. Existence and feasibility in arithmetic. Journal of Symbolic Logic 36 (1971) 494-508.
[PD 82] J.B. Paris and C. Dimitracopoulos. Truth definition for Δ_{0} formulae. In: Logic and Algorithmic, Monographie No. 30 de L'Enseignement Mathématique. Université de Genève, Genève, 1982, pp. 317-329.
[Pa 72] C. Parsons. On n-quantifier induction. Journal of Symbolic Logic 37 (1972) 466-482.
[Pu 83] P. Pudlák. A definition of exponentiation by a bounded arithmetical formula. Commentationes Mathematicae Universitatatis Carolinae 24 (1983) 667-671.
[Pu 85] P. Pudlák. Cuts, consistency statements and interpretations. Journal of Symbolic Logic 50 (1985) 423-441.
[Pu 86] P. Pudlák. On the length of proofs of finitistic consistency statements in first order theories. In: J.B. Paris et al. (editors), Logic Colloquium '84, North Holland, Amsterdam, 1986, pp. 165-196.
[Pu 87] P. Pudlák. Improved bounds to the length of proofs of finitistic consistency statements. In: S.G. Simpson (editor), Logic and Combinatorics, Contemporary Mathematics 35. AMS, Providence, 1987, pp. 309-332.
[Rog 67] H. Rogers Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.
[Ros 36] J.B. Rosser. Extensions of some theorems of Gödel and Church. Journal of Symbolic Logic 1 (1936) 87-91.
[Sh 88] V. Yu. Shavrukov. The logic of relative interpretability over Peano Arithmetic (in Russian). Preprint No. 5, Steklov Mathematical Institute, Moscow, 1988.
[Sm 77] C. Smoryński. The incompleteness theorems. In: J. Barwise (editor), Handbook of Mathematical Logic. North Holland, Amsterdam, 1977, pp. 821-865.
[Sm 85] C. Smoryński. Self-reference and Modal Logic. Springer-Verlag, New York (1985).
[So 87] R.I. Soare. Recursively Enumerable Sets and Degrees: a Study of Computable Functions and Computably Generated Sets. Springer-Verlag, Berlin, 1987.
[So 76] R.M. Solovay. Provability interpretations of modal logic. Israel Journal of Mathematics 25 (1976) 287-304.
[So 76b] R. M. Solovay. On interpretability in set theories. Manuscript, 1976.
[So 89] R.M. Solovay. Injecting inconsistencies into models of PA. Annals of Pure and Applied Logic 44 (1989) 261-302.
[St 76] L.J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science 3 (1976) 1-22.
[Šv 83] V. Švejdar. Modal analysis of generalized Rosser sentences. Journal of Symbolic Logic 48 (1983) 986-999.
[Ta 75] G. Takeuti. Proof Theory. North Holland, Amsterdam, 1975.
[Ta 88] G. Takeuti. Bounded arithmetic and truth definition. Annals of Pure and $A p$ plied Logic 39 (1988) 75-104.
[TMR 53] A. Tarski, A. Mostowski and R. Robinson. Undecidable Theories. NorthHolland, Amsterdam, 1953.
[TvD 88] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction. North-Holland, Amsterdam, 1988.
[Ve 88] L.C. Verbrugge. Does Solovay's Completeness Theorem Extend to Bounded Arithmetic?. Master's thesis, University of Amsterdam, Amsterdam, 1988.
[Ve 89] L.C. Verbrugge. Σ-completeness and bounded arithmetic. ITLI Prepublication Series for Mathematical Logic and Foundations, ML-89-05, University of Amsterdam, Amsterdam, 1989.
[Ve 93] L.C. Verbrugge. Feasible interpretability. In: P. Clote and J. Krajíček (editors), Arithmetic, Proof Theory and Computational Complexity. Oxford University Press, Oxford, 1993.
[VV] L.C. Verbrugge and A. Visser. A small reflection principle for bounded arithmetic. To appear in Journal of Symbolic Logic.
[Vi 81] A. Visser. Aspects of Diagonalization \& Provability. Ph.D. thesis, University of Utrecht, 1981.
[Vi 82] A. Visser. On the completeness principle. Annals of Mathematical Logic 22 (1982) 263-295.
[Vi 85] A. Visser. Evaluation, provably deductive equivalence in Heyting's Arithmetic of substitution instances of propositional formulas. Logic Group Preprint Series No. 4, University of Utrecht, Utrecht, 1985.
[Vi 89] A. Visser. Peano's smart children: a provability logical study of systems with built-in consistency. Notre Dame Journal of Formal Logic 30 (1989) 161-196.
[Vi 90a] A. Visser. Interpretability Logic. In: P.P. Petkov (editor), Mathematical Logic (Proceedings, Chaika, Bulgaria, 1988). Plenum Press, New York, 1990, 1990.
[Vi 90b] A. Visser. Proofs of Π_{2}-completeness by Per Lindström and Robert Solovay, as told by Albert Visser. Unpublished manuscript, 1990.
[Vi 91a] A. Visser. The formalization of interpretability. Studia Logica 50 (1991) 81-105.
[Vi 91b] A. Visser. On the Σ_{1}^{0}-conservativity of $\Sigma_{1^{-}}^{0}$ completeness. Notre Dame Journal of Formal Logic 32 (1991) 554-561.
[Vi 92] A. Visser. An inside view of EXP; or, The closed fragment of the provability logic of $\mathrm{I} \Delta_{0}+\Omega_{1}$ with a propositional constant for EXP. Journal of Symbolic Logic 57 (1992) 130-165.
[Vi 93] A. Visser. The unprovability of small consistency. Archives of Mathematical Logic 32 (1993) 275-298.
[Vi b] A. Visser. Questiones Longae et Breves. Unpublished cumulative manuscript.
[VH 72] P. Vopěnka and P. Hájek. The Theory of Semisets. North-Holland, Amsterdam, 1972.
[WP 87] A.J. Wilkie and J.B. Paris. On the scheme of induction for bounded arithmetic formulas. Annals of Pure and Applied Logic, vol. 35 (1987) 261-302.
[WP 89] A.J. Wilkie and J.B. Paris. On the existence of end extensions of models of bounded induction. In: J.E. Fenstad et al. (editors), Logic, Methodology and Philosophy of Science VIII, North-Holland, Amsterdam, 1989.
[Wr 76] C. Wrathall. Complete sets and the polynomial time hierarchy. Theoretical Computer Science 3 (1976) 23-33.
[Za 93] D. Zambella. On second order bounded arithmetic. Manuscript, 1993.

