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Abstract

Visual information, in the form of images and video, comes from the interaction of light with

objects. Illumination is a fundamental element of visual information. Detecting and interpreting

illumination effects is part of our everyday life visual experience. Shading for instance allows us to

perceive the three-dimensional nature of objects. Shadows are particularly salient cues for inferring

depth information. However, we do not make any conscious or unconscious effort to avoid them

as if they were an obstacle when we walk around. Moreover, when humans are asked to describe

a picture, they generally omit the presence of illumination effects, such as shadows, shading, and

highlights, to give a list of objects and their relative position in the scene.

Processing visual information in a way that is close to what the human visual system does,

thus being aware of illumination effects, represents a challenging task for computer vision systems.

Illumination phenomena interfere in fact with fundamental tasks in image analysis and interpretation

applications, such as object extraction and description. On the other hand, illumination conditions

are an important element to be considered when creating new and richer visual content that combines

objects from different sources, both natural and synthetic. When taken into account, illumination

effects can play an important role in achieving realism.

Among illumination effects, shadows are often integral part of natural scenes and one of the

elements contributing to naturalness of synthetic scenes. In this thesis, the problem of extracting

shadows from digital images is discussed. A new analysis method for the segmentation of cast

shadows in still and moving images without the need of human supervision is proposed. The problem

of separating moving cast shadows from moving objects in image sequences is particularly relevant

for an always wider range of applications, ranging from video analysis to video coding, and from

video manipulation to interactive environments. Therefore, particular attention has been dedicated

to the segmentation of shadows in video. The validity of the proposed approach is however also

demonstrated through its application to the detection of cast shadows in still color images.

Shadows are a difficult phenomenon to model. Their appearance changes with changes in the

appearance of the surface they are cast upon. It is therefore important to exploit multiple con-

straints derived from the analysis of the spectral, geometric and temporal properties of shadows

to develop effective techniques for their extraction. The proposed method combines an analysis of

color information and of photometric invariant features to a spatio-temporal verification process.

With regards to the use of color information for shadow analysis, a complete picture of the existing

solutions is provided, which points out the fundamental assumptions, the adopted color models and

the link with research problems such as computational color constancy and color invariance. The

proposed spatial verification does not make any assumption about scene geometry nor about object

shape. The temporal analysis is based on a novel shadow tracking technique. On the basis of the

tracking results, a temporal reliability estimation of shadows is proposed which allows to discard

shadows which do not present time coherence. The proposed approach is general and can be applied

xi



xii Abstract

to a wide class of applications and input data.

The proposed cast shadow segmentation method has been evaluated on a number of different

video data representing indoor and outdoor real-world environments. The obtained results have

confirmed the validity of the approach, in particular its ability to deal with different types of content

and its robustness to different physically important independent variables, and have demonstrated

the improvement with respect to the state of the art. Examples of application of the proposed

shadow segmentation tool to the enhancement of video object segmentation, tracking and description

operations, and to video composition, have demonstrated the advantages of a shadow-aware video

processing.



Version abrégée

Tout au long de sa vie, l’être humain reçoit un flot continu d’informations visuelles, dues à l’interaction

de la lumière et de la matière. L’analyse des phénomènes résultant de cette interaction nous apporte

des informations essentielles sur notre environnement. Ainsi, l’ombre, résultat le plus évident, le plus

immédiatement perceptible de cette interaction, nous permet de concevoir la notion de profondeur;

dans le même ordre d’idée, le fait même que les objets soient ombrés nous permet d’appréhender

leur nature tri-dimensionnelle. Bien qu’essentiel, ce type d’information n’est que rarement pris en

compte de façon consciente. Ainsi, nul ne fera d’effort particulier pour éviter lesdites ombres, comme

si elles constituaient un obstacle à la poursuite de notre route. Plus frappant encore, lors de la de-

scription d’une image ou d’une scène, une liste des objets sera immédiatement établie mais il ne sera

que rarement fait mention des effets liés à l’illumination que l’on peut y percevoir, tels qu’ombres

ou reflets.

Pour les systèmes de vision par ordinateur, traiter l’information visuelle d’une façon similaire au

système visuel humain, c’est-à-dire en prenant en compte également les effets liées à l’illumination,

est une gageure. Ces phénomènes sont en effet plutôt gênants dans le cadre des tâches courantes

en analyse d’images, telles que segmentation ou description d’objets. En revanche, considérer ce

type d’information est essentiel pour donner à une scène tout son réalisme lorsqu’il s’agit de créer

de nouveaux contenus visuels par combinaison d’objets issus de différentes sources, naturelles ou

artificielles.

Peu nombreuses sont les scènes naturelles dont les ombres sont absentes, et, a contrario, leur

absence dans une scène artificielle rend celle-ci fort peu réaliste. Le travail décrit dans cette thèse

s’attache à résoudre le problème de l’extraction d’ombres au sein des images numériques. Une

méthode de segmentation nouvelle des ombres portées, sans supervision humaine, est proposée, tant

pour des images fixes que pour des images animées. Toutefois une attention plus particulière a

été portée à ce dernier cas, en raison des applications potentielles croissantes dans lesquelles une

telle segmentation constituerait un apport notable, en allant de l’analyse ou de la manipulation du

contenu de la vidéo à son codage, en passant par les environnements interactifs.

L’ombre est un phénomène difficile à modéliser. Son apparence varie en fonction des surfaces

sur lesquelles elle est projetée. Il est donc important d’exploiter les multiples propriétés dérivant

des analyses spectrale, géométrique et temporelle des ombres afin de développer des techniques

efficaces conduisant à leur extraction. Pour ce faire, la méthode proposée combine une analyse

de l’information couleur et de caractéristiques photométriques invariantes, à un processus de véri-

fication spatio-temporel. Un exposé complet des solutions existantes reposant sur l’utilisation de

l’information couleur est tracé, précisant les présupposés fondamentaux, les modéles de couleur adop-

tés, ainsi que les liens avec certains problémes de recherches tels que la constance ou l’invariance de

couleur. L’analyse temporelle est pour sa part basée sur une technique de suivi d’ombre inédite grâce

à laquelle une estimation de la fiabilité des ombres détectées au cours du temps permet d’écarter les
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résultats ne présentant pas de cohérence temporelle. Finalement, la vérification spatiale proposée

ne se fonde sur aucune hypothèse a priori quant à la géométrie de la scéne ou à la forme de l’objet

à extraire. Par conséquent, la méthode est générale et peut être utilisée pour un large éventail

d’applications, avec des types de données divers.

L’évaluation de l’approche s’est faite au travers d’un certain nombre de vidéos représentatives

d’environnements réels, aussi bien intérieurs qu’extérieurs. Les résultats obtenus ont confirmé la

validité de la méthode, notamment sa capacité à composer avec des contenus variés ainsi que sa

robustesse face à différentes variables physiques. Une comparaison à l’état de l’art a permis de

mettre en évidence ses apports dans le domaine. Pour finir, l’outil de segmentation d’ombre proposé

a été mis en oeuvre dans différents exemples d’applications telles que la composition vidéo, ou

l’aide à la segmentation, au suivi et à la description d’objets animés, pour lesquelles l’utilisation de

l’information que constitue l’ombre s’est révélé avantageux.



Introduction 1
1.1 Motivations

We are nowadays witnessing to the widespread diffusion of visual information. The production of

digital images and digital video, as well as the use of computer vision systems, has been made easier

by the advent of digital technologies and the improved computational capability of computers, to-

gether with the diffusion of digital cameras and the advances in storage and networking. Technology

progresses are at the same time favoring the creation of new, enhanced visual content that combines

visual information from different sources and of different type. In this area, applications such as

video post-production, realistic video conferencing, and immersive gaming are experiencing a rapid

development.

Visual information, in the form of images and video, comes from the interaction of light with

objects. Illumination is a fundamental element of visual information. Detecting and interpreting

illumination effects is part of our everyday life visual experience. Shading for instance allows us to

perceive the three-dimensional nature of objects. Shadows are particularly salient cues for inferring

depth information. However, we do not make any conscious or unconscious effort to avoid them as if

they were an obstacle when we walk around. Moreover, when humans are asked to describe a picture,

they generally omit the presence of illumination effects, such as shadows, shading, and highlights,

to give a list of objects and their relative position in the scene. The human visual system has both

capabilities. It is able to analyze illumination in a scene and to discard it to reach a description of

the scene’s content that is more useful for action. It is also able to analyze illumination effects to get

information about the scene. Millions of years of biological evolution and environmental adaptation

have indeed made human vision a highly developed and complex process.

For many algorithms in computer vision, dealing with illumination effects is a challenging task.

Illumination phenomena can in fact mislead fundamental tasks such as object extraction and de-

scription. For this reason, lighting conditions require careful consideration in many applications and

need often to be controlled. Illumination conditions have moreover to be carefully considered when

creating new visual content by combining natural and synthetic objects. When taken into account,

illumination effects can play an important role in achieving realism. The challenge for computer

1



2 Chapter 1. Introduction

vision systems is then to process visual information in a way that is close to what the human visual

system does, thus being aware of illumination conditions and illumination effects. Reaching this

objective would enable the development of more effective computer vision systems and richer visual

content.

Among illumination effects, shadows are often integral part of natural scenes and one of the

elements contributing to naturalness of synthetic scenes. A growing interest has emerged over the

last years within the computer vision community in the investigation of the nature of shadows in

digital images. In very recent years, moreover, a number of papers published in highly regarded

journals have contributed to make this a topic of great impact within different research areas, such

as neurosciences, experimental psychology and vision. In parallel, also within the philosophical and

history of art domains a renewed interest in shadows and their significants has emerged. The topic

can therefore be considered the focal point of a converging series of multidisciplinary research works.

The investigation of shadows can have a potential as a basis for a fruitful dialog between different

fields of science and humanities.

1.2 Investigated approach

This thesis deals with the problem of identifying and extracting regions that correspond to shadows

in images and image sequences. The goal is not to ignore illumination effects due to shadows, as

illumination invariant approaches to image analysis try to do, but to separate them from the image

signal. Shadows contain in fact information about the world which one does not want to loose, but

it is also important to recognize that a shadow boundary is not a change in scene surface.

A shadow occurs when an object partially or totally occludes light from a source of illumination.

Consequently, the most straightforward property of a shadow is that it darkens the surface on

which it is cast. The difficulty for a computer vision system is then to distinguish a shadow from

a naturally dark surface. Color can greatly help in this task. In this thesis, the use of color

information for shadow segmentation is thoroughly investigated. The investigation has led to the

study of photometric invariant color features. Their invariance in presence of shadows can be

effectively exploited for shadow segmentation.

What distinguishes a shadow from a dark surface mark is not only its color characteristics. All

shadows are shadows of something and are therefore related to the object that is casting them. A

shadow’s shape, position, and motion depend on the shape, the position, and the motion of the

shadow-casting object. For an effective segmentation of shadows it is important to take also this

aspect into account. In this thesis, the use of spatial and temporal properties of shadows to improve

the segmentation accuracy is investigated.

On the basis of this background, a new analysis method for the segmentation of cast shadows is

proposed. Two implementations, one for the segmentation of moving cast shadows in video sequences

and one for the segmentation of cast shadows in still images, are developed to test the method’s

validity. Particular attention is dedicated to the segmentation of shadows in video. The problem

of separating moving cast shadows from moving objects in image sequences is in fact of particular

relevance for an always wider range of applications. A key feature of the proposed methodology

for shadow extraction is its capability of working regardless of the scene’s content, the camera

characteristics and the illumination. The method is thus designed to be able to work in real-world

environments, where the imaging conditions and the scene set-up are not under control, and without

the need of human supervision.

This thesis aims at outlining the twofold importance of shadow extraction techniques. The

enhancement of fundamental tasks in video analysis, such as object extraction, tracking, and de-
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scription, deriving from the application of the proposed methodology, is demonstrated. Shadows

need to be extracted and eliminated to improve the accuracy of object contours and the subsequent

use of information about object shape and color. The extraction, tracking and description of video

objects are fundamental steps for a wide range of object-based applications, ranging from video cod-

ing to video indexing, from video manipulation to video surveillance and immersive environments.

All these applications can benefit from a flexible methodology that allows to distinguish objects

from the shadows they cast.

The identification of shadows provides on the other hand information about and gives access

to an important perceptual element of a visual scene. In applications such as object-based video

editing and mixed-reality immersive environments, where new and richer visual content is created

by merging objects from different sources, the ability of identifying and taking shadows into account

can improve the naturalness of the merging process and have an important perceptual impact. This

is demonstrated by applying the proposed method to video composition.

1.3 Main contributions

The main contributions of this work can be summarized as follows:

• Definition of a new analysis method for the segmentation of cast shadows in color images and

image sequences. This is based on the analysis of shadows spectral, geometric and, in the case

of video, temporal properties. It exploits color information and the properties of photometric

invariant color features to provide an initial shadow hypothesis. A spatio-temporal verification

stage is defined and combined to the analysis of color features to improve the accuracy of

segmentation results.

• A discussion of the use of color information for shadow segmentation. It has pointed out

the underlying physical models of shadows, their fundamental assumptions and the link with

research problems such as computational color constancy and color invariance.

• An extensive analysis of the behavior of different photometric invariant features for shadow

segmentation purposes. It has highlighted the problems related to the use of hue and saturation

that are often proposed in literature.

• Definition of a novel shadow tracking strategy. The tracking method has been established on

the basis of the limited amount of information available for describing shadows.

• Definition of a spatio-temporal reliability estimation of shadow segmentation results which

allows to improve the overall segmentation accuracy.

• Application of the proposed method to the improvement of video object extraction, tracking

and description tasks.

1.4 Organization of the thesis

This thesis is organized as follows. Chapter 2 reviews the main elements of the image formation

process and introduces the notion of color and the issue of its representation. It provides the

background concepts, notions and models on which the proposed methods are based. Chapter 3

discusses the characterization of shadows in digital images and image sequences in terms of spectral,

geometric and temporal properties. Properties that can be exploited basing only on image-derived
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information and with a limited number of assumptions about the scene are selected and analyzed

in detail. The state of the art of shadow detection is then reviewed. Chapter 4 is dedicated to

photometric invariant features. Color invariance is introduced and the photometric invariants that

are of interest for shadow segmentation purposes are discussed. Chapter 5 presents the analysis

method developed in this thesis for the segmentation of cast shadows in both moving and still color

images. The spectral, spatial and temporal analysis steps are described. The performance of the

proposed technique is then evaluated and compared to state of the art techniques in Chapter 6. The

application of the proposed method for achieving a shadow-aware video processing is demonstrated

in Chapter 7. Finally, Chapter 8 concludes this thesis and explores directions for future work. The

Appendix presents some of the results and ideas emerging from the multidisciplinary discussion

around the nature of shadows, coming also from fields that are usually not considered in scientific

investigations.



From physical scenes to

digital images 2
2.1 Introduction

In this chapter, an overview of the image formation process is presented through a review of each

of its elements and their interaction. The purpose of the review is to introduce the fundamental

notions and models that will be of use in the follow-up of this thesis for the characterization and

analysis of shadows.

Light is the first, fundamental element of vision. In its journey from sources of illumination to

the eye, light collects information about the physical world around us. The collected information is

captured by the eye in the form of retinal images and then transmitted to the brain which interprets

it. Similarly, in a computer vision system, the information that light carries is captured by the

sensors of a camera in the form of digital images which are then processed and interpreted by a

computer. In this thesis, we focus on a physical phenomenon that is strictly related to light. Shadows

are, in fact, discontinuities, “holes” in the flow of light through the physical world. Once light has

reached a capturing device, what is then the effect of such holes on the resulting image values? In

order to be able to recognize shadows in digital images, an understanding of this issue is needed.

To this end, first of all, the journey of light from sources of illumination to capturing devices and

image capture have to be modeled.

To model the image formation process, its three fundamental elements have to be characterized.

They are: a source of light, that is a source of visible electromagnetic energy, a surface, whose

properties modulate the electromagnetic energy, and the responses of a vision system to the elec-

tromagnetic energy reaching its photosensitive elements. The image values on which image analysis

tools are applied are the final product of the interaction among these three elements.

In this thesis, we work on color images. Inferring physical properties of a scene from an image is

made easier the more measurements are available. In a color image, each point in the scene induces

three measurements. Thus, three times the amount of information with respect to a gray-level image.

Its richness makes color of great importance in the analysis of shadows. Color information will indeed

play a fundamental role in the shadow segmentation approach we propose in this thesis. The second

aim of this chapter is then to introduce the notion of color and the models for its representation

5
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Figure 2.1: The triangle of color. The image color of a surface depends on three components: a

source of visible electromagnetic energy, an object, whose properties modulate the electromagnetic

energy, and a capturing device.

that have been developed to allow a meaningful processing and interpretation of color images.

Figure 2.1 provides a schematic visual representation of this chapter’s contents and organization.

The presentation is organized in two parts. In the first part, which comprises Section 2.2, Section 2.3,

and Section 2.4, the path of light from a source of illumination to the lens of a camera is analyzed.

Light sources (A) and surfaces (B) are discussed. The illumination model that will be of use in

this thesis is moreover analyzed (C). In the second part of the presentation, in Section 2.5 and

Section 2.6, respectively, the generation of color in the observer (D) and its representation by means

of color specification systems (E) are discussed.

2.2 Light

The first element determining the appearance of a surface is given by the light, emitted by a source

of electromagnetic energy, that illuminates the surface. Light denotes the visible part of the elec-

tromagnetic energy that encompasses wavelengths from approximately 400 nm (violet) to 700 nm

(red). The visible spectrum represents only a small portion of the complete electromagnetic spec-

trum, which goes from gamma rays to radio waves. The electromagnetic spectrum is illustrated in

Figure 2.2.

The light emitted by a source of illumination is generally composed by a mixture of energy at

different wavelengths. The power emitted at each wavelength gives the Spectral Power Distribution

(SPD) of the source. The CIE, Commission Internationale de l’Éclairage, has established a number

of spectral power distributions as CIE illuminants. Illuminants are, therefore, standardized tables

of values that represent typical SPDs of particular light sources. As an example, CIE illuminants A,

D65, and F2 [24] are standardized representations of typical incandescent, daylight, and fluorescent

sources, respectively. The relative spectral power distribution (normalized such that it has a value

of 100 at a wavelength of 560 nm) of CIE illuminant D65 is shown in Figure 2.3 as an example.

A series of units is used to describe how energy is transferred from light sources to surface patches

and what happens to the energy when it arrives at the surface. The measurement of optical radiation

is a field known as radiometry. We briefly introduce in Section 2.2.1 some radiometric definitions

and units that will be used in the following. Light sources are then discussed in Section 2.2.2.
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Figure 2.2: The electromagnetic spectrum. The visible spectrum represents a small portion of the
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Figure 2.3: Relative spectral power distribution of CIE illuminant D65 [24]. Illuminant D65 has

been statistically defined based upon a large number of measurements of real daylight.
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Figure 2.4: The solid angle dω subtended by a small surface area dA from a point ~x in the 3D

space.

2.2.1 Units

The distribution of light in space is a function of position and direction. The unit for measuring

distribution of light in space is radiance.

Radiance: power (amount of energy per time unit) traveling at some point in a specified direction,

per area unit perpendicular to the direction of travel, per solid angle unit.

The solid angle ω subtended by a surface patch at a point ~x in the three-dimensional (3D) space is

given by the area of the patch projected onto the unit sphere whose center is at ~x (see Figure 2.4). If

the area of the patch dA is small, then the infinitesimal solid angle dω it subtends is easily computed

in terms of the area of the patch and the distance r to it as

dω =
dA cos θ

r2
, (2.1)

where θ is the angle between the surface normal and the normal to the sphere. Solid angles are

measured in steradians (sr). The units of radiance are, consequently, watts per square meter per

steradian (W/m2sr). The square meters in the unit for radiance are foreshortened, that is perpen-

dicular to the direction of travel. Foreshortening is needed in order to take into account the fact

that a small patch viewing a source frontally collects more light than the same patch viewing the

source along a nearly tangent direction.

For the majority of vision problems, it is safe to assume that light does not interact with the

medium through which it travels, i.e. that it travels in vacuum. In this case, radiance has the

highly desirable property that, for two points ~x1 and ~x2, which have a line of sight between them,

the radiance leaving ~x1 in the direction of ~x2 is the same as the radiance arriving at ~x2 from the

direction of ~x1. Radiance thus is constant along straight lines.

Radiance is used for describing both light traveling in free space and light reflected from a surface

when it depends on direction. The relationship between incoming illumination and reflected light

is a function of both the direction in which light arrives at a surface and the direction in which it

leaves. The unit for representing incoming power is irradiance.

Irradiance: total incident power per surface area unit.
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Irradiance has units of watts per square meter (W/m2). Irradiance is used when describing light

arriving at a surface.

The physical units introduced in this section can be extended to spectral units in order to describe

energy arriving in different quantities at different wavelengths. Spectral radiance adds to radiance the

wavelength dependency, having units of W/m2srnm. Spectral irradiance, in the same way, includes

the wavelength dependency and has units of W/m2nm. These units allow to describe differences

in energy with wavelength. Spectroradiometry is the measurement of radiometric quantities as a

function of wavelength.

2.2.2 Light sources

A light source is a physical emitter of visible energy. Examples of light sources are incandescent

light bulbs, the Sun, a clear or overcast sky, and fluorescent tubes. To characterize a light source

from a radiometric point of view, a description of the radiance it emits in each direction is needed.

A complete description of the radiance in each direction is, however, not always required. It is more

usual to model sources as emitting a constant radiance in each direction, possibly with a family of

direction zeroed, like a spotlight. The appropriate radiometric quantity in this case is the exitance,

defined as the internally generated energy radiated per unit time and per unit area on the radiating

surface.

Together with a description of the exitance, a description of the geometry of the source is required

for its characterization. The geometry of the source has important effects on the spatial variation

of light around the source and on the shadows cast by objects near the source. Sources are usually

modeled with quite simple geometries for two main reasons. Firstly, many synthetic sources can be

modeled as point sources or area sources fairly effectively. Secondly, sources with simple geometries

can still yield complex effects.

A common approximation is to assume that the light source is an extremely small sphere, with

no area, that is a point. Such source is known as a point light source. It is a natural model to use

because many sources are physically small compared with the surrounding environment. A point

source is referred to as being a point source at infinity when it can be assumed that the power at a

surface due to the point source does not decrease with the distance to the source. A point source at

infinity is a good model for the Sun, for example, because the solid angle that the Sun subtends is

small and essentially constant wherever it appears in the field of view. Point light sources at infinity

can be assumed to emit parallel light rays.

On the contrary to point light sources, area light sources (also referred to as extended light

sources) have an area. They occur commonly in natural scenes (the vast majority of indoor sources

are area light sources) and cast soft shadows, containing areas only partially blocked from the source.

Area sources are often modeled as surface patches whose emitted radiance is independent of position

and of direction. They can, in this case, be described by their exitance.

A description of the color properties of a source of illumination allows to complete its character-

ization. This can be done by means of illuminants. Another important quantity that can be used to

characterize a source is its correlated color temperature [30]. The correlated color temperature of a

source is the color temperature of a black-body radiator that has most nearly the same color as the

source. Black-body radiators or Planckian radiators are a special type of theoretical light sources

which emit energy due only to thermal excitation. Their spectral power distribution is described by

Planck’s equation [173] as a function of their absolute temperature (in Kelvins). The temperature

of a Planckian radiator is called color temperature since it uniquely specifies the color of the source.
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Figure 2.5: Different types of interaction between light and surfaces.

2.3 Surfaces

The second element that contributes to the appearance of a surface is given by the structural and

optical properties of the surface itself, which determine the fraction of the incident illumination that

is reflected by the surface patch in a certain direction. In particular, the viewing direction is of

interest in image formation.

When light strikes a surface, it may be absorbed, transmitted, or reflected, as illustrated in

Figure 2.5. Usually, a combination of these effects occurs. Some materials absorb light at one

wavelength and then radiate light at a different wavelength. This effect is known as fluorescence.

Furthermore, a surface that is warm enough may emit light in the visible range. The interaction

of radiant energy with materials obeys the law of conservation of energy. Therefore, the amounts

of absorbed, reflected and transmitted radiant power sum to the incident radiant power at each

wavelength and it is typically unnecessary to measure all three. The quantities are typically measured

in relative terms as percentages of the incident energy. The surface’s absorptance, transmittance and

reflectance are obtained.

In this thesis, we limit our analysis to opaque objects, that is we do not consider transmission.

Moreover, as is commonly done in computer vision research, we discount fluorescence and emission

to focus on reflection. The relationship between incoming illumination and reflected light at a given

point on a surface and at each wavelength depends on the illumination and viewing geometry and on

the surface’s structure and material composition. A function describing this relationship provides a

reflectance model.

The most general model of reflectance is the Bidirectional Reflectance Distribution Function,

usually abbreviated as BRDF.

Bidirectional Reflectance Distribution Function (BRDF): ratio of the radiance in the out-

going direction to the incident irradiance at a surface point ~x. Given two vectors ~V and ~I, defining

the outgoing and incoming light directions respectively (see Figure 2.6), the BRDF is denoted as

ρbd(~x, ~V , ~I).

Let us consider a surface point ~x, illuminated by radiance Li(~x, ~I) coming in from a differential

region of solid angle dωi in direction ~I (Figure 2.6). Let us denote as i the angle of incidence

between the illumination direction ~I and the surface normal ~N . The irradiance at ~x is computed as

E(~x, ~I) = Li(~x, ~I) cos(i)dωi. (2.2)
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Figure 2.6: Geometry for reflected radiance and incident irradiance.

Since irradiance is expressed per area unit, whereas radiance is expressed per foreshortened area

unit, as commented in Section 2.2.1, multiplying radiance by cos(i) converts it to the equivalent

per unforeshortened area unit. If Li(~x, ~I) was to emit radiance Lr(~x, ~V ) in the exit direction ~V , its

BRDF would be

ρbd(~x, ~V , ~I) =
Lr(~x, ~V )

E(~x, ~I)
=

Lr(~x, ~V )

Li(~x, ~I) cos(i)dωi

. (2.3)

The BRDF has units of inverse steradiants (sr−1) and can vary from 0 (no light reflected in an

outgoing direction) to infinity (unit radiance in an outgoing direction resulting from arbitrarily

small radiance in the incoming direction). The BRDF depends on the wavelength of the incoming

light.

BRDF measurements are difficult and expensive. Therefore, simplified models are needed to

describe the interaction of light with surfaces for computer vision problems. Modeling reflection

may indeed be simplified for some surfaces, as discussed in the next subsections.

2.3.1 Diffuse surfaces

The light leaving many surfaces is largely independent of the exit angle. A natural measure of a

surface reflection properties in this case is the directional hemispheric reflectance [40], denoted as

ρdh(~x, ~I). The directional hemispheric reflectance is defined as the fraction of the incident irradiance

in a given direction ~I that is reflected by the surface, whatever the direction of reflection.

For some surfaces, the directional hemispheric reflectance does not depend on illumination di-

rection. Examples of such surfaces include cloth, many carpets, matte paper and matte paints.

In these cases, the radiance leaving the surface is independent of illumination incidence angle and

the directional hemispheric reflectance, and consequently the BRDF, are constant. Such surfaces

are known as ideal diffuse (matte) surfaces or Lambertian surfaces∗. For Lambertian surfaces, the

directional hemisphere reflectance is often called the diffuse reflectance or albedo.

A Lambertian surface looks equally bright from any direction. Our perceptions of brightness, in

fact, correspond roughly to measurements of radiance. The retina itself responds commensurably to

the irradiance incident upon it, but in combination with the optics of the eyeball, retinal irradiance

is proportional to the radiance of a surface [30]. This observation provides a rough test for the

appropriateness of a Lambertian approximation.

∗From Johann Heinrich Lambert (1728–77), who studied illumination phenomena in his Photometria (1760) [10].
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Figure 2.7: Specular surfaces commonly reflect light into a lobe of directions around the specular

direction. The shape of the lobe is described in terms of the offset angle s = (i − e) between exit

direction and specular direction.

2.3.2 Specular surfaces

A second important class of surfaces are the glossy or mirror-like surfaces, often referred to as specular

surfaces. Radiation arriving at a specular surface along a particular direction can leave only along

the specular direction, obtained by reflecting the direction of incoming illumination about the surface

normal. Examples of specular surfaces are mirrors and polished metal.

Only few surfaces can be approximated as ideal specular reflectors. Typically, radiation arriving

in one direction leaves in a small lobe of directions around the specular direction (Figure 2.7). This

results in a typical blurring effect. Larger specular lobes cause the specular image to be more heavily

distorted and darker. The incoming radiance, in fact, must be shared over a large range of outgoing

directions. Quite commonly, it is possible to see on specular surfaces only a specular reflection due

to relatively bright objects like sources, but few other specular effects. The bright blob one sees on

shiny paint or plastic surfaces is called specularity or highlight.

Relatively few surfaces are either ideal diffuse or perfectly specular. The BRDF of many surfaces

can be approximated as a combination of a Lambertian component and a specular component. To

model the interaction between light and surfaces we will indeed consider in this thesis a model that

takes the two components into account. It is discussed in the following section.

2.4 Light and surfaces: Reflection models

Various reflection models are used in computer graphics and computer vision [26, 38, 47, 63, 69,

73, 89, 115, 124, 143] that describe the light reflected by a surface as a weighted combination of a

diffuse and a specular component. They differ in the way these two components are modeled and

weighted when combined.

Some models, such as the Phong model [124], do not have a physical basis, but empirically

approximate some of the underlying rules of optics and thermal radiation. This can represent a

limitation if the model is used to predict the color appearance of a surface. Other models, such as

the Torrance-Sparrow model [38] and the Beckmann-Spizzicchino model [73], are rigorously derived

but result cumbersome and impractical for computer vision applications. Approximate models, such

as the Dichromatic Reflection Model [143], are still derived from physics-based reflectance models,

but they are modified so as to emphasize the desired aspects of the models as well as to ignore

their other unnecessary aspects. The Dichromatic Reflection Model is used for these reasons in this

thesis.
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Figure 2.9: Geometry of reflection. i is the angle of incidence between illumination direction ~I

and surface normal ~N , e is the angle of exitance between ~N and viewing direction ~V , g is the phase

angle between ~I and ~V , and s is the off-specular angle between ~V and ~R, where ~R is the direction

of perfect specular reflection.

2.4.1 The Dichromatic Reflection Model

The Dichromatic Reflection Model allows to model the physics of reflection for a wide class of

dielectric, that is nonconducting, materials. It was proposed by Shafer [143] for determining the

orientation of a surface in image analysis applications.

The Dichromatic Reflection Model treats optically inhomogeneous materials, that is materials

where light interacts both with a medium that comprises the bulk of the surface matter, and with

the particles of a colorant that produce scattering and coloration (see Figure 2.8). Many common

materials can be described this way, including paints, varnishes, paper, ceramics, and plastics.

Metals, glass, and crystals are excluded as they are optically homogeneous. Only opaque surfaces

are considered in the model.

The Dichromatic Reflection Model suggests that, under all illumination and viewing geometries,

the reflected light can be described as the weighted sum of two functions, an interface reflection

function and a body reflection function. According to the model in fact, as illustrated in Figure 2.8,

one way light is scattered from the surface is by a mirror-like reflection at the interface of the surface.
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A second scattering process takes place when the rays enter the material. These rays are reflected

randomly between the colorant particles. A fraction of the incident light is absorbed by the material,

heating it up, and part of the light emerges. The particles in the medium absorb light selectively

with respect to wavelengths. It is this property what determines an object’s characteristic color.

Referring to the geometry and terminology of Figure 2.9, the Dichromatic Reflection Model

states that the total radiance of the reflected light at a given point on a surface is given by

L(λ, i, e, g) = Ls(λ, i, e, g) + Lb(λ, i, e, g), (2.4)

where λ is the wavelength. The reflected light is thus given by the sum of two independent parts:

• the radiance Ls of the light reflected at the interface between the air and the surface medium;

• the radiance Lb of the light that penetrates through the interface and that is reflected from

the surface body.

Each of the two components can be then decomposed into a composition part and a magnitude

part as

L(λ, i, e, g) = ms(i, e, g)cs(λ) +mb(i, e, g)cb(λ). (2.5)

The composition term is a spectral power distribution, cs or cb, that depends only on wavelength

but is independent of geometry. The magnitude term is a geometric scale factor, ms or mb, which

depends only on geometry and is independent of wavelength. This independence has made the

Dichromatic Reflection Model’s formulation very popular. We will see how it can be exploited for

deriving color invariants in Chapter 4.

The described independence property of the model is obtained at the cost of some approxima-

tions. It is important to comment them. Both interface and body reflection exhibit, in fact, an

interdependence between wavelength and geometry. Interface reflection is governed by Fresnel’s

laws of reflection, which relate interface reflectance to the angle of incidence of the light and the

index of refraction of the material. The index of refraction generally depends on wavelength and

therefore interface reflection is a function of wavelength. However, since the amount of variation

of the index of refraction for many materials is within a few percents across the visible spectrum,

variations of cs with wavelengths should be negligible. cs can therefore be assumed constant. The

interface reflection, in this case, has the same color as the illumination. This assumption is called

the Neutral Interface Reflection (NIR) assumption by Lee et al. [89].

Body reflection also exhibits an interdependence between wavelength and geometry. If cs is not

constant, in fact, the color of the light passing through the interface differs somewhat from the

color of the illumination. Since the total amount of light reflected at the interface varies with the

angle of incidence i, the color of the light passing through the interface into the material body also

varies with the angle of incidence. Thus, the color of the body reflection should vary with geometry.

However, if cs is nearly constant, this effect should be negligible as well.

It is interesting to analyze the other assumptions made by the model, which determine its scope

and validity. For what concerns illumination, the model assumes that:

• there is a single light source, that can be a point source or an area source;

• the illumination has a constant SPD across the scene;

• the amount of illumination can vary across the scene.

The assumption of illumination being due to only one source of illumination is not realistic, as it will

be discussed in the next subsection. For what concerns the surface properties, the model assumes

that:
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(a) (b)

Figure 2.10: (a) Reflection at a surface due to a light source. (b) An accurate model of how the

brightness and color of a surface are obtained has to take many factors into account: e.g. the light

reflected by the red ball is due to two different light sources, the Sun and the sky, and to reflections

from the neighboring green object and from the planar surface on which the ball lies.

• the surface is opaque;

• the surface is not optically active (no fluorescence);

• the colorant is uniformly distributed.

The assumptions about the surface are typical for reflection models and not too unrealistic. In the

next subsection, the scope of the model is extended by relaxing the assumption of illumination being

due only to a single light source.

2.4.2 Model extension

Eq. (2.5) allows to compute the radiance leaving a surface patch due to a source of illumination

(as illustrated in Figure 2.10 (a)), but this is not enough to describe a surface’s brightness and

color. Radiance may arrive at a surface patch not only from a light source directly, but in other

ways. It could be reflected from other surface patches, for instance. Or it could be transmitted by

a transparent object. One problem that is, in particular, immediately evident with the formulation

of the Dichromatic Reflection Model discussed in the previous section is that shadow regions are

arbitrarily dark because they cannot see the light source. This prediction is not accurate in most

of the cases. Shadows in a scene are, in fact, normally illuminated by light from other surfaces.

This effect can be significant in rooms with light walls, for instance. A patch on a wall sees all

the other walls and an object casting its shadows on this patch blocks only a small fraction of the

visual hemisphere of the patch, until it is not close enough. Since we aim in this thesis at analyzing

shadows, it is clear that the discussed model is not enough for our purposes.

An accurate description of the scene illumination is extremely difficult to obtain. Figure 2.10 (b)

aims at showing how an accurate computation of the radiance at a surface can become a very complex

problem when all the many factors involved are taken into account. This would be impractical for

our purposes. For some environments, however, the total irradiance a patch receives from other

patches is roughly constant and roughly uniformly distributed across the input hemisphere. This is

true in the interior of a sphere with a constant distribution of radiance and, by accepting a model of a

cube as a sphere, is roughly true for the interior of a room with white walls. In such an environment,
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it is possible to model the effect of other patches on the surface patch under analysis by adding an

ambient illumination term to each patch’s radiance. The majority of reflection models that are used

in computer vision applications make use of this approximation to account for all the complex ways

in which light can reach an object that are not otherwise addressed by the illumination equation.

