9 research outputs found

    A video object generation tool allowing friendly user interaction

    Get PDF
    In this paper we describe an interactive video object segmentation tool developed in the framework of the ACTS-AC098 MOMUSYS project. The Video Object Generator with User Environment (VOGUE) combines three different sets of automatic and semi-automatic-tool (spatial segmentation, object tracking and temporal segmentation) with general purpose tools for user interaction. The result is an integrated environment allowing the user-assisted segmentation of any sort of video sequences in a friendly and efficient manner.Peer ReviewedPostprint (published version

    Benutzbarkeitsoptimierung von direkt aus dem Lehrbetrieb erstellten E-Learning Vorlesungen

    Get PDF
    Das Vorhaben beschreibt die audiovisuelle Optimierung von direkt aus dem Lehrbetrieb erstellten E-Learning Vorlesungen und ist motiviert durch meine Mitarbeit im Projekt E-Kreide des Instituts für Informatik. Es soll Software für Live-Audioaufnahmen in Lehrsituationen ohne High-End-Aufnahmegeräte und ohne technisches Personal entstehen. Dazu werden die Techniken des klassischen Audioremasterings auf die Live-Situation im Hörsaal übertragen. Die Tonaufnahmen sollen adaptiv übertragen werden können, durch Messung der Bedürfnisse des Empfangsgerätes und davon abhängiger Verwendung verfügbarer Komponenten zur Dekodierung. Desweiteren soll die Information von Lehrinhalten auf der Tafel und die Körpersprache des Dozenten zu einem Medium kombiniert werden. Die technische Realisierung basiert auf einer Identifizierung des Dozenten in einer Videoaufnahme durch traditionelle Bildverarbeitungstechniken kombiniert mit Ansätzen der künstlichen Intelligenz

    A Noise Robust Method For 2D Shape Estimation Of Moving Objects In Video Sequences Considering A Moving Camera

    No full text
    An algorithm for automatic, noise robust 2D shape estimation of moving objects in video sequences considering a moving camera is presented. Such algorithms are required for object-based coding techniques like the upcoming ISO/MPEG-4 standard. In a first step, a possibly apparent camera motion is estimated and compensated. By the second step, a possibly apparent scene cut is detected, and if necessary the segmentation algorithm is reset. In the third step, a mask of changed image areas is estimated by a local thresholding relaxation technique. Then by the fourth step, areas of uncovered background are removed from this mask, taking into account an estimated displacement vector field. The resulting object mask is finally improved by applying a luminance edge adaptation and an object mask memory. Experimental results are given which show the improvement of the estimated object masks compared to the current Analysis Model of the COST 211ter Simulation Subgroup

    Video object segmentation for interactive multimedia

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and Institute of Engineering and Sciences, Bilkent Univ., 1998.Thesis (Master's) -- Bilkent University, 1998.Includes bibliographical references leaves 67-74.Recently, trends in video processing research have shifted from video compression to video analysis, due to the emerging standards MPEG-4 and MPEG-7. These standards will enable the users to interact with the objects in the audiovisual scene generated at the user’s end. However, neither of them prescribes how to obtain the objects. Many methods have been proposed for segmentation of video objects. One of the approaches is the “Analysis Model” (AM) of European COST-211 project. It is a modular approach to video object segmentation problem. Although AM performs acceptably in some cases, the results in many other cases are not good enough to be considered as semantic objects. In this thesis, a new tool is integrated and some modules are replaced by improved versions. One of the tools uses a block-based motion estimation technique to analyze the motion content within a scene, computes a motion activity parameter, and skips frames accordingly. Also introduced is a powerful motion estimation method which uses maximum a posteriori probability (MAP) criterion and Gibbs energies to obtain more reliable motion vectors and to calculate temporally unpredictable areas. To handle more complex motion in the scene, the 2-D affine motion model is added to the motion segmentation module, which employs only the translational model. The observed results indicate that the AM performance is improved substantially. The objects in the scene and their boundaries are detected more accurately, compared to the previous results.Ekmekçi, TolgaM.S

    Motion-based Segmentation and Classification of Video Objects

    Full text link
    In this thesis novel algorithms for the segmentation and classification of video objects are developed. The segmentation procedure is based on motion and is able to extract moving objects acquired by either a static or a moving camera. The classification of those objects is performed by matching their outlines gathered from a number of consecutive frames of the video with preprocessed views of prototypical objects stored in a database. This thesis contributes to four areas of image processing and computer vision: motion analysis, implicit active contour models, motion-based segmentation, and object classification. In detail, in the field of motion analysis, the tensor-based motion estimation approach is extended by a non-maximum suppression scheme, which improves the identification of relevant image structures significantly. In order to analyze videos that contain large image displacements, a feature-based motion estimation method is developed. In addition, to include camera operations into the segmentation process, a robust camera motion estimator based on least trimmed squares regression is presented. In the area of implicit active contour models, a model that unifies geometric and geodesic active contours is developed. For this model an efficient numerical implementation based on a new narrow-band method and a semi-implicit discretization is provided. Compared to standard algorithms these optimizations reduce the computational complexity significantly. Integrating the results of the motion analysis into the fast active contour implementation, novel algorithms for motion-based segmentation are developed. In the field of object classification, a shape-based classification approach is extended and adapted to image sequence processing. Finally, a system for video object classification is derived by combining the proposed motion-based segmentation algorithms with the shape-based classification approach

    Video object extraction in distributed surveillance systems

    Get PDF
    Recently, automated video surveillance and related video processing algorithms have received considerable attention from the research community. Challenges in video surveillance rise from noise, illumination changes, camera motion, splits and occlusions, complex human behavior, and how to manage extracted surveillance information for delivery, archiving, and retrieval: Many video surveillance systems focus on video object extraction, while few focus on both the system architecture and video object extraction. We focus on both and integrate them to produce an end-to-end system and study the challenges associated with building this system. We propose a scalable, distributed, and real-time video-surveillance system with a novel architecture, indexing, and retrieval. The system consists of three modules: video workstations for processing, control workstations for monitoring, and a server for management and archiving. The proposed system models object features as temporal Gaussians and produces: an 18 frames/second frame-rate for SIF video and static cameras, reduced network and storage usage, and precise retrieval results. It is more scalable and delivers more balanced distributed performance than recent architectures. The first stage of video processing is noise estimation. We propose a method for localizing homogeneity and estimating the additive white Gaussian noise variance, which uses spatially scattered initial seeds and utilizes particle filtering techniques to guide their spatial movement towards homogeneous locations from which the estimation is performed. The noise estimation method reduces the number of measurements required by block-based methods while achieving more accuracy. Next, we segment video objects using a background subtraction technique. We generate the background model online for static cameras using a mixture of Gaussians background maintenance approach. For moving cameras, we use a global motion estimation method offline to bring neighboring frames into the coordinate system of the current frame and we merge them to produce the background model. We track detected objects using a feature-based object tracking method with improved detection and correction of occlusion and split. We detect occlusion and split through the identification of sudden variations in the spatia-temporal features of objects. To detect splits, we analyze the temporal behavior of split objects to discriminate between errors in segmentation and real separation of objects. Both objective and subjective experimental results show the ability of the proposed algorithm to detect and correct both splits and occlusions of objects. For the last stage of video processing, we propose a novel method for the detection of vandalism events which is based on a proposed definition for vandal behaviors recorded on surveillance video sequences. We monitor changes inside a restricted site containing vandalism-prone objects and declare vandalism when an object is detected as leaving the site while there is temporally consistent and significant static changes representing damage, given that the site is normally unchanged after use. The proposed method is tested on sequences showing real and simulated vandal behaviors and it achieves a detection rate of 96%. It detects different forms of vandalism such as graffiti and theft. The proposed end-ta-end video surveillance system aims at realizing the potential of video object extraction in automated surveillance and retrieval by focusing on both video object extraction and the management, delivery, and utilization of the extracted informatio

    Adaptive video delivery using semantics

    Get PDF
    The diffusion of network appliances such as cellular phones, personal digital assistants and hand-held computers has created the need to personalize the way media content is delivered to the end user. Moreover, recent devices, such as digital radio receivers with graphics displays, and new applications, such as intelligent visual surveillance, require novel forms of video analysis for content adaptation and summarization. To cope with these challenges, we propose an automatic method for the extraction of semantics from video, and we present a framework that exploits these semantics in order to provide adaptive video delivery. First, an algorithm that relies on motion information to extract multiple semantic video objects is proposed. The algorithm operates in two stages. In the first stage, a statistical change detector produces the segmentation of moving objects from the background. This process is robust with regard to camera noise and does not need manual tuning along a sequence or for different sequences. In the second stage, feedbacks between an object partition and a region partition are used to track individual objects along the frames. These interactions allow us to cope with multiple, deformable objects, occlusions, splitting, appearance and disappearance of objects, and complex motion. Subsequently, semantics are used to prioritize visual data in order to improve the performance of adaptive video delivery. The idea behind this approach is to organize the content so that a particular network or device does not inhibit the main content message. Specifically, we propose two new video adaptation strategies. The first strategy combines semantic analysis with a traditional frame-based video encoder. Background simplifications resulting from this approach do not penalize overall quality at low bitrates. The second strategy uses metadata to efficiently encode the main content message. The metadata-based representation of object's shape and motion suffices to convey the meaning and action of a scene when the objects are familiar. The impact of different video adaptation strategies is then quantified with subjective experiments. We ask a panel of human observers to rate the quality of adapted video sequences on a normalized scale. From these results, we further derive an objective quality metric, the semantic peak signal-to-noise ratio (SPSNR), that accounts for different image areas and for their relevance to the observer in order to reflect the focus of attention of the human visual system. At last, we determine the adaptation strategy that provides maximum value for the end user by maximizing the SPSNR for given client resources at the time of delivery. By combining semantic video analysis and adaptive delivery, the solution presented in this dissertation permits the distribution of video in complex media environments and supports a large variety of content-based applications

    Shadow segmentation and tracking in real-world conditions

    Get PDF
    Visual information, in the form of images and video, comes from the interaction of light with objects. Illumination is a fundamental element of visual information. Detecting and interpreting illumination effects is part of our everyday life visual experience. Shading for instance allows us to perceive the three-dimensional nature of objects. Shadows are particularly salient cues for inferring depth information. However, we do not make any conscious or unconscious effort to avoid them as if they were an obstacle when we walk around. Moreover, when humans are asked to describe a picture, they generally omit the presence of illumination effects, such as shadows, shading, and highlights, to give a list of objects and their relative position in the scene. Processing visual information in a way that is close to what the human visual system does, thus being aware of illumination effects, represents a challenging task for computer vision systems. Illumination phenomena interfere in fact with fundamental tasks in image analysis and interpretation applications, such as object extraction and description. On the other hand, illumination conditions are an important element to be considered when creating new and richer visual content that combines objects from different sources, both natural and synthetic. When taken into account, illumination effects can play an important role in achieving realism. Among illumination effects, shadows are often integral part of natural scenes and one of the elements contributing to naturalness of synthetic scenes. In this thesis, the problem of extracting shadows from digital images is discussed. A new analysis method for the segmentation of cast shadows in still and moving images without the need of human supervision is proposed. The problem of separating moving cast shadows from moving objects in image sequences is particularly relevant for an always wider range of applications, ranging from video analysis to video coding, and from video manipulation to interactive environments. Therefore, particular attention has been dedicated to the segmentation of shadows in video. The validity of the proposed approach is however also demonstrated through its application to the detection of cast shadows in still color images. Shadows are a difficult phenomenon to model. Their appearance changes with changes in the appearance of the surface they are cast upon. It is therefore important to exploit multiple constraints derived from the analysis of the spectral, geometric and temporal properties of shadows to develop effective techniques for their extraction. The proposed method combines an analysis of color information and of photometric invariant features to a spatio-temporal verification process. With regards to the use of color information for shadow analysis, a complete picture of the existing solutions is provided, which points out the fundamental assumptions, the adopted color models and the link with research problems such as computational color constancy and color invariance. The proposed spatial verification does not make any assumption about scene geometry nor about object shape. The temporal analysis is based on a novel shadow tracking technique. On the basis of the tracking results, a temporal reliability estimation of shadows is proposed which allows to discard shadows which do not present time coherence. The proposed approach is general and can be applied to a wide class of applications and input data. The proposed cast shadow segmentation method has been evaluated on a number of different video data representing indoor and outdoor real-world environments. The obtained results have confirmed the validity of the approach, in particular its ability to deal with different types of content and its robustness to different physically important independent variables, and have demonstrated the improvement with respect to the state of the art. Examples of application of the proposed shadow segmentation tool to the enhancement of video object segmentation, tracking and description operations, and to video composition, have demonstrated the advantages of a shadow-aware video processing
    corecore