488 research outputs found

    A Joint Replication-Migration-based Routing in Delay Tolerant Networks

    Get PDF
    Abstract—Delay tolerant networks (DTNs) use mobility-assisted routing, where nodes carry, store, and forward data to each other in order to overcome the intermittent connectivity and limited network capacity of this type of network. In this paper, we propose a routing protocol that includes two mechanisms: message replication and message migration. Each mechanism has two steps: message selection and node selection. In message repli-cation, we choose the smallest hop-count message to replicate. The hop-count threshold is used to control the replication speed. We propose a metric called 2-hop activity level to measure the relay node’s transmission capacity, which is used in node selection. Our protocol includes a novel message migration policy that is used to overcome the limited buffer space and bandwidth of DTN nodes. We validate our protocol via extensive simulation experiments; we use a combination of synthetic and real mobility traces. Index Terms—Buffer management, delay tolerant networks (DTNs), message migration, message replication, routing. I

    New Fault Tolerant Multicast Routing Techniques to Enhance Distributed-Memory Systems Performance

    Get PDF
    Distributed-memory systems are a key to achieve high performance computing and the most favorable architectures used in advanced research problems. Mesh connected multicomputer are one of the most popular architectures that have been implemented in many distributed-memory systems. These systems must support communication operations efficiently to achieve good performance. The wormhole switching technique has been widely used in design of distributed-memory systems in which the packet is divided into small flits. Also, the multicast communication has been widely used in distributed-memory systems which is one source node sends the same message to several destination nodes. Fault tolerance refers to the ability of the system to operate correctly in the presence of faults. Development of fault tolerant multicast routing algorithms in 2D mesh networks is an important issue. This dissertation presents, new fault tolerant multicast routing algorithms for distributed-memory systems performance using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing in 2D mesh networks, but it can also be extended to other topologies. These algorithms are a combination of a unicast-based multicast algorithm and tree-based multicast algorithms. These algorithms works effectively for the most commonly encountered faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the proposed routing algorithms are effective even in the presence of a large number of fault regions and large size of fault region. These algorithms are proved to be deadlock-free. Also, the problem of fault regions overlap is solved. Four essential performance metrics in mesh networks will be considered and calculated; also these algorithms are a limited-global-information-based multicasting which is a compromise of local-information-based approach and global-information-based approach. Data mining is used to validate the results and to enlarge the sample. The proposed new multicast routing techniques are used to enhance the performance of distributed-memory systems. Simulation results are presented to demonstrate the efficiency of the proposed algorithms

    The ISIS project: Fault-tolerance in large distributed systems

    Get PDF
    The semi-annual status report covers activities of the ISIS project during the second half of 1989. The project had several independent objectives: (1) At the level of the ISIS Toolkit, ISIS release V2.0 was completed, containing bypass communication protocols. Performance of the system is greatly enhanced by this change, but the initial software release is limited in some respects. (2) The Meta project focused on the definition of the Lomita programming language for specifying rules that monitor sensors for conditions of interest and triggering appropriate reactions. This design was completed, and implementation of Lomita is underway on the Meta 2.0 platform. (3) The Deceit file system effort completed a prototype. It is planned to make Deceit available for use in two hospital information systems. (4) A long-haul communication subsystem project was completed and can be used as part of ISIS. This effort resulted in tools for linking ISIS systems on different LANs together over long-haul communications lines. (5) Magic Lantern, a graphical tool for building application monitoring and control interfaces, is included as part of the general ISIS releases

    Secure Group Communication in Delay Tolerant Mobile Ad-Hoc Network

    Get PDF
    Delay-tolerant networks (DTNs) are well-known for delivering various types of information from different senders in a multicast manner, both in centralised and decentralised networks. Wireless mobile nodes form small networks in which one or more senders transmit data to one or more destinations through intermediate nodes. DTN routing protocols differ from traditional wireless routing protocols. There are security threats in DTNs, such as blackhole attackers dropping data, jamming attacks consuming bandwidth, and Vampire attacks depleting battery power and available bandwidth. This paper proposes a prevention scheme to detect and mitigate all three types of attackers in multicast communication. These attackers can impact performance by generating false replies, flooding with redundant information, and wasting communication power. The primary focus of this paper is on security issues related to DTN routing protocols. In order to counter malicious nodes, a blacklist is maintained, and if a neighbour identifies a node as malicious, it excludes packets from that node. Meanwhile, the neighbour continues sending packets to the malicious node, except for broadcast packets, which are dropped. If a node is found to forward no packets or only some packets by all its neighbours, any reply it gives to route requests is disregarded, and any request it initiates is ignored. Successful data reception at the destination indicates that hop-based data delivery maintains a record of successful transmissions. The proposed security scheme demonstrates improved performance
    • …
    corecore