More complex models are physically more accurate, but become hard to manipulate unless scenes

are restricted to simple geometries. Since our goal is developing tools for shadow analysis that can

be applied to real world complex scenes, we will as well make use of this approximation.

When an additional ambient diffuse light, of lower intensity, coming from all directions in equal

amounts, and possibly with a different SPD than that of the light source is considered, the Dichro-

matic Reflection Model becomes

L(λ, i, e, g) = Ls(λ, i, e, g) + Lb(λ, i, e, g) + La(λ). (2.6)

This extended model will be used in Chapter 3 to analyze the spectral characteristics of shadows in

digital images.

The adequacy of the Dichromatic Reflection Model has been tested by Healey [63] and Tominaga

and Wandell [160] and experimental results [159] show that it is valid for artificial objects like plastics

and paints, and for natural object like fruits and leaves. Metals have quite different reflection

properties than inhomogeneous materials. They have only the interface reflection. Light striking a

metal surface can, in fact, be either absorbed or specularly reflected. This is due to the fact that

electric fields cannot penetrate conductors, since the electrons inside the material move around and

cancel the field. Healey [63]∗ therefore proposed and tested a unichromatic reflection model for

metals that keeps the independence of geometry and wavelength in its formulation. Using the same

notation as above, the model is formulated as

L(λ, i, e, g) = ms(i, e, g)cs(λ). (2.7)

The Dichromatic Reflection model and Healey’s unichromatic model provide a common formula-

tion for modeling the physics of reflection for a wide variety of materials in computer vision problems.

They allow to describe the information carried by light in its journey from the source of illumination

to the vision system. The role of this third element contributing to the process of image formation

is discussed in the next section.

2.5 Color generation

We have seen in the first part of the chapter how light is generated by sources of illumination and

altered by surfaces in the scene. After multiple reflections, light finally arrives at the capturing

device of the color vision system that is observing the scene. The vision system transforms the

information carried by light into a color image of the physical world. The following second part of

the chapter is then dedicated to the discussion of color information generation in the vision system

and to its representation.

Color is the brain’s reaction to a visual stimulus. It is a perceptual attribute of a visual sensation.

Visual sensation and visual perception are intimately related, but they are not the same. Sensation is

the process through which the senses detect visual stimuli and transmit them to the brain. Perception

is the process by which sensory information is organized and interpreted by the brain. Roughly

speaking, sensation furnishes the raw material of sensory experience, while perception provides the

∗Among the many references that can be selected from the literature, we recommend Healey’s paper for a clear

analysis of the physics of reflection.
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Figure 2.11: Schematic representation of the optical structure of the human eye with some key

features labeled (image from [30]).

finished product. The limited knowledge we have about how the human brain gets to this finished

product explains why the use of color in computer vision research remains a complex and delicate

issue.

Digital instruments emulate the visual sensation by imaging the visual reality and reproducing

it at high quality. In this field, the trichromatic theory is generally applied: the visual information

is decomposed into three signals in a way very similar to what has been observed in the sensory

stage of the human visual system. A wide variety of mathematical representations is then used for

specifying, manipulating and communicating color. Each representation meets the requirements of

a specific application. For example, color is defined in terms of the excitations of red, green, and

blue phosphors for display purposes, or by its attributes of brightness, hue and saturation in user-

oriented color specification. Color appearance models provide an attempt toward visual perception

representation.

This second part of the chapter is organized as follows. The human eye, that is the primary

sensory device, is first of all briefly described in Section 2.5.1. The acquisition of color images by

color cameras is then analyzed in Section 2.5.2. Color specification systems are finally classified and

reviewed in Section 2.6.

2.5.1 The human eye

The eye represents the physical interface of the human visual system. It converts electromagnetic

energy into neural activity. A schematic representation of the optical structure of the human eye is

shown in Figure 2.11∗. The cornea and the lens act together to focus an image of the visual world

on the retina, located at the back of the eye, which represents the photosensitive organ of the human

visual system. A direct parallel with a camera is easily established: the cornea and the lens are

equivalent to the camera’s lens, the retina is equivalent to the film or other image sensor.

The retina is a thin layered membrane of neural cells or photoreceptors. The human retina has

two different types of photoreceptors: the rods and the cones. They transform the optical stimuli

into neuro-electrical signals that are then transmitted to the later stages of the visual system which

interprets them. The rods are active during scotopic vision (low light levels) and do not support

color perception. The cones are active in photopic vision (high light levels) and are responsible for

∗The interested reader is referred to [56, 165] for more details.
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Figure 2.12: Normalized spectral sensitivity curves of the L, M, and S cones in the human eye.

color vision. In particular, three different kinds of cones have been distinguished according to their

sensitivity to long, medium and short wavelengths: they are referred to as L, M, and S cones. In

Figure 2.12, their wavelength sensitivities are shown [165].

There are about 100 million rods and 5 million cones in a human eye. Their spatial distribution

varies across the retina. The highest concentration of cones occurs in the fovea. Conversely, there

are no rods in the center of the fovea, but the rod density increases toward the periphery of the

visual field. There is also a blind spot on the retina, where the neuro-electrical signal carrying the

retinal image information exits the retina to reach the optic nerve.

The three cones are the foundations of our color vision. As any other detector of radiation, they

integrate the light at all wavelengths. In this way, the entire spectrum of incident light is reduced

to three signals, one for each cone, resulting in what is called trichromacy. The physiological basis

of human color perception is thus trichromatic. This explains why it is possible to match all of the

colors in the visible spectrum by appropriate mixing of three primary signals. As mentioned above,

this result is exploited by digital instruments to capture and reproduce color.

The signals transmitted from the retina to the higher levels of the brain through the optic nerve

are not, however, point-wise representations of the receptor signals, but the result of a complex

combination between them. In this way, the input information sensed by millions photoreceptors is

reduced and transmitted to about one million of optic nerve fibers without loss of visually meaningful

data. This data reduction phenomenon takes advantage of differential mechanisms both in the spatial

and in the spectral domain that generate signals by comparing the response of a neural cell with

those of its spatial neighbors.

The mechanism of retinal coding is complex and still not well understood∗. As a convenient

simplification, by means of psychovisual experiments, the existence of three types of color channels,

called opponent channels, is assumed. Referring to Figure 2.13, a black-white or achromatic channel

is assumed to be created from the sum of the signals coming from L and M cones. The achromatic

channel has the highest spatial resolution. The red-green channel is mainly the result of the M cones

signals being subtracted from those of the L cones. Its spatial resolution is slightly lower than that

of the achromatic channel. Finally, the yellow-blue channel results from the addition of L and M

and subtraction of S cone signals. It has the lowest spatial resolution.

∗The interested reader is referred to Wandell’s book [165] for more details.
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Figure 2.13: Diagram of cones interconnections in the retina leading to opponent-type signals.

2.5.2 Color image formation

Just as the human eye, a color camera contains a set of receptors which convert electromagnetic

energy in electric signals. The signals are then sampled and quantized by a frame grabber that

produces the final digital image. As described in Section 2.2, the signal that is captured by the

camera’s sensors is characterized entirely as an electromagnetic power by its Spectral Power Dis-

tribution (SPD), which is a function E(λ) of the wavelength. Color is, in this sense, a continuous

function of the wavelength of the observed signal. The process of acquisition tries to replace this

continuous signal with a discrete model, thus mimicking the human eye. The spectral space, ε, which

has infinite dimension, is replaced by a finite-dimensional color space. The trichromatic theory is

typically exploited and this finite-dimensional space is a three-dimensional (3D) space.

The camera’s sensors transform therefore the continuous color signal into three scalars obtained

as

Ci =

∫

Λ

E(λ)Si(λ)dλ, (2.8)

where Si(λ) is the sensitivity of the ith camera sensor, and Λ is determined by Si(λ), which is

non-zero over a bounded interval of wavelengths λ. Typically, a red, a green, and a blue sensor are

used. The measured color results in a vector of three color values, ~C = (R,G,B). A color camera

thus establishes a spectral integration transformation between the space of spectral colors and the

sensors response color space

R : R∞ → R3

defined by

R(E(λ)) = (R,G,B),

where each component is given by Eq. (2.8). In general, the mapping from E(λ) to image color

values comprises several complex factors [58, 59], such as vignetting [6], lens fall-off, the sensitivity

of the detector, and the electronics of the camera [65]. Accurately modeling the image formation

process by taking these factors into account is however out of the scope of this work.

Color charge-coupled-device (CCD) cameras, which are the most widespread, use a rectangular

grid of electron-collection elements laid over a thin silicon wafer to record a measure of the amount of

light energy reaching each of them. To obtain color information, at each sensory element, color filters

with different spectral sensitivity to the various wavelengths are interposed between the incoming

illumination and the CCD element. Two types of color cameras can then be distinguished which

provide a different degree of color resolution. In single-CCD cameras, color filters are layered over

each pixel element of the CCD array in a mosaic pattern. Only one color channel is captured with

each CCD element and the two missing color channels are estimated from the existing information

in order to get a full RGB image. This process is referred to as demosaicing [5]. It introduces

artifacts in the reconstructed image. 3-CCD cameras have three CCD sensors for each pixel element
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which capture the three color channels and provide an higher color accuracy. To reduce cost, size

and difficulties in the optics, most digital cameras are single-CCD cameras.

The color signal E(λ) in Eq. (2.8) represents the image irradiance incident upon the camera

sensors. This means that the image pixel color values on which image processing tools operate

represent a measure of irradiance. What we are interested in when analyzing images is rather the

radiance of surfaces in the depicted scene. It is important therefore to relate image irradiance with

scene radiance. Under the assumption of thin camera lenses, it can be shown that image irradiance

is proportional to scene radiance [40]. In other words, what we measure is proportional to what we

are interested in. We will assume this relationship to hold in the remainder of this thesis as it is

a typical assumption in computer vision problems. In this case, the signal E(λ) that reaches the

camera’s sensor from a point on a surface is proportional to the surface radiance which we have

modeled in Section 2.4.1 by means of Eq. (2.6).

We have reached at this point the first objective of the chapter, that is providing a formalization

of the chain linking the physical world to a digital color image of it. This will allow us to analyze

and to interpret image pixel color values as a function of physical phenomena, such as shadows. In

order to process color information, different color representation systems have been proposed. They

are reviewed in the next section.

2.6 Color representation

Since all colors can be matched by proper amounts of three primary colors, three numerical compo-

nents are necessary and sufficient to define a color. It is then natural to represent colors as points

in a three-dimensional vector space, called color space or color model. A color space is thus a math-

ematical representation of spectral colors in a finite dimensional vector space. It allows to analyze

and manipulate color.

By defining different primary colors, that is basis elements of the vector space, different color

models can be devised. Moreover, additional representation systems can be developed according to

physical, physiological or psychological properties. A number of color specification models are in

use today. Moreover, different definitions can often be found for the same model. The interested

reader is referred to [163] for a detailed review, which is out of the scope of this work.

In this section, the color spaces that will be considered in this thesis are introduced. Since

the reference space for defining any color specification system is provided by the CIE colorimetric

standard, colorimetric spaces are also briefly introduced. The presentation follows a classification of

color models in three groups:

• colorimetric models,

• device-oriented models,

• and user-oriented models.

2.6.1 Colorimetric color spaces

The branch of color science concerned with numerically specifying the color of a physically defined

visual stimulus is colorimetry. A colorimetry standard was defined by the Commission Internationale

de l’Éclairage, CIE, in 1931 [24] and continues to form the basis for the specification of color. The

colorimetry standard allows to predict whether two color stimuli match in color for certain conditions

of observation.
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The CIE colorimetric system was constructed on the basis of the principles of trichromacy. Based

on the hypothesis that the human retina has three kinds of color sensors and that the difference in

their spectral responses contributes to the sensation of color, the CIE’s trichromatic generalization

states that any color stimulus can be matched in color by proper amounts of three primary stimuli.

As discussed in Section 2.5.1, more recent studies have confirmed the presence in the human

retina of three types of cones and have measured [153] their spectral sensitivities (see Figure 2.12).

Although it has been seen that the perception of color depends on further processing of the retinal

responses, to a first order of approximation, the sensation of color, under similar conditions of

adaptation, may be specified by the responses of the cones.

However, the CIE established the 1931 standard long before the accurate knowledge of the cone

spectral responsitivities was available. The standard was at that time defined using the color-

matching functions [75] determined through psychophysical color matching experiments. Human

observers were asked to match the appearance of a test light by adjusting the intensities of three

primary lights. The color-matching functions provide the amounts of three primaries, the so-called

tristimulus values of the spectrum, needed to match a unit amount of power at each wavelength of

the visible spectrum. Color matching functions are related to the spectral sensitivities of the three

cones by linear transformations.

The CIE 1931 recommendations define a standard colorimetric observer by providing two dif-

ferent but equivalent sets of color-matching functions∗. The two sets define two color coordinate

systems, as commented in the next subsection.

CIE XYZ

The first set of CIE color-matching functions defines the CIE RGB spectral primary system, with red,

green and blue primaries at wavelengths given by 700 nm, 546.1 nm and 435.8 nm, respectively. The

RGB matching-functions have a great inconvenient: they present both positive and negative values.

Since negative sources are not physically realizable, certain colors cannot therefore be matched in

the matching experiment by RGB mixtures. In fact, no practical set of three primaries has been

found that can reproduce all colors.

The definition of three hypothetical primary sources, such that all the spectral tristimulus values

are positive, led to the second set of color-matching functions, which define the CIE XYZ color

coordinate system. CIE RGB color-matching functions and CIE XYZ color-matching functions are

related by a linear transformation. CIE XYZ color-matching functions are shown in Figure 2.14.

The new set of primaries has the following important properties:

1. They always produce positive tristimulus values.

2. It is possible to represent any perceived color in terms of these primaries.

3. They are derived so that equal values of X, Y, and Z produce white.

4. They are arranged so that a single parameter, Y, determines the luminance of the color.

It is important to precisely define the concept of luminance, a term that is very often used but also

abused in the literature. CIE luminance is the results of the integration of a SPD of light using

the CIE XYZ color-matching curve corresponding to Y as a weighting function. The magnitude

of luminance is proportional to physical power of light. The spectral composition of luminance is

related to the sensitivity of human vision.

∗In 1964, the CIE established a supplementary standard colorimetric observer from experiments using a visual

field that subtended 10 degrees instead of the 2 degrees of the 1931 standard.
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Figure 2.14: Color matching functions for the CIE 1931 XYZ standard colorimetric observer.

Color matching-functions provide the tristimulus values for spectral colors. By considering any

given stimulus’ spectral power as an additive mixture of various amounts of monochromatic stimuli,

one can obtain the tristimulus values for a stimulus by multiplying the matching functions by the

amount of energy in the stimulus at each wavelength and then integrating across the spectrum

(Grassman’s laws of additivity and proportionality [173]). The XYZ tristimulus values of a stimulus

E(λ) are thus computed as

X =

∫

x(λ)E(λ), (2.9)

Y =

∫

y(λ)E(λ), (2.10)

Z =

∫

z(λ)E(λ), (2.11)

where x(λ), y(λ), and z(λ) are the color matching curves.

The XYZ system can be used to represent all spectral colors, but since XYZ primaries are not

physically realizable because their wavelengths have been chosen outside the visible spectrum, only

a subset of the XYZ space can be physically produced. The CIE XYZ standard is the reference

space for comparing and storing color information, independently from devices and applications.

CIELAB

CIE tristimulus spaces are perceptually nonuniform, that is, equal perceptual differences between

colors do not correspond to equal distances in the tristimulus space. Considerable research has been

directed therefore toward the development of uniform color spaces. The main aim in the development

of uniform color spaces was to provide uniform practices for the measurements of color differences,

something that cannot be done reliably in tristimulus spaces.

The CIE has recommended two uniform color spaces: the CIE 1976 L∗u∗v∗ (CIELUV) space

and the CIE 1976 L∗a∗b∗ (CIELAB) space [24]. These spaces extend the tristimulus colorimetry to

three-dimensional spaces with dimensions that approximately correlate with the perceived lightness,

chroma, and hue of a stimulus. Lightness and chroma are defined as, respectively, the brightness

and the colorfulness of an area judged relatively to the brightness of a similarly illuminated area

that appears to be white [25]. Brightness is the attribute of a visual sensation according to which
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Figure 2.15: CIELAB color space.

an area appears to emit more or less light. Hue is the attribute of a visual sensation according to

which an area appears to be similar to one of the perceived colors red, yellow, green and blue, or to

a combination of two of them. Colorfulness is the attribute according to which an area appears to

exhibit more or less of its hue.

All these terms are perceptual terms, that is terms that define our perceptions of colored stimuli.

They are not definitions of colorimetric quantities. Unfortunately, measuring and representing visual

perception is difficult. This step requires a deeper knowledge of the human visual system that is

not yet available. An attempt in this direction is represented by color appearance models, which

take into account perceptual phenomena in the specification of color. With appropriate care, the

CIELAB space can be considered a simple example of color appearance model∗.

The CIELAB space is defined in terms of non-linear transformations from CIE XYZ tristimuli

as follows

L∗ = 116f(Y/Yn)− 16 (2.12)

a∗ = 500[f(X/Xn)− f(Y/Yn)] (2.13)

b∗ = 200[f(Y/Yn)− f(Z/Zn)] (2.14)

f (x) =

{

x1/3 if x > 0.008856

7.787x+ 16/116 if x ≤ 0.008856
(2.15)

C∗
ab =

√

(a∗2 + b∗2) (2.16)

h∗ab = arctan

(

b∗

a∗

)

. (2.17)

Here, X, Y and Z are the tristimulus values of the considered color, while Xn, Yn and Zn are the

tristimulus values of the reference white. The reference white allows to fix unit values of tristimu-

lus values. L∗ represents lightness, a∗ approximate redness-greenness, b∗ approximate yellowness-

blueness, C∗
ab chroma, and h∗ab hue. Equation (2.12) takes into account the non-linearity of human

vision perceptual response to luminance.

The L∗, a∗, and b∗ coordinates are used to construct a Cartesian color space (Figure 2.15). The

L∗, C∗
ab, and h∗ab coordinates are the cylindrical representation of the same space. The Euclidean

distance between two points in the L∗a∗b∗ space was taken to be a measure of the color difference

in perceptually relevant units.

∗The reader is referred to [30] for a complete discussion of color appearance models.
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Green = (0,1,0)

Yellow = (1,1,0)Red = (1,0,0)

Black = (0,0,0)

White = (1,1,1)

Figure 2.16: The RGB cube.

2.6.2 Device-oriented color spaces

The CIE colorimetric system represents a fundamental international standard for color measure-

ments. Device-oriented color representation systems are associated with acquisition, reproduction

and display devices. They allow to specify color in a way that is compatible with hardware tools

such as television monitors, computer displays, color cameras, color scanners and color printers.

The color reproduced in a device-oriented color space depends on the equipment’s characteristics

and on the device set-up. It appears different if reproduced in another device space or if the device

settings are changed. If the phosphors of a monitor change, for instance, the same color values

produce a different color. A calibrated device color space is a color space whose position within the

standard CIE colorimetric space is defined.

RGB

The red, green, and blue RGB color space is used for capture and display devices. It employs a

Cartesian coordinate system, with the three axis corresponding to the red, green, and blue primaries.

Since the primaries are characterized by a maximum intensity, the color solid of this system is a

subset of the colors realizable by the possible primaries’ mixtures. Using an appropriate scale along

each primary axis, the space can be normalized, so that all colors lie in the unit cube shown in

Figure 2.16. The main diagonal of the cube, with equal amounts of each primary, represents the

grays: black is (0, 0, 0) and white is (1, 1, 1). Each color is reproduced by an additive mixture of the

three primaries.

A number of RGB space variants are in use today. In the television industry, for instance, different

standards have been defined by institutions in different countries. The adopted red, green, and blue

primaries and the reference white are determined by the employed technology, such as the sensors in

color cameras or the phosphors in cathode-ray tubes (CRTs). Recently, an international agreement

has been reached on the primaries for the High Definition Television (HDTV) specification. These

primaries are representative of contemporary monitors in computing, computer graphics and studio

video production. The standard is known as ITU-R Recommendation BT.709 (formerly CCIR Rec.

709) [76]. It considers the CIE D65 illuminant as reference white. We will not go here into details of

the different RGB primary systems specifications, but refer the interested reader to Poynton’s book

for a complete discussion [133].

The different RGB systems can be converted among each other using a linear transformation,

assuming that the white reference values are known. Similarly, to convert from an RGB device space

to the colorimetric CIE XYZ standard, a matrix transformation can be used. We report here as an

example the transformation from the ITU-R BT.709 [131] standard RGB values in the range [0, 1]



2.6. Color representation 25

Y

Z

X

Figure 2.17: The RGB cube within the CIE XYZ space.

to CIE XYZ tristimulus values in the range [0, 1]:







X

Y

Z






=







0.4125 0.3576 0.1804

0.2127 0.7152 0.0722

0.0193 0.1192 0.9502













R

G

B






. (2.18)

The RGB values in Eq. (2.18) must not be confused with the RGB tristimulus values of the CIE

RGB spectral primary system. They are based on the device primaries and are therefore device-

dependent. Figure 2.17 shows a device’s RGB space in the XYZ space. Only the spectral colors

contained in the RGB cube can be captured or reproduced by the considered device.

The RGB representation is the most often used in image processing, computer graphics and

multimedia systems. In practice, although a number of RGB space variants have been defined and

are in use today, their exact specifications are usually not available to the end-user. This may

cause inaccurate manipulation or reproduction of color images and pose application difficulties.

An attempt to merge different, mainly device-dependent, color spaces into a single standard RGB

space has been recently made by means of the sRGB space. The sRGB color space is based on the

monitor characteristics expected in a dimly lit office. It has been standardized by the International

Electrotechnical Commission (IEC)[72].

Normalized rgb

By dividing the R, G, and B coordinates by their total sum, the r, g, b quantities are obtained,

which give the three components of the normalized rgb color system. The transformation from RGB

coordinates to normalized color is thus given by

r =
R

R+G+B
, (2.19)

g =
G

R+G+B
, (2.20)

b =
B

R+G+B
. (2.21)

This transformation projects radially a color vector in the RGB cube into a point on the unit plane

shown in Figure 2.18. Two of the rgb values are sufficient to define the coordinates of the color

point in this plane.
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Blue = (0,0,1) Cyan = (0,1,1)

Green = (0,1,0)

Yellow = (1,1,0)Red = (1,0,0)

Magenta = (1,0,1)

Figure 2.18: Unit plane in the RGB cube.

Since rgb is redundant because b = 1 − r − g, the normalized color space is also formulated

as [122]

Y = c1R+ c2G+ c3B, (2.22)

T1 =
R

R+G+B
, (2.23)

T2 =
G

R+G+B
, (2.24)

where c1, c2, and c3 are chosen such that c1 + c2 + c3 = 1. Y is interpreted as the luminance of the

color point and T1 and T2 are chromatic variables.

Y′UV,Y′CbCr

In transmitting color images using RGB components a channel capacity that is three times that

used for gray scale images is needed. To reduce these requirements, the properties of the human

visual system can be exploited. There is strong evidence, as commented in Section 2.5.1, that the

human visual system forms an achromatic channel and two chromatic color-difference channels in the

retina. Consequently, it can be useful to convert the color signal into one component representative

of luminance and two other components representative of color. The human visual system, moreover,

has poor response to spatial detail in colored areas of the same luminance, compared to its response

to luminance spatial detail. It is thus advantageous to transmit luminance with full detail and the

two color components at lower resolution with substantially less data rate. These properties are

exploited by video-oriented color representation systems.

In these systems, a weighted sum of RGB components is computed to form a signal representative

of luminance. The resulting component is related to brightness but is not the CIE luminance. Many

video engineers call it luma and denote it as Y ′. However, it is important to underline that luma

is very commonly called luminance and denoted as Y, which may cause ambiguity with the CIE

notation. This issue will be discussed in more detail later in this subsection where the motivation

for the adopted prime symbols to denote color components will be given. The simplest way to form

the two color components is then to subtract luma from them. Since the large percentage (around

60%) of brightness is due to the green primary∗, it is common to form the two color components by

subtracting luma blue and red to form (B′− Y ′) and (R′− Y ′). These are called chroma. They are

∗If three sources appear red, green, and blue and have the same power in the visible spectrum, the green will

appear the brightest of the three because the human overall sensitivity with respect to the perceived brightness peeks

in the green region of the spectrum [30].



2.6. Color representation 27

generally sub-sampled for transmission in accordance with the weaker ability of the human visual

system to discriminate spatially color information with respect to luminance spatial detail.

Various scale factors are applied to (B′ − Y ′) and (R′ − Y ′) for different applications [133].

The Y ′PBPR scale factors are optimized for component analog video. The Y ′CBCR scaling is

appropriate for component digital video such as studio video, JPEG and MPEG. Y ′UV scaling is

appropriate in the formation of composite NTSC (the American broadcast TV color system) or PAL

(the European system) video signals. The YUV nomenclature is used rather loosely in the image

processing community and it sometimes denotes any scaling of (B ′ − Y ′) and (R′ − Y ′).

To compute Y ′CbCr from R′G′B′ in the range [0, 255] the following matrix transformation is

used [133]






Y ′
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
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=
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
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The inverse of the transformation in Eq. (2.25) is used for the Y ′CbCr to R′G′B′ conversion
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Y ′ has an excursion of 219 and an offset of +16. This coding places black at 16 and white at 235.

CB and CR have excursions of ±112 and offset of +128, for a range of 16 through 240 inclusive [77].

The R′G′B′ to Y ′UV mapping is defined as follows [133]
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The inverse of the matrix in Eq. (2.27) is used for the Y ′UV to R′G′B′ conversion
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In video-oriented models, the transformation from RGB values to luminance-chrominance values

is not applied directly on the primaries values. First, in fact, a nonlinear transfer function, the

gamma correction [132], is applied to each of the R, G and B values, giving the nonlinear R′, G′,

and B′. This explains the adopted prime symbols. The gamma function is applied to compensate

the nonlinearity of CRTs response to the applied voltage. The CRT’s phosphors response to the

applied voltage follows in fact a power law, xγ . The primary RGB signals are therefore corrected

to compensate this effect by applying an inverse law, x
1
γ . For the NTSC television standard the

adopted γ is equal to 2.2. For the PAL standard γ = 2.8.

To get CIE XYZ tristimulus values from Y ′CBCR or Y ′UV , Eq. (2.26) and Eq. (2.28) have to

be used to get first of all nonlinear R′G′B′ values and then the inverse of the gamma function has to

be applied to get linear RGB values. Once RGB values, device primaries coordinates and reference

white are known, CIE XYZ can be obtained by means of the appropriate matrix transformation.

Poynton [133] observes that, for transmission purposes, it is important to convey the component

representative of luminance in such a way that noise introduced in transmission, processing and

storage has a perceptually similar effect across the entire scale from black to white. The ideal way

to do this would be to form a luminance signal as a weighted sum of RGB values and processing it
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Hue

Intensity

Saturation

Figure 2.19: The HSI color model.

by means of a nonlinear function similar to the L∗ function in the CIELAB space (see Eq. (2.12)).

In video transmission, as commented above, these operations are performed in the opposite order

for practical reasons, by first applying gamma correction and then by computing luma Y ′ as a

weighted sum of nonlinear R′, G′ and B′ values. However, Poynton observes that the nonlinear

gamma function represents a good approximation of the lightness response of the human visual

system. By applying gamma correction on the RGB values a representation of color that is closer

to human perception is thus obtained.

2.6.3 User-oriented color spaces

None of the device-oriented color models is particularly easy to use for a user that has to numerically

specify colors. These models, in fact, are not directly connected with intuitive color notions of

brightness, hue, and saturation. As mentioned in Section 2.6.1, brightness is the attribute of a

visual sensation according to which an area appears to emit more or less light. Hue is the attribute

of a visual sensation according to which an area appears to be similar to one of the perceived

colors red, yellow, green and blue, or to a combination of two of them. Saturation is defined as the

colorfulness of an area judged in proportion to its brightness. Colorfulness is the attribute according

to which an area appears to exhibit more or less of its hue. User-oriented models are then a class

of models that has been developed with ease of use as a goal. These models are better suited than

device-oriented spaces for human interaction. They try to build a bridge between the user and the

hardware used to manipulate color.

There are many similar spaces that achieve hue-saturation-brightness characteristics. A com-

prehensive review can be found in [163]. The HSV space and the HSI space are two examples of

these models which are commonly used in the literature. Their color solids are deformations of an

RGB cube. The main diagonal of the cube defines the brightness axis. The color is then defined

as a position on a circular plane around the axis. Hue is the angle from a reference point around

the circle to the color, while saturation is the radius from the central brightness axis to the color.

Approximately cylindrical coordinates are used. We describe in the following the HSI color space,

which will be of interest in this thesis, as representative of this class of spaces.

HSI

Among the many similar formulations of the HSI (hue, saturation, intensity) space, we choose here

that described in [122]. The model is defined as a cylindrical space, where the coordinates r, θ,
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(x,y)

G

B

R

Figure 2.20: Model for hue based on a weighted average of RGB vectors [122].

and z respectively correspond to saturation, hue, and intensity. The HSI color solid is depicted in

Figure 2.19.

Hue is the angle around the vertical intensity axis, with red at 0◦. It gives a measure of the

spectral composition of a color. It refers in fact to the wavelength of the pure color, the so-called

dominant wavelength, that mixed to white produces the color under analysis. The complement

of any hue is located 180◦ further around the cylinder. Saturation is measured radially from the

vertical axis, from 0 on the axis to 1 on the surface. This component refers to the amount of white

added to the dominant wavelength to produce the color under analysis. The more the amount of

white, the less the saturation of the color. Intensity is 0 for black and 1 for white and is a measure

of lightness.

The transformation from RGB to HSI is defined as

I =
R+G+B

3
, (2.29)

S = 1− min(R,G,B)

I
, (2.30)

H = arctan

( √
3(G−B)

(R−G) + (R−B)

)

. (2.31)

In the last equation, arctan (y/x) utilizes the signs of both y and x to determine the quadrant in which

the resulting angle lies. Hue is undefined when saturation S is zero, that is at any achromatic point

along the intensity axis. The physical model used to determine the hue angle in this transformation

is based on the diagram shown in Figure 2.20. If the R, G, and B radial basis vectors are equally

spaced 2
3π apart on the unit circle, then the x and y components of an arbitrary point are given by

x = R− G+B

2
=

1

2
[(R−G) + (R−B)] , (2.32)

y =

√
3

2
(G−B). (2.33)

This results in the hue angle in Eq. (2.31).

The HSI model allows users to specify color in terms of perceptual attributes and has a good

compatibility with human intuition. Any color with I = 1 and S = 1 is akin to an artist’s pure

pigment used as the starting point in mixing colors. Adding white corresponds to decreasing S,
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without changing I. Shades are created by keeping S = 1 and decreasing I. Tones are created by

decreasing both S and I. Changing H corresponds to selecting the pure pigment with which to start.

Thus, H, S and I correspond to concepts from the artist’s color system, and are not exactly the

same as the similar terms introduced at the beginning of the section. The formulations of H, S, and

I are then flawed with respect to the properties of human color vision. Consequently, if hue and

saturation have to be specified by numerical values for perceptual image computation, the polar

coordinate versions of a∗ and b∗, C∗
ab and h∗ab, in the CIELAB space should be preferred.

The HSI model has some significant drawbacks, such as

• singularities in the transform, such as undefined hue for achromatic points,

• sensitivity to small deviations of RGB values near singular points,

• numerical instability when operating on hue due to the angular nature of the feature.

The main features that have made the HSI model appealing to many image processing applications

are essentially

• the separability of chromatic values from achromatic values,

• the possibility of using one color feature only, hue, for segmentation purposes. Segmentation

is performed on one color feature, instead of three, allowing the use of much faster algorithms.

2.7 Summary

The objective of this first chapter is to introduce the background notions, concepts and models

related to the physics of image formation and the generation and representation of color in digital

images. They are used in the follow-up of the thesis to derive the proposed approach to the problem

of shadow segmentation.

The chapter is organized in two parts. In the first part, which comprises Section 2.2, Section 2.3,

and Section 2.4, the path of light from sources of illumination to surfaces and from surfaces to

capturing devices was described. Modeling the interaction of light with matter is central to this part

of the chapter and to the entire image formation process. Among the variety of models proposed to

this end in literature, the Dichromatic Reflection Model was described. The Dichromatic Reflection

Model is derived from physics-based reflectance models and therefore is more suitable than empirical

models to describe the color appearance of surfaces. Moreover, it allows to ignore the unnecessary

aspects of more accurate but cumbersome, and thus impractical, physics-based models. The need

to extend the model’s formulation when dealing with shadows was discussed.

In the second part, in Section 2.5 and Section 2.6, the description of the image formation process

was completed by introducing the role of the capturing device which converts light into color image

values. This last step provided the complete formalization of the chain linking a physical scene to

its digital color image. The mathematical representations of color by means of color spaces were

finally discussed.
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Figure 2.21: Painting was born the first time the shadow of a man was outlined on a wall (Sec-

tion A.1.1).
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Shadows and shadow

detection 3
3.1 Introduction

The first step in the development of efficient tools for the extraction of shadows in digital images

and image sequences is an understanding of how shadows appear in images and what is peculiar to

them. This chapter is dedicated to the characterization of shadows and to a review of the state of

the art of shadow detection.

In the previous chapter, we have pointed out the fact that shadows are due to discontinuities,

“holes” in the flow of light from a source of illumination to a vision system. There, we have introduced

models which allow to describe the journey of light from sources of illumination to the imaging device

and to explain the resulting pixel values in digital color images as a function of physical phenomena.

In this chapter, by means of the discussed models, we aim at analyzing and characterizing the

effects of these “holes” on the values of the digital images we are dealing with. Moreover, since all

shadows are shadows of something, additional spatial and temporal properties relating shadows to

shadow-casting objects will be identified, which allow to characterize shadows for their extraction.

Due to their nature of absence of light and the fact that shadows do not exist in themselves

but rather as shadows of something, shadows are unfortunately a difficult phenomenon to model

and detect in images. The difficulty but at the same time the usefulness of analyzing shadows in

different research and application domains is demonstrated by the fact that the problem of shadow

detection has been increasingly addressed over the past years [134]. The state of the art of shadow

detection is reviewed in the second part of the chapter.

The presentation is organized as follows. In Section 3.2, first of all, definitions concerning shadows

are given and the terminology that will be used throughout this thesis is introduced. Then, a review

of cues that suggest the presence of shadows in visual scenes is presented. The two components that

characterize shadows in images, that is the spectral component related to the fact that shadows

are due to an absence of light, and the geometric component related to the fact that shadows are

generated by objects that obstruct a light source, are then more formally analyzed in Section 3.3.

The state of the art methods for shadow detection proposed in the literature are finally reviewed in

Section 3.4.

33
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Figure 3.1: Light illuminating a face. Leonardo da Vinci, Codice Urbinate Latino (image from [10]).

3.2 What is a shadow?

3.2.1 Terminology and definitions

Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local

decrease in the amount of light that reaches a surface. Secondly, they are a local change in the

amount of light reflected by a surface toward the observer.

There are three different types of absence of light:

• projected shadows, which include cast shadows;

• self shadows;

• shading.

They were clearly illustrated already in the fifteenth century by Leonardo da Vinci. We will take

an example from Leonardo’s work to describe them here by means of Figure 3.1. The illustrated

drawing shows an illuminated human face. A is the source of light radiating toward the man’s face,

with incidence angles indicated by the letters from B to M.