Samenvatting

Dit proefschrift bevat een aantal resultaten over de metamathematica van eerste orde rekenkunden. Het zwaartepunt ligt bij het bestuderen van bewijsbaarheid voor begrensde rekenkunde en een alternatieve definitie van interpreteerbaarheid.

Deel I gaat vooraf aan de eigenlijke resultaten.
In het inleidende hoofdstuk 1 geven we een informele beschrijving van de rol van het begrip "efficiëntie" in de wiskunde en de metamathematica. We introduceren ook de belangrijkste begrippen die in het proefschrift aan de orde komen: complexiteitstheorie, begrensde rekenkunde, bewijsbaarheidslogica en interpreteerbaarheidslogica.

Hoofdstuk 2 bevat de technische beschrijving van de in hoofdstuk 1 geïntroduceerde begrippen. Daarnaast geven we een beknopte opsomming van de stellingen uit de literatuur die we bij het bewijzen van onze resultaten gebruikt hebben. Zo geven we enkele stellingen over definieerbare sneden en hun toepassingen in de rekenkunde. Het hoofdstuk eindigt met een paragraaf waarin resultaten uit de literatuur besproken worden die de verschillen en overeenkomsten tussen enkele zwakke rekenkundige theorieën belichten. Interpreteerbaarheid en conservativiteit voor bepaalde klassen formules worden hier gebruikt om de kracht van de theorieën te vergelijken.

Deel II is gewijd aan de begrensde rekenkunde.
In hoofdstuk 3 bewijzen we eerst onder de complexiteitstheoretische aanname $N P \neq$ co- $N P$ dat de begrensde rekenkunde geen volledigheid bewijst voor alle formules voor het vergelijken van getuigen. In de Peano Rekenkunde speelt bewijsbare volledigheid voor zulke formules een belangrijke rol bij het bewijzen van de geformaliseerde versie van Rossers Stelling en Solovay's Volledigheidsstelling.