Light reaches surfaces which obstruct its flow in two points, between I and K on the lower part of

the man’s nose, and between L and M on the chin. The tip of the nose prevents light from reaching

the upper lip. The chin prevents light from illuminating the neck. The neck and the chin would

otherwise receive some illumination. This is a first type of shadow, the projected shadow. In

this case, the projected shadow is an intrinsic shadow because it is cast by an object on itself. A

projected shadow which is cast by an object on a surface which belongs to a different object is called

cast shadow or extrinsic shadow. Cast shadows are not illustrated by Leonardo’s drawing and

an example can be found in Figure 3.2. There, the sheep projects a cast shadow on the grass.

Referring again to Figure 3.1, the lower part of the nose and the lower part of the man’s chin do

not receive light from the source in A. In these cases, light is not occluded by an object, but rather

these two parts have an orientation with respect to the source which prevents them from receiving

any light from it. This is a second type of shadow, the self shadow or attached shadow. An

example of self shadow is also illustrated in Figure 3.2.

Finally, a third type of absence of light is only partial. It is due to the fact that surfaces directly

facing the source, but with different orientations, receive different amounts of light. The part of



3.2. What is a shadow? 35

Figure 3.2: Example of self and cast shadow. Sculpture at the Fondation Pierre Gianadda, Mar-

tigny, Switzerland.

(a) (b)

Umbra

Light source

Object

Background

Penumbra Penumbra

Figure 3.3: Umbra and penumbra generation. Area light sources, as the line source in (a), generate

penumbra in projected shadows where the light is only partially obstructed by the shadow casting

object. The umbra and penumbra structure is clearly visible in (b).
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the nose between H and I appears indeed brighter when compared to the head between D and E

because the orientation of light rays with respect to the surface is closer to the surface normal in

those points. In this case, we do not speak of shadows but of shading. Shading due to the curvature

of the surface is clearly visible in Figure 3.2 on the sheep’s neck.

In Leonardo’s illustration, the light source is what we have defined in Section 2.2.2 as a point

light source. If the occluded light source has a certain extent, that is it can be modeled as an

area light source, the outer portion of a projected shadow results from only the partial obstruction

of light. This is the penumbra of the shadow. The umbra of a shadow is the part of the shadow

where direct light is completely blocked. With direct light we denote light arriving along a direct

line-of-sight from a light source. Umbra and penumbra are illustrated in Figure 3.3. A point light

source only generates umbrae in projected shadows. The umbra is only illuminated by ambient light

or by other light sources.

3.2.2 Shadow cues

There are a number of cues which suggest the presence of shadows in a visual scene and that could

be exploited for their detection in digital images and image sequences. Funka-Lea [43] presents a

complete list of them. We follow his analysis and discuss them in the following.

1. Shadows darken the surface upon which they are cast.

The most obvious property of a surface in shadow is that it looks darker when compared to

the same surface directly facing a source of illumination.

2. The change in the color of a surface due to the presence of a shadow tends to be predictable.

This second property characterizes the relationship between shadows and lit regions on colored

surfaces. Colored surfaces generally help in the task of distinguishing shadows from dark

surface marks. Color information will indeed play an important role in the approach for

shadow segmentation proposed in this thesis.

3. Surface markings and texture tend to continue across a shadow boundary.

The continuation of surface texture across a shadow boundary is another cue that can be

exploited for shadow detection.

4. Shadows of extended light sources tend to have smooth boundaries.

As commented in the previous section, shadows generated by extended light sources present

a penumbra where light from the source is only partially occluded. The outer boundary of a

shadow with penumbra is characterized by a decrease in intensity toward a relatively uniform

darker central region, the umbra. As a consequence, the boundary looks “soft”.

The width of the penumbra depends on the geometry of the light source and on the geometry

of the occluding surface. It increases with an increase in the size of the source and in the

distance of the occluding surface from the surface where the shadow it cast. It decreases

when the distance from the source to the occluding surface increases (Figure 3.3 (a) can help

in understanding this relationship). The intensity variations in a penumbra are a complex
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Figure 3.4: The boundary of a self or attached shadow is the outline of the shadow-casting object

as seen from the light source. The boundary of the corresponding cast shadow is the projection of

this contour in the direction of light rays (image from [83]).

function of the geometry of the light source and of the occluding surface, as discussed by Jiang

and Ward [79]. It is therefore extremely difficult to obtain a theoretical model for an arbitrary

object and an arbitrary light source.

The above-discussed cues describe shadows from a spectral point of view. For what concerns the

geometry of shadows, the most obvious cue relates a shadow to its shadow-casting object.

5. A cast shadow is only possible if there is an object between the surface on which the shadow

is cast and the source of illumination.

This cue involves knowledge about the 3D position of the shadow-casting object and of the light

source in the scene. This information is typically not available to image analysis algorithms

and difficult to obtain automatically from images. The cue could be used in a weaker sense to

rule out the possibility of a shadow if no object can be found in the image plane between the

shadow and the light source. This still requires knowledge of the light source location in the

image plane. In an ever weaker sense, the position of a shadow with respect to an object could

be simply checked if an object can be recognized adjacent to the shadow. The possibility of a

shadow could be ruled out if the shadow is inside the object and not at its boundary.

6. The shape of a shadow cast on a surface is the projection of the silhouette of the object casting

it.

As illustrated in Figure 3.4 for a simple object and a point light source, the boundary of a self

shadow is the outline of the shadow-casting object as seen from the light source. The boundary

of the corresponding cast shadow is the projection of this contour in the direction of light rays.

The nature of the projection can be complex, especially for extended light sources. This fact

is illustrated by the example of Figure 3.5. Even for a light source and an object with simple

shapes as those shown in the figure, matching the shape of the resulting shadow with that

of the object is not straightforward. Mamassian et al. [94] in their study on the perception

of cast shadows conclude that the matching procedure would appear to be computationally

prohibitive even for the simplest objects also for the human visual system.

7. Shadow boundaries tend to change direction with changes in the geometry of the surface on

which they are cast.
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Penumbra

Umbra

Object

Linear light source

Figure 3.5: Shadow umbra and penumbra resulting from a line light source. Matching the shape

of the cast shadow to that of the shadow-casting object is not straightforward even for a simple

object and a simple light source.

Figure 3.6: Shadow boundaries change direction with changes in the geometry of the surface on

which they are cast.

Shadows cast on surfaces inherit the shape of the surface on which they are projected. Shadow

boundaries change therefore direction at surface discontinuities (see Figure 3.6). 3D informa-

tion about the scene is required to exploit this cue.

When dynamic scenes are considered, additional cues can be identified.

8. Shadows cast by objects moving with respect to a fixed light source move across the scene.

The most obvious temporal property of shadows cast by moving objects in dynamic scenes is

their motion.

9. The motion of a shadow-casting object that moves relative to a fixed light source and that of

its shadow are correlated.

This last property of cast shadows has been shown to be very relevant in their perceptual

interpretation. Mamassian et al. [94] observe that the fact that the relative motion of an

object and its cast shadow is constrained to follow a line connecting the object to the light

source represents a reliable cue to shadow labeling for human observers. The presence of such
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a constrained motion in an image is a strong indicator that two moving patches are related

as an object and its shadow. This percept is moreover shown to be robust to violations of

shadow luminance and shape constraints. The authors suggest the possibility that the human

visual system contains low-level mechanisms for detecting such correlations.

Discussion

The above-discussed visual cues provide a starting point for the development of effective techniques

for shadow detection. Detecting shadows in images and image sequences is a difficult problem. In

order to confidently recognize shadows, in fact, knowledge about the materials, the three-dimensional

scene’s layout and the lighting are needed. If the lighting, that is a characterization of the light

at any point in the scene, and the material properties of a given surface are known, it can be

deduced that a change in the appearance of the surface is due to a change in irradiance. With this

knowledge and the determination that light from a source of illumination has been obstructed, it

can be concluded that a shadow is present.

This is more knowledge that it can be expected a viewer or vision system to have when recognizing

shadows in a scene. As for many other vision problems, we cannot hope to distinguish shadows from

material and geometric changes with certainty. The problem is underconstrained. The more prior

knowledge that can be used, the better the chances of successful analysis. Before proceeding to a

formalization of visual cues leading to explicit criteria for shadow detection, therefore, the framework

within which shadow detection is applied, that is the type of image content, the available a priori

knowledge and whether user intervention or control on the imaging process is possible, has to be

defined. The targeted framework determines the cues and the related constraints to be considered

in order to solve the problem.

The methodology for shadow segmentation that we propose in this thesis is addressed to a wide

range of real world scenes whose content is not a priori known. The developed tools are designed to

be able to work even without knowledge of the illumination conditions, scene geometry and camera

characteristics and without the need of user intervention. This feature is highly desirable for a wide

range of applications, such as video production, video surveillance, and immersive gaming. Within

this framework, we will make use of the first and the second spectral shadow cues (cue 1 and 2,

as numbered above), of the first geometrical cue (cue 5) and of the first temporal cue (cue 8). In

Chapter 5 we will describe how it is possible to effectively exploit such cues for shadow segmentation.

In Section 3.3, first of all, a formalization of the selected spectral cues is provided together with a

more detailed description of the exploited geometric characterization. The respective assumptions

related to the targeted framework will be clearly stated and discussed.

In the proposed approach, we will not exploit cue 3 since our experience has shown that the

description of surface texture when present in imaged shadow regions may become ineffective due

to the limited amount of light reaching the surface. We will neither use cue 4, since, although

the penumbra is a strong shadow cue for human observers [100], it is not always exploitable when

analyzing digital images. The reasons behind our choice are the following. A penumbra region in

projected shadows is typically visible in indoor scenes where light bulbs generate smooth shadow

edges. In outdoor sunny scenes, on the contrary, the Sun can be reasonably approximated as a point

light source at infinity, as discussed in Section 2.2.2. The penumbra the Sun generates is therefore

small. Typically, if the distance between an area light source and the shadow casting-object is

much bigger than the light source size and when the distance between the occluding surface and

the surface where the shadow is cast is limited, the penumbra width will be small. In such cases,

detecting penumbra in images as a cue to the presence of a shadow becomes difficult. In addition to

the mentioned difficulties, penumbra in digital images may be confused with aliasing at the contours.



40 Chapter 3. Shadows and shadow detection

When shadows are cast on textured surfaces, moreover, it can be difficult to discriminate intensity

changes due to penumbra and due to surface texture. Among the geometric cues, cue 6 requires

knowledge of the 3D shape of shadow-casting objects and casting surfaces and is extremely difficult

to exploit for an arbitrary scene geometry even in case this knowledge is available. We discard cue 7

as well as we deal with monocular cameras and unknown 3D scene geometry. We discard finally cue

9 since, although perceptually very relevant, the correspondence between the motion of an object

and the motion of its cast shadow can be complex for an arbitrary scene and difficult to model and

analyze in image sequences. In case a different framework is targeted, i.e. for instance when stereo

or multiple cameras are available, the modularity of the approach we propose allows the introduction

of further cues among those here discarded, such as cue 7 that can be easily exploited by means of

homography [40] when shadows are cast on planar surfaces.

3.3 Modeling shadows appearance in images

Shadows are due to a relative absence of light and their spectral characteristics, that is their bright-

ness and color, change with changes in the surface on which they are cast. The spectral charac-

teristics of a shadow depend then on the characteristics of the light that illuminates the shadow

compared to the light that would illuminate the same area if there were no obstruction. The spec-

tral characterization of shadows involves therefore a comparison with respect to a situation where

the light occlusion is not present. It is discussed in Section 3.3.1. The analysis is valid for both self

and cast shadows.

As discussed in the previous section, the geometry of a shadow, that is its shape and location,

is determined by the 3D shapes of the occluding surface, the light source and the surface on which

the shadow is cast, and on the relative position of object, light source and viewer. Without this

knowledge, it is still possible to identify some useful geometric characteristics of shadows. Such

characteristics are discussed in Section 3.3.2.

3.3.1 The spectral appearance of shadows

As discussed in Chapter 2, the sensor responses of a digital camera depend both on the surfaces

in a scene and on the illumination. Hence, a single surface viewed under two different illumination

conditions will yield two different sets of sensor responses. If the change in the illumination conditions

is due to the presence of a shadow, what can be said about the relationship between the two sets of

sensor responses?

In order to formalize the above-mentioned question, we will use the instruments discussed in the

previous chapter. The Dichromatic Reflection Model presented in Section 2.4.1 and described in

Eq. (2.6) provides us with a description of the signal reaching the camera sensors from a surface. We

will use it to compare the signals reflected by the same surface when illuminated and when shadowed.

Two types of illumination, that is direct illumination and ambient illumination, are considered by the

model. In this context, direct light represents light from the source of illumination that is occluded

when a shadow-casting object is present in the scene. This light is absent in shadows. Ambient

illumination represents all other light scattered in the neighboring environment which illuminates

also shadowed points.

Let us recall here Eq. (2.6). The radiance of the light reflected at a given point on a surface in

the 3D space, given some illumination and viewing geometry (see Figure 2.9), is formulated as

Llit(λ, i, e, g) = Ls(λ, i, e, g) + Lb(λ, i, e, g) + La(λ), (3.1)
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where La(λ), Ls(λ, i, e, g), and Lb(λ, i, e, g) are the ambient, interface, and body reflection terms,

respectively; i is the angle of incidence between illumination direction ~I and surface normal ~N at

the considered point, e is the angle of exitance between ~N and the viewing direction ~V , g is the

phase angle between ~I and ~V , and λ is the wavelength.

If there is no direct illumination in the point under analysis because an object is obstructing the

direct light, then the radiance of the reflected light becomes

Lshadow(λ, i, e, g) = L′
a(λ), (3.2)

where L′
a(λ) is the ambient reflection term in presence of the occluding object.

Let SR(λ), SG(λ), and SB(λ) be the spectral sensitivities of the red, green, and blue sensors of

a color camera, respectively. According to Eq. (2.8), the color components of the reflected intensity

reaching the sensors at a point (x, y) in the 2D image plane are obtained as

Ci(x, y) =

∫

Λ

E(λ, x, y)SCi
(λ)dλ, (3.3)

where Ci ∈ {R,G,B} are the sensors responses, E(λ, x, y) is the image irradiance at point (x, y),

and SCi
(λ) ∈ {SR(λ), SG(λ), SB(λ)}; Λ is determined by Si(λ), which is non-zero over a bounded

interval of wavelengths λ.

Since image irradiance is proportional to scene radiance, as commented in Section 2.5.2, for a

pixel position (x, y) corresponding to the point under analysis in 3D space, the sensor measurements

when the point is in direct light are

Ci(x, y)lit =

∫

Λ

[

Ls(λ, i, e, g) + Lb(λ, i, e, g) + La(λ)
]

SCi
(λ)dλ (3.4)

giving a color vector ~Clit(x, y) = (Rlit, Glit, Blit). Since we are not interested in an absolute scale

factor, but we are comparing a situation where a shadow is present with one where it is absent,

we can assume that the constant of proportionality between image irradiance and scene radiance in

Eq. (3.4) is unity. For a point in shadow the measurements are

Ci(x, y)shadow =

∫

Λ

L′
a(λ)SCi

(λ)dλ (3.5)

giving a color vector ~Cshadow(x, y) = (Rshadow, Gshadow, Bshadow). In order to define explicit criteria

for shadow segmentation, ~Clit(x, y) and ~Cshadow(x, y) have now to be related.

To simplify the problem, let us assume that L′
a(λ) = La(λ), that is ambient light is not influenced

by the presence of the shadow-casting object. Then,

Ci(x, y)shadow =

∫

Λ

La(λ)SCi
(λ)dλ (3.6)

and

Ci(x, y)lit =

∫

Λ

[

Ls(λ, i, e, g) + Lb(λ, i, e, g)
]

SCi
(λ)dλ+ Ci(x, y)shadow. (3.7)

It is straightforward that, when considering a constant ambient term to model all light coming from

the environment which is not coming from the obstructed light source, each of the three RGB color

components for a point on a surface, if positive and not zero, decreases when the point passes from

being lit to being shadowed, that is

Rshadow < Rlit,

Gshadow < Glit, (3.8)

Bshadow < Blit.
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Equation (3.8) formalizes, under the considered assumptions, the first simple property in the list

reported in Section 3.2.2. We will use it in Chapter 5.

In order to be able to say something more about the relationship between sensor responses for a

point on a surface when in light and when in shadow, the characteristics of the direct and ambient

illumination have to be considered. The spectral composition of the ambient light can be different

from that of the incident light [47]. The case of outdoor sunny scenes, where shadows are illuminated

by diffuse skylight which is bluer than direct light from the Sun, provides an example [31, 95, 109].

Another case is when a neighboring object is casting its color on the observed surface. This case is

referred to as inter-reflection. Figure 3.7 (b) illustrates an example of inter-reflection in a real image.

Figure 3.7 (a) shows the same scene without inter-reflection for direct comparison. The effect of

the inter-reflection is visible on the upper left portion of the apple, which is brighter in (b) when

compared to (a). Local effects due to inter-object reflection are extremely hard to analyze [40]∗.

(a) (b)

Figure 3.7: Example of inter-reflection in a real image. In (b) a white object is casting light on

the observed object.

Relating direct and ambient illumination is a hard problem that requires a priori knowledge

about the scene content. Without a priori knowledge about the scene, it is still possible to consider

appropriate assumptions which allow to make the problem manageable. If the ambient illumination

and the direct illumination are assumed to have the same color, formalizing the second property in

the list of Section 3.2.2 becomes in fact possible. The considered condition is referred to as the gray

world condition. The average of all the different reflectances in the scene is in fact considered to be

a spectrally flat “gray”. In this case, the camera response to the ambient light contribution, that is

the camera response in shadowed points, is a linear combination of the responses to the body and

interface reflection terms due to direct light [143].

Moreover, if regions that do not contain highlights are considered, that is if only the body

reflection term is present, from the previous observation it follows that the color components for the

same point in light and in shadow are related by a multiplicative constant as

Rshadow = αRlit,

Gshadow = αGlit, (3.9)

Bshadow = αBlit,

with α < 1.

Equation (3.9) defines a local relationship. The value of α changes from point to point on a

surface according to changes in the surface orientation with respect to the illumination direction.

∗A detailed analysis of mutual illumination for simple scene geometries can be found in [39, 45].
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The body reflection term Lb(λ, i, e, g) depends in fact on the incidence angle i between the normal

to the viewed surface and the direction of illumination. The parameter α changes moreover in the

penumbra of the shadow because of the change in the incident irradiance. If the surface upon which

the shadow is cast is planar and the light source is distant from it, then the normal to the surface in

its different points could be considered constant with respect to the illumination direction. In this

case, a unique value of α would characterize the relationship between shadowed and lit points for the

entire shadow’s umbra. Equation (3.9) could be used as a global criterion for shadow segmentation

in the umbra regions. Penumbra should be then separately treated.

In order to avoid the above discussed further assumption on the scene and a separate analysis

of shadows penumbra, which is, as discussed in Section 3.2.2, difficult to handle in digital images,

we will not make direct use of Eq. (3.9) in the methodology for shadow segmentation proposed in

Chapter 5. We will utilize it indirectly through the use of color invariant features which will be

discussed in detail in the next chapter. Consequently, the spectral characterization of shadows will

be completed there.

Discussion

When the spectral characteristics of ambient and direct light are different, they can be modeled in

the most general way as spectral power distributions as two different illuminants (see Section 2.2).

Relating sensor responses for the same point in light and in shadow results therefore in relating

sensor responses for the point under two different illuminants. When one of the two illuminants is

unknown and the second is a known, reference illuminant, the problem is referred to as computational

color constancy problem. It will be discussed again in more detail in Chapter 4.

Research in color constancy has shown that, under appropriate assumptions, the effects on color

values of a change in illumination conditions can be modeled with a simple, but effective model,

the so-called Von Kries or diagonal scaling model [30, 34]. According to this model, an illumination

change from a first illuminant (1) to a second illuminant (2) can be described by an independent

scaling of sensor responses in each channel as







R(1)

G(1)

B(1)






=
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
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










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G(2)

B(2)






. (3.10)

The scaling is independent of the surface reflectance but depends on camera characteristics and

is affected by changes in surface orientation. Based on statistical analyses taking into account

possible illuminants and surfaces, the model holds perfectly for Lambertian surfaces and cameras

having sensors whose spectral sensitivities are Dirac delta functions. It holds approximately for

Lambertian surfaces and real cameras having somewhat narrow-band sensors.

The diagonal scaling model is used by color constancy algorithms to pass from an image taken

under an unknown illuminant to the same image under a different and known illuminant, using the

coefficients α, β and γ. Since when the ambient and direct light have different spectral composition

the same point when lit and when in shadow can be described as illuminated by two different

illuminants, the diagonal scaling model can be used also as a general model for describing a change

in illumination color at a point on a diffuse surface due to the presence of a shadow. In this case,

both illuminants are unknown and it is difficult, as stated above, to determine the values of the

model coefficients, which depend on the characteristics of ambient and direct light in the observed

scene. Knowledge of the camera sensors [95], specific a priori information about the observed scene

(e.g. the placement of calibration patches) [7, 31] or user intervention [105] are required to this end.
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Figure 3.8: Shadow boundaries. AB is the shadow-making line, EF is the shadow line, ACDB is

the occluding line. Shadow-making lines and shadow lines are terminated at vertexes on the shadow

boundary in A, B and C, D.

The assumption about ambient and direct light that we have considered for deriving Eq. (3.9)

allows then to simplify the modeling of shadows and to automatically analyze shadows without

knowledge of the scene content and of the camera’s characteristics. As it will be demonstrated in

Chapter 5, the considered assumption will be a useful approximation in the context of this work for

developing efficient tools for the segmentation of shadows in a wide range of real world uncalibrated

images.

3.3.2 The geometric appearance of shadows

Geometric interpretation of shadows in images and image sequences, that is recovering of information

about a scene from knowledge of shadows shape and position, is an important operation in sever-

al computer vision applications, such as aerial image understanding (see Section 3.4.1) and shape

reconstruction [14, 86]. The theoretical analyses of Waltz [164] and Shafer and Kanade [143, 144]

were the first important works which demonstrated the advantage of introducing shadow interpre-

tation into computer vision systems. In this section, we are interested in the inverse problem, that

is exploiting the geometric characteristics of shadows in a scene as an aid in their recognition in

images. Without knowledge of the 3D scene geometry and of the position of light sources and of the

viewer, geometric characteristics of shadows can be derived by analyzing shadow boundaries and

the position of shadows with respect to shadow-casting objects in the 2D image plane.

Following the analysis of Hambrick et al. [61], shadow boundaries can be divided into three types

of segments: shadow-making lines, shadow lines, and occluding lines. These lines are illustrated in

Figure 3.8, where the shadow of a spherical object resting on a flat surface is shown. Here, the term

shadow indicates the ensemble of self and cast shadow. Shadow-making lines, AB, separate the

illuminated surface and the non-illuminated surface of an object. They appear to be the outlines

of an object if the position of the observer is aligned with the direction of the light source. The

projection of the shadow-making lines along light rays defines the forward subsegment of the shadow

line, EF . The rearward subsegment of the shadow line is projected from a hidden shadow-making

line. In Figure 3.8, part of the rearward subsegment is visible between DF and CE. Occluding
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lines, ACDB, block from view the rearward shadowed surfaces of the object. A subsegment of the

occluding line, CD, defines the separation of the self shadow from its cast shadow when, as in the

case illustrated in Figure 3.8, cast shadow and shadow-casting object are attached.

When an object lies on the surface on which its shadow is cast, the cast shadow is always attached

to the object. The adjacency of an object and the position of the cast shadow at the boundary of

this object is a characteristic feature of shadows that can be used to distinguish them from dark

surface marks. We will exploit it in Chapter 5.

Shadow boundaries are characterized by the presence of vertexes. Shadow-making lines and

shadow lines are, in fact, generally terminated at points on the shadow boundary where the deriva-

tives are discontinuous. Vertexes on the shadow-making line are indicated by letters A and B in

Figure 3.8, while vertexes on the shadow line are indicated by letters C and D. The projection of

light rays in the image plane is tangent to the shadow boundary exactly at the vertexes on the

shadow-making lines. Detecting such vertexes in images of arbitrary objects for which the shape of

the shadow-making line may be very complex is however a challenging task.

The discussed characterization of shadows will be exploited in Chapter 5. In the following second

part of the chapter, shadow detection methods in the literature are reviewed.

3.4 Shadow detection: state of the art

The problem of detecting, processing and analyzing shadows has been investigated within several

research domains. From an historical point of view, the first methods for extracting shadows from

images have been proposed in the field of aerial image understanding. In this context, shadows are

generally detected as an aid in the recognition of objects and for the estimation of some 3D parame-

ters of the depicted site, such as the height of buildings. With the spread of digital images in the last

decade, a new interest for the detection and processing of shadows in images has recently emerged in

digital photography applications, such as color correction and dynamic range compression [7], and

content-based image indexing applications [136]. In the former case, identifying illumination changes

due to strong shadows can help in image reproduction. In the latter case, shadows are analyzed as

illumination effects that can provide useful information for indexing and retrieving images based on

their content.

An especially increased interest in the extraction of moving shadows in image sequences has been

motivated in recent years by the need of accurate object extraction tools for a variety of computer

vision applications, including video surveillance, people tracking, traffic monitoring, and human

motion capture. As discussed in Section 3.2.2, shadows cast by objects moving relative to a source

of illumination have a corresponding motion. Since many techniques for the automatic extraction

of objects in video make use of motion information, shadows are typically detected together with

objects. A shadow cast by an object may either be in contact with the object, or disconnected from

it. In the first case, the shadow distorts the object’s shape and color, making the subsequent use of

this information less reliable. In the second case, the shadow may be classified as a totally erroneous

object in the scene. It is in this context that a lot of work has been recently proposed for explicitly

detecting moving cast shadows in image sequences. Video surveillance and traffic monitoring are the

applications for which the majority of contributions are proposed. Among emerging applications,

interactive environments for gaming and storytelling can be cited [22, 97].

In the following, we present an overview of the different techniques proposed in the literature to

solve the shadow detection problem. A first classification into two groups is proposed: model-based

methods and property-based methods. Model-based techniques rely on models representing available

a priori knowledge of the geometry of the scene, of the objects, and of the illumination direction.
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Illumination direction

Figure 3.9: In aerial image analysis, objects of interest such as buildings can be described by means

of simple rectilinear models and the known direction of illumination can be used to search for shadow

evidence in dark regions as an aid in the extraction of objects and to derive height information.

They typically address frameworks which are different than that considered in this thesis. Property-

based techniques identify shadows in a wider range of scenes by exploiting a combination of shadows

spectral and geometric properties. Out of the scope of this work, and therefore not included in

this review, are methods that rely on active processes such as the introduction of a second source

of illumination (e.g. [175]). Moreover, since in this thesis we target image sequences taken with

monocular cameras, methods that use stereo cameras (e.g. [62]) or multiple cameras (e.g. [116]) will

only be briefly discussed.

3.4.1 Model-based techniques

The problem of detecting shadows in images initially arose in the domain of aerial image understand-

ing. The developed methods aim at extracting cast shadows as a cue to the 3D nature of buildings

with respect to planar roads or seas [111], or as an aid to the detection of buildings and changes in an

observed site [11, 74, 92, 93]. The extracted shadows are typically exploited to estimate the height

of objects [68] and to build a 3D site model. Cloud shadows are exploited in [147, 166] to detect

clouds. In [67], vehicles are extracted by exploiting the geometric relationship with the shadows

they cast.

Given the nature of the observed scenes and the available a priori information about the images

(image orientation parameters, image acquisition’s date and daytime), objects may be modeled by

means of simple rectilinear models and knowledge about the illumination direction (e.g. the date and

daytime at which the pictures have been taken and the latitude and longitude of the depicted site

determine the Sun position in the scene) can be considered (see Figure 3.9). This greatly simplifies

the modeling and extraction of shadows by means of geometric constraints. Mostly luminance

information is used for analyzing shadows spectral characteristics, since generally the processed

data are gray-level images. Shadow evidence is extracted, typically by means of thresholding, in

the most dark regions of the image. The geometric relationship between potential shadows, shadow

casting object models and light source direction is then analyzed. This process is mainly based on

matching sets of geometric features such as edges, lines or corners to 3D object models and cast

shadows predicted thanks to available information.

The use of object models and a priori information for improving, by means of cast shadow

detection, the extraction of vehicles [84, 174] and other specific classes of objects, such as pedestri-

ans [71, 149], has been exploited as well in video surveillance applications. In [84], 3D models of the

structure of the moving objects and an illumination model which assumes parallel incoming light are

used in the detection and tracking of vehicles in image sequences. The direction of illumination is

interactively estimated off-line and allows to compute the visible contour of the 3D vehicle model’s
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Figure 3.10: Six 2D joint-vehicle/shadow models used in [174] to separate objects from their cast

shadows. The outer bounding box represents the fitted vehicle model for a vehicle that includes a

cast shadow. The inner bounding box represents the fitted vehicle model for a vehicle without cast

shadow. There is at least one side of the vehicle model whose location and length is not influenced

by the presence of the shadow.

(a) (b)

Figure 3.11: (a) Computation of the orientation of an object R representing a pedestrian on the

road plane by means of its center of gravity as proposed in [71]. (b) Computation of a boundary

line for cutting the shadow R2 from the object R1.

cast shadow projected onto the street plane. The straight line segments in which this contour is

segmented are then matched with the image edge segments allowing the identification of shadows

and a better object recognition and alignment. In [174], a simplified 2D joint vehicle/shadow model

projected into the image plane is used to separate objects from their cast shadows without a priori

knowledge of the light source position. Six different models are computed to represent possible

locations of the cast shadow (see Figure 3.10).

When objects of interest are pedestrians, they are typically assumed to stand in an erect posture

on the road plane [71, 149]. Therefore, cast shadows are attached to the persons’ feet and, if the

Sun is not too high in the sky, they form a characteristic angle with the vertical direction describing

the objects. The shadow can thus be coarsely separated from the object by tracing an appropriate

line (see Figure 3.11). The rough approximation of the extracted shadow region can then be further

refined by using luminance and spatial information.

All the mentioned techniques are designed for specific applications and cannot be easily adapted

to different scenarios. As stated, most of the algorithms assume that the illumination direction is
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known a priori and they can handle only a specific class of objects or scenes, such as outdoor sunny

scenes. Generally the detection of shadows results in a quite simplified process. In aerial images,

for instance, detecting shadows is often easier than detecting buildings since shadows really appear

to be the darkest areas in the image [161].

3.4.2 Property-based techniques

A combination of spectral and geometric properties of imaged shadows is exploited by property-

based methods to overcome the limitations of application-specific methods and to develop approaches

which can be applied to a wider class of scenes. While in the majority of the previously discussed

methods shadows are detected as an aid in the extraction of objects, they are typically considered

by property-based techniques as a noise component to be taken into account and removed for an

accurate image and video analysis.

The human visual system is very good at describing scenes and recognizing objects disregarding

illumination effects such as shadows. For instance, we do not make any conscious or unconscious

effort to avoid them as they were an obstacle when we walk around. To mimic the behavior of

human observers, a possible approach to the problem of removing annoying shadows is to obtain a

description of images that is not influenced by the presence of shadows and of other illumination

effects. An implicit analysis of shadows is performed in this case. Shadows are however exploited at

some level in perception to retrieve information about objects shapes and locations [94]. A descrip-

tion of an image that is shadow-less removes therefore salient information for scene interpretation.

This information could be exploited if shadows are explicitly identified, as it will be demonstrated

in the following of this thesis. Techniques for the explicit analysis of shadows are therefore of more

interest in the context of this work.

Following the characterization of shadows discussed in Section 3.2.2 and Section 3.3, we propose

here to group state of the art techniques based on the type of shadow properties they exploit.

Techniques that use spectral properties by means of gray-level or color features are first discussed,

then techniques which make also use of geometric properties are presented. In order to provide a

clear overview of specific problems and related choices, a distinction is made between approaches

which deal with shadows in still images (Section 3.4.3) and approaches focusing on image sequences

(Section 3.4.4). In the latter case, since the main purpose of shadow detection is the enhancement

of object extraction algorithms, shadow detection techniques are typically associated with moving

object extraction methods.

3.4.3 Still images

Gray-level image intensity — Gray-level image intensity is exploited for analyzing and clas-

sifying edges in [172] and for extracting shadow regions in [141]. In [172], edges are classified as

belonging to a shadow or to an object by analyzing the intensity shifts across them. In [141], a

shadow removal method based on a modification of the luminance histogram in images where ob-

jects occupy the upper most intensity range of the image and the image is background dominant is

presented.

The reported methods represent early attempts with limited performance. Gray-level image

intensity alone is, in fact, a poor source of information when trying to distinguish shadows from

naturally dark surfaces in an image. More promising approaches are represented by methods that

use color information.
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Color — The approaches proposed in [7, 47, 52, 138, 139] aim at analyzing edges with respect to

the possibility that they are due to a a material change as opposed to a shadow or other illumination

effects.

The first analysis has been proposed by Rubin and Richards in [138]. A rule common to all

edges arising from shadows, orientation changes, and highlights is proposed, under the assumption

that the gray world condition (Section 3.3.1) holds. If the intensity at one wavelength decreases

across one of these types of edges, then the intensity must also decrease at all other wavelengths

across the same edge. When this condition is violated, a spectral crosspoint implying a material

change is found. Figure 3.12 shows examples of image intensities at two different wavelengths for

two points across an image edge. In (a) and (b) a spectral crosspoint indicating a material change

is illustrated. In [139], the authors propose a second, independent condition. They argue that,

when a pair of image regions is such that one region has greater intensity at one wavelength than

at another wavelength, and the second region has the opposite property, then the two regions are

likely to have arisen from different materials in the scene. They call this property the opposite slope

sign condition. Figure 3.12 (a) and (c) show two examples of opposite slope sign conditions verified.

More formally, given two regions X and Y across an edge and intensity samples I taken at two

wavelengths λ1 and λ2, the spectral crosspoint condition can be formulated as

(IXλ1
− IY λ1

)(IXλ1
− IY λ2

) < 0 (3.11)

and the opposite slope sign condition can be written as

(IXλ1
− IXλ2

)(IY λ1
− IY λ2

) < 0. (3.12)

According to Rubin and Richards, only the edge in Figure 3.12 (d) does not represents a material

change, since the curves for the chosen points do not cross and have the same slope sign.

Figure 3.13 shows an example of opposite slope sign condition in real images which allows to

distinguish a material change from a change due to a shadow. An image sequence is considered

where a region of interest is selected and the behavior of the RGB components of its central point is

analyzed over time. RGB components represent three different wavelengths. First, the RGB values

of the point change because an object passes in front of the scene’s background, then they change

due to the presence of a shadow. The order of RGB color components for the selected point changes

when the point passes from the background to the object, while it remains unchanged when the

point passes from the illuminated background to the shadowed background.

Following and extending the work of [139], in [47] a method for distinguishing shadow boundaries

from material changes in presence of ambient illumination that differs in its spectral characteristics

from the incident illumination is presented. Two sets of biologically motivated operators, monochro-

matic opponent units and double-opponent units, are proposed to extract information about the

total change in each chromatic component and about changes in their relative amounts. Given a

certain knowledge of the strength of the ambient illumination, by comparing and thresholding the

operators’ responses, shadow boundaries are distinguished from material changes. While the gray

world assumption is relaxed, an a priori estimate for the strength of the ambient illumination has

to be provided to the method.

Color band ratios across region boundaries are used in [7]. An initial segmentation of the image

is performed. Then, a number of tests to pairs of neighboring segments is applied for checking:

• a strict decrease in each of the three RGB color channels (Eq. (3.8));
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Figure 3.12: Distinguishing material changes from shadow boundaries, highlights, and surface

orientation changes according to the spectral crosspoint condition [138] and the opposite slope sign

condition [139] under the gray world assumption. Only the edge in (d) is not classified as material

change, since any of the conditions holds.
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Figure 3.13: Effect of a material change and a cast shadow on the RGB color components as

predicted by Rubin and Richard’s opposite slope sign condition [139]. (a) Sample frame from the

sequence Laboratory and highlighted region of interest over 28 frames of the sequence. In the selected

frames, first the person’s trousers and then a shadow cast upon the background cover the region.

(b) The mean RGB values over a 3x3 pixels window centered in the central point of the region of

interest plotted over the selected 28 frames. A change in the order of color components is visible

when the window passes from the background to the object denoting a spectral crosspoint. No

crosspoint appears in shadow points.
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• the occurrence of multiple similar band ratios (RX/RY , GX/GY , BX/BY ) in adjacent segments

X,Y with different RGBs;

• a band ratio exceeding a fixed threshold.

The last exploited criterion is based on the empirical observation that material changes rarely have

a ratio larger than 30 to 1, whereas the differences between bright sunlit regions and nearby shadows

can exceed this value. The validity of this observation is however limited to sunny, high contrasted

outdoor scenes. The authors consider a diagonal model of illumination change, as that described in

Eq. (3.10), for modeling the change in sensors responses across a shadow edge. To build the diagonal

model for the employed camera, a number of measurements considering a set of indoor and outdoor

illuminants is required. The model is then used before any processing to first of all extract only

those edges that can be due to an illumination change.

The use of photometric invariant transformations has been investigated in [52] for edge classifi-

cation in video sequences. Photometric invariant transformations will be discussed in more detail in

Chapter 4. An automatic color edge detection approach is first employed to extract edges in each

video frame from RGB images and invariant images. Then, a rule-based edge classifier is proposed

for labeling edges into shadow-geometry, highlight, or material edges according to the edge detection

results on different features. Since temporal information is not exploited in the proposed method,

but rather an intra-frame analysis is performed, we have included the method in this section. The

following invariant features are used:

c1(R,G,B) = arctan

(

R

B

)

c2(R,G,B) = arctan

(

G

B

)

, (3.13)

o1(R,G,B) =
(R−G)

2
o2(R,G,B) =

B

2
− (R+G)

4
. (3.14)

The c1c2 features are shown to be invariant to shadows and shading for matte, Lambertian surfaces

(this issue will be detailed in Chapter 4). o1o2 are taken from an opponent color space (Section 2.5.1)

and are shown to be invariant to highlights for specular surfaces under the same assumptions. The

rule-based classifier works as follows:

IF ERGB 6= 0 AND Ec1c2 = 0 THEN shadow or geometry edge

ELSE

IF Ec1c2 6= 0 AND Eo1o2
= 0 THEN highlight edge

ELSE

material edge

where ERGB , Ec1c2 , and Eo1o2
denote the values of the RGB, c1c2, and o1o2 edge maps, respectively.

In [130, 136] the segmentation of shadows in color images of outdoor scenes is investigated.

In [136], two different and complementary techniques are presented. They are proposed as a tool

for the analysis of illumination conditions for image indexing applications. The first technique is

based on a Lambertian model of reflection and assumes that the gray world condition holds. It is

applied in the case of overcast images. The second technique is based on the Dichromatic Reflection

Model and is applied to sunny, high contrasted scenes. In this case, the gray world assumption is

relaxed.
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In the first technique, a color image segmentation aiming at extracting regions of the image with

uniform luminance and chrominance information in the CIELAB space is performed by means of

mathematical morphology tools. Then, adjacent regions characterized by different luminance and

similar chrominance information are merged. This step aims at merging shadow regions having

similar chrominance but lower luminance with adjacent illuminated regions on the same surface.

The merging process is controlled by [139]’s opposite slope sign condition. Regions are not merged

if the condition is verified. Shadows are then extracted as the darkest regions in regions of similar

chrominance. The presented results show that in case of sunny scenes not all the shadows are

detected.

A second technique is then proposed, which is based on the empirical observation that shadows

increase saturation values. However, saturation is not directly employed, but a perceptual quantity

related to it and dependent on the sensitivity of human vision, the so-called chromatic luminance,

Vc. It is computed using the same expression for luminance applied to normalized color rgb, that is

Vc = 0.176r + 0.81g + 0.01b. (3.15)

Pixels having a chromatic luminance that is larger then their luminance Y in the XYZ space, that

is for which Vc > Y , are classified as shadow pixels. The results show that the used property is

not verified for yellowish hues and that misclassifications arise in achromatic regions. If the sky is

overcast, the entire image is detected as shadow.

Based on the Rayleigh scattering effect which describes the atmospheric dispersion of sunlight,

the method in [130] segments shadows by means of color features in aerial images. Due to the

Rayleigh effect, the atmosphere scatters much more violet/blue wavelengths of sunlight than red

wavelengths. Therefore, shadows are detected in blue/violet regions of the image which have higher

saturation values S than intensity values I. The HSI color space is used and the following thresholding

operation is performed on each image pixel (x, y) to extract shadow pixels:

I(x, y)− S(x, y) ≤ K. (3.16)

The Rayleigh effect is proportional to the distance between the scene and the observer. Different

threshold values K ≤ 0 are therefore used in the detection for images taken by airborne sensors or

by orbital sensors.

In [31, 95], methods to process color images for removing shadows are presented.

A camera calibration procedure [35] is used in [31] to generate a gray-scale illumination invariant

shadow-free image that is used, together with the original image, to locate shadow edges. The process

is based on the idea that material edges should occur in both original RGB image and invariant

image, whether shadow edges should not be present in the invariant image. Thresholding out image

edges that are due to shadows and re-integrating the material-edge-only map allows to obtain full

color shadow-free images. For the calibration of the camera in case the sensors responsitivities are

unknown, a set of images of a colored target taken at different times of the day in case of outdoors

scenes, or under several different illuminants in case of indoor scenes, is required. This procedure

allows to “learn” the possible variations in illumination conditions and to remove them consequently

when generating the illumination invariant image. The diagonal model of illumination change of

Eq. (3.10) is assumed and the assumptions of Planckian lighting (Section 2.2.2), camera narrow-band

sensors and Lambertian surfaces are made. In [36], an alternative shadow removal process based on

a modification to the retinex algorithm [88] is applied once shadow edges have been located, leading

to similar results.
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A similar illumination invariant computation has been proposed in [95] for scenes illuminated by

daylight modeled by the CIE daylight standard. Knowledge of the camera sensors is needed in this

case. The methods are not applicable to images from uncalibrated sources.

Geometric properties — Geometric information is generally used in a verification stage, once

candidate shadow regions have been identified by means of spectral properties.

In [79], gray-level intensity and geometric constraints are used to identify and classify cast and

self shadows in images of a constrained, simple environment. Initially, regions which are darker than

the surrounding background are extracted. This first step is based on the assumption that most

image border pixels belong to the background surface which is flat or nearly flat. Then features such

as vertexes on the outlines of dark regions, penumbrae, self shadows and cast shadows as subregions

of dark regions, and object regions adjacent to dark regions are searched for. Occlusion between

shadows and objects is assumed to be minimal and only one area light source illuminates the scene.

Finally, the consistency among light source directions estimated from the extracted regions is tested

to confirm shadows among dark regions. To estimate the light source direction different methods

are proposed. If a penumbra is present, the direction of the maximum width from an umbra to its

penumbra is used. If a self shadow and a cast shadow regions are identified, then the middle point

of the cast shadow boundary and the middle point of the self shadow boundary are connected to

estimate the direction of light rays. If an object region is found adjacent to the dark region, then

the light source direction is estimated as the direction from the middle point of the object boundary

to the middle point of the cast shadow boundary. The accuracy of the estimations is generally poor

due to perspective distortions and errors in the feature extraction process. This method and that

proposed in [140] are the only methods in the literature dedicated to the explicit extraction of self

shadows.

In [43], color information is combined with geometric information to detect cast shadows. In

order to exploit shadows spectral properties, scenes are restricted to be composed by a singly colored

extended light source and piece-wise constant surface reflectances. Specularities and inter-reflections

are discounted. Color information is exploited in the first step of the detection process. The authors

observe that Eq. (3.4), when highlights are discounted and penumbra is considered as a multiplicative

parameter θ < 1, that is

Ci(x, y)lit =

∫

Λ

(

θ(x, y)Lb(λ, i, e, g) + La(λ)
)

SCi
(λ)dλ, (3.17)

is the parametric form of a line with parameter θ. The end point of the line at θ = 0 corresponds

to the shadow umbra, while the end-point close to θ = 1 corresponds to the illuminated surface.

Linear clusters in color space are therefore detected to segment uniformly colored candidate regions

containing a shadow. The process also detects regions with self shadows and illuminated surfaces

affected by shading due to changes in surface orientation. They map in fact as well to linear

clusters in the considered model. Within each candidate region, the system then analyzes the

spatial layout of brightness variations in order to determine a cast shadow’s umbra and penumbra

structure. As before, shading provides a similar brightness structure and cannot be distinguished

from cast shadows. The method strongly relies on the presence and detectability of cast shadows

penumbra. This may limit its applicability.

In order to finally insure that a candidate region corresponds to a cast shadow, geometric infor-

mation is used in the second step of the method. To this end, the 3D location of the light source

is determined by allowing the observer to cast a known shadow with a probe that can be extended
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Reference Spectral property Geometric property Additional information

[141, 172] Surface darkening (G)

[7] Surface darkening (C) Camera calibration

[138, 139] Color appearance

[47] Color appearance Ambient light strength

[136] Color appearance Outdoor images

[130] Color appearance Aerial images

[31, 36, 95] Color invariance Camera calibration

[52, 136] Color invariance

[79] Surface darkening (G) Vertexes in boundaries,

self and cast shadow,

penumbra, object adjacency,

light direction estimation

[43] Color appearance Penumbra, Active observer

shadow-object-source

relationship

Table 3.1: A summary of the used shadow properties, the used features, and specific information

or processing required by state of the art methods for still image analysis. G: gray-level image

intensity, C: color information.

in the environment. Once the light source has been located, the presence of an object between the

candidate shadow and the projection of the light source in the image plane is checked. The required

active process limits the method’s applicability.

Table 3.1 provides a summary of the exploited shadow properties, the used features, and specific

information or processing required by state of the art methods. Automatically detecting shadows

in still natural images from uncalibrated sources remains a very difficult problem. A wider range of

real world scenes can be tackled when dealing with dynamic shadows in image sequences. In this

case, the motion of shadows cast by moving objects provides an additional cue that can simplify the

detection process.

3.4.4 Image sequences

Identifying moving objects from a video sequence is a fundamental and critical task in many com-

puter vision applications. Two approaches to moving object detection can be identified with respect

to the use of motion information, namely approaches based on motion segmentation and approaches

based on motion detection. Motion segmentation approaches classify clusters of pixels in the image

that have similar motion. Motion detection approaches identify those pixels where motion exists.

For both approaches, motion is measured by analyzing the temporal changes of image intensity in

the sequence [107]. Shadows cast by moving objects generate temporal changes and can mislead

both motion segmentation and motion detection approaches. The detection of a moving object may

then include the detection of its shadow or part of its shadow. In this case, moving shadows should

be identified and removed to obtain an accurate object contour.

When the camera is fixed or its global motion has been estimated and compensated [4], the

most widely adopted approaches for moving object extraction in absence of any a priori knowledge

about objects of interest and environment are based on background subtraction and change detection.
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Moving objects representing the scene’s foreground are detected from the portion of a video frame

that differs significantly from a static background model or reference image. How to deal with

shadows is one of the distinguishing and challenging features of such approaches. It is in this

context that several methods for the explicit detection of moving shadows have been proposed in

the literature. They are reviewed here.

Gray-level image intensity — First attempts to shadow detection in image sequences limit

themselves at exploiting the property that shadows darken the surface on which they are cast [41,

137] and that the ratio among intensity values between points in the shadowed region and the same

illuminated region in the background is constant [137] (constant α in Eq. (3.9)). This can be con-

sidered approximately true only in the shadow’s umbra.

The method proposed in [16] is dedicated to moving cast shadow detection in monochromatic

video sequences and is consequently limited to the use of gray-level information. The difference in

intensity between the current and the reference background frame at a pixel (x, y) due to a shadow

is modeled with a linear function sf(x, y) of the intensity values in the background image gb(x, y),

that is

sf(x, y) = agb(x, y) + b, (3.18)

with −1 ≤ a ≤ 0. This is a generalized expression for Eq. (3.9), which is obtained when b = 0. The

parameters of the function are estimated from the sequence by means of a regression analysis. The

estimation is done interactively at the first frame and then automatically at each frame from the

shadows detected in the previous image. A planar background hypothesis is considered in order to

use constant parameter values which are not influenced by changes in surface orientation. If

|gc(x, y)− gb(x, y)− sf(x, y)| < T, (3.19)

where gc(x, y) is the value of the pixel in the current frame, the point is classified as shadow. The

method’s performance is limited in weak shadows and penumbra regions.

A more complete and accurate method is described in [151]. The approach aims at detecting

and classifying background regions which have been covered or uncovered by a moving cast shadow

from one frame of the sequence to the following. Lambertian reflection and a constant ambient

illumination term which has the same color as the occluded light is considered. The gray world

condition is thus considered to hold. The following assumptions on the scene are moreover made:

• a single, distant light source with non negligible size and intensity illuminates the scene;

• the background is planar and textured.

A change detection mask indicating image points that have a large frame difference between the

previous frame in the sequence at time k, I(x, y, k), and the current frame at time k+1, I(x, y, k+1),

is assumed to be available. In the proposed implementation, the method described in [103] is

considered. Moving shadows are searched for inside the change detection mask. To this end, three

criteria are combined by means of heuristic rules:

• a distinction between moving textured objects and moving cast shadows on static textured

background is made by extracting and classifying luminance edges in the current and previous

frame as static or moving edges according to the texture content in the frame difference (local

energy in high frequencies);
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w = h / g

w

h

I

x

Figure 3.14: Model of an image luminance step in the direction perpendicular to a shadow con-

tour [151]. The luminance step is defined by the step height h and the norm g of the gradient. From

h and g the width w can be calculated. The shadow contour is assumed to be in the y direction.

• because of the assumed planar background and distant light source, the surface normal in

shadows can be assumed constant. Therefore, shadows are looked for in regions where the

luminance frame ratio FR(x, y) = I(x, y, k+1)/I(x, y, k) is locally spatially constant (constant

α in Eq. (3.9));

• since shadows of an extended light source have a penumbra, the width of the luminance step

caused by a shadow’s penumbra should be larger than that caused by object edges.

The most critical aspect of the method is the assumption of a penumbra whose width can be com-

puted. To this end, a linear model for luminance values perpendicular to a shadow contour is

assumed (see Figure 3.14). In outdoor scenes, where shadows present sharp edges due to the source

of illumination that is far from the objects, this could represent a problem.

A different problem is tackled in [101, 102]. A method for removing from the static background of

an image sequence shadows cast by static objects, such as tall buildings and trees, in order to improve

the robustness of video surveillance systems is proposed. The method is composed of two parts. The

first part is an off-line estimation of intrinsic images, that is time-varying reflectance and illumination

images, from a sequence of images representing the scene’s background with shadows at different

time instants. The estimation is based on the method proposed in [170]. Using the estimated

illumination images, the so-called illumination eigenspace is constructed, that is a database which

captures the variation of lighting conditions in the illumination images. To construct the illumination

eigenspace, image sequences have been stored for 120 days for 1 year. The database is then used in

the second part of the method. Using the pre-constructed illumination eigenspace, an illumination

image is directly estimated for each input image of the sequence to which moving objects have been

removed. The input image is finally normalized in terms of illumination thanks to the computed

illumination image and a shadow-free image is obtained.

Moving cast shadows are not considered in the proposed approach. The method fails when the

illumination normalization is performed in presence of moving objects which cross the static shadow

so that the shadow edge cast on the object largely differs from the shadow edge in the illumination

image. The idea behind this method is similar to that proposed in [31]. There, thanks to the

use of color information and of a camera calibration procedure, the illumination normalization was

performed on a single image without the need of a sequence of images of the same scene.

Color — Outdoor environments illuminated by a far away point source (the Sun) and a diffuse

source (the sky) are targeted in [109], where the Dichromatic Reflection Model with an ambient
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illumination term is considered. Shadow regions are assumed to be illuminated by the diffuse sky

only, inter-object reflections are neglected, and surfaces are assumed to be Lambertian. Shadows are

detected inside a previously extracted moving foreground mask [108]. Initially, the method extracts

as candidate shadow points

• pixels having lower values of each color component with respect to the background image

(Eq. (3.8));

• by assuming that the sky is blue, pixels whose decrease in the blue channel is smaller than

the decrease in the red and green channels, that is (Rc(x, y)/Rb(x, y), Gc(x, y)/Gb(x, y)) <

Bc(x, y)/Bb(x, y), where c, b refer to the current and the background image;

• pixels which are connected by means of a component labeling procedure that uses a spatio-

temporal reflectance ratio as the connectivity criterion.

The spatio-temporal reflectance ratio P , which provides an illumination normalization, is computed

by considering two neighboring pixels having intensity Af , Bf in the current image and Ab, Bb in

the reference frame as

RtA =
Af −Ab

Af +Ab
RtB =

Bf −Bb

Bf +Bb
(3.20)

P (A,B) =
RtA −RtB
RtA +RtB

. (3.21)

By means of user interaction, a training phase allows to compute an estimation of the background’s

body color. A singular value decomposition (SVD) is used to this end. The same SVD approach is

used to extract the body color component for candidate shadow regions. The difference between the

two estimated color vectors allows then to classify as shadows those regions having a small vector

difference.

The approach, which is semi-automatic, is computationally expensive. As the authors state, the

results are sensitive to the shadow size (as the shadows become larger the body color estimation

provides more robust results), to the camera sensor characteristics, and to the background’s color.

For cloudy scenes and highly saturated background the test on the blue component should be by-

passed.

A diagonal model of illumination change, as that described in Eq. (3.10), is used in [105] to

model the appearance of a pixel when shadowed given its appearance when illuminated. Since no

assumptions on the color of the light illuminating the shadow and the light illuminating the same

region without occlusion is made, manual segmentation of a certain number of frames of the image

sequence has to be performed in order to extract shadows and corresponding illuminated background

regions and to determine empirically the model coefficients. The model coefficients are assumed to

be approximately constant over flat surfaces. If the background is not flat over the entire image,

different coefficients have to be computed for each flat subregion. The method’s parameters require

therefore a time consuming setting. They are moreover camera and scene-dependent. A probabilistic

approach is then used to classify each pixel in the image into one of the three classes: background,

shadow, or foreground. Gaussian distributions are assumed for illuminated and shadowed states of a

pixel and a uniform distribution is assumed for objects. The method works in real-time on outdoor

traffic scenes.

A probabilistic method is also proposed in [169] targeting indoor image sequences. A linear

transformation is used to describe the change of intensity for a point when shadowed given its in-

tensity in the background, as in Eq. (3.18). When color images are considered, the model is reduced
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Figure 3.15: Color model proposed in [70] in the three-dimensional RGB color space. The differ-

ence between background’s and current image’s pixel color is decomposed into brightness (α) and

chromaticity (CD) components. Pixels inside the depicted cylinder are extracted as shadow pixels.

to Eq. (3.9).

The methods proposed in [27, 28, 57, 70, 90, 127, 142] exploit the properties of invariance of

some color models in presence of shadows. The used color features will be considered again in more

detail in Chapter 4.

A background subtraction algorithm based on a computational color model which separates the

brightness from the chromaticity component of a pixel is presented in [70]. The reference background

image is statistically pixel-wise modeled by means of its mean

E(x, y) = [µR(x, y), µG(x, y), µB(x, y)]

and variance

σ(x, y) = [σR(x, y), σG(x, y), σB(x, y)]

in each color channel using the first N frames of the sequence. The difference between each pix-

el’s RGB color vector I(x, y) in the current frame and the pixel’s RGB color vector E(x, y) in

the background model is decomposed into two components, a brightness distortion α(x, y), and a

chromaticity distortion CD(x, y), as shown in Figure 3.15.

Pixels that have similar chromaticity (small CD(x, y)) but lower brightness (α < T ) than those

of the same pixel in the background image are classified as moving shadow pixels. A lower threshold

T0 is employed to avoid misclassification as shadows of points with low RGB values. Shadow pixels

lie inside the cylinder in Figure 3.15. The method implicitly assumes Lambertian reflection and the

gray world assumption to hold. Under these hypotheses, in fact, Eq. (3.9) describes the relationship

between I and E and the chromaticity distortion is zero.

An approach that is based on the same assumptions and on the same principle, that is shadows

lower the luminance of a pixel but do not change significantly its chrominance, is presented in [127].

Here, the Y ′CbCr space is considered. We will see in Chapter 4 how the invariance of Cb and Cr

features in shadows is only approximate. Shadows are extracted by analyzing and thresholding the
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luminance and chrominance ratios between current and reference frame. This is done first locally, on

a pixel-by-pixel level, then globally, on a region level. The ratios in shadows are assumed to be con-

stant (constant α in Eq. (3.9)) since the additional assumption of planar background is considered.

The penumbra is discounted from the analysis and treated separately by means of morphological

filtering operations. In a final temporal filtering stage, shadows detected at time t which have no

intersection with shadows detected at time t − 1 are discarded, unless they lie close to the image

boundary.

Brightness, hue and saturation in the HSV color space are exploited in [27, 28]. The detection

is based on the observation that shadows darken the brightness of an area without significantly

modifying its hue and saturation values. This observation relies on the implicit assumption that

ambient light and direct light have the same color and are white. This will become clearer in

Chapter 4. Three thresholding operations are performed on previously extracted moving foreground

pixels, one for each color component. A foreground pixel (x, y) is thus labeled as shadow pixel if

α ≤ Vf (x, y)

Vb(x, y)
≤ β ∧ Sf (x, y)− Sb(x, y) ≤ τs ∧DH(x, y) ≤ τh, (3.22)

where the subscripts f and b indicate the pixel value in the foreground and background image,

α ∈ [0, 1], β ∈ [0, 1] and

DH(x, y) = min(|Hf (x, y)−Hb(x, y)|, 360− |Hf (x, y)−Hb(x, y)|). (3.23)

The ratio of V values is thresholded by means of an upper and lower bound. The lower bound avoids

misclassifications as shadows of pixels that have low brightness value. Thresholds are empirically

determined.

The HSV space is exploited also in [90]. The authors observe that hue and saturation are not

always reliable features, since they can fluctuate violently due to noise in certain regions of the

image. They propose therefore to use them only in those parts of the image where their variance is

below an empirically fixed threshold.

A method for real-time cast shadow detection for videoconference applications is proposed

in [142]. As for [27] and [90], the method is based on the use of brightness, hue and saturation.

However, saturation is used differently. It is assumed that it does not remain unchanged in shadows

but it decreases. The algorithm uses approximate expressions for hue and saturation in the YUV

color space in order to avoid time consuming color transformations.

A real-time system is also proposed in [57], where shadows are detected based on the following

properties:

• a shadow pixel is darker than the corresponding pixel in the background reference image;

• the texture in the shadow region is correlated with texture in the background image.

Texture is analyzed by computing the normalized cross-correlation (NCC) over 7×7 pixels windows

for the luminance image. To improve the method’s performance, which fails to distinguish shadow

and object points in regions of the object which are not textured, color is introduced. The HSL

space [129] is considered which belongs to the same family of user-oriented spaces as the HSV and

HSI spaces. A similarity measure between color vectors is introduced as the scalar product of the

projection of RGB vectors on the chromatic plane of the HSL color space. A color normalized cross-

correlation (CNCC) using the proposed similarity measure is then derived and thresholded to detect

shadow pixels. As the CNCC and NCC measure the textural similarity of two regions, textured

objects with multiple colors are more accurately extracted by the proposed method. Moreover, a
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Figure 3.16: Geometric analysis of candidate shadow regions (here in blue) inside a foreground

blob (here delimited by a red dashed and solid line) as proposed in [12]. Region D is discarded

because it lies far from the blob’s border, regions B and C are discarded because the majority

of their boundary is far from the blob’s boundary. Region A is confirmed as a shadow since the

majority of its boundary is closed to the blob’s contour.

colored textured background is better suited than an uniform background for the CNCC.

Geometric properties — As in the case of still images, a geometric analysis of shadows is typ-

ically employed in a verification stage.

The method proposed in [12] is dedicated to monochromatic image sequences of outdoor traffic

scenes. It extracts in a first stage candidate moving shadows from moving foreground regions by

considering gradient information in the ratio image between current frame and reference background

frame. Candidate shadows are identified as uniform regions with low gradient values. In a second

stage, the spatial relationship between candidate shadows and moving objects is exploited. The

position of the detected shadows within the foreground regions is analyzed to this end. Candidate

regions that are far from the foreground region’s boundary and are small are discarded. True

shadows are retained as large regions near the boundary (see Figure 3.16). An ad-hoc thresholding

is used since the size of the cast shadows changes during the day.

Luminance, chrominance, and gradient density information are used in [42] as a first stage

for moving cast shadow detection is outdoor traffic scenes. A combined shadow confidence score is

derived for extracted foreground regions that allows to separate a cast shadow from the corresponding

object. Three properties of shadows are checked:

• the luminance of the cast shadow is lower than that of the background (from Eq. (3.8));

• the chrominance of the cast shadow is similar to that of the background;

• the difference in gradient density between the cast shadow and the background is lower than

the difference in gradient density between the object and the background.

As in [127], luma and chroma in the video-oriented Y ′CbCr space are used. Once candidate shadow

regions having a high confidence score have been obtained, geometrical evidence is checked. Since,

when object and cast shadow are attached, the cast shadow is at the boundary of the foreground

region, the convex hull of the foreground edge points which are not candidate shadow points is

computed. Shadow points inside the convex hull are then discounted. The use of the convex hull of

candidate object regions could limit the method’s performance in presence of non-convex objects,

such as people. Moreover, the gradient density criterion may fail when objects are not sufficiently
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Figure 3.17: In [126], shadow detection in each frame of the image sequence is performed in a

search area defined thanks to the estimated light source location in the previous frame and the

known object contour.

textured.

Outdoor traffic images are considered also in [168]. An illumination assessment method is first

of all used to decide whether cast shadows are present in the image based on the analysis of the

brightness energy of foreground moving areas. A large brightness energy indicates the possibility

that shadows exist. In this case, shadow detection is applied to improve moving foreground detec-

tion. To this end, an estimate of the illumination direction is computed by analyzing where on the

foreground region’s boundary the majority of dark pixels can be found. Eight possible directions

are considered, equally spaced in the image plane. Having determined the direction of illumina-

tion, sample hue and saturation values of shadow points closed to the foreground region boundary

portion indicated by direction of illumination are extracted. Foreground pixels having RGB values

larger than the corresponding background pixels are retained as object pixels. Foreground pixels

having hue and saturation values different from the average values of the samples extracted close

to the shadow boundary are retained as object pixels. The Canny edge detector is then applied

to both foreground and background images. The background edges are subtracted from the fore-

ground edges to extract object edges. Finally, foreground pixels nearby object edges are retained

as object pixels. An hole filling procedure produces the resulting foreground object without shadows.

In [125] and [126], the authors propose a method for the estimation of the projection of the light

source direction in the 2D image plane using 2D geometric constraints among an object, its cast

shadow and the light source location. To this end, the convex hull of the object is computed and

directions between each couple of tangent directions to the hull’s segments are computed and ana-

lyzed. Lines are searched for that touch just one point on the object and one point on the contour

of the cast shadow. These lines are an approximation of the lines tangent to the shadow contour at

the vertexes on the shadow-making line (see Section 3.3.2, Figure 3.8). By intersecting the regions

of the image plane delimited by the lines in subsequent frames of the sequence, an estimation of the

position of the light source, if the source is closed to the scene, or of the direction of parallel light

rays if it is far from the scene is obtained. The estimated light direction is then used to perform a

coupled light direction estimation and shadow detection. After an initialization phase in the first

frame, the estimated light source direction is used for the computation of a search area for the

segmentation of cast shadows in the subsequent frames. For the initialization, in [125] the shadow
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Reference Spectral property Geometric property Additional information

[41] Surface darkening (G)

[137] Surface darkening (G),

uniform darkening

[16, 169] Linear model of frame

difference (G)

[151] Static edges on texture (G), Penumbra width

uniform darkening

[57] Surface darkening,

texture (C)

[27, 70, 90, 127, 142] Color invariance

[105] Color appearance Manual segmentation

[109] Color appearance User interaction

[42] Color invariance, Shadow-object

uniform region relationship

[12] Uniform darkening (G) Shadow-object

relationship

[168] Surface darkening, Illumination direction

color invariance

[126] Uniform darkening (G) Shadow-object-source Segmented objects

relationship

Table 3.2: A summary of the used shadow properties, the used features, and specific information

or processing required by state of the art methods for image sequences analysis. G: gray-level image

intensity/luminance, C: color information.

is assumed to be known at the first frame of the sequence, while in [126] this constraint is relaxed

by using a reference background image and by proceeding similarly as in [127] using only luminance

information. For both methods, however, knowledge of moving objects masks without shadows over

the entire sequence is required.

Additional geometric properties of shadows can be exploited when stereo cameras or multiple

cameras are used. We briefly introduce here approaches that have been proposed to remove shadows

by means of 3D geometric analysis.

The method in [116] makes use of the characteristic property of shadows of inheriting the shape

of the surface on which they are cast. Shadows on planar surfaces are planar. Therefore, in order to

detect shadows of pedestrians on the road plane, the method makes use two cameras and exploits

height information. The image obtained from the first camera is inversely projected to the road

plane and the projected image is transformed to the view from the second camera. Shadows on

the road plane occupy the same areas on the transformed image and the image acquired from the

second camera, whereas object such as pedestrians with different heights from the road plane occupy

different areas in these images and can therefore be identified. Dense stereo range images are used

in [62] where a real-time system for tracking people is proposed. Shadows cast on the background do

not cause changes in disparity images and are therefore not detected when background subtraction

is applied on them. Disparity information is also used in [78], where the computation of dense stereo
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range images is avoided by means of an off-line construction of disparity fields using two or more

cameras. Shadows are not detected as part of the background when more than two cameras are

available.

A summary of the exploited shadow properties, the used features, and specific information or

processing required by state of the art methods dedicated to monocular sequences is presented in

Table 3.2.

3.5 Summary

The first objective of this chapter is to discuss a characterization of shadows in digital images and

image sequences as the starting point for developing efficient techniques for their analysis. To this

end, a complete list of spectral, geometric and temporal visual cues that suggest the presence of a

shadow in a scene was introduced and was evaluated for the purpose of their use in the context of

this thesis.

Among these cues, spectral properties related to the brightness and the color of regions covered

by shadows offer the greatest generality with respect to the content of the considered scenes. In

a framework such that targeted in this thesis, where only image-derived information and a limited

number of assumptions about the scene are considered, they provide the major amount of infor-

mation for shadow detection. They were therefore selected for being used in the proposed shadow

segmentation approach and investigated. To this end, the Dichromatic Reflection Model was in-

troduced for modeling the effects of shadows on image values. The characterization of ambient

light with respect to direct light is central to shadow modeling. The introduction of the gray world

condition was discussed with respect to this issue.

Color information is not the only information that can be exploited for analyzing shadows. Even

without knowledge of the 3D geometry of a scene, geometric shadow cues which relate the position of

a shadow to that of the shadow casting object can be defined. They were discussed for the purpose

of considering them as additional constraints in the proposed shadow segmentation approach. In

dynamic scene, the temporal behavior of shadows was also discussed as an important constraint for

their characterization.

The second objective of the chapter is to review the state of the art of shadow detection. In this

context, we found useful to classify and evaluate different approaches to the problem on the basis

of the properties of shadows that they exploit. The existence of two categories of approaches was

outlined: model-based approaches and property-based approaches. The specificity of model-based

solutions, which exploit some knowledge of the scene made available by the targeted application,

limits their use to the specific applications they are designed for. Property-based approaches of-

fer more flexible solutions. They can be applied to a larger class of scenes and adapted to new

applications. A property-based approach is proposed in this thesis.

The analysis of the state of the art outlined the fact that the problem of detecting, processing

and analyzing shadows has been investigated within several research domains, ranging from aerial

image understanding to digital photography and video analysis. An especially increased interest in

the extraction of moving shadows in video sequences has been motivated in recent years by the need

of accurate video object extraction tools. Current moving object detection systems in fact typically

detect shadows cast by the moving object as part of it. Although different solutions have been

proposed, there exists no generally accepted methods. Due to its relevance, particular attention is

dedicated in this work to the segmentation of shadows in video.

The primary role of color information that was outlined when evaluating visual cues for shadow

detection is evident from the analysis of property-based methods for shadow detection, both in the



64 Chapter 3. Shadows and shadow detection

case of still images and of image sequences. In this context, different solutions have been proposed

in literature with regard to both the physical models of shadows adopted and to the color features

exploited. In the next chapter, this issue is investigated and the color models that are used in the

proposed shadow segmentation approach are discussed.
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Figure 3.18: The shadow is a metaphor of the film creation (Section A.1.2).
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Photometric invariants

for shadow analysis 4
4.1 Introduction

This chapter is dedicated to a discussion of photometric invariant color features. Photometric

invariant color features are functions which describe the color of an imaged surface discounting

changes in the imaging conditions. In the context of this thesis, we aim at investigating the role

they can play in the analysis of shadows in digital color images.

As discussed in Chapter 2, the color appearance of a point on a surface depends both on the

characteristics of the surface and on the imaging conditions, that is on the illumination conditions

and on the geometric arrangement of surface, light source, and camera. For many image analysis

and computer vision applications, the possibility of devising color models which are less sensitive

than raw sensor responses to changes in the imaging parameters is highly desirable. Let us consider

an example application to introduce this issue. A computer vision application that benefits from

the use of color is object recognition. Departing from traditional object recognition strategies based

on geometric properties, Swain and Ballard [157] were the first to introduce a simple and effective

recognition scheme that identified objects entirely on the basis of color. The scheme was based

on matching the color histograms of query and target images. Due to the sensitivity of color

values to changes in the imaging conditions, however, when query and target objects are recorded

in different pose, illumination conditions, or from a different viewpoint, the recognition accuracy

degrades significantly. To overcome this limitation, functions of color values that are able to discount

the effects of changes in imaging factors have been devised. Indexing on such color invariant features

has shown to deliver better recognition results.

Many other computer vision problems benefit from the use of color invariant features, such as

material segmentation, image retrieval, and, as we aim at discussing in this chapter, shadow segmen-

tation. Several shadow detection methods in literature exploit indeed shadows spectral properties

on the basis of the observation that, while luminance decreases in shadows, chromatic information

remains approximately unchanged. For the analysis, various color spaces are used to separate the

two components of the color signal, such as HSV, CIELAB, and Y ′CbCr. Which criterion should

one adopt when choosing a color model for the analysis? What is the underlying model of shad-

67
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ows? What is the relationship between the features used for shadow detection and the photometric

invariants proposed for object recognition? In this chapter, we aim at providing answers to these

questions. The existing answers are different and a complete picture is missing in literature. The

different solutions have been therefore studied and a class of invariant features has been chosen for

this work. They allow to formalize the second spectral property in the list presented in the previous

chapter, which states that changes in the color of a surface in shadow tend to be predictable.

This chapter is organized in the following way. In Section 4.2, the problem of color invariance is

introduced and its relationship with the analysis of shadows is discussed. The selection of those color

invariant features that are adopted in this thesis is discussed. Their construction is first described

in Section 4.3. Their invariance with respect to shadows is then discussed in Section 4.4. Their

problems and limitations are also introduced.

4.2 From color constancy to shadow analysis

The problem of color invariance emerged from research in the domain of computational color con-

stancy and its application to color-based object recognition. Computational color constancy is

therefore first of all briefly introduced in this section and the reasons that inspired the color invari-

ant approach are explained. Different approaches to color invariance are then discussed in the light

of their possible use in the analysis of shadows.

Color is one of the properties we attribute to objects, but the light from the object that reaches

our eye, and thus the photoreceptors’ responses, vary with illumination. Therefore, if color must

describe a property of an object, the nervous system must interpret the mosaic of cone responses

and estimate something about the surface reflectance function. The neural computation of color is

structured so that objects retain approximately their color appearance whether we encounter them

in shade or sun. Achieving the same result is extremely difficult for a computer vision system.

The property of the human visual system of approximately observing the same color under

different lighting is referred to as color constancy [30]. In an effort to mimic this ability of the

human visual system, computational color constancy algorithms aim at mapping the red, green,

and blue sensor responses, RGBs, for a surface under an unknown illuminant to corresponding

RGBs under a known reference light. The interested reader is referred to [8, 9] for a detailed review

of computational color constancy techniques. If solved, the problem can find important applications

in computer vision problems. An already cited example is object recognition. If the recognition is

based on the matching of color distributions from a target object with those of a query object, a

description of these features that remains the same when query and target image are recorded under

two different illuminants should be adopted. A color constancy pre-processing of the images could

be used to this end.

The processes through which color constancy is attained in the human visual system are un-

fortunately not well understood. Indeed, despite significant effort, the performance of color con-

stancy algorithms in computer vision remains quite limited [44]. The failure of color constan-

cy pre-processing in object recognition, due also to the complexity of color constancy algorithms

which result more complex than object recognition itself, has then inspired the color-invariant ap-

proach [3, 32, 37, 46, 50, 110, 113, 114, 148]. While color constancy aims at computing a full

three-dimensional RGB image under the reference illuminant, the goal of color invariance is less

ambitious. It attempts in fact to find functions of RGB values that cancel out dependency on the

imaging conditions. Two types of dependencies are considered, dependency on geometry and de-

pendency on illumination. In this thesis, we are interested in those approaches to color invariance

which can provide features that are not affected by changes in illumination due to shadows. The
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specificity of shadows as illumination phenomena has therefore to be considered.

To discount the effects of illumination in an image, one possibility is to normalize each image

location by a reference RGB [87] to obtain a description of the image which is independent from

lighting. It is also possible to derive global statistical features for the image that do not depend on

the light [33, 66, 155]. These approaches apply to images affected by a global change in illumination.

While they have been used in object recognition and image retrieval for matching two images taken

under different illuminants, they are not suitable for shadow analysis. Shadows are in fact a local

phenomenon and the illumination compensation should apply to local illumination changes between

shadowed and lit regions in the same image. This adds difficulty to the problem.

A second possibility is then to use only information at each pixel position to derive features that

do not change with a change in illumination. As they are locally defined, these features can also

provide invariance to geometric parameters and, most of all, are suitable for analyzing shadows.

With regard to this approach, two solutions can be adopted which are based on two different models

of shadow.

The first model is the model that we have discussed in Chapter 3. It considers the gray world

condition to define the relationship between ambient light, illuminating the shadow, and direct light,

illuminating the same point when there is no obstruction. In this case, a number of color invariants

can be found that are insensitive to shadows. Among them, some features come from traditional

color models such as normalized rgb, hue and saturation. Others, such as c1c2c3 and l1l2l3 [50],

have been proposed for color-based object recognition.

The second model describes a change in illumination due to a shadow by means of the diagonal

scaling model (Eq. (3.10)). The gray world assumption is relaxed and the assumptions of Lamber-

tian surfaces and narrow band camera filters are considered. For this model, Finlayson and Hordley

in [35] and Marchant and Onyango in [95] propose an invariant computation that can discount

shadows. The computation is based on the assumption that the light that illuminates a shadow

and the light that illuminates the same point when there is no obstruction can be described by

Planckian illuminants that differ in their color temperature (Section 2.2.2). The invariant compu-

tation provides then a one-dimensional image that is invariant to light intensity and light color.

By construction, the invariant coordinate remains unchanged also under the reference illuminant of

the color constancy approach. With their work, the authors aim thus at bridging the gap between

classical color constancy and the color-invariant approach.

Its one-dimensional nature makes this methodology applicable to the problem of shadow analysis

by assuming that illumination in shadows can be modeled by a Planckian illuminant, as proposed

by the authors in [31]. The invariant image computation requires knowledge of the camera sensors

responsitivities or a camera calibration process by means of a colored target imaged under different

illumination conditions. The proposed invariant computation cannot then be used with images from

uncalibrated sources. This limits its applicability.

In the framework of this thesis we aim at segmenting shadows in a wide range of scenes, also

in situations where the imaging conditions are not under control. Our attention has been therefore

focused on the first category of color features. These simple transformations of RGB values are

shown to provide reliable results for color image segmentation [48], color object tracking [49] and

color-based object recognition [50]. In the following sections, their characteristics are discussed. In

case the targeted framework allows it, i.e. when control on the camera is considered, the flexibility

of the approach to shadow segmentation proposed in Chapter 5 allows the use of different invariant

derivations, included that proposed in [35] and in [95].
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4.3 Photometric color invariants

The starting point for the design of color invariant transformations is a model of image formation

which allows to describe image pixel values as a function of imaging parameters. In Chapter 2 we

have introduced such model and we have then used it in Section 3.3.1 when characterizing shadows

from a spectral point of view. We reconsider it in the following sections. First of all, in the next

subsection, we describe pixel values distributions in the RGB color space on the basis of such model.

This allows to more intuitively explain the construction of color invariants in Section 4.3.2.

4.3.1 The Dichromatic Reflection model in color space

The Dichromatic Reflection Model’s formulation for a specific point on a surface is given by

L(λ, i, e, g) = ms(i, e, g)cs(λ) +mb(i, e, g)cb(λ), (4.1)

where L(λ, i, e, g) is the reflected radiance at wavelength λ, mb andms are the geometric scale factors

of the body and interface reflection terms, and cb and cs are the spectral power distributions of the

body and interface reflection terms. At this surface point, the geometry, that is angles i, e, and g

(refer to Figure 2.9 for a definition of these angles), are determined and the magnitudes ms and mb

of the interface and body reflection terms may be considered as scalars. Therefore, the Dichromatic

Reflection Model can be rewritten at the specific point as

L(λ) = mscs(λ) +mbcb(λ). (4.2)

This expression defines the spectral power distribution (SPD) of the light reflected from the surface

at the considered point. An image of the point taken with a linear device is composed by sensor

responses that can be described by Eq. (2.8). By applying the linearity of spectral integration and

by enclosing the factor of proportionality between radiance and irradiance in the scalars ms and mb,

the measured surface color is obtained as

~CL = ms
~Cs +mb

~Cb, (4.3)

where ~Cs and ~Cb are the 3D color vectors in color space of the interface and body reflection terms,

respectively.

Let us consider now the colors of a set of points on the same uniformly colored surface. Since

the geometry is different at each point in the set, the scale factors ms and mb vary from point

to point. However, the colors ~Cs and ~Cb of the interface and body reflection are the same at all

points on the same surface. They are, in fact, the result of the spectral integration of cs(λ) and

cb(λ) that do not vary with geometry. Without loss of generality [143], it can be considered that

0 ≤ ms,mb ≤ 1. As a consequence, the pixel values for a set of points on a uniformly colored

surface must be distributed within a parallelogram in the RGB sensor space. The parallelogram is

bounded by the colors ~Cs and ~Cb of the interface and body reflection of the surface. One corner

of this parallelogram is located at the origin of the color space, where (R,G,B) = (0, 0, 0). The

dichromatic parallelogram is illustrated in Figure 4.1.

Light reflection at matte points is primarily determined by the body reflection process [82].

Therefore, matte points form a matte line in the direction of the body reflection vector in the plane

defined by the parallelogram. Highlight points exhibit both body reflection and interface reflection.

However, since ms(i, e, g) is much more sensitive to a small change in the angles than is mb(i, e, g),

the body reflection component is generally approximately constant in an highlight area. Highlight

points thus form an highlight line in the plane in the direction of the interface reflection vector
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Figure 4.1: Considering dichromatic reflection, pixel values on a uniformly colored surface lie on a

parallelogram in color space. The parallelogram is bounded by the colors ~Cs and ~Cb of the interface

and body reflection. Matte points form a matte line in the direction of the body reflection vector.

Highlight points form an highlight line in the direction of the interface reflection vector.
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Figure 4.2: Dichromatic parallelogram considering a constant ambient illumination term.
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Figure 4.3: Original color image from which selected regions of interest are analyzed in Figure 4.4

and Figure 4.8.
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Figure 4.4: (a) A region of interest containing a uniformly colored surface affected by shading, a

self shadow and highlights. (b) The corresponding pixel colors in the RGB color space.

(Figure 4.1). The extent of the line depends on the roughness of the object surface. For rough

surfaces, the extent will be smaller than for very shiny surfaces.

When analyzing shadows, as commented in Section 2.4.2, the extension of the Dichromatic

Reflection Model should be considered. In this case, Eq. (2.6) expresses the reflected radiance at

the considered point as

L(λ, i, e, g) = ms(i, e, g)cs(λ) +mb(i, e, g)cb(λ) + La(λ), (4.4)

where La(λ) is the ambient reflection term, which is assumed independent from geometry. The

model in the RGB space then becomes

~CL = ms
~Cs +mb

~Cb + ~Ca. (4.5)

For a set of points on a uniformly colored surface when considering a constant ambient diffuse
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illumination, the parallelogram origin is then moved to a point which represents the color of the

reflected light due to ambient illumination. This situation is shown in Figure 4.2.

An example of pixel distributions in a real image (Figure 4.3) is illustrated in Figure 4.4. A

region of interest containing a uniformly colored surface which exhibits highlights, shading due to

surface curvature and a self shadow due to the occlusion of the direct light is shown in (a). The

corresponding pixels color distribution in the RGB space are plotted in (b). The matte line and the

highlight line are visible. The color cluster does not pass through the origin of the color space due

to ambient light, as expected. Pixels in the self shadow region form a cloud of points at the base of

the matte line. The color of the pixels in shadow, according to the considered model, is defined by
~Ca, which does not depend on geometry and should therefore be the same for all points on the same

shadowed surface. In practice, shadow pixels are spread and form the observed cloud of points.

The above-discussed model is, in fact, an idealized physical description of the world. Real images

do not fully comply with it because of camera limitations on one hand and because of effects in the

scene, such as inter-reflections among surfaces, that are not modeled in the considered reflection

model. Real cameras have, for instance, only a limited dynamic range to sense the incoming light.

In this case, if the diffuse body reflection or the interface reflection are bright, one or another color

channel might saturate. The corresponding lines may collide with a face of the RGB color cube and

get clipped. Typically, moreover, cameras are gamma corrected (Section 2.6.2). This means that

the output of a camera is not a linear function of the input. Due to gamma correction, a curvature

in the color clusters may then be introduced.

4.3.2 Construction of color invariants

Many different expressions can be derived from RGB values that are invariant to changes in the

imaging conditions. In the following subsections, first, photometric invariant color features for matte,

diffuse surfaces are considered, then color invariants for matte and shiny, specular surfaces.

Before proceeding, let us express here the Dichromatic Reflection Model in terms of surface

spectral reflectances. We discount ambient illumination for the moment. We will consider ambient

illumination in Section 4.4, as it is characteristic of illumination in shadows. Let ρs(λ) and ρb(λ)

be the surface spectral reflectances at a point on a surface for the interface and body reflection

components, respectively, and let E(λ) be the spectral power distribution of the light incident on

the surface at the considered point. Then, we have

L(λ, i, e, g) = ms(i, e, g)ρs(λ)E(λ) +mb(i, e, g)ρb(λ)E(λ). (4.6)

As discussed in Section 2.4.1, the spectral energy distribution of the specular reflection component

is similar to the spectral energy distribution of the incident light. Researchers usually assume that

they are identical (Neutral Interface Reflection (NIR) assumption, see Section 2.4.1). As a result,

the interface reflectance component ρs(λ) is a constant, ρs, and the model formulation becomes

L(λ, i, e, g) = ms(i, e, g)ρsE(λ) +mb(i, e, g)ρb(λ)E(λ). (4.7)

Diffuse surfaces

When diffuse surfaces are considered, reflected light is described by body reflection only. The sensor

responses for a point on the surface are then given by

Ci
b = mb(i, e, g)

∫

Λ

ρb(λ)E(λ)SCi
(λ)dλ. (4.8)

where Ci
b ∈ {Rb, Gb, Bb} and SCi

∈ {SR, SG, SB}.
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Figure 4.5: Considering dichromatic reflection, points on a uniformly colored matte surface form a

line in the RGB color space in the direction of the body reflection vector ~Cb. All points are projected

onto the same point in the unit plane and have the same chromaticity coordinates. Moreover, all

points can be described by the same angles α and β.

As discussed in Section 4.3.2, for points on a uniformly colored surface Eq. (4.8) describes a matte

line with parameter mb in the RGB color space (Figure 4.1). The line passes through the origin of

the color coordinate system and its direction is defined by the body reflection vector ~Cb. Changes

in the imaging geometry affect the value of the parameter mb but not the line direction. Changes in

illumination affect the term E(λ) and consequently the body reflection vector ~Cb . However, changes

in illumination intensity can be modeled by a scaling for each wavelength, that is E ′(λ) = θE(λ)

and they have the same effect as a change of the geometric parameter mb. Therefore, changes in

illumination intensity only affect the position of the considered point on the matte line. The point

moves toward the origin of the color space if θ < 1 or in the opposite direction if θ > 1.

All color vectors representing points on a matte uniformly colored surface, even when surface

geometry, viewing direction, illumination direction or illumination intensity changes, share the same

direction in color space. This direction is defined by ~Cb and is the invariant we are looking for.

The discussed physical model suggests different ways of obtaining combinations of RGB values

which have the same value for all points on the matte surface. A family of color invariants [51] can

be obtained by computing for each pixel position (x, y) in the image the expression

Ci(x, y)/Cj(x, y), (4.9)

where Ci,j ∈ {R,G,B} and i 6= j. The invariance is proved by substituting Eq. (4.8) in Eq. (4.9):

mb(i, e, g)
∫

ρb(λ)E(λ)SCi
(λ)dλ

mb(i, e, g)
∫

ρb(λ)E(λ)SCj
(λ)dλ

. (4.10)

The obtained expression depends on SC(λ), ρb(λ) and on the spectral content of E(λ), thus being

the same for points illuminated by light of different intensity and direction, having a different surface

normal and viewed from a different direction.

Any linear combination of this basic set of invariants gives a new color invariant feature, computed

as
∑

i aiR
p
iG

q
iB

r
i

∑

j bjR
s
jG

t
jB

u
j

(4.11)
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where p+ q + r = s+ t+ u, and p, q, r, s, t, u, ai, bj ∈ R and i, j ≥ 1.

A first example of instantiation of the above defined family of photometric invariant features

are normalized rgb features (Eqs. (2.19)-(2.21)). As stated in Section 2.6.2, computing rgb from

RGB values corresponds to radially projecting each color point in the 3D RGB space onto the

unit plane R + G + B = 1. When applying this color transformation on RGB values, points on

the matte line are therefore projected onto the same point on the unit plane and have the same

chromaticity coordinates. The body reflection vector and its projection onto the unit plane are

shown in Figure 4.5.

A second family of photometric invariants can be obtained by considering the angles formed by

the body reflection vector in the color space. Each point on the ~Cb vector can in fact be defined by

two angles, α and β, and a distance from the origin of the color space, ρ (see Figure 4.5). The two

angles α and β, computed from the RGB coordinates as

α = arctan

(

G

R

)

(4.12)

β = arctan

(

B

G

)

,

are a second example of photometric invariant features for matte surfaces and dichromatic re-

flectance.

Gevers [50] proposes the c1c2c3 features, defined as

c1 = arctan

(

R

max(G,B)

)

c2 = arctan

(

G

max(R,B)

)

(4.13)

c3 = arctan

(

B

max(R,G)

)

,

as an instantiation of this family of color invariants for diffuse surfaces. They are three of the six

possible angles formed by ~Cb in the color space.

Among the well-known color features, saturation and hue in the HSI space, defined as in Eqs. (2.30-

2.31), are also invariant features for diffuse surfaces. As for the other features, the demonstration

of invariance is straightforward when substituting Eq. (4.8) in

S = 1− 3
min(R,G,B)

R+G+B
(4.14)

and

H = arctan

( √
3(G−B)

(R−G) + (R−B)

)

. (4.15)

Saturation can be included in the first family of the discussed features, defined by Eq. (4.11), while

hue belongs to the second family of angular features.

Diffuse and specular surfaces

When both matte and shiny surfaces are considered, the interface reflection vector has to be included.

The RGB color components are now computed from Eq. (4.7) as

Ci
s = ms(i, e, g)ρs

∫

Λ

E(λ)SCi
(λ)dλ+mb(i, e, g)

∫

Λ

ρb(λ)E(λ)SCi
(λ)dλ. (4.16)
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As discussed in Section 4.3.2, for points on a uniformly colored surface Eq. (4.16) describes a

dichromatic plane with parameters mb and ms in color space (Figure 4.1). The plane passes through

the origin of the color coordinate system and its orientation is defined by the body and interface

reflection vectors ~Cb and ~Cs. Changes in the imaging geometry affect the values of parameters mb

and ms but not the plane orientation. The same is true for changes in illumination intensity.

All color vectors representing points on a diffuse and specular surface, even when imaging geom-

etry or illumination intensity changes, share the fact of lying on the same plane in the color space.

The plane’s orientation is defined by ~Cb and ~Cs and is the invariant we are looking for.

Different ways of obtaining color invariants which have the same value for all points on the

matte and shiny surface can be devised. As before, we prove mathematically the intuitive notion for

different color features. To this end, two assumptions have to be introduced. First of all, illumination

is assumed to be white or spectrally smooth (i.e. approximately equal/smooth energy density for

all wavelengths of the visible spectrum), that is E(λ) has an equal value E for each wavelength.

The second assumption concerns the characteristics of the camera’s sensors. The integrated white

condition is assumed to hold, that is the area under the sensors spectral functions is approximately

the same:
∫

Λ

SR(λ)dλ =

∫

Λ

SG(λ)dλ =

∫

Λ

SB(λ)dλ = f. (4.17)

To make the notation more compact, we define

Ks = E

∫

Λ

SCi
(λ)dλ = Ef (4.18)

Under the considered assumptions, the surface reflection vector lies on the diagonal of the RGB

cube. If we denote with

Ki
b = E

∫

Λ

ρb(λ)SCi
(λ)dλ, (4.19)

Eq. (4.16) can be rewritten as

Ci = ms(i, e, g)ρsKs +mb(i, e, g)K
i
b. (4.20)

A family of color invariants for matte and shiny surfaces can be obtained by computing for each

pixel position (x, y) in the image the expression

Ci(x, y)− Cj(x, y)

Ck(x, y)− Cl(x, y)
, (4.21)

where Ck 6= Cl. The invariance is demonstrated by substituting Eq. (4.20) in Eq. (4.21) as

ms(i, e, g)ρsKs +mb(i, e, g)K
i
b −ms(i, e, g)ρsKs −mb(i, e, g)K

j
b

ms(i, e, g)ρsKs +mb(i, e, g)Kk
b −ms(i, e, g)ρsKs −mb(i, e, g)Kl

b

=
Ki

b −Kj
b

Kk
b −Kl

b

. (4.22)

The obtained expression only depends on SC and ρb, thus being the same for points on the same

uniformly colored surface illuminated by light of different intensity and direction, having a different

surface normal and viewed from a different direction.

Any linear combination of this basic set of invariants gives a new color invariant feature, computed

as
∑

i ai(R−G)pi (B −R)qi (G−B)ri
∑

j bj(R−G)sj(B −R)tj(G−B)uj
(4.23)

where p+ q + r = s+ t+ u, and p, q, r, s, t, u, ai, bj ∈ R and i, j ≥ 1.
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Figure 4.6: Considering dichromatic reflection and white illumination, points on a uniformly col-

ored surface lie on a plane spanned by the body reflection vector ~Cb and the diagonal of the RGB

cube, on which the interface reflection vector ~Cs lies. All points have the same hue angle. Moreover,

all points can be described by the same unit normal vector ~n.

Gevers proposes in [50] the l1l2l3 features, defined as

l1 =
(G−R)2

(G−B)2 + (R−B)2 + (G−R)2

l2 =
(R−B)2

(G−B)2 + (R−B)2 + (G−R)2
(4.24)

l3 =
(G−B)2

(G−B)2 + (R−B)2 + (G−R)2
,

as an instantiation of the discussed family of color invariants. l1l2l3 are the squared components of

the unit normal vector, n̂ = (nR, nG, nB), to the plane spanned by ~Cb and ~Cs when the Hessian

normal form for the plane is considered (Figure 4.6). By substituting Eq. (4.20) in Eq. (4.24) the

invariance is proved in a straightforward way.

As for diffuse surfaces, a second family of photometric invariants can be derived by considering

angular features describing points on the dichromatic plane. An example of instantiation of this

family of photometric invariant features is hue. By substituting Eq. (4.20) in Eq. (4.15) the invariance

is easily demonstrated. When looking at Figure 4.6, moreover, the invariance is intuitively proved.

All colors points on the plane spanned by ~Cs and ~Cb have the same hue assuming white illumination

since hue is defined as a function of the angle between the main diagonal and the color point in the

RGB space.

4.4 Invariance to shadows

Photometric invariant features are now analyzed with respect to the model of shadows introduced

in the previous chapter. The analysis leads to a formalization of the second shadow cue in the list

discussed in Section 3.2.2 and provides an analysis criterion that will be used in the proposed shadow

segmentation approach.

At the end of Section 3.3.1, we have concluded that, if the gray world condition is assumed, the

camera response to the ambient light contribution, that is the camera response in shadow ~Ca, is
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Figure 4.7: Considering dichromatic reflection and the gray world condition discussed in Sec-

tion 3.3.1, the ambient reflection vector ~Ca is a linear combination of the body and surface reflection

vectors ~Cb and ~Cs. In such case, the plane containing all points on a uniformly colored surface

passes through the origin of the color space. Points in shadow lie at Ca.

a linear combination of the responses to the body, ~Cb, and interface, ~Cs, reflection terms due to

direct light. This means that the dichromatic plane containing all points on a uniformly colored

surface passes through the origin of the color space, as illustrated in Figure 4.7. Shadow points

illuminated by ambient light are then coplanar with respect to all other illuminated points on the

same surface. Consequently, if the direct illumination is white and the integrated white condition

holds for the used camera, the discussed set of color invariants for matte and shiny surfaces, among

which hue and l1l2l3 can be taken as instantiations, takes the same values for points directly lit

and points in shadow on the same surface, whatever the surface orientation at the point is, the

direct illumination’s intensity and the viewing direction are, and whether the point is affected by

an highlight or not.

In the case of regions that do not contain highlights, the ambient reflection term ~Ca is then

aligned with the body reflection term ~Cb and, from Eq. (3.9), that is

Rshadow = αRlit

Gshadow = αGlit (4.25)

Bshadow = αBlit,

it follows that all the discussed color invariants, among which normalized rgb, c1c2c3, saturation, hue

and l1l2l3 are instantiations, take the same value for the same point when lit and when in shadow.

This is true for all shadowed points on the same diffuse surface, whatever the surface orientation at

the point is, the direct illumination’s intensity and the viewing direction are.

An example of pixel distribution in the RGB space for a surface that is partially covered by a cast

shadow is illustrated in Figure 4.8. A region of interest selected from the image in Figure 4.3 can

be observed together with the corresponding pixel distribution in color space. Since no specularities

are present in the selected region, pixels form a linear cluster for which color invariants take the

same value. More examples of the behavior of color invariant features in presence of shadows in a

number of real images and image sequences will be presented and discussed in the next chapter in
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Figure 4.8: (a) A region of interest containing a surface covered by a cast shadow selected from

Figure 4.3. (b) The corresponding pixel colors in the RGB color space.

Section 5.3.

The fact that the discussed features remain unchanged in presence of a shadow can be exploited

for detecting shadows in digital images and image sequences. Let us define as F one of the above

mentioned photometric color invariants. Fl is the value assumed by the invariant feature in a point

in light, and Fs is the value in the same point in shadow. Then,

Fl = Fs. (4.26)

This property is valid for all the points inside a shadow region, even when the normal to the surface

changes and whether the point belongs the shadow’s umbra or penumbra. It will be used, together

with the property in Eq. (3.8), in Chapter 5.

4.4.1 Discussion

It is important at this point to analyze the problems and drawbacks of the discussed features

related to their loss of discriminative power and the inherent instabilities caused by the non-linear

transformations used in their computation.

Photometric invariant transformations become unstable in certain regions of the RGB space. It is

known from Kender [80], in fact, that normalized color rgb and saturation are unstable, that is more

sensitive to small perturbations such as those due to noise, for color values near the black vertex

of the RGB space. Here, these features are undefined. Hue is unstable near its singularities at the

entire RGB space diagonal. The analysis of noise sensitivity of c1c2c3 and l1l2l3 transformations has

been carried out by Gevers in [51]. As normalized rgb and saturation, c1c2c3 give rise to unstable

values in presence of noise when intensity is small, while l1l2l3 are unstable near R = G = B, as hue.

Features that exhibit the same class of invariance are characterized by the same kind of problems in

presence of noise. As the degree of invariance grows, the number of points were the color models are

not defined, and exhibit a characteristic instability, grows. Table 4.1 summarizes the problems of

the mentioned features, which are representative of the two groups discussed in the previous section.



80 Chapter 4. Photometric invariants for shadow analysis

Property rgb c1c2c3 S H l1l2l3

Undefined at (R,G,B)=(0,0,0) Yes Yes Yes Yes Yes

Undefined at R=G=B No No No Yes Yes

Sensitive to noise at (R,G,B)=(0,0,0) Yes Yes Yes Yes Yes

Sensitive to noise at R=G=B No No No Yes Yes

Table 4.1: Problems of color invariants.

The advantage of being robust to shadows and to changes in the imaging conditions is obtained

for photometric invariants at the cost of a loss in their discriminative power. Invariants transform

color images into a simpler feature space where some information is discarded. As the degree of

invariance grows, the number of different colors that color invariants can discriminate decreases. For

all invariants there are degenerate cases in which they are unable to distinguish between different

material surfaces. Let us take a numerical example and consider a point having a magenta color

given by (R,G,B) = (0, 1, 1) and a second point having a red color given by (R,G,B) = (1, 0, 0). For

such points the normalized rgb values are (0, 0.5, 0.5) and (1, 0, 0). The l1l2l3 values are (0.5, 0.5, 0)

and (0.5, 0.5, 0), that is the same for the two points.

A compromise between invariance and inherent limitations of photometric invariant transforma-

tions should be searched for when using them for shadow segmentation. This issue will be discussed

in detail in Chapter 5, where different features will be evaluated for selecting the color invariants to

be used in the proposed approach.

To conclude this discussion, it is interesting to reconsider the color features that are used by

the state of the art methods for shadow detection reviewed in Chapter 3. The reader is referred to

Table 3.1 and Table 3.2 for a summary of approaches, where methods that exploit color invariance

can be rapidly identified.

The techniques proposed in [42, 127] use the video-oriented Y ′CbCr space. They base their anal-

ysis on the observation that shadows modify the luma component, while the chroma components

remain unchanged. Let us analyze how chroma components are influenced by a change in illumina-

tion due to shadows when considering dichromatic reflection. From Eq. (2.25), chroma components

are computed from RGB values as

Cb = 128− 0.148R− 0.291G+ 0.439B (4.27)

Cr = 128 + 0.439R− 0.368G− 0.071B (4.28)

If we consider a matte surface for simplicity, by substituting Eq. (4.8) in Eqs. (4.27-4.28), and by

appropriately developing the computations, it can be shown that Cb and Cr only assume the same

value, which is zero, with a change in illumination intensity if the considered point is achromatic,

that is it lies on the diagonal of the RGB cube.

The methods proposed in [27, 142, 168] make use of the invariance properties of both hue and

saturation. Hue and saturation, which belong to the same color space, yet show a different class of

invariance. Saturation is only invariant for matte surface, while hue is invariant also to highlights.

By using both features, the more restrictive hypotheses behind saturation’s invariance are implicitly

considered. This issue will be reconsidered in Section 5.3.

The method in [52] uses the c1c2 features which are invariant for matte surfaces. Finally, when

looking at Figure 3.15 and comparing it with Figure 4.7 it is clear that the method proposed in [70]

also considers matte surfaces. For such surfaces, in fact, shadowed points lie on the matte line

defined by the expected color E (Figure 3.15). As a consequence, their chromatic distortion CD is

zero.
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4.5 Summary

The objective of this chapter is to define color features that do not change their values in presence of

shadows and that can provide a criterion for shadow segmentation. They allow, in fact, to formalize

the second spectral property of shadows in the list of visual cues discussed in Section 3.2.2, which

states that changes in the color of a surface in shadow tend to be predictable.

Invariance to illumination changes due to shadows falls within the more general problem of the

invariance to imaging parameters, which comprise illumination conditions, surface orientation and

viewing direction. This problem has been extensively studied for the purpose of color-based object

recognition. Different approaches have been proposed in this context to obtain functions of the

RGB color values that cancel out dependency on the imaging conditions. In this chapter, we have

reviewed different solutions in light of their possible use for the analysis of shadows.

Shadows are a local illumination phenomenon. Consequently, only those approaches which can

provide an invariant feature defined for each pixel of a color image are suitable for analyzing shadows.

Our investigation has outlined two classes of such transformations, which are based on two different

models of shadow. The first model is that introduced in Section 3.3.1, which considers the gray world

condition to hold. The second model assumes Lambertian surfaces, narrow-band camera filters and

Planckian lighting. It relaxes the gray world condition. For this latter model, the computation of

the invariant parameter for each pixel position depends on the used camera. In order to design

a shadow segmentation approach that can be applied also on images from uncalibrated sources,

features that are invariant to shadows as described by the former model have been selected in this

work.

The construction of these invariants for matte and for matte and shiny surfaces was presented.

Among them, well-known features, such as hue and saturation, are used by several state of the

art methods for shadow detection. Here, the common framework in which the invariance of such

features, and many other color invariants showing similar properties, is derived, was discussed. The

underlying physical model, the relevant assumptions, and the problems related to the use of such

invariants were pointed out. In the next chapter, different invariants are evaluated on a number of

test images for their use in the proposed shadow segmentation approach.
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Figure 4.9: Wall sculpture in steel and shadow (Section A.1.3).



Segmentation of cast

shadows 5
5.1 Introduction

In this chapter, we propose an analysis method for the segmentation of cast shadows in a wide

range of natural scenes. The adopted strategy exploits spectral, spatial and temporal properties of

shadows and is designed to be able to work automatically when camera, illumination and scene’s

characteristics are unknown.

The problem of extracting shadows from images has been investigated within several research

domains. Its importance has especially come to the fore over the past years in the framework of

automatic video processing and analysis methods. The accurate segmentation of moving objects in

video sequences represents a key process for an always wider range of multimedia and computer vision

applications. Consequently, the development of efficient methods for the identification of shadows

cast by objects is of primary interest. The often unavoidable presence of shadows in natural scenes

is in fact of great nuisance to automatic segmentation methods, which typically detect cast shadows

as part of moving objects. In this thesis, therefore, particular attention is dedicated to the problem

of segmenting moving cast shadows in color image sequences. The validity of the proposed approach

is evaluated moreover through its implementation for the segmentation of cast shadows in still color

images.

A specialized approach to shadow segmentation, based on object models or application domain

specific knowledge, although providing successful solutions for the applications at hand, limits the

generality of the proposed techniques and their extension to new applications. In particular, when

shadow segmentation is performed for enhancing fundamental tasks such as object extraction and

description, flexibility with respect to the nature of the considered objects and the variety of the

considered scenes is expected. When the visual data content is not known a priori, such as in video

coding, video editing and advanced video surveillance, this is especially desirable. The methodology

proposed in this chapter is intended for such a framework and is designed to be applicable to

different scenarios. To reach this objective, the criteria defined both in Section 3.3.1 and 3.3.2, and

in Section 4.4 of Chapter 4 are exploited for segmenting shadows in a large class of scenes.

This chapter is dedicated to the description of the proposed methodology and of the adopted

83
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Figure 5.1: A simplified scheme of the three stages composing the proposed segmentation algo-

rithm.

algorithmic solutions. An evaluation of the performance of the proposed system through its appli-

cation to a number of test sequences and through the comparison with state of the art techniques

will be provided in Chapter 6. The application of the proposed system in different contexts will be

then discussed in Chapter 7.

The presentation is organized as follows. An overview of the proposed strategy is first of all

presented in Section 5.2. An evaluation of color invariant features in the context of their application

in the proposed methodology is provided in Section 5.3. The main phases of the analysis method

are presented in Section 5.4, Section 5.5, and Section 5.6. The case of still images is analyzed in

Section 5.7.

5.2 Overview of the proposed approach

The proposed segmentation approach is summarized in Figure 5.1. The analysis is organized in two

main levels: an hypothesis level and a verification level. Its three main building blocks are shown.

They are a color analysis stage, a spatial analysis stage, and a temporal analysis stage. This last

stage is not present when the analysis is applied on still images. First of all, the color analysis stage

generates an initial hypothesis about the presence of a shadow. Color analysis exploits shadows

spectral properties on the basis of cue 1 in the list of Section 3.2.2, i.e. shadows darken the surface

upon which they are cast, and by making use of the invariance properties of photometric invariant

color features. The color analysis stage is discussed in Section 5.4.

Color information alone is not discriminative enough to allow for reliable shadow segmenta-

tion. After color analysis, therefore, a spatio-temporal verification is performed. As discussed in

Section 3.3.2, in the spatial analysis stage we propose to exploit geometric properties of shadows

related to shadow boundaries and to the adjacency of the shadow-casting object, without the need

of a priori knowledge about the scene. The spatial analysis is presented in Section 5.5.

The temporal analysis stage aims at estimating the temporal reliability of the extracted potential

shadows in dynamic scenes by means of a shadow tracking process. Tracking allows us to compute

the life-span of each shadow. From each shadow’s life-span and the relative position of objects and
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shadows provided by the spatial analysis stage, a reliability estimation is derived. This reliability

estimation is used to validate or to discard each shadow detected in the previous level of analysis

and provides the final segmentation results. The proposed shadow tracking and temporal reliability

estimation strategy are described in Section 5.6. The spatio-temporal verification process elimi-

nates the possible ambiguities of the color analysis stage and improves the efficiency of the overall

algorithm.

In the following sections, we describe in detail the adopted rules and the associated algorithmic

solutions for each level of the proposed system for moving cast shadow segmentation in image

sequences. The case of still images, which involves some specific assumptions and related solutions,

will be analyzed in Section 5.7. Before going into the details of the method, an analysis and

evaluation of invariant features in the context of their application for shadow segmentation in a

wide range of real world scenes is provided in the next section. The analysis will allow to select

appropriate features that will be then used in the proposed technique.

5.3 Invariant color features selection

We have seen in Chapter 4 that many different combinations of RGB color components can be defined

which show invariant properties to shadows. Among them, normalized rgb, hue, and saturation are

well known and widely used in the image processing literature. For this reason, we propose to

consider them for shadow segmentation. Other transformations, such as c1c2c3 and l1l2l3, have

been introduced for color-based object recognition. Since they have been shown to provide reliable

results for image segmentation [48] we consider them as well in addition to traditional features.

By means of photometric invariant features we have introduced in Section 4.4 Eq. (4.26) which

represents a theoretical model for shadow points. In practice, image pixel values only approximately

comply with this model, first of all because of camera noise, but also because of other noise compo-

nents. Illumination may, in fact, not always be considered white or spectrally smooth and camera

sensors do not necessarily verify the integrated white condition (Eq. (4.17)). The physical model of

shadows which underlies invariance is moreover a simplified description of the physical phenomenon.

In particular, the gray world condition is a working hypothesis and holds only to a certain extent

for real world images. The experimental analysis of the validity of such model in complex real world

scenes is a challenging task that is beyond the scope of this work. Nevertheless, we propose in this

section to investigate on a number of real images the behavior of different photometric invariant

features with respect to Eq. (4.26). This will allow to identify possible classes of scenes which comply

with the assumed model to a different extent and to define if some color invariant models result,

in practice, more suitable than others for use in the segmentation of shadows when no control on

the considered scenes is imposed and minimal assumptions are considered, as in the context of this

thesis.

Two types of analysis have been carried out. First, the different color features values in lit and

shadowed points have been computed and their behavior analyzed. Further, edge maps for the

different color features have been obtained and compared. Images containing different real world

illumination conditions have been considered. They have been chosen so as to contain different

surface materials. Two classes of invariants have been in fact introduced in Chapter 4, invariants to

shadows for diffuse surfaces, and invariants to shadows for diffuse and specular surfaces. Surfaces

with different color content have also been selected since, when no control on the content of the

considered scenes is imposed, we may end up at using color features also in color-deficient areas.

Due to the numerical instability of some color invariants near the entire achromatic diagonal of the

RGB cube, as discussed in Section 4.4.1, this factor should in fact also be taken into account when



86 Chapter 5. Segmentation of cast shadows

Figure 5.2: Test image orange and selected line for the analysis of color invariants.

using color invariants. Both still images and image sequences taken with different cameras have

been analyzed so as to contain different noise levels. The results of the analyses are discussed in the

following subsections by means of some representative examples.

5.3.1 Color components analysis

As first example, let us take an image of a simple close-up scene. The test image orange in Figure 5.2

shows an indoor scene where a shadow is cast by an object on a gray, uniform, plastic background.

Shading due to the curvature of the surface and a self shadow are present on the object, which has a

saturated, textured surface. Some highlights can be seen on the upper left part of the object, whose

surface has a diffuse and a specular component. One direct nearby light source, an office lamp, and

diffuse light from the environment which includes light from windows lighting the room, illuminate

the scene.

For its analysis, we have fixed a line in the image which crosses the cast shadow and the object

and observed the behavior of the different color components for each point on the line. The color

features profiles for line 175 (see Figure 5.2) are shown in Figures 5.3–5.6. The intensity of the

color component is plotted on the y axes while the pixel number is reported on the x axes. For

comparison, the behavior of the invariant features has been displayed side by side with that of a

component, such a R or I, which is sensitive to shadows. All features are in the range [0,255].

The RGB space and the invariant normalized rgb features are considered in Figure 5.3. The r

component is shown and compared to the R component. Since the same considerations that will be

done for r can be done for g and b, their profiles are not discussed here. The intensity step visible in

the profile of the R channel at the cast shadow boundary is not present in the normalized r profile,

showing that the invariance property of normalized color with respect to shadows holds well in this

real image. Shading and the self shadow are also much less visible, as the intensity values vary much

less than in the case of the R component from the self shadowed and shaded part to the lit part

of the object. Normalized rgb is a photometric invariant for diffuse surfaces. However, even if the

object surface contains both a diffuse and a specular component and invariance to shadows holds

less, as expected, than in the diffuse background, it is nevertheless obtained to a good extent since

the selected line crosses a region which does not contain highlights.

The c2 color feature is analyzed in Figure 5.4 and compared with intensity I in the HSI space. I is

sensitive to shadows and shading as R. As before, c1 and c3 are not shown since they have a similar

behavior as c2. As for normalized color, the invariance with respect to shadows and shading for
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Figure 5.3: R and r components intensity profile for line 175 of image orange.

Pixel number

Pixel number

Figure 5.4: c2 and I components intensity profile for line 175 of image orange.
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Pixel number
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Figure 5.5: S and R components intensity profile for line 175 of image orange.

Pixel number

Pixel number

Figure 5.6: H and l1 components intensity profile for line 175 of image orange.

c1c2c3 is verified. Note the different behavior inside the object of I with respect to R in Figure 5.3.

While R increases from the background to the object, I decreases. We will go back to this issue

when discussing the color analysis stage in Section 5.4.2.

Saturation S in the HSI space is shown in Figure 5.5. It results as well invariant to shadows and

shading. The intensity profile for the hue component in the HSI space is reported in Figure 5.6.

The values of hue in the background region of the image show a variability that is due to the

characteristic instability of H for low values of saturation (near R = G = B). The background is

in fact gray. Inside the object, whose color is well saturated, the profile has a constant behavior,

showing a high invariance with respect to the self shadow and to shading. Hue is a photometric
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(a) (b)

Figure 5.7: (a) Sample frame of the test sequence Hall Monitor and (b) selected region of interest

over 50 frames. The central point is shown.

invariant for matte and shiny surfaces. The object’s surface presents both a diffuse and a specular

component and, as expected, hue has a higher invariance than the previously considered features.

However, the higher invariance is obtained at the expenses of a decreased discrimination accuracy.

By looking at the hue profile it is difficult to discriminate the object from the background, especially

in its lit part.

As expected, the l1l2l3 color features show the same problems as hue for low values of saturation

in the background region of the image. The l1 profile is illustrated in Figure 5.6. The variability

of the l1 values is higher than that of the hue values for this part of the image. The invariance to

shading and to the self shadow is verified for l1 inside the object.

To compare the case of an indoor scene illuminated by a single nearby light source, as in image

orange, to that of an indoor scene illuminated by multiple light sources, let us consider now the test

sequence Hall Monitor from the MPEG-4 Content Video Set. A sample frame is shown in Figure 5.7

(a). It shows a more complex scene, typical of indoor surveillance scenarios. For the analysis, we

have fixed a point in a region of interest crossed by a cast shadow over time (Figure 5.7 (b)) and

analyzed the behavior of the color components over a certain number of frames. The region of

interest shows part of the diffuse, uniform, saturated floor’s surface. While for the still image color

components profiles showed how values changed in different spatial positions in the image, for image

sequences we consider the same spatial position in the image and analyze the temporal variation of

its values. The temporal variations of color features will be in fact analyzed for segmenting moving

shadows in image sequences.

The behavior of normalized rgb, c1c2c3, saturation, hue and l1l2l3 for the central point of the

selected region of interest are illustrated in Figures 5.8– 5.10. The intensity of the color component

is plotted on the y axes while the frame number is reported on the x axes. The RGB components are

shown for comparison in Figure 5.8. We can conclude that also in this case, the considered spectral

model of shadows holds as demonstrated by the obtained invariance for all features. Saturation and

l1l2l3 seem more sensitive to fluctuations in RGB values due to camera noise than other invariants.

The test sequence Highway from the MPEG-7 Content Video Set is considered in Figure 5.11.

In this case, the depicted scene is an outdoor traffic monitoring scene where the sky is overcast

providing a very diffuse illumination (Figure 5.11 (a)). Consequently, very weak shadows are cast

by vehicles on the road’s asphalt, gray surface (Figure 5.11 (b)). Shadows are very diffuse but yet
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Figure 5.8: RGB and normalized rgb components intensity profile for the central point of the

selected region of interest for the test sequence Hall Monitor.

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Frame number

C
ol

or
 c

om
po

ne
nt

 v
al

ue

c1
c2
c3

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Frame number

C
ol

or
 c

om
po

ne
nt

 v
al

ue

Saturation

Figure 5.9: c1c3c2 and S components intensity profile for the central point of the selected region

of interest for the test sequence Hall Monitor.
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Figure 5.10: H and l1l3l2 components intensity profile for the central point of the selected region

of interest for the test sequence HallMonitor.
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(a) (b)

Figure 5.11: (a) Sample frame of the test sequence Highway and (b) selected region of interest

over 28 frames. The central point is shown.

clearly visible and generating significant temporal changes in the image signal which can mislead

motion analysis algorithms and consequently moving object detection results.

The observed invariance of rgb, c1c2c3, and saturation in Figure 5.12 and Figure 5.13 shows how

the case of outdoor overcast scenes can be associated from the point of view of illumination condi-

tions to the case of indoor scenes for which the considered shadow model holds to a good extent. In

this case, as for image orange, the selected region’s color is gray and the corresponding saturation is

quite low. This explains the unstable behavior of l1l2l3 in Figure 5.14. The same problem, though

less prominent, is visible in the hue profile when compared to the previous sequence where saturation

values were much higher. Perez and Koch [122], who analyze hue for the purpose of color image

segmentation, consider as unreliable hue values for pixels having saturation values which are below

a minimum value of 20% of their total range. Here, saturation is then at the limit of their proposed

threshold.

A sample frame of the test sequence Surveillance from the MPEG-7 Content Video Set is finally

shown in Figure 5.15 (a). An outdoor sunny scene is presented where a shadow is cast by a person

on the background’s surface which is made of grass (Figure 5.15 (b)). The surface has an highly

saturated color. The color features profiles for the central point of the selected region of interest are

shown in Figures 5.16–5.18.

In this outdoor sunny scene, b among normalized rgb, c3 among c1c2c3 and saturation are more

sensitive to the passing shadow than in the previous examples. This is especially true for saturation,

which, as in all the discussed examples, also in this sequence is found to vary more than other

invariants. This result seems to agree with what observed by Gevers in [50], where the different

invariant color features have been evaluated and compared in color object recognition experiments.

Saturation is found, in fact, to provide significantly worse recognition results than the other invariant

features. The fact that color features are less invariant to shadows in this example is explained by

the fact that in outdoors sunny scenes, as commented in Section 3.3.1, illumination in shadows is

given by the skylight which is more saturated in the blue region of the spectrum, while illumination

in lit regions is also provided by sunlight.

Hue and l1l2l3 features are analyzed in Figure 5.18. Hue results invariant to the passing shadow

and shows therefore an higher robustness with respect to other features to the working hypothesis

of ambient light and direct light having the same color. An higher variability can be seen in the

intensity profiles of l1l2l3, which agrees with previously observed behaviors.
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Figure 5.12: RGB and normalized rgb components intensity profile for the central point of the

selected region of interest for the test sequence Highway.
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Figure 5.13: c1c2c3 and S components intensity profile for the central point of the selected region

of interest for the test sequence Highway.
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Figure 5.14: H and l1l2l3 components intensity profile for the central point of the selected region

of interest for the test sequence Highway.
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(a) (b)

Figure 5.15: (a) Sample frame of the test sequence Surveillance and (b) selected region of interest

over 35 frames. The central point is shown.

5.3.2 Edge maps analysis

To further investigate the problems of invariants in presence of camera noise, we have analyzed

the results of an edge detection process. Edge detection will be used for the segmentation of cast

shadows in still images and will be further discussed in Section 5.7. We illustrate and discuss here

the results for the test image orange. This image has been taken with a consumer quality mono-CCD

digital video recorder and is a good test bed for analyzing the behavior of color invariants in noisy

conditions. The edge maps have been obtained using the Sobel edge detector (see Section 5.7.1 for

the details) with thresholding parameter τ = 0.1 for all components.

Since hue, unlike the other color features, is defined on a ring rather than on an interval and

low values are closed to high ones, the standard difference operator used in the edge detector is

not suited for computing the difference between hue values. For computing edges on hue we have

therefore considered the following definition of difference, d(x, y), between two angular values x and

y:

d(x, y) =

√

(cosx− cos y)
2
+ (sinx− sin y)

2
, (5.1)

yielding values in the range [0,2]. The Sobel operator is a simple operator that allows us to compare

the results of the edge detection step on all the different color features. Unlike other standard

operators, such as the Canny edge detector, it can, in fact, be easily modified to work with circular

variables.

Computed edges for normalized color are shown in Figure 5.19. Normalized rgb is insensitive

to shadows, but sensitive to highlights, as demonstrated in theory and in practice in the previous

section. Better performance with respect to normalized color is achieved by c1c2c3 components

(Figure 5.20). Less spurious pixels due to noise inside the object are detected by the edge detection

process and object edges are better defined.

The problems of the l1l2l3 color features in regions with low saturation associated with the

background region in the image can be seen in Figure 5.21. The edge maps give unsatisfactory

performances in detecting object boundaries. Due to the instabilities of the l1l2l3 transformation

and its reduced discrimination accuracy, noise causes fluctuations in the values of color invariants in

the background which are larger than the pixel values differences due to object boundaries. However,

if we compare the edge map in Figure 5.21 with the previous ones, we can see that inside the object

l1l2l3 are much less sensitive to highlights than previously analyzed color features.

Figure 5.22 shows the computed edges in the HSI space. As it was verified for l1l2l3, the instability



94 Chapter 5. Segmentation of cast shadows

5 10 15 20 25 30 35
0

50

100

150

200

250

Frame number

C
ol

or
 c

om
po

ne
nt

 v
al

ue

Red
Green
Blue

5 10 15 20 25 30 35
0

50

100

150

200

250

Frame number

C
ol

or
 c

om
po

ne
nt

 v
al

ue

r
g
b

Figure 5.16: RGB and normalized rgb components intensity profile for the central point of the

selected region of interest for the test sequence Surveillance.
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Figure 5.17: c1c2c3 and S components intensity profile for the central point of the selected region

of interest for the test sequence Surveillance.
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Figure 5.18: H and l1l2l3 components intensity profile for the central point of the selected region

of interest for the test sequence Surveillance.
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Figure 5.19: Edge maps on rgb components for image orange. From left to right, edges in the r,

g, and b components are shown.

Figure 5.20: Edge maps on c1c2c3 components for image orange. From left to right, edges in the

c1, c2, and c3 components are shown.

Figure 5.21: Edge maps on l1l2l3 components for image orange. From left to right, edges in the

l1, l2, and l3 components are shown.

Figure 5.22: Edge maps on HSI components for image orange. From left to right, edges in the H,

S, and I components are shown.
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of H in regions of low saturation is evident from the edge maps. Its reduced discrimination accuracy

is also highlighted. Saturation S does not detect shadow boundaries, yet some spurious points in

the shadow region are visible. This confirms the results of the analysis presented in the previous

section.

5.3.3 Discussion

To summarize the results of the proposed analysis, the following considerations can be done. Nor-

malized rgb and c1c2c3 show comparable behavior. Saturation behaves slightly worse with respect

to the theoretical invariance. The same consideration can be done for l1l2l3 with respect to hue.

Hue shows, as expected, an higher invariance in presence of surfaces having a specular component.

However, such advantage with respect to other features is real only in image areas which are highly

saturated. In regions with neutral color and in presence of noisy conditions hue becomes unreli-

able. Together with its instability, another important problem of hue is its limited discrimination

accuracy.

For what concerns the considered model of shadows, we have observed that the adopted physical

description can represent a wide class of indoor scenes, illuminated either by a single light source or

by multiple light sources, and outdoor overcast scenes, illuminated by diffuse light from the sky, for

which the expected theoretical invariance holds in practice. For outdoor sunny scenes, illuminated

by both the sun and the sky, the analysis confirmed the fact that the gray world assumption is

less appropriate. The case of outdoor sunny images will then allow us to test the robustness of the

proposed shadow segmentation method when varying the working hypotheses.

Several state of the art methods in the literature make use of saturation and hue in the de-

tection of shadows. While hue is exploited for its invariance, the use of saturation is sometimes

contradictory. Schreer et al. [142] base for instance their analysis on the empirical observation that

saturation values are lowered by the presence of shadows. Risson [136], on the contrary, observes

that saturation increases in outdoor sunny scenes. The discussed theoretical analysis of photometric

invariants provides a more physically linked description of the different behavior of these two fea-

tures which belong to the same color representation model but show a different class of invariance

and consequently a different behavior. We speculate that their contradictory use is related to this

fact. The above-discussed experimental analysis supports this argument by showing how using hue

and saturation together can limit the effectiveness of the use of color invariance for shadow segmen-

tation. In cases where the surface color is well saturated, in fact, the higher degree of invariance

of hue could be limited by the lower invariance of saturation (this could be the case for instance

in the discussed test sequence Surveillance). On the other hand, in cases where saturation is not

affected by the presence of a shadow, the problems of hue due to noise in color deficient regions

could hamper the analysis process (as for instance in the discussed image orange). The proposed

investigation on color invariant features in real world images contributes therefore to a better use of

color information for shadow segmentation.

To cope with the problematic behavior of hue and saturation, Li et al. [90] propose to reject

them when detecting moving shadows in video sequences in those image regions where their values

have unpredictable behavior and to limit in such regions the analysis to image brightness. Perez and

Koch [122] propose a method to smooth hue values within regions of low saturation before detecting

hue edges in color images. This process does not overcome however the problems related to the

reduced discriminative power of hue, as shown in image orange. We take a different approach.

Instead of limiting the use of chromatic information to highly saturated areas of the image, we

propose rather to adopt features, such as normalized rgb and c1c2c3, which resulted reliable in a

wide range of scenes and also in color deficient regions. For these features, attention will be paid in
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Figure 5.23: Color information allows to formulate a first shadow hypothesis for each image pixel.

regions of low intensity, where they are unstable.

It is interesting to note that also within a different research problem, that of face analysis, where

color has become of standard use in face tracking to gain independence from lighting conditions,

Liévin [91] arrives at similar conclusions. He observes, in fact, that in noisy conditions, given for

example by the use of mono-CCD cameras, transformations such as hue provide poor results when

used in skin detection. Color channel ratios, as those defined in Eq. (4.9), are reported to provide

better performance. An interesting direction of investigation would be that of selecting different

features for the analysis of different points in the image, according to the their color content. Hue

could be used in regions of high saturation and rgb or c1c2c3 in regions of low saturation.

5.4 Color analysis

In this section, the details of the first stage of the proposed approach are presented. As commented

in Section 3.3, shadows are due to a relative absence of light and their spectral analysis involves

a comparison with respect to a situation where the light occlusion is not present. In an image

sequence, where shadows of interest are moving shadows, by considering two different time instants

it is in general possible to observe the same point in the two different illumination conditions, that is

when lit and when in shadow. Two images are provided to this end as input to the system. The first

image is the frame of the sequence under analysis, that is the image in which we aim at segmenting

cast shadows. The second image is a reference image which represents the term of comparison.

Let us denote the current frame of the image sequence with

It(x, y) = (Rt(x, y), Gt(x, y), Bt(x, y)) = (It1(x, y), I
t
2(x, y), I

t
3(x, y)), (5.2)

where R,G,B, denoted as Ii(x, y), with i = 1, 2, 3, for conciseness of notation, represent the three
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color channels and (x, y) indicates a generic pixel position in the 2D image plane∗. When the RGB

sensor responses are not readily available and the camera provides the Y ′CbCr or Y
′UV components,

then a color conversion according to Eq. (2.26) or Eq. (2.28) has to be performed. Attention has to

be paid in this case to any possible sub-sampling of chroma components.

The second input to the system is given by the reference image. In this thesis, we consider

sequences taken with a fixed camera and a static background. In this case, the reference image,

Ir(x, y) = (Ir1 (x, y), I
r
2 (x, y), I

r
3 (x, y)), (5.3)

can be either a frame in the sequence or, if such a frame is not directly available, a model resulting

from a learning process [20, 28]. In the former case, it can be either the previous frame in the

sequence, that is r = t − 1, or a background frame acquired before moving objects and moving

shadows enter the field of view at a time instant r = t0. If two consecutive frames are analyzed, as

in [151], then regions that have been covered or uncovered by shadows from one frame to the other

are detected. This means that shadows can only be completely detected if they entirely cover new

background along the image sequence. Image regions that are always shadowed cannot be detected.

Moreover, if shadows stop moving for a certain period of time they will be lost.

To avoid this, we adopt as reference image an image representing the static scene background

which does not contain dynamic objects nor shadows due to moving objects. Static shadows, that is

shadows due to static objects, such as buildings, parked cars, etc., can be present in the image. If the

image is not available directly from the sequence, as commented above, it can be reconstructed by

means of a learning process. A learning process allows also to cope with global illumination changes

due, for instance, to changing daylight and passing clouds in outdoor scenes or artificial phenomena

such as lights being switched on and off in indoor scenes. For a wide range of applications it is

reasonable to assume that such reference image is available. Nevertheless, the previous frame in

the sequence can be used if this is not the case. If the camera is moving, or more generally the

background is moving, a global motion estimation and compensation [29] should be applied to the

sequence in order to use the proposed methodology.

The first analysis stage (Figure 5.23) takes the current and the reference image as input and out-

puts a binary mask, stcand(x, y), containing regions of pixels which are considered potential moving

cast shadow regions. These candidate regions will be then validated or discarded by the subsequent

stages. The spectral properties of shadows are exploited by comparing the values of color features

for each pixel in the current image with those of the corresponding pixel at the same location in

the reference image. If the difference in color values is consistent with the presence of a shadow

according to the assumed spectral model of shadows, the pixels are retained as candidate shadow

pixels. The spectral analysis is divided into two processes. The first process exploits the property

that shadows darken the surface upon which they are cast (Eq. (3.8)) and provides an initial shadow

evidence. The second process considers color invariant features (Eq. (4.26)) for extracting additional

evidence. The analysis is preceded by a pre-processing stage which aims at identifying those image

regions where the spectral analysis may result unreliable, thus guiding the system in a reliable use of

color information. The details of the implementation of the two steps are presented in the following

subsections.

5.4.1 Pre-processing

The pre-processing aims at avoiding the effects of noise blow-up at unstable color invariant values. As

we have amply discussed, the use of photometric invariants has a drawback related to the singularities

∗Since the image is a multi-band function we represent it in bold font I.
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(a) (b)

Figure 5.24: Examples of selection maps. (a) Original image and (b) corresponding selection map.

The black labels identify pixels close to the black vertex of the RGB cube that are not considered

in the spectral analysis stage.

in their transformations at some color values and their numerical instability in presence of noise near

these singular values. The effect of noise blow-up is often ignored by shadow detection methods but

it should be taken into account to avoid unreliable results.

To avoid the effects of color invariants instabilities, Otha [117] and Healey [64], which use color

invariants for image segmentation, suppress unreliable values by means of thresholding. Otha, who

analyzed many different color features for the purpose of color image segmentation, suggests to

consider normalized rgb values only if the intensity is larger than 30 (on a range of 256 values), and

rejects hue values if the saturation times (R + G + B) is less than 9. The former recommendation

can be then extended to c1c2c3 features which belong to the same class of invariance as normalized

rgb. The latter recommendation could be used also for l1l2l3. Gevers [50, 51], for the purpose of

color based object recognition by means of histogram matching, discards in the construction of color

histograms pixels with saturation and intensity smaller than 5% of their total range. As in [117],

we exclude critical pixels from the analysis by means of thresholding. Since we make use of color

invariants for diffuse surfaces, as stated in Section 5.3.3, we adopt a threshold value of 50 for each

of the three RGB components, that is we exclude a cubic volume close to the black vertex of the

RGB cube. The threshold is based on extensive tests and is kept fixed for all our tests.

The thresholding operation is performed on both input images, It(x, y) and Ir(x, y), resulting in

two binary masks, mt(x, y) and mr(x, y), taking a value of 1 in regions that can be further processed

and a value of 0 in critical points. The two mask are then combined to form the resulting selection

map M t(x, y):

M t(x, y) =

{

1 if (mt(x, y) = 1) ∧ (mr(x, y) = 1)

0 otherwise.
(5.4)

The selection map is a binary map indicating which part of the image under analysis should be

further processed by the spectral analysis stage. The points excluded by means of the selection map
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Figure 5.25: (a) Sample frame from the test sequence Surveillance and highlighted region of interest

over 30 frames of the sequence (b). In the selected frames, the person’s trousers cover the region.

The mean over a 3x3 pixels square window centered in the central point of the region of interest

plotted over the selected 30 frames for RGB (c) color values and Y values (d).

will be then reconsidered in the spatio-temporal verification phase. Examples of selection maps for

an indoor and an outdoor image are shown in Figure 5.24. As can be seen from the images, cast

shadows points do not belong to critical areas. On the contrary to what happens in the case of aerial

images, we have observed in fact that moving cast shadows are generally not the darkest regions in

sequences of complex real world scenes. Indoor scenes are typically illuminated by multiple light

sources and shadows are therefore characterized by a strong ambient illumination contribution. In

outdoor scenes, shadows still receive a good deal of light from the sky.

5.4.2 Initial evidence

The current image, the reference image and the selection map are the input data for this stage. An

initial shadow evidence for pixels in the current image is obtained by analyzing RGB values.

Equation (3.8) states that each camera sensor has a lower response for a point in a shadow region

with respect to the same point in light. A pixel at position (x, y) in the image under analysis It(x, y)

whose values are smaller for all three color channels than those of the corresponding pixel in the

reference image It(x, y) can be considered a potential moving cast shadow pixel. This results in the

identification of an initial set of candidate shadow pixels

St
dark = {(x, y) : Ir1 (x, y) > It1(x, y) ∧ Ir2 (x, y) > It2(x, y) ∧ Ir3 (x, y) > It3(x, y)}. (5.5)
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As the camera output may provide only the Y ′CbCr or Y ′UV components, the decrease of the

sole luma component is typically checked in the literature [42, 127, 142] to extract potential shadow

points. Alternatively, the decrease in the component corresponding to intensity in HSI-type of color

spaces is analyzed [27, 136]. However, checking the property in Eq. (5.5) is not equivalent to checking

the decrease of image luma or intensity. We illustrate this fact with an example. Consider a pixel

whose RGB color components are (R,G,B) = (1, 0, 1). The corresponding pixel’s components in the

reference image are (R,G,B) = (0, 1, 0). The R and B components have increased their values with

respect to the reference image, while the G component has decreased its value. If we compute luma

by means of Eq. (2.27) for the pixel under analysis, the value we obtain is 0.299+0.114 = 0.413, while

for the pixel in the reference image it is 0.587. Even though the luma of the pixel under analysis

is lower than that of the corresponding pixel in the reference image, the property in Eq. (5.5) is

not satisfied. When checking the decrease of all the three channels, the increased computational

complexity is compensated for by an higher accuracy.

In Figure 5.25 an example in a real image of what above stated is shown. A region of interest has

been selected from the sequence Surveillance which is crossed by the trousers of the man running

on the grass (Figure 5.25 (b)). First, a self shadowed part of the trousers is considered and then

an illuminated part is shown. The behavior of RGB values for the central point of the region of

interest over 30 frames is shown in Figure 5.25 (c) and compared to that of Y ′ in Figure 5.25 (d).

While the R and G components decrease when the selected point passes from the background points

to the self shadowed object region, the B component increases. Equation (3.8) is not satisfied for

all the three components and the proposed analysis on RGB allows to correctly label this point.

Y ′ decreases in the self shadowed object points and an analysis of its values only would lead to a

incorrect classification of the object points as potential shadow points.

To extract candidate shadow points in S t
dark, the image difference, Dt(x, y), computed as

Dt(x, y) = Ir(x, y)− It(x, y), (5.6)

is analyzed for each point in the selection mapM t(x, y), component by component. For each channel

i = 1, 2, 3 thus the difference

Dt
i(x, y) = Iri (x, y)− Iti (x, y) (5.7)

is analyzed. The three sub-analyses can be efficiently carried out in parallel. The results are then

fused to obtain the final decision. In an ideal, noise-free case, the condition

Dt
i(x, y) = Iri (x, y)− Iti (x, y) > 0,∀i = 1, 2, 3, (5.8)

would suffice to state that the pixel at position (x, y) belongs to S t
dark. In real situations, the noise

introduced by the acquisition process alters the above test. This noise component, the camera noise,

results from the sensitivity of the sensor to temperature. The effect of camera noise is fluctuations

in pixel values. These fluctuations generate values of Dt
i(x, y) which are less than zero even when

shadows have decreased the irradiance reaching the camera’s sensors.

The effect of noise can be reduced by using a spatial support for the analysis which is larger

than a single pixel. On this larger support, the average value of Dt
i(x, y) is computed. The support

is chosen as a window W dark
(x,y) , of q = (2N + 1)(2M + 1) pixels, centered at the pixel position (x, y).

In W dark
(x,y) , we compute the average channel difference DW

i (x, y) as

DW
i (x, y) =

1

q

N
∑

i=−N

M
∑

j=−M

Dt
i(x+ i, y + j). (5.9)
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The set of pixels St
dark is then obtained as

St
dark = {(x, y) : DW

i (x, y) > bi,∀i = 1, 2, 3}. (5.10)

The vector b = (b1, b2, b3) takes care of the distortions introduced by the noise. The threshold b

can be set empirically or computed adaptively. In the former case, it will be fixed for all pixels in

the image and for all the images in the sequence. In the latter case, the threshold is adapted to the

image content according to some rules. The issue of adaptive threshold selection will be discussed

in Section 5.5.2.

The final output of the analysis on the RGB components is a binary mask, stdark(x, y), that can

be expressed as

stdark(x, y) =

{

1 if (x, y) ∈ St
dark

0 otherwise.
(5.11)

5.4.3 Additional evidence

The result of the first step of color analysis is the identification of a set of potential shadow pixels.

Among potential shadow pixels also moving object pixels that are darker than the corresponding

background pixels in the reference image are extracted. Moreover, erroneously detected pixels due

to noise can be present in stdark(x, y). A further analysis is required to discard dark object pixels.

Photometric invariant color features are then exploited to extract additional shadow evidence for

image pixels.

For the analysis of invariant color features, first of all, a color transformation is used to extract

from the reference image, Ir(x, y), and the current image, It(x, y), color invariant features. Let

us denote the resulting images as Invt(x, y) = (Invt1(x, y), Inv
t
2(x, y), Inv

t
3(x, y)) and Invr(x, y) =

(Invr1(x, y), Inv
r
2(x, y), Inv

r
3(x, y)).

According to Eq. (4.26), the presence of a shadow does not alter the value of the invariant

color features. Invariants on the contrary change their values with changes in material properties.

Photometric invariant features values for an image pixel at position (x, y) in the background image

thus change their value when an object covers the background at that position in the current image.

Let us then define the set of pixels St
inv as

St
inv = {(x, y) : Invr1(x, y) = Invt1(x, y)∧Invr2(x, y) = Invt2(x, y)∧Invr3(x, y) = Invt3(x, y)}. (5.12)

The set St
inv contains pixels for which additional shadow evidence is obtained.

The identification of pixels in St
inv is achieved by analyzing the absolute difference, dti(x, y), for

each invariant feature computed as

dti(x, y) = |Invri (x, y)− Invti(x, y)|. (5.13)

Alternatively, the squared difference

dti(x, y) = (Invri (x, y)− Invti(x, y))
2 (5.14)

can be used. As for the analysis on the RGB channels, we consider a window, W inv
(x,y), centered in

(x, y), and we analyze the average of differences, dWi (x, y), given as in Eq. (5.9). Now, the set of

pixels St
inv is obtained as

St
inv = {(x, y) : dWi (x, y) < fi,∀i}, (5.15)

where fi takes care of the distortions introduced by noise.
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(a) (b)

Figure 5.26: Sample result of color analysis. (a) Original image; (b) color analysis result.

On the contrary to the case of the RGB features, camera noise cannot be assumed as the only

source of noise that affects the analysis of photometric invariant transformations. Camera noise is

propagated through the nonlinear color conversion operations which lead to the computation of color

invariants. Kender [80], in his discussion of the behavior of nonlinear color transformations, pointed

out that the distribution of transformed values can show spurious modes and gaps. A deviation with

respect to the theoretical invariance in real world scenes has also to be accounted for. An adaptive

local thresholding is, in this case, an open problem. The setting of the threshold fi is therefore

driven by experiments on different sequences.

The final output of the analysis on the invariant features is a binary mask, stinv(x, y), that can

be expressed as

stinv(x, y) =

{

1 if (x, y) ∈ St
inv

0 otherwise.
(5.16)

The shadow evidences derived by analyzing RGB color values and photometric invariant features

values are finally fused. Pixels verifying the first evidence but not the second are labeled as dark

object pixels. Pixels verifying both evidences are selected as candidate shadow pixels. Finally, pixels

verifying the second evidence but not the first are labeled as object pixels having similar color as

that of the background. From this operation a binary mask, stcand(x, y), is extracted that can be

expressed as

stcand(x, y) =

{

1 if (stdark(x, y) = 1) ∧ (stinv(x, y) = 1)

0 otherwise,
(5.17)

which contains candidate shadow regions. The candidate shadow regions are refined by eliminating

small spurious blobs and by filling small holes. An example of a typical result of color analysis is

shown in Figure 5.26.

5.5 Spatial analysis

Color information alone is not discriminative enough to allow for reliable shadow segmentation. In

Figure 5.26, for instance, part of the trousers of the man are detected as candidate shadows. This is

due to the fact that the color of the trousers and the color of the corresponding background region

are similar. In addition, the detected parts of the trousers are slightly darker than the background.

These image regions have therefore the same characteristics as a shadow cast on the background and

are consequently detected by the color analysis stage. To improve the accuracy of the segmentation,

we therefore propose to use information about the spatial nature of shadows. Moving cast shadows
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Figure 5.27: Spatial information allows to refine the initial shadow hypothesis thanks to the

analysis of the relationship between shadows and shadow casting objects.

are due to the occlusion of a source of illumination by an object that is moving relative to the source.

The relationship between a shadow and its shadow-casting object can be exploited for refining the

results of the color analysis.

In order to analyze the spatial relationship between a cast shadow and its shadow casting object,

moving objects have first of all to be identified. Many approaches have been developed for automat-

ically detecting moving objects from image sequences. Ideally, they are expected to extract accurate

object contours. Typically, as amply discussed, they extract together with object pixels also moving

shadow pixels. The spatial analysis of candidate shadow regions, which include object pixels, with

respect to candidate object regions, which include shadow pixels, allows then to effectively classify

moving pixels in an image sequence in the two categories.

Since we consider a fixed camera and a static background, we propose to adopt to extract

moving pixels a statistical model-based change detection algorithm [20] which is robust to noise and

does not require fine tuning of any threshold along the sequence. This will allow us to evaluate

the performance of the proposed shadow segmentation methodology independently from parameter

dependencies in the object extraction algorithm.

Figure 5.27 illustrates how the change detection and the spatial analysis stage are embedded in

the proposed system.

5.5.1 Moving object extraction

The goal of moving object extraction is to accurately separate moving objects from the scene’s

background. When the camera is fixed and the background is static, moving object extraction can

be accomplished by means of change detection. Moving objects generate in fact changes in the

observed image values between two different time instants. For an accurate object extraction, the
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capability of detecting changes of even small entity due to objects in presence of camera noise is

expected. This can be obtained by employing a statistical approach which automatically adapts to

the noise level in the sequence.

The statistical-model based change detection that we consider takes as input images the same

images that are the input for the shadow analysis, that is the reference image Ir(x, y) and the current

image It(x, y). It is easily embedded in the proposed shadow segmentation algorithm. Since both

objects and shadows generate temporal changes, the areas identified by means of change detection

contain both moving objects pixels and shadow pixels among the ones detected as candidate shadow

points. The subsequent shadow boundaries analysis will allow to distinguish shadows from moving

objects and will provide as result two binary masks, one containing refined cast shadows, st(x, y),

and one containing moving objects, ot(x, y) (Figure 5.27).

In order to gain robustness with respect to noise, the change detection algorithm works according

to the following principle. First of all, assumptions are made about the statistics of the noise affecting

the image. Then, to evaluate the possible change at each pixel position, a distance function is

calculated between the pixel in the current image and the corresponding pixel in the reference

image. To improve the robustness to noise, the distance takes into account the value of other pixels

in a neighborhood. The statistical properties of the distance function are then studied in order to

decide, according to a statistical test, whether the pixel belongs to a changed area or to an area in

the image only affected by noise. The significance level α of the test is a stable parameter and the

decision threshold is automatically adapted to the noise in the image.

The analysis is performed on the RGB color components and the distance function is computed

by first of all differencing the current and the reference image on each color channel separately.

For simplicity of notation, we consider only one channel in the following. The results of the three

analyses will be then fused to obtain the final change detection result. For each color component

the distance function is then computed as

Gt
i(x, y) =

1

q

N
∑

i=−N

M
∑

j=−M

(Iti (x+ i, y + j)− Iri (x+ i, y + j))2, (5.18)

with i = 1, 2, 3. The neighborhood is chosen as a window centered in the pixel position and containing

q = (2N + 1)(2M + 1) pixels.

The adopted statistical model for the noise is based on the hypothesis that camera noise can

be modeled as an additive random variable, nt
i(x, y)

∗, which respects a Gaussian distribution with

parameters µc and σc. It is also assumed that the noise in each color channel is spatially and

temporally uncorrelated. These hypotheses are sufficiently realistic and extensively used in the

literature [1, 49]. Based on these hypotheses, the observed value I ti (x, y) of each color channel i at

time instant t can be expressed as

Iti (x, y) = Îti (x, y) + nt
i(x, y), (5.19)

where Îti (x, y) is the true image value, that is, the value not affected by noise.

Let us suppose that there is no change in the difference image, that is Îti (x, y) = Îri (x, y). We

refer to this hypothesis as the null hypothesis, H0. When H0 is valid, the quantity

Iti (x, y)− Iri (x, y) = nt
i(x, y)− nr

i (x, y) = Nt
i(x, y) (5.20)

is a random variable with a Gaussian probability density function (pdf), since it is the difference of

two Gaussian random variables [118]. The pdf of Nt
i(x, y) has mean µ = µc − µc = 0 and variance

∗We use the bold font to represent random variables.
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σ2 = 2σ2c . Given H0, all the pixels in the considered neighborhood have changed because of noise

and not because of other causes. It follows that the sum, Gt
i(x, y), of the squared image difference

values over the neighborhood in Eq. (5.18) becomes a random variable, Gt
i(x, y), described by a χ2

distribution [171] with q degrees of freedom.

Once the distribution of the distance functionGt
i(x, y) has been derived, a significance test can be

used to adaptively threshold the measured values of Gt
i(x, y) for each pixel position and to classify

them into changed and unchanged pixels. To this end, the probability of making an error when

rejecting the null hypothesis if the measured distance at the pixel position is larger than a certain

threshold value is computed and compared with a significance level α. The derived significance test

is expressed as

P{Gt
i(x, y) ≥ τ |H0} =

Γ( q2 ,
τ2

2σ2 )

Γ( q2 )
≤ α. (5.21)

Once α has been fixed, the threshold τ is automatically computed from Eq. (5.21). If the measured

distance Gt
i(x, y) exceeds the computed threshold, then H0 is rejected and the pixel is labeled as

changed.

The parameters of Eq. (5.21) are the number of elements q in the neighborhood, the standard

deviation σ, and the significance level α. The choice of the neighborhood size q should satisfy the

compromise between reliability of the statistical analysis in the neighborhood and the validity of

the null hypothesis on all pixels in the neighborhood. By increasing q the statistics is more reliable

and the sensitivity to noise is reduced. On the other hand, in this case, the hypothesis that all the

q pixels have changed because of noise has a lower degree of confidence. This may lead to wrong

detection at the border of the moving areas. A good compromise for obtaining accurate object

contours is to set the value of q to 9 (N=M=1) or 25 (N=M=2).

Since it is related to the standard deviation σc of the camera noise, the standard deviation σ can

be estimated on-line from the difference image. At the beginning of the sequence a change detection

is performed on the whole image using as σ a fixed value depending on the characteristics of the

acquisition system. We have adopted a value of 2. Then, the value is estimated in those areas where

the hypothesis that the change is due to noise is accepted. In this way the threshold is adapted to

the noise in the images.

The last parameter is the significance level, α. It represents the probability of false rejection.

This makes α a stable parameter. Experimental results indicate that valid values range from 10−2

to 10−6. The result of change detection is a binary mask, ct(x, y). An example of change detection

mask is shown in Figure 5.28.

(a) (b)

Figure 5.28: Example of change detection results. (a) Original image and (b) change detection

mask. White pixels indicate changed areas.
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5.5.2 Probability-based thresholding for color analysis

In Section 5.4.2, we have introduced the issue of threshold selection for binarizing the difference

DW
i (x, y) in Eq. (5.10) and obtaining a binary mask of pixels got darker from the reference image

to the current image. We have commented the fact that the value of the threshold b depends on

camera noise and should be tuned for each sequence. Following the statistical approach employed by

the change detection algorithm, we propose now to adopt an adaptive thresholding for the first level

of spectral analysis which allows to reuse the estimation of the camera noise computed for change

detection.

The reasoning is the same as the one employed for the change detection analysis. The difference

lies in the fact that for color analysis we aim at determining the probability that the image difference

in each color channel at a given position is larger than zero due to noise and not to other causes.

We keep the assumptions made by the change detection and model the camera noise nt
i(x, y) with

a Gaussian distribution that it is spatially and temporally uncorrelated. The parameters describing

the distribution are the mean µc and the standard deviation σc. The image difference, given the

null hypothesis H0 that only noise affects it, is again a random variable with a Gaussian probability

density function which has mean µ = 0 and variance σ2 = 2σ2c . The average difference in a window

DW
i (x, y) is still a Gaussian random variable with mean µD = 0 and variance σ2D = σ2.

Now that we have modeled the pdf ofDW
i (x, y), once the significance level α is fixed, the threshold

τα can be determined from

α = P{DW
i (x, y) ≥ τα|H0} = Q(

τα
σD

) (5.22)

where

Q(x) =

∫ inf

x

1

(2π)1/2
e−z2/2dz. (5.23)

If α is fixed to 0.05, which corresponds to an error rate of 2.5% since we are only interested in pixels

who have decreased their value, τα is equal to 1.96× σD. If α is fixed to 0.01, which corresponds to

an error rate of 0.5%, τα is equal to 2.58× σD.

Similar considerations as those done for the parameters of the change detection can be done

here. The probability in Eq. (5.22) is a function of σ2D = σ2 = 2σ2c , that is a function of the variance

of the camera noise. The estimate for σ2c is readily available from the analysis of the statistical

change detector. For what concerns the window size, a good compromise between robustness to

noise and accuracy of detection for obtaining accurate shadow segmentation is to choose the value

q = 9 (N=M=1) or q = 25 (N=M=2). Finally, a value of α in the range 0.05 to 0.01 is a valid value.

5.5.3 Shadow boundaries analysis

Once moving areas have been extracted by means of change detection, the relative position of

candidate shadow regions, objects, and static background is analyzed. Moving areas may contain

regions of the critical areas that were excluded by the pre-processing stage and which belong to the

moving foreground. Those regions are therefore now reconsidered.

The analysis of shadow boundaries is composed by two operations. It takes as input the candidate

shadows, stcand(x, y), provided by the color analysis and the change detection mask, ct(x, y). The first

step checks the existence of the shadow line. This operation provides a first refinement of stcand(x, y),

giving the shadow mask st(x, y) and the object mask ot(x, y) (Figure 5.27). The object mask is

refined by eliminating small spurious blobs. The second step analyzes in st(x, y) the adjacency of

candidate shadow regions boundaries with respect to the object and the background and provides
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( a ) ( b )

D
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A

Figure 5.29: Candidate shadow regions can have different positions with respect to moving objects.

(a) (b) (c)

Figure 5.30: Sample result of color analysis and spatial analysis. (a) Original image; (b) color

analysis only; (c) shadow line analysis result.

the mask lt(x, y) which will be processed in the temporal analysis stage. The details of the analysis

are provided in the following.

Different possible cases arise with regard to the position of candidate shadow regions with respect

to shadow-casting objects. They are illustrated in Figure 5.29. Cast shadows can be attached to the

shadow-casting object or disconnected from it, as for shadow (D) in Figure 5.29 (a). Shadows that are

attached to an object are analyzed according to the characterization of shadow boundaries discussed

in Section 3.3.2. In particular, the existence of a line separating the shadow from the background,

what was denoted as shadow line in Figure 3.8, is a necessary condition for a cast shadow. In case

a candidate shadow extracted by means of the color analysis stage is fully included in an object,

the shadow line is not present, and the shadow hypothesis for that region is rejected. The region

is labeled as object region. This case is illustrated by shadow (A) in scene (a) of Figure 5.29.

An example of the improvement obtained on the color analysis results by means of the discussed

operation is illustrated in Figure 5.30. In (c) the result of the shadow line analysis is shown. The

candidate shadow erroneously detected inside the object as detected by change detection has been

discarded.

For the other regions that are attached to the object, the position of boundary pixels with respect

to object and background pixels is analyzed. The number of boundary shadow pixels, Bb, that are

adjacent to the background and the number of boundary shadow pixels, Bo, that are adjacent to

the object are computed. If the majority of boundary pixels are adjacent to the object, that is if

Bo > Bb, then a low confidence value is associated with the region under analysis. The region will

be reconsidered in the temporal analysis stage.

We have found that when the above discussed condition is verified, as illustrated in Figure 5.29
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(a) (b)

Figure 5.31: Sample results of the analysis on shadow boundaries. (a) Color analysis result; (b)

shadow border analysis result. In black are displayed pixels having a low confidence level, in white

pixels having a high confidence level.

(a) by means of shadow (B), the region is highly likely to belong to the object. A rejection decision

for the candidate shadow under analysis cannot be however taken at this point since there are

cases when shadows may share the majority of their boundary with an object boundary. This case

is illustrated in Figure 5.29 (b) by means of shadow (C). Here, the shadow that is projected on

the wall between the legs of the person has only a small part of its border in contact with the

background. In order to deal with these cases, regions with a low confidence value are therefore

reconsidered in the temporal analysis stage. The temporal reliability score will allow to take the

final decision about the candidate shadow region. The combined spatio-temporal analysis allows to

improve the robustness of the method.

The final result of the spatial analysis is a mask, lt(x, y), having two values: a high confidence

about the considered region which is accepted as a shadow region, and a low confidence for shadows

that will be accepted or rejected after temporal analysis. The mask is therefore expressed as

lt(x, y) =











1 if high confidence, i.e. Bo ≤ Bb for the region to which (x, y) belongs,

0.5 if low confidence, i.e. Bo > Bb for the region to which (x, y) belongs,

0 otherwise.

(5.24)

The object mask ot(x, y) is also provided as output.

In Figure 5.31, sample final results of spatial analysis are illustrated. In black are displayed

pixels having a low confidence, in white pixels having a high confidence. These pixels are accepted

as shadow pixels and do not need further verification.

5.6 Temporal analysis

The final stage of the proposed algorithm aims at providing a coherent description of the segmented

shadows over time. The goal is to track shadows from frame to frame, that is to establish a
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correspondence between instances of moving shadows over time. Tracking allows us to compute

the life-span of each shadow. From each shadow’s life-span and the relative position of objects

and shadows as provided by the spatial analysis, a reliability estimation is derived. Shadows are

considered reliable if they have an high confidence or if they have low confidence and significant

temporal coherence. This reliability estimation is used to validate or to discard shadows detected

in the previous stages.

Given the nature of shadows, shadow tracking is a difficult task. Shadows do not possess invariant

shape, color, nor texture properties. These features cannot be therefore exploited for establishing a

correspondence between instances of shadows over frames. The techniques proposed in the literature

for tracking objects cannot therefore be directly extended to the problem of tracking shadows. A

shadow tracking algorithm has to be defined based on the limited amount of information available

to describe a shadow and its evolution in time.

Very little work can be found in the literature which tackles the problem of shadow tracking.

Stauder [150] presents a method for detection and tracking of moving cast shadows in monocular

video sequences. Temporal differences between successive frames are detected and classified into

regions covered and regions uncovered by moving shadows. Entire moving shadows are tracked by

temporal integration of the covered background regions while subtracting the uncovered background

regions. Portions of a cast shadow that are shadowed since the beginning of the sequence are not

detected by the proposed method. Scenes with only one moving object are presented and tracking

is reduced to the adaptation of the 2D shape of shadows from frame to frame.

The solution we propose for tracking multiple moving cast shadows is described in Section 5.6.1.

The temporal reliability estimation and the final decision on segmented shadows are then discussed

in Section 5.6.2.

5.6.1 Moving cast shadows tracking

Tracking a target of interest in an image sequence means solving the correspondence problem between

targets in successive frames of the sequence. In order to find the correct correspondence, it is

necessary to compare the properties of the target in the current frame with those of the target in

the previous frame. The comparison is not always trivial: the temporal transformation in the scene

modifies, from frame to frame, the properties of the targets. Moreover, targets might cover or be

covered by other targets in the scene.

In order to take into account these problems, properties that remain constant from frame to

frame have to be used. For many applications in computer vision, targets of interest are video

objects. Examples of such properties in the case of video object tracking are shape, color, texture,

and motion. In the case of shadow tracking, shape, color, and texture properties of shadow regions

change with changes in the surface upon which the shadow is cast. They cannot therefore be used

for shadow tracking. For what concerns motion, the estimation and description of motion in image

sequences is based on the analysis of the variations of image intensity over time [107]. In shadow

regions, no reliable motion estimation can thus be performed.

Given the limited amount of information we have at our disposal for tracking shadows, we make

an assumption on which we will base the proposed tracking approach. We assume that instances

of the same shadow in consecutive frames overlap. This is a reasonable hypothesis for many video

sequences. At each time instant, each extracted moving cast shadow is put in correspondence with

previously extracted shadows. A correspondence between two shadows is established when the two

corresponding regions overlap.

Based on this rule, several cases may raise as shown in the example of Figure 5.32. Let the frame

at time k be composed of three extracted moving cast shadows, S1, S2, and S3. Once moving cast
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Figure 5.32: Tracking rules.

shadows are extracted at time k + 1, their overlap with each shadow region at time k is computed.

The possible configurations and the relative decisions are described below.

• If only one intersection between the regions at k and the one under analysis at k + 1 is found

(as it is for the shadow S2 in the example), then the corresponding track at k is continued.

• If more than one intersection is found, that is more than one track at time k has an overlap

with the region at time k + 1 under analysis (as for shadows S1 and S3) then a conflict is

encountered. The conflict is solved by updating the track that has the largest intersection

with the considered region (track S1 in the example).

• If no overlap is found, a new track is initiated in k + 1 (as for shadow S4).

• If a splitting is encountered, that is when a shadow at time k is split in two disconnected

regions at time k + 1, the two regions are considered as originated by the same track if both

the regions have an overlap with the shadow region at time k.

• If a merging between two shadow regions is encountered, the track corresponding to the largest

intersection with the merged region is continued∗.

Figure 5.33 shows a sample result of tracking for the test sequence Hall Monitor.

Given the mechanism described above, a track duration parameter is computed which defines

the life-span of each shadow. The track duration is defined, at each frame, as the difference between

the current frame number and the frame at which the track was initiated.

Shadows may be occluded by an obstacle for a certain duration. Furthermore, the algorithm for

moving cast shadow extraction may fail to deliver stable results. In this second case, a previously

extracted shadow is not detected in the current frame. This case is illustrated in the example

reported in Figure 5.34. Here, the same shadow S1 is present at time k − 1 and at time k + 1, but

not at time k. In this case, the above described mechanism would terminate a track at time k and

initiate a new track at time k + 1.

To avoid this kind of error and deal with the occlusion problem, a track absence parameter is

defined. The track absence parameter is defined as the number of consecutive frames where the track

∗Splitting and merging of video objects due to occlusions, collisions, and other interactions between objects, and

due to errors in the object extraction stage, are the main obstacles to effective tracking of video objects. In the case

of shadows, the correspondence between splitting and merging of segmented shadow regions in the image sequence

and related events in the physical world is not well defined. It raises, in fact, a philosophical question: can two

shadows occlude each other? Are the different shadows cast by an object a single entity or not? These issues make

the definition of a shadow tracking methodology difficult.
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Figure 5.33: Sample result of tracking for frames 59, 60, and 61 of the test sequence Hall Monitor.

Different tracks are displayed with different colors.

Time k+1

1

Tracking result

22

1

2

1

Time kTime k−1

Figure 5.34: Tracking continuation example.

is not associated with any of the extracted shadow regions. Since the reason for the disappearance

of the shadow is unknown, the decision to terminate the corresponding track is delayed. If the track

absence exceeds a certain period of time, absence threshold AT , then the track is deleted.

During the absence of corresponding shadows, the missing shadow region is assumed to maintain

its area and position. An alternative approach would be to predict the position of the missing shadow

region by projecting its area based on its trajectory computed from previous time instants. Solving

the correspondence problem between shadows defines in fact shadow trajectories. Trajectories could

be used to predict future positions of shadows in the sequence. In case the description of the shadow’s

trajectory is not accurate, however, this solution would introduce errors in the tracking process and

turn out to be of more nuisance than benefit.

Figure 5.35: Sample result of track continuation for frames 20, 21, and 22 in the test sequence

Hall Monitor. Different tracks are displayed with different colors.

The overlap analysis is applied in the considered case as previously described. If a temporary
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Figure 5.36: Shadow tracking establishes a correspondence between instances of shadows at differ-

ent time instants. The reliability estimation of candidate shadows tracked over time allows to refine

the shadow and object segmentation results over the entire sequence.

occlusion (limited in time) causes the disappearance of the shadow and the track absence is less

than the absence threshold, then the reappeared shadow is associated with the correct track. An

example of track continuation for the test sequence Hall Monitor is illustrated in Figure 5.35. If the

occluded shadow region changes its dynamic behavior during the occlusion and no intersection is

found when the shadow reappears, a new track is created when the shadow reappears. This error

will have an influence in the computation of the track duration of the shadow under analysis.

5.6.2 Temporal reliability estimation

During the tracking stage, the identity j and duration dtj of each target shadow is stored for each

frame (Figure 5.36). Once the complete sequence has been analyzed, the overall duration dj in the

sequence is computed for each shadow. These parameters are processed off-line to improve the final

segmentation results for the entire sequence.

We observed that short-lived shadows are very likely to be due to failure of the shadow seg-

mentation algorithm. Therefore, a temporal filtering of shadow segmentation results is performed

to eliminate all shadows whose duration is smaller than a certain threshold, DT . The temporal

filtering takes into account the results of the spatial analysis. It is in fact applied selectively on

those shadow regions that had been labeled in the spatial analysis stage as having a low confidence

shadow score. An example of the improvement obtained on the shadow segmentation results by

means of temporal analysis is illustrated in Figure 5.37. The candidate shadow on the person’s leg

had a short life-span and has been eliminated by temporal filtering.

Two parameters have to be set in the temporal analysis stage. The first parameter is the

absence threshold, AT . We adopted a value of AT of 2 frames for all our tests. It represents a
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(a) (b) (c)

Figure 5.37: Sample result of color analysis and spatio-temporal verification. (a) Color analysis

only; (b) spatial analysis; (c) spatio-temporal verification.

good compromise for dealing with occlusions and segmentation errors without incorrectly continuing

tracks that have disappeared. The second parameter is the temporal filtering threshold, DT . The

value of DT depends on the behavior of moving objects casting shadows in the image sequence. If

objects are stationary for a long number of frames, the value of DT increases. If objects change

their position rapidly or stay in the sequence for a short period of time, the value of DT decreases.

DT has been empirically determined according to the content of the sequence.

An extensive discussion and comparison of moving cast shadow segmentation results is presented

in the next chapter. In the next section, the application of the proposed methodology to still color

images is described.

5.7 Cast shadow segmentation in still images

In this section and in the following one, we describe the solutions that we have developed for

analyzing shadows in still color images by employing the same methodology that has been described

for image sequences. The segmentation problem in this case becomes inherently more difficult.

As stated in Section 5.2, while for dynamic shadows in image sequences the observation of the

same point in the two different illumination conditions, that is when lit and when in shadow, is

generally possible because of the temporal dimension, this is not the case in a still color image.

However, the analysis on shadows spectral properties presented in Section 3.3.1 is still valid when

the comparison between color values is done between two different points on the same surface which

are close enough, so that it is reasonable to assume that the imaging geometry and the ambient

illumination do not change significantly from one point to the other. This is the case for points

on either side of a shadow boundary. To exploit shadows spectral properties we have then applied

the proposed methodology for cast shadow segmentation to the case of still images through the

extraction and analysis of contours in the image. In this case, thus, the comparison for the spectral

analysis of shadows is done between image pixels (x, y) and reference pixels (xr, yr) defined as the

neighbors of the pixels under analysis. This can be expressed as (xr, yr) = (x+ δ, y+ γ), with δ and

γ ∈ {0, 1,−1}, where δ and γ are not simultaneously equal to zero, i.e. (xr, yr) 6= (x, y).

The analysis is organized in this case in two stages, a color analysis stage and a spatial analysis

stage, which use the same principles as those used for image sequences. The two stages are described

in detail in the following subsections.
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5.7.1 Color analysis

As for image sequences, the analysis on color components is divided into two processes: an analysis

of RGB components and an analysis of color invariants. In this case, some assumptions on the scene

and the lighting are considered, namely shadows are assumed to be cast on a uniform background

surface and the direct light source whose light is occluded is assumed to be strong enough or close

enough to the scene so that shadow boundaries are well visible.

Initial evidence

Similarly to what was done for image sequences, the first level of the proposed strategy makes use

of the property that shadows darken the surface upon which they are cast. This results in the

identification of the set of pixels

Sdark = {(x, y) : I1(xr, yr) > I1(x, y), I2(xr, yr) > I2(x, y), I3(xr, yr) > I3(x, y)}. (5.25)

To extract the candidate shadow points in Sdark, edges are first extracted from the image I(x, y) =

(R(x, y), G(x, y), B(x, y)) = (I1(x, y), I2(x, y), I3(x, y)), then the property described in Eq. (5.25) is

tested on the edge points.

Edges in color images can be detected in several ways [85, 129, 135, 178]. Various approaches

have been proposed, including techniques extended from monochrome edge detection as well as

vector space approaches, techniques based on vector order statistic operators and difference vector

operators [178]. Variations to the different approaches have been introduced to improve performance

in presence of noise with added algorithmic complexity.

The most simple approaches to color edge detection represent extensions from monochrome edge

detection. These techniques are applied to the color channels independently and the results are

fused using certain logical operators. A color edge can be considered present if an edge exists in

any of the color components. Alternatively, a color edge can be considered present if the sum or the

maximum of the gradients of the three color components, or the magnitude of the vector sum of the

gradients of the three color components exceeds a certain threshold. Operating separately on each

color channel has the advantage of reducing the complexity and of speeding up the computations

by parallel processing. On the other hand, it does not take into account the correlation among

color channels and, as a result, it tends to miss edges that have the same strength but in opposite

direction in two of their color components. This feature does not represent a problem when edge

detection is used to extract shadow edges. According to Eq. (3.8), in fact, RGB values have the

same direction of change at a shadow boundary. We adopt therefore this strategy for color edge

detection.

One of the representative classes of edge detectors is the Sobel operator. Having verified that

it provided satisfactory results in our experiments, it has been chosen for its simplicity. The Sobel

operator, a differential method based on first order derivatives, is realized by convolving the image

with the following two kernel masks

Hh =







−1 0 1

−2 0 1

−1 0 1






, Hv =







1 2 1

0 0 0

−1 −2 1






. (5.26)

It produces a differential image in the horizontal and vertical direction with accentuated spatial

amplitude changes. The result of the convolution of each color component image with the horizontal

and vertical impulse response arrays of Eq. (5.26) are the horizontal and vertical gradients, Gh
i (x, y)
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and Gv
i (x, y) respectively, with i = 1, 2, 3. The gradient magnitude

Gi(x, y) =
√

Gh
i (x, y)

2 +Gv
i (x, y)

2 (5.27)

allows to define the set of edge pixels, Ei, as

Ei = {(x, y) : Gi(x, y) > τ ∧Gi(x, y) local maximum} (5.28)

The threshold τ aims at eliminating noise-induced false edges. The value of τ depends on the noise

level in the image and determines the sensitivity of the edge detector. The choice of the threshold in

the edge detection process depends on the image characteristics and is discussed in Section 6.3. The

final edge map results from a logical OR-connection operation on the three edge maps corresponding

to the three color channels. The logical OR edge map tends to produce thick edges which is good

for our purposes, since we aim at having as much as possible closed contours. In our technique we

(a) (b)

Figure 5.38: (a) Test image orange; (b) candidate shadow points belonging to the color edge map

of the RGB image and verifying the property in Eq. (5.25).

consider that shadow contours appear in the edge maps since we assume that the direct light is strong

enough to generate shadow boundaries which are not very diffuse. More sophisticated approaches to

edge detection, such as Zhang’s approach [176], may be more appropriate if the considered condition

is not verified.

Once edges have been extracted, the property described in Eq. (5.25) is tested by analyzing the

gradient image on the edges. An edge point (x, y) becomes a candidate shadow contour point, that

is (x, y) ∈ Sdark, if the gradient has the same orientation in all the three components. This is verified

by analyzing the coherence of the signs of the horizontal and vertical gradients for the three color

channels. A sample result of this analysis is illustrated in Figure 5.38 (b).

Additional evidence

The result of the first level of analysis is the identification of a set of candidate shadow contour

pixels. This analysis leads to the detection of shadow pixels but also of object pixels. According

to Eq. (4.26), contours in the color invariant images will correspond to material changes and not to

shadow boundaries. This fact is exploited in the second phase of color analysis.

Color edge detection is now performed in the invariant space. A morphological dilation operation

is applied on the invariant feature edge map to improve the delineation of contours. Then, isolated

spurious edge pixels are removed so as to obtain the final edge map, einv(x, y) (Figure 5.39 (b)). If

we define Sinv as

Sinv = {(x, y) : einv(x, y)) = 0}, (5.29)
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then the shadow hypothesis is strengthened for the set of pixels

S = Sdark ∩ Sinv (5.30)

where object edges belonging to Sdark have been discarded (Figure 5.39 (c)).

(a) (b) (c)

Figure 5.39: (a) Test image orange; (b) color edge map of the invariant features containing material

boundaries for which the shadow hypothesis is weakened; (c) integration of the shadow evidence from

the two color analysis steps (Eq. (5.30)).

The shadow points which form the border between shadowed background and object cannot

however be found by means of this analysis. This is clear from Figure 5.39 (c). These points belong

to the occluding line, CD (Figure 3.8). The occluding line does not indeed belong to Sinv since it

represents a material change. In real images, moreover, S contains misclassified pixels due to sensor

noise and approximations in the model underlying invariance. Geometrical information will be used

therefore in the next analysis stage to reduce the misclassifications in S and to extract the missing

parts of the shadow contour.

5.7.2 Spatial analysis

When dealing with image sequences, a change detection algorithm has been used to extract moving

foreground regions containing objects and shadows. Then, the position of the candidate shadows

with respect to objects has been analyzed. In that case, shadow casting objects have been automat-

ically extracted by exploiting motion information. In still images, the problem of extracting shadow

casting objects requires providing to the system a clear definition of what the objects of interest

are. This can be obtained by means of user intervention or by exploiting specific a priori knowledge

about the objects or the scene. Dealing with objects of different nature and shape, for which it is

not possible to define a common model, we have considered some restrictions on the scene’s layout,

as done in [79], which allow us to proceed automatically. We assume that objects are imaged against

a simple background where the shadows are cast and are visible closed to the shadow they cast.

Under these assumptions, we exploit geometric shadow properties related to shadow boundaries and

to the adjacency of each object and its cast shadow. To extend the method’s applicability to scenes

with complex backgrounds, color segmentation and the intervention of an user which provides the

semantics, that is the meaning, of the objects of interest could be considered.

Similarly to what has been done in the analysis on image sequences, the existence of the shadow

line, DE, and the hidden shadow line, CE (Figure 3.8) are checked. This is done by extracting seg-

ments in S and rejecting isolated and disconnected pixels, thus obtaining the subset S ′ (Figure 5.40

(b)). To this end, isolated groups of pixels are eliminated after connected component analysis. This
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decision is based on a threshold whose value is set to 30% of the number of pixels of the largest

connected component in S. This value has been determined by means of extensive tests. Since

it is relative to the largest component, it is adapted to the image content and does not require

content-dependent setting.

(a) (b) (c)

Figure 5.40: (a) Test image orange; (b) result of geometric analysis providing the shadow line and

hidden shadow line, and (c) the complete shadow contours.

To extract the missing part of the shadow contour, the definition of occluding line, CD, is finally

exploited. First, the contact points between shadow contour and object contour einv(x, y) are

detected. A contour dilation operation is applied to the shadow contour in order to more effectively

extract contact points. Then, the position of the shadow with respect to the line that connects

the two points is computed and the occluding line is extracted from einv(x, y), giving the complete

shadow contour (Figure 5.40 (c)). Finally, the shadow area is obtained by filling each closed shadow

contour.

In the above discussion, we have considered one object only. In the case of a scene composed

by multiple objects, a connected component labeling on the invariant features edge map is first

of all performed and the analysis is then applied to each single object separately. If shadows do

not completely lie within the image, image border pixels should be considered to close the shadow

contour. Moreover, if objects and shadows occlude each other, boundary object pixels for both

objects involved in the occlusion should be analyzed.

5.7.3 Cast shadow segmentation by color edge filling

A simplification of the cast shadow segmentation process has been investigated and is described in

this section. A similar color analysis stage is followed by a simpler spatial processing under the

assumption that objects and shadows lie within the image.

Edges are first of all extracted, as in the color analysis stage, on RGB images and photometric

invariant features images. To improve edge delineation, a post-processing is applied on the edge

maps. To this end, the same processing that was used as first operation in the spatial analysis stage

is exploited here to eliminate isolated noise-induced edge pixels. In this case, the threshold has been

fixed to 10% of the number of pixels in the largest connected component since we aim at having

as much as possible close contours. A morphological dilation operation is also applied to this end

(Figure 5.41).

In the second level of the analysis, the RGB edges are filled in order to obtain a binary mask,

a(x, y), that represents object and shadow regions in the image. The invariant features edges are

filled in order to obtain a binary mask, o(x, y), representing only objects in the scene.
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(a) (b) (c)

Figure 5.41: Example of edge detection followed by post-processing on RGB (b) and photometric

invariants (c).

The filling is obtained by first of all performing an horizontal and vertical scanning of the edge

map and setting to 1 all pixels within the most left/high edge point to the most right/low edge

point. Then, additional scanning processes are performed to eliminate background regions between

objects and shadows by shrinking the filled regions toward the edge map.

Shadow pixels s(x, y) are then extracted as those pixels which belong to the first binary mask

and do not belong to the second mask, that is

s(x, y) =

{

1 if (a(x, y) = 1) ∧ (o(x, y) = 0)

0 otherwise.
(5.31)

Finally, a morphological post-processing (an erosion followed by a dilation operation) is applied to

the final mask to refine the results. In this case, the spatial analysis can be applied simultaneously to

multiple objects in the scene and does not require each object to be selected and analyzed separately.

The results of the tests of the proposed methods will be discussed in Chapter 6.

5.8 Summary

In this chapter we described an efficient methodology for segmenting cast shadows in still images

and image sequences. The proposed strategy is based on a bottom-up approach composed of three

successive levels: the color analysis, the spatial analysis, and the temporal analysis. This last stage

is not present when the approach is applied on still images.

An initial shadow hypothesis is tested by exploiting spectral properties of shadows by means of

color information. The property that shadows darken the surface upon which they are cast is first

of all checked. Each camera sensor must have a lower response for a point in shadow with respect to

the same point in light. Photometric color invariants are then analyzed. They must not be affected

by the presence of a shadow.

As a preliminary step for the spectral analysis, an evaluation of different color invariant features

was performed on a number of real images. The results of the analysis outlined the fact the adopted

physical description of shadows can represent a wide class of indoor scenes and outdoor overcast

scenes. It is less appropriate, as expected, for outdoor sunny scenes. This case allows to test the

robustness of the proposed method when varying the working hypotheses. The analysis showed

moreover the different behavior of color invariants with changes in the content of the considered

scenes. In particular, hue, which is widely used in literature, resulted unreliable in color deficient
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scenes in presence of noisy conditions. Saturation behaved slightly worse with respect to normalized

rgb and c1c2c3, which were therefore selected for the analysis. The evaluation completes the analysis

of color invariant features for shadow segmentation that was initiated in Chapter 4.

The initial shadow hypothesis provided by the color analysis stage is verified by exploiting spatial

and, in the case of image sequences, temporal properties of shadows. The position of a candidate

shadow region with respect to the shadow casting object is considered for the spatial analysis, which

does not require any knowledge of the structure of the object or of the scene. Then, the temporal

behavior of shadows is analyzed.

The temporal verification exploits a tracking strategy that has been defined on the basis of the

limited amount of information available to describe a shadow and its evolution over time. Tracking

allows to compute the life-span of each shadow. From each shadow’s life span and the relative

position of objects and shadows provided by the spatial analysis stage, a reliability estimation is

derived. This reliability estimation is used to validate or to discard each shadow detected in the

previous levels of analysis and provides the final segmentation results.

In the case of still images, the proposed methodology for cast shadow segmentation was applied

through the extraction and analysis of contours in the image. The analysis is organized in this case

in two stages, a color analysis stage and a spatial analysis stage, which use the same principles as

those used for image sequences. Some assumptions on the scene and the lighting are considered, as

the segmentation problem in this case becomes inherently more difficult. The performance of the

proposed technique is evaluated in the next chapter.
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Figure 5.42: Shadows are created by the night (Section A.2.1).
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Performance evaluation 6
6.1 Introduction

In the previous chapter, a methodology for the segmentation of cast shadows in video sequences

and still images has been proposed. In this chapter, the performance of the proposed method is

evaluated.

To this end, the results of the tests of the proposed method are presented and analyzed. Subjec-

tive assessment of the segmentation accuracy, objective evaluation with respect to a ground-truth

segmentation and comparison with state of the art techniques are introduced.

Tests on image sequences are first discussed in Section 6.2. Still images are then considered in

Section 6.3.

6.2 Results on image sequences

The results of cast shadow segmentation and tracking in image sequences are organized as follows.

The performance of the first two blocks of the system, that is the color analysis and the spatial

analysis (see Figure 5.1), is first discussed in Section 6.2.1 and Section 6.2.2. These two stages

provide an on-line segmentation. The results are evaluated subjectively, objectively, and compared

to state of the art methods.

Then, in Section 6.2.3, the improvements introduced by the off-line temporal verification stage

are discussed by means of subjective and objective comparison with the results of the first part of

the segmentation algorithm.

In the tests, sequences from the MPEG-4 and MPEG-7 Content Video Set are used, as well as

test sequences from the test set of the ATON project∗ and the European project art.live†. The

sequences are in CIF format (288 × 352 pixels), unless otherwise stated in the remainder of the

section.

∗http://cvrr.ucsd.edu/aton/
†European project IST 10942 art.live (Architecture and authoring Tools for prototype for Living Images and new

Video Experiments), http://www.tele.ucl.ac.be/PROJECTS/art.live/

123
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6.2.1 Segmentation results

Figures 6.1 (b)– 6.4 (b) show the shadow masks obtained by color analysis (Section 5.4) followed by

spatial verification (Section 5.5) for two indoor sequences, one outdoor sequence where the sky is

overcast, and two outdoor sunny scenes. The detected shadows are superimposed over the original

image and color-coded in white.

The reference image is the first frame of the sequence, acquired before the objects enter in the

field of view, except for the test sequence Surveillance. In this case, frame 210 is chosen which does

not contain moving objects nor shadows due to moving objects. The parameters to choose for this

first part of the algorithm are the size of the observation windows for the initial evidence, W dark

(Section 5.4.2 and Section 5.5.2), and for the additional evidence, W inv (Section 5.4.3), and the

value of the threshold fi for the photometric invariant color features test (Section 5.4.3). The c1c2c3
features have been used in our tests. The values of the above-mentioned parameters are the same

for the indoor and outdoor overcast scenes and they are the result of an extensive analysis: W dark

is 5 × 5 pixels, W inv is 7 × 7 pixels, and fi = 7 for all components. For the outdoor sunny scenes,

as predicted by the analysis on color invariants presented in Section 5.3, an higher value of fi is

required to cope with the fact that the assumed gray world condition is not verified. A value of fi
of 18 is therefore adopted.

The segmentation results for four sample frames of the test sequence Hall Monitor are shown

in Figure 6.1 (b). This sequence represents a typical indoor surveillance sequence. The method

correctly identifies the shadows which moving objects cast on the floor and on walls. In the second

image it is possible to notice an error due to the fact that the color of the trousers of the man

and the color of the corresponding background region are similar. In addition, the trousers are

slightly darker than the background. The spatial analysis stage does not succeed in eliminating the

candidate shadow, because of the existence of the shadow line. The temporal verification stage will

overcome this problem.

A different scenario is depicted in Figure 6.2. People walking in a room cast several shadows which

are caused by their interaction with multiple light sources. This is a scene representing a typical

environment for interaction purposes, where users act in front of a display. For good visibility of

the display the interaction area has to be rather dark or spot lights have to be used, which cause

significant shadows. Objects are large and close to the camera. In this scene, a model-based method

for shadow segmentation would fail due to the complexity of the scene. The proposed method is

based on shadow properties and therefore it can be applied to complex scenes, when shadows and

objects occlude each other.

An outdoor scene is depicted in Figure 6.3. Vehicles of different dimensions are running on

a highway. Lighting conditions are different when compared to the previous indoor sequences.

Shadows are very weak due to the diffuse illumination coming from the overcast sky. Despite

the difficulty in recognizing them when looking at the images of Figure 6.3 (a), shadows generate

changes in image values that can mislead motion detection algorithm and consequently moving

object detection results. Also in this case shadows are correctly extracted. Misclassified pixels can

be noted on the truck’s and vehicles’ wheels which have a gray color that is very similar to that

of the road’s asphalt. A post-processing based on edge detection could be applied to refine the

segmentation. The results demonstrate that the proposed method can be applied on a large class

of scenes, without changing the values of the parameters. In the second image, it can be noted that

the shadow that the truck casts on the road in front of the white car has been correctly detected. In

case the shadow segmentation algorithm is applied as a post-processing stage to improve the results

of a video object extraction algorithm, this detection is an important result. The two vehicles are,

in fact, very likely to be extracted as an unique object by video object segmentation techniques.
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Figure 6.1: Shadow segmentation results for the test sequence Hall Monitor. (a) Original image;

(b) shadow mask (white pixels) superimposed on the original image.
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Figure 6.2: Shadow segmentation results for the test sequence Group. (a) Original image; (b)

shadow mask (white pixels) superimposed on the original image.
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(a) (b)

Figure 6.3: Shadow segmentation results for the test sequence Highway. (a) Original image; (b)

shadow mask (white pixels) superimposed on the original image.
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(a) (b)

Figure 6.4: Shadow segmentation results for the test sequence Surveillance. (a) Original image;

(b) shadow mask (white pixels) superimposed on the original image.
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(a) (b)

Figure 6.5: Shadow segmentation results for the test sequence Surveillance2. (a) Original image;

(b) shadow mask (white pixels) superimposed on the original image.
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The false adjacency would make the subsequent tracking, counting or classification operations of

individual objects difficult. The refinement by means of shadow segmentation allows then to avoid

this kind of error.

To demonstrate the performance of the proposed method in outdoor sunny scenes, the results of

the tests on the sequences Surveillance and Surveillance2 are shown in Figure 6.4 and Figure 6.5.

The image format is, in this case, 352 × 240. Due to the high value of the threshold, some object

pixels have been misdetected on the head of the person in the third image of Figure 6.4. Also in

this case, the temporal verification stage will overcome the problem.

The illumination conditions in Figure 6.5 are more complex with respect to the previous scene.

Here, big static shadows are cast on part of the image and light illuminating the person on the

foreground changes considerably from the first two frames to the third and fourth image. The

method’s efficacy in complex real world conditions is demonstrated by the reported results.

6.2.2 Objective performance evaluation and comparison

In the previous section, segmentation results have been evaluated on the basis of subjective assess-

ment only. To quantitatively analyze the performance of the method with different parameter sets

and to objectively compare its results with those of other state of the art methods, an objective

evaluation criterion has to be defined.

Objectively and quantitatively assessing the accuracy of the results of a shadow segmentation

algorithm is not a simple task. Ideally, an exact, correct segmentation would be used as ground-

truth information against which to judge the actual segmentation results. The disparity between

the ground-truth segmentation and the actual segmentation would be computed to evaluate the

accuracy of the results. The generation of a ground-truth for shadow regions in real world scenes

is, however, a very difficult task. In many cases, in fact, the outer boundary of a shadow occurs

at points of infinitesimal decrease in the amount of illumination (see Figure 6.2 or Figure 6.3 for

instance). As a result, the exact boundary of a shadow cannot be manually determined in a reliable

way.

As a solution to this problem, we propose that a more significant performance analysis can

be obtained by combining the shadow detection method with an object extraction method and

by evaluating the object segmentation accuracy. Obtaining a ground-truth segmentation of video

objects is, in fact, a more reliable operation than defining an ideal shadow segmentation. The

combination of the shadow segmentation algorithm with an object segmentation method allows also

to demonstrate an important application of moving cast shadow segmentation.

Metric — The evaluation of the object segmentation accuracy is based on computing the pixel-

wise deviation of the segmentation result from the corresponding ground-truth segmentation. The

deviation is computed by taking into account two types of errors, namely false positives and false

negatives. False positives, εp, are pixels incorrectly detected as belonging to an object. False

negatives, εn, are pixels belonging to an object that have not been detected.

Let card(Ct) represent the number of pixels detected as object pixels, and card(C t
g) the number

of pixels belonging to the ground-truth segmentation, at each time instant t. The ensemble of false

positive pixels, εtp, at t can be expressed as

εtp = card(Ct ∩ Ct
g), (6.1)

where Ct
g is the complement of Ct

g. The ensemble of false negative pixels, εtn, at t can be then

expressed as

εtn = card(Ct ∩ Ct
g). (6.2)
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The deviation from the reference segmentation at each time instant t can be computed as

εt =

{

0 if card(Ct) = card(Ct
g) = 0

εtn+εtp
card(Ct)+card(Ct

g)
otherwise.

(6.3)

where εt ∈ [0, 1].

The value of εt is proportional to the amount of segmentation errors with respect to the ground-

truth segmentation. The quality of the results is inversely proportional to the deviation between

actual and ground-truth segmentation. The accuracy of the segmentation is then quantified by

νt = 1− εt, (6.4)

with νt ∈ [0, 1]. The larger νt, the higher the accuracy. When νt = 1, then there is a perfect match

between segmentation results and ground-truth segmentation.

Evaluation — By means of the above introduced accuracy metric, we aim now at evaluating the

results of the combination of the proposed cast shadow segmentation method with the statistical

model-based change detector embedded in the method and discussed in Section 5.5.1. First of all,

the influence of parameter values on the method’s performance is evaluated and then a comparison

with state of the art methods is discussed.

The ground-truth segmentation for the test sequence Hall Monitor has been obtained manually

and has been made available by the European project COST 211∗. Since the test sequence Hall

Monitor is a challenging sequence for moving cast shadow segmentation due to the color content

of objects and background, which are quite similar, we consider this sequence in our analysis. As

commented in the above discussion of shadow segmentation results, the misclassification of object

points as shadow points is a major problem when segmenting shadows. The sequence provides

therefore a significant test case.

In Table 6.1, the mean values for the 300 frames of the test sequence Hall Monitor of false

positives, false negatives, and object segmentation accuracy for different sets of parameters are

reported. False positives and false negatives are reported as percentage of the segmented area in the

ground-truth. The obtained results show that the method’s performance remains stable for different

parameter configurations. From the results we can observe that the parameter which has the major

influence on the performance is the threshold fi.

W dark W inv fi %εp %εn ν

3× 3 7× 7 7 22.22 6.94 0.865

5× 5 7× 7 7 23.84 5.71 0.865

5× 5 5× 5 7 21.63 7.59 0.863

5× 5 7× 7 4 28.55 4.97 0.850

5× 5 7× 7 5 25.35 5.10 0.862

5× 5 7× 7 6 23.34 5.81 0.866

Table 6.1: System performance with different parameter sets.

In order to further evaluate the performance of the proposed algorithm, the video object extrac-

tion results have been compared to those of four state of the art object extraction methods which

include a moving cast shadow detection technique. The four approaches are the method in [27]

∗http://www.iva.cs.tut.fi/COST211/
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(DNM1), which exploits the invariance properties of hue and saturation, the technique in [151]

(DNM2), which makes use of luminance information, texture information, and the penumbra of

shadows, and the statistic approaches in [105] (SP), which makes use of a diagonal model to charac-

terize illumination changes in shadows, and in [70] (SNP), which exploits the invariance properties

of a computational color model which separates chromaticity from brightness. The methods have

been analyzed and compared in [134]. They are described in more detail in Section 3.4.4. The

adopted acronyms correspond to those used to denote the different techniques in [134].

To perform the comparison, the object segmentation accuracy ν t (Eq. 6.3) is computed over the

sequence. The results for the test sequence Hall Monitor are presented in Figure 6.6. Object and

shadows masks obtained with the different methods for frame 55 are also shown to help evaluation.

The large error in the first frames of the sequence is due to the fact that these frames correspond

to the entrance of the man in the scene. The first part of the man entering the scene is his shoe.

The shoe has a color that is very similar to that of the background. For this reason, the detection

algorithms may be misled and do not detect the shoe that is instead present in the ground-truth

segmentation.

The mean values of accuracy over the entire sequence corresponding to the plots of Figure 6.6

are reported in Table 6.2. The combination of the proposed shadow segmentation method with the

adopted change detector results in a more accurate object detection over time when compared to

state of the art shadow-invariant object detection algorithms.

DNM1 DNM2 SP SNP Proposed

ν 0.78 0.60 0.59 0.63 0.86

Table 6.2: Mean values of object segmentation accuracy for test sequence Hall Monitor for the

proposed method, the method in [27] (DNM1), the method in [151] (DNM2), the method in [105]

(SP), and the method in [70] (SNP).
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Figure 6.6: Comparison of video object segmentation accuracy ν for test sequence Hall Monitor.

Top: objective spatial accuracy comparison among the proposed approach, the method in [27]

(DNM1), the method in [151] (DNM2), the method in [105] (SP), and the method in [70] (SNP).

Bottom: subjective object and shadow segmentation comparison among the five methods for frame

55. Object pixels are displayed in red, shadow pixels in blue.
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6.2.3 Segmentation and tracking results

Figures 6.7– 6.10 illustrate the improvements over the cast shadow segmentation results that are

obtained by means of the temporal analysis stage, once candidate shadows have been tracked over

time. For each test sequence, the first column shows the results of the first stage of the shadow

segmentation process and the second column shows the final results after the off-line processing

performed thanks to the tracking stage.

One parameter has to be set for the temporal verification stage, that is the temporal filtering

threshold DT (Section 5.6.2). As discussed in Section 5.6.2, the threshold DT has been empirically

determined as a function of the level of activity in the sequence which is reflected by the distribution

of shadow durations in the sequence. The values used to obtain the results in this section are 38, 20,

4 and 5 for Hall Monitor, Highway, Group and Laboratory, respectively. In the former two sequence,

objects remain for a long time in the scene. In the Group sequence the main big shadow formed

by the fusion of people shadows has a long duration, while segmentation errors change rapidly of

position with the movements of the persons. In the last sequence, people enter and exit the scene

rapidly. The image format for test sequence Laboratory of the ATON project is 320× 240.

In the results of the first columns of the reported figures errors of the segmentation algorithm are

shown. These figures indicate difficult cases for the proposed approach. Parts of moving objects are

misclassified as moving shadows where the color of the object is similar to that of the background.

This often happens in portions of the object that are self shadowed. Examples of this type of error

can be seen in Figure 6.7, Figure 6.8, in Figure 6.9, second row, and in Figure 6.10, first row. The

results illustrated in the second columns of the figures show the improvements achieved thanks to

tracking. The described failures of the moving cast shadow extraction stage have been eliminated

by the analysis of the temporal behavior of shadows.

The results on the test sequence Laboratory in Figure 6.10, second row, allow to make two obser-

vations about the proposed approach. The first observation concerns the use of the border analysis

in the spatial analysis stage discussed in Section 5.5.3 to postpone the rejection of a candidate shad-

ow after the temporal analysis has been performed. The efficacy of the analysis is illustrated in

these results. The candidate shadow between the person’s legs is, in fact, an example of critical case

when a true shadow shares the majority of its boundary with an object boundary. This case was

illustrated in Figure 5.29 (b) by means of shadow (C). Since the majority of the border’s pixels is

in contact with the object, then a low confidence value is associated with the region under analysis.

The region is therefore reconsidered in the temporal analysis stage. The temporal reliability score

then succeeds in taking a correct final decision about the candidate shadow region.

The second observation concerns the limits of the temporal filtering stage. A failure of the

tracking stage is, in fact, shown in Figure 6.10, second row. The moving cast shadow extraction

algorithm has correctly detected the shadows cast by the person on the background close to his

left hand and right foot. However, since the majority of edge pixels of these shadow regions are

connected to the object and their temporal duration is very short, they have been removed by

the off-line processing. This kind of error occurs typically to small shadow regions and does not

significantly affect the overall method’s performance.
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(a) (b)

Figure 6.7: Shadow segmentation and tracking results for test sequence Hall Monitor. (a) Moving

cast shadow extraction. (b) Final result after tracking.

(a) (b)

Figure 6.8: Shadow segmentation and tracking results for test sequence Group. (a) Moving cast

shadow extraction. (b) Final results after tracking.
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(a) (b)

Figure 6.9: Shadow segmentation and tracking results for test sequence Highway. (a) Moving

cast shadow extraction. (b) Final results after tracking.

(a) (b)

Figure 6.10: Shadow segmentation results for test sequence Laboratory. (a) Moving cast shadow

extraction. (b) Final results after tracking.
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Objective evaluation — To quantitatively evaluate the improvements obtained by means of

tracking, the object segmentation accuracy νt (Eq. 6.4) has been computed. The results for the

test sequence Hall Monitor are shown in Figure 6.11. Here, we compare the following results. First,

the spatial accuracy of results for the change detection. Second, the spatial accuracy of results for

the change detection combined to the moving cast shadow extraction method of the first stage of

the proposed algorithm. Third, the spatial accuracy obtained by using tracking. In the second row

of the figure, object masks obtained with the three different methods for frame 125 are shown for

subjective comparison.

From the plots it can be noted that the shadow segmentation process brings improvements to

the object segmentation quality in particular in the initial and final part of the sequence. In these

parts, in fact, shadows detected by the change detector as part of the moving objects are quite large

and cause significant detection errors. In the central part of the sequence, one person is leaving the

room while the other is entering the room and both are far from the camera, thus casting small

shadows. Between frames 80 and 130, the misclassifications of object points on the trousers of the

man as shadow points affect the quality of the object extraction results, which are slightly worse

than those of the change detector alone. It is in this case that the tracking stage brings its major

improvement. In the second half of the sequence, where errors due to misclassifications of object

points as shadow points do not occur, the results with and without tracking remain the same.

In the very first part of the sequence, for a couple of frames, it can be noted that the temporal

analysis stage worsens the performance of the shadow segmentation algorithm. These frames corre-

spond to the entrance of the man in the room. While the man enters the scene, shadows are cast

on the wall which have a very short duration and are removed by the temporal analysis. This error

could be corrected by adding a control in the method which detects objects entering or leaving the

scene and suspends the temporal filtering for some frames during these events.

The mean values of accuracy over the entire sequence corresponding to the plots of Figure 6.11

are the following: change detection 0.82, shadow segmentation 0.86, shadow segmentation and

tracking 0.87. The tests confirm that the results of a change detection algorithm can be progressively

improved by first extracting moving shadows and by then tracking them.
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Figure 6.11: Comparison of video object segmentation accuracy ν for test sequence Hall Monitor.

Top: objective spatial accuracy comparison among change detection results, change detection results

combined to the first stage of the proposed moving cast shadow segmentation method, and to

the complete moving cast shadow segmentation and tracking method. Bottom: subjective object

extraction comparison among the three methods for frame 125.
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6.3 Results on still images

The results of the application of the proposed methodology on still images are discussed in this

section. The images used for the tests have been obtained using a SONY DCR-PC7E digital video

recorder, a commercial digital camera. The images are in CIF format (288×352 pixel). Objects are

made of different materials and present different colors.

The parameters of the proposed algorithm for still images are the edge detection thresholds

used to binarize the edge gradient obtained with the Sobel operator (Section 5.7.1). The output of

the edge detector is characterized by two types of errors. A false positive occurs when an edge is

declared, but no edge is present. A false negative occurs when an edge is present, but no edge is

declared. A low value for the threshold leads to a high false positive rate and a low false negative

rate and viceversa. The values of the thresholds have been determined empirically based, therefore,

on the following reasoning. The threshold value for the invariant features analysis must be large

enough to minimize the occurrence of false positives detected due to noise far outside the object

contours. The threshold for the RGB color space analysis should be small enough to minimize the

occurrence of false negatives and to obtain closed contours. The values of thresholds for the different

test images reported in this section are shown in Table 6.3. As can be noted when looking at the

corresponding images, the threshold for RGB images is related to the strength of the cast shadow.

The weaker the shadow, the lower the threshold. The threshold on photometric invariants is less

straightforward.

RGB c1c2c3

Image1 0.06 0.12

Image2 0.05 0.12

Image3 0.02 0.14

Image4 0.07 0.07

Image5 0.03 0.07

Image6 0.03 0.09

Table 6.3: Value of the thresholds for color edge detection on the different test images.

Figure 6.12 shows the results of the proposed algorithm for a selection of test images. The

original image (Figure 6.12 (a)) and the superimposition of shadow masks on the original image

(Figure 6.12 (b)) are displayed. The obtained results show that cast shadows are correctly detected

by the proposed algorithm.

Smeared edge markings can be observed in the extracted shadows, particularly for Figure 6.12,

bottom. This type of error is caused by the use of a small threshold for edge detection in the RGB

space. Shadows are, in fact, quite weak in this image. To overcome this problem, a morphological

post-processing depending on the application at hand may be used to improve the final segmentation

results.

Segmentation by color edge filling

The results of the extraction of cast shadows by means of edge filling (Section 5.7.3) are shown in

Figure 6.13 and Figure 6.14. The results show that shadow regions have been correctly identified.

Contours in Image 2 and Image 3 are better delineated with respect to the results in Figure 6.12

thanks to edge post-processing. Thanks to the use of color information, and not only intensity,

the method has correctly distinguished in Image4 the dark object from its shadow. This would
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(a) (b)

Image 1

Image 2

Image 3

Figure 6.12: Cast shadow segmentation results for still images. (a) Original image; (b) shadow

mask (white pixels) superimposed on the original image.
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(a) (b)

Image2

Image3

Image4

Figure 6.13: Results of cast shadow segmentation by means of color edge filling. (a) Original

image; (b) shadow mask (white pixels) superimposed on the original image.

not have been possible for techniques that exploit only luminance properties of shadows for their

identification.

In Image 5, the object on the left hand side has a pink color which is similar to the red color of

the background surface. Some points on this object have been classified as shadow points because

of the reduced discriminative power of photometric invariants. In Image 6, the gray object on the

top left corner of the image has been entirely misclassified as a shadow region for the same reason.

The reduced discriminative power of the invariant features has prevented the edge detection step

to identify the edges of the above mentioned object. In Image 6, on the marker in the lower left

corner, some object points have been misclassified as shadow points as well. These errors are due

to the presence of highlights.
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(a) (b)

Image5

Image6

Figure 6.14: Results of cast shadow segmentation by means of color edge filling. (a) Original

image; (b) shadow mask (white pixels) superimposed on the original image.

6.4 Summary

An evaluation of the proposed cast shadow segmentation method is presented in this chapter.

In order to assess the method’s performance in video sequences, the results of the first two

blocks of the system, that is the color analysis and the spatial analysis, were first of all analyzed.

The results were evaluated subjectively, objectively, and compared to state of the art methods.

Then, the improvements introduced by the temporal verification stage were assessed by means of

subjective and objective comparison with the results of the first part of the segmentation algorithm.

The experimental results demonstrated the efficacy of the proposed technique in a wide range

of scenes, where shadows are projected on vertical and horizontal surfaces, on surfaces of different

material, in presence of different illumination conditions and with objects of different nature. This

underlines the good generality of the method. The results showed moreover the improvement ob-

tained with respect to the state of the art. The benefits introduced by shadow tracking were also

demonstrated. The temporal analysis was shown to be able to eliminate the possible ambiguities of

the previous analysis levels and to improve the efficiency of the overall shadow extraction algorithm.

The validity and efficiency of the proposed approach also when applied to still color images was

then demonstrated through the analysis of its results on a number of typical images.
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Figure 6.15: Shadow motion induces apparent motion of an object in depth (Section A.3).
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Shadow-aware video

processing 7
7.1 Introduction

Chapter 5 was dedicated to the description of a methodology for the segmentation of cast shadows

in video sequences and still images. In order to maximize the generality of the methodology, the

adopted rules, which guide the proposed method in the analysis of shadows, do not rely on models

of the objects nor on particular hypotheses about the considered scenes. The developed tool is

therefore flexible and can be applied to a wide range of scenes and conditions, as demonstrated in

Chapter 6.

Two main uses of the developed technique can be identified: shadow segmentation can be adopted

for shadow elimination and for shadow manipulation. In the former case, shadow segmentation

allows to improve the performances of video object extraction, tracking and description tools. The

extraction, tracking and description of video objects are fundamental steps for a wide range of

object-based applications, ranging from video coding to video indexing, from video manipulation to

video surveillance and immersive environments. All these applications can benefit from a flexible

methodology that allows to distinguish objects from the shadows they cast. In the latter case, the

identification of shadows provides information about and access to an important perceptual element

of a visual scene. In applications such as object-based video editing and mixed-reality immersive

environments, where new and richer visual content is created by merging objects from different

sources, the ability of identifying and taking shadows into account can improve the naturalness of

the merging process and have an important perceptual impact.

The objective of this chapter is to demonstrate the advantages and the possibilities offered by

the proposed shadow segmentation tool in its twofold use through the discussion of some example

applications. First of all, the impact of shadow segmentation on video object segmentation, tracking,

and description is discussed in Section 7.2. Immersive interactive environments are presented in

Section 7.3. Photorealistic video composition is finally discussed in Section 7.4.

145
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7.2 Shadow elimination for improved video object extraction

Advances in video coding and description are driving a shift from the traditional frame-based ap-

proach to video processing, where a video sequence is composed of a set of frames, to the object-based

approach, where the video sequence is composed of a set of meaningful objects. International stan-

dards, such as MPEG-4 [121, 145] and MPEG-7 [23, 146], support this type of representation and a

wide variety of applications, ranging from video coding to video editing, and from video surveillance

to mixed-reality, benefit from the shift.

The representation of visual information in terms of meaningful objects, that can be accessed,

manipulated, coded and described separately, requires a prior decomposition of video sequences into

semantically, meaningful objects. For many applications, objects of interest are moving objects and

many video object extraction methods make use of motion information to automatically extract

semantic objects. Moving shadow segmentation and elimination is then an important component

for such methods. As discussed in Section 3.4.4, shadows cast by moving objects generate tem-

poral changes in an image sequence and mislead both motion segmentation and motion detection

approaches to automatic video object extraction.

Object segmentation – Figures 7.1-7.3 demonstrate the improvements obtained thanks to the

proposed shadow segmentation method in video object segmentation results. In the second row

of each figure the results of the application of the change detector described in Section 5.5.1 are

shown. In the third row the refined objects obtained by eliminating the cast shadow are illustrated.

Object boundaries are more accurate once shadows have been removed. Figure 7.1 illustrates a

typical indoor video surveillance scenario, Figure 7.2 a smart room, and Figure 7.3 an outdoor video

surveillance scene. The flexibility of the proposed approach allows its use in different applications.

Figure 7.1: Object segmentation results for some sample frames of the test sequence Hall Monitor

without shadow segmentation (first row) and with shadow segmentation and elimination (second

row).
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Figure 7.2: Object segmentation results for some sample frames of the test sequence Intelligent

room without shadow segmentation (first row) and with shadow segmentation and elimination (sec-

ond row).

Figure 7.3: Object segmentation results for some sample frames of the test sequence Surveillance

without shadow segmentation (first row) and with shadow segmentation and elimination (second

row).



148 Chapter 7. Shadow-aware video processing

Object tracking – An accurate segmentation of foreground moving objects from the scene’s

background has an impact on all the subsequent video analysis operations that rely on the segmen-

tation results as a preliminary step. A fundamental step in semantic video object extraction is given

by tracking, which aims at establishing a correspondence between instances of moving objects over

frames.

In order to follow an object over time, a comparison between characteristic properties of the

object from frame to frame has to be performed. Spatio-temporal properties, such as color, texture

and motion of object pixels, can be exploited to this end [96, 104, 158, 167]. Contours [60, 119, 123,

156], object models [53, 177] or feature points, such as corners [13], can also be used for tracking.

Hybrid tracking methods [99, 162] consider first the object as an entity and then track its parts by

analyzing their spatio-temporal properties.

The presence of shadows in the object segmentation results on which the tracking strategy is

applied can make the computation of object features less reliable and limit the performance of

the tracking algorithm. Color, texture and motion features cannot in fact be reliably computed

in shadow regions since shadows change their appearance according to changes in the appearance

of the surface they are cast upon. Shadows modify moreover the shape of the objects making the

correspondence problem more difficult. An accurate moving object segmentation thanks to shadow

elimination makes then tracking more reliable. Moreover, it can make tracking faster. Multiple

hypotheses on the object’s identity during time can in fact be pruned more rapidly if the object is

accurately extracted.

In particular, the management of interactions between objects in the scene, which is one of the

main obstacles to an effective tracking process, can benefit from the identification and elimination

of shadows. Cast shadows are typically attached to the shadow-casting object and cause underseg-

mentation errors by creating false adjacency between objects. Two objects getting close to each

other are in these cases erroneously extracted as a single object.

(a) (b) (c)

Figure 7.4: (a) Two moving objects, represented by their bounding boxes, are extracted as a

single object by change detection in two sample frames of the test sequence Highway. (b) Object

and shadow segmentation results. Objects are displayed in gray, shadows in white. (c) Thanks to

shadow segmentation the undersegmentation errors have been solved.
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Figure 7.4 (a) and 7.5 (a) show cases of undersegmentation due to shadow effects. The moving

foreground objects extracted by means of change detection and represented by a bounding box are

shown. When the proposed shadow segmentation algorithm is applied, the results of Figure 7.4 (b)

and 7.5 (b) are obtained. The extracted object is color coded in gray, while the shadow pixels are

color coded in white. The identification of shadow regions allows to solve the undersegmentation

problem of multiple objects extracted as a single one, as illustrated by the bounding boxes in

Figure 7.4 (c) and 7.5 (c).

(a) (b) (c)

Figure 7.5: (a) Multiple moving objects, represented by their bounding boxes, are extracted as a

single object by change detection in three sample frames of the test sequence Group. (b) Object

and shadow segmentation results. Objects are displayed in gray, shadows in white. (c) Thanks to

shadow segmentation the undersegmentation errors have been solved.

When the occurrence of undersegmentation errors as those discussed above is reduced thanks to

shadow analysis, the tracking process can be simplified. It is indeed possible to track objects inde-

pendently without the need of dedicated tracking management mechanisms. The results of object

tracking by means of the simple algorithm proposed for tracking moving shadows in Section 5.6.1

on the test sequence Highway are shown in Figure 7.6. Each bounding box has been color coded

with a different color. The correspondence between objects in successive frames is based on a simple

overlap of object segmentation masks. Despite the simplicity of the tracking principle, objects have

been successfully tracked over time.

The sequences considered in this subsection represent a typical traffic monitoring scenario (Fig-

ure 7.4 and Figure 7.6) and a typical video production scenario (Figure 7.5). As demonstrated, a
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Figure 7.6: Tracking results for the test sequence Highway. Multiple moving objects, represented

by their bounding boxes, have been successfully tracked over time with a simple nearest neighbor

tracking approach.

wide variety of applications can benefit from the developed tool. In Figure 7.4 and Figure 7.6, the

segmentation error visible in the lower right part of the image is due to the background image that

has been reconstructed by means of a learning process. In Figure 7.6, moreover, the small car far

from the camera in the first and second image of the top row is not considered by the segmentation

and tracking algorithm which discards objects that are smaller than a fixed threshold.

Object description – A quantitative description of video objects can be generated once they

have been extracted from a video sequence.

Low-level features, such as color, texture, and motion can be used for describing object parts

at a low-level of abstraction. By attributing an identifier to each video object which describes

its spatial location in the scene and by computing the object’s trajectory, shape, dominant color

or texture properties, a semantic description can be obtained. Low-level descriptors can be used

for indexing, filtering or retrieving similar objects based on visual content in object databases.

Semantic descriptors can be used for scene reconstruction [152], for video transcoding [21] and video

analysis operations, such as object counting and classification. In video-based traffic surveillance

applications, for instance, statistics about the vehicles passing in the field of view of cameras and

traffic violations or alarming situations are of interest. The number of vehicles, their velocity, and

the average distance between vehicles can be effectively computed by analyzing semantic descriptors.

Moreover, descriptions provided to higher level content understanding modules can allow to monitor

a scene and detect abnormal behaviors [2].

The issue of description, identification and access to multimedia information has been addressed

by the MPEG-7 standard, formally known as Multimedia Content Description Interface [23, 146],

which defines a standard set of Descriptors and Description Schemes for simple to sophisticated

descriptions of a variety of multimedia content.

Shadow effects can significantly affect the description process. The case of false adjacency of

multiple objects illustrated in Figure 7.4 and Figure 7.5 can for instance mislead object counting

tasks. The inclusion of shadow regions in segmented objects can lead to unreliable low-level descrip-
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tors computation that can limit the performance of object-based video database search. Typically,

the object’s shape centroid is used to describe the object’s position and trajectory. Object shape is

falsified by shadows and all the measured geometrical properties are then affected by an error. The

explicit detection of shadows in video sequences can therefore significantly improve the accuracy of

object description and support a more reliable use and interpretation.

The results of Figure 7.4 and Figure 7.5 provide some examples of how shadow segmentation

can improve the description of video objects. Bounding boxes are shown which represent a simple

description of the objects’ shape. The bounding boxes obtained after the elimination of shadows

in Figure 7.4 (c) and Figure 7.5 (c) more precisely describe the true shape, the number and the

size of objects. Subsequent content understanding operations can therefore rely on a more accurate

description. In case of camera calibration, 3D descriptors in the form of 3D bounding boxes could

be computed from multiple views of the objects obtained from subsequent frames [128].

The discussed video object extraction, tracking and description operations are at the core of a

wide range of applications. All of them can then benefit from a flexible methodology for shadow

segmentation. To summarize, shadow segmentation and elimination can:

• improve the spatial accuracy of segmented objects;

• increase the reliability of object tracking;

• reduce the complexity and increase the speed of object tracking;

• increase the reliability and efficacy of object description.

Among the variety of applications of object-based video processing that can be cited, in the next

section immersive interactive environments are discussed.

7.3 Immersive interactive environments

The shift from the frame-based approach to the object-based approach to visual information repre-

sentation and processing allows to greatly extend the ways by which visual content can be created

and manipulated. The ability of decomposing a video into a collection of meaningful objects, which

can then be manipulated separately, offers in fact many novel possibilities of creating new and richer

visual content. Scenes can be built by putting together objects from different sources and by mixing

natural and graphical objects.

A mixed-reality environment, as defined by Milgram [106], is created when natural objects and

synthetic objects are mixed together. Mixed-reality is also known as augmented reality and typically

refers to emerging technologies that allow to insert computer-generated objects into the user’s view

of the real world. According to Milgram, mixed-reality consists in any combination of elements

from the real, physical world, and the image capture of it, and from a virtual, completely modeled

world. Here, we refer to this framework and consider the inclusion of real objects into virtual

backgrounds. This track in the field of mixed-reality has been investigated by the European IST

project art.live∗, whose goal was to develop an architecture and a set of tools, both generic and

application dependent, for the enhancement of narrative spaces. The developed architecture [98]

aimed at creating interactive stories that mix graphical elements with inputs from live cameras. The

project put together partners in signal processing, artificial intelligence and multimedia authors.

The underlying concept, that is the capture of real life objects and their inclusion in a mixed-

reality narrative space where they can interact with the story, is illustrated in Figure 7.7. Figure 7.8

∗European project IST 10942 art.live (Architecture and authoring Tools for prototype for Living Images and new

Video Experiments), http://www.tele.ucl.ac.be/PROJECTS/art.live/
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Figure 7.7: Principle of creation of a mixed-reality interactive environment (courtesy of alterface,

www.alterface.com). The image of a person is captured by a camera and extracted from the back-

ground by means of segmentation. The background of the real scene is modified so as to create

an artificial background with its perspective organization and with graphical objects. The person’s

image is immersed into the virtual ambiance where different events may be made happen by the

person’s behavior.

Figure 7.8: Users involved in the Transfiction immersive interactive narrative system [112].

provides an overview of the users involved within the designed interactive narrative architecture. The

persons in the field of view of the cameras get themselves immersed within the virtual environment

and are therefore involved within the narrative. An immersive interactive mixed-reality environment

based on a Magic Mirror metaphor is created. The mixed-reality scene is in fact rendered on large

screens facing the so called interactors who see their own images and those of other people in the

field of view of the cameras embedded in the visual ambiance (Figure 7.9). The images can moreover

be disseminated in real-time to the public through the Internet. Interactors as well as players behind

their computer displays are offered to interact with the story. The word Transfiction [112] has been

coined for this interactive narrative system, where users are “transported in fictional spaces”.

The block diagram of the system’s architecture is shown in Figure 7.10, which illustrates the

different functionalities of the system’s building blocks. Standards are used in order to implement

an open and flexible architecture. MPEG-4 is used for the coding and transmission of the segmented

objects, the author-prepared graphical material, and the descriptions of scenes associated with the

narrative scenario, as well as for scene composition. MPEG-7 is used for the description of natural
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Figure 7.9: Example of immersive interactive mixed-reality environment based on theMagic Mirror

metaphor (courtesy of alterface). The persons in the field of view of the cameras get themselves

immersed within the virtual environment and are offered to interact with the story.
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COMMMUNICATION
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and MPEG−4 streams

Multi−agent platform,

DESCRIPTION

Artistic creation of synthetic objects

and tracking of natural objects
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Figure 7.10: Overview of the architecture of the immersive interactive narrative system developed

in the framework of the European project art.live.
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Figure 7.11: Immersive interactive gaming installation developed in the framework of the European

project art.live. Two cameras side by side film two persons in front of two big screens. The persons

see their own image and that of the neighbor immersed in a gaming scenario and are asked to play,

collaborate or compete in the virtual space by means of their body movements.

and graphical objects as well as of triggers driving the scenario management. Figure 7.11 shows the

art.live system implemented at the Royal Saltworks of Arc-te-Senans, in France, for the project’s

second trial∗. Here, two cameras filming side by side two persons facing two big screens were used

for transporting children into six gaming scenarios (an example of scenario is shown in Figure 7.12).

The transfiction principle allows the players to be in the game and play by means of their body

movements in a non-intrusive and seamless interaction.

Figure 7.12: Example of mixed-reality scenario from the art.live interactive gaming installation.

Video object segmentation allows to separate the images of the persons from the real background

and to insert them in the graphical scene. Video object tracking and description allows to fol-

low and describe persons movements which trigger events in the scenario and allow interaction.

Shadow segmentation allows to improve object segmentation and helps the subsequent description,

interpretation and visualization modules in the creation of the living narrative.

At the core of the creation of natural objects (see Figure 7.10), video object extraction techniques

provide both immersion and interaction capabilities. Moving objects are automatically segmented

∗http://www.transfiction.net/salineroyale/?lg=en
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from the background and tracked in real-time. Descriptors are extracted which provide information

about the position, the surface and the shape of the objects. They allow the subsequent modules

to interpret users behavior and influence the narrative. In the image of Figure 7.12, for instance,

the segmented image of one of the persons determines the displacements of the graphical butterfly

while the image of the second person is visible and has to catch it.

The methodology for moving cast shadow segmentation proposed in this thesis has been succes-

fully adopted and implemented in the framework of the art.live system. Its consideration allowed

to eliminate shadows from object segmentation results and helped the subsequent description, in-

terpretation and visualization modules in the creation of the living narrative.

7.4 Photorealistic scene composition

In the previous sections, we have shown the importance of segmenting shadows for an accurate

extraction of video objects and an accurate visualization of mixed-reality scenes. Shadows were

considered in those cases as a noise component to be taken into account and detected for its re-

moval. In this section, we consider the perceptually informative role of shadows in visual scenes and

demonstrate the importance of segmenting shadows for a more realistic visual content production.

As demonstrated in the previous section, one way new visual content can be created is by extract-

ing natural objects from a scene and by composing a new scene with objects captured by different

sensors and mixed with artificial elements. In television and film production, a commonly used tech-

nique for separating natural objects from the background and compositing a new, augmented