Om toch ook in de begrensde rekenkunde de geformaliseerde versie van Rossers Stelling te kunnen afleiden, bewijzen we een reflectieprincipe voor "kleine" bewijzen. Het bewijs daarvan maakt gebruik van partiële waarheidspredicaten en definieerbare sneden.

Als toepassing van dit principe geven we een bewijs van een stelling van Bernardi en Montagna voor de begrensde rekenkunde. Bovendien gebruiken we het "kleine" reflectieprincipe voor een simpele versterking van een bekende stelling over het injecteren van kleine bewijzen van inconsistentie. Tenslotte gebruiken we het principe, op een meer verrassende manier, in het bewijs van een stelling over het bestaan van echte eindextensies van modellen van de begrensde rekenkunde die aan een zware extra eis voldoen.

In hoofdstuk 4 keren we terug naar het probleem van bewijsbare volledigheid. We bewijzen dat de complexiteitstheoretische aanname $P \neq N P \cap$ co- $N P$ impliceert dat Buss' begrensde rekenkunde S_{2}^{1} niet voor alle Σ_{1}^{0}-zinnen volledigheid bewijst.

In hoofdstuk 5 presenteren we partiële antwoorden op de vraag: wat is de bewijsbaarheidslogica van de begrensde rekenkunde? Omdat bewijsbare volledigheid voor zinnen voor het vergelijken van getuigen op grond van resultaten uit hoofdstuk 3 en 4 dubieus
is, kunnen we niet rechtstreeks Solovay's methode gebruiken.
Met behulp van het kleine reflectieprincipe uit hoofdstuk 3 en definieerbare sneden passen we voor een geschikte klasse van Kripkeframes de methode van Solovay aan. We geven een inbedding van modellen op zulke eenvoudige frames in de begrensde rekenkunde.

Ook bewijzen we dat de bewijsbaarheidslogica van de begrensde rekenkunde in ieder geval niet de modale theorie van een klasse Kripkebomen kan zijn. De vraag wat de bewijsbaarheidslogica van de begrensde rekenkunde dan wel is, is op het moment van schrijven voor zover bekend nog open.

Deel III behandelt een alternatieve definitie van interpreteerbaarheid.
In hoofdstuk 6 definiëren we "uitvoerbare interpreteerbaarheid," waarbij de lengte van bewijzen van vertaalde axioma's begrensd is door een polynoom in de lengte van die axioma's zelf. We laten zien dat een aantal bekende interpretaties, zoals die van $Z F+\mathrm{V}=\mathbf{L}$ in $Z F$, uitvoerbaar zijn. Aan de andere kant zijn niet alle interpretaties te vervangen door uitvoerbare interpretaties. Met behulp van diagonalisatie construeren we een theorie die weliswaar in de Peano Rekenkunde interpreteerbaar is, maar er niet op uitvoerbare wijze in geïnterpreteerd kan worden.

Verder laten we zien dat de interpreteerbaarheidslogica $I L M$ arithmetisch correct en volledig is voor uitvoerbare interpreteerbaarheid over de Peano Rekenkunde.

Hoofdstuk 7 behandelt de definitionele complexiteit van uitvoerbare interpreteerbaarheid over de Peano Rekenkunde. We bewijzen, door een recursie-theoretische reductie te combineren met een aangepaste versie van een methode van Lindström waarin partiële waarheidsdefinities een belangrijke rol spelen, dat uitvoerbare interpreteerbaarheid over de Peano Rekenkunde Σ_{2}^{0}-volledig is. En passant geven we een karakterisering van uitvoerbare interpreteerbaarheid in de stijl van Orey en Hájek.

De Σ_{2}^{0}-volledigheid van uitvoerbare interpreteerbaarheid over de Peano Rekenkunde staat in contrast met de Π_{2}^{0}-volledigheid van standaard interpreteerbaarheid over de Peano Rekenkunde. Het blijkt dat standaard interpreteerbaarheid en uitvoerbare interpreteerbaarheid substantieel verschillende extensies hebben. We bewijzen dat de verzameling zinnen die wel gewoon maar niet uitvoerbaar interpreteerbaar is over de Peano Rekenkunde, zelfs Π_{2}^{0}-volledig is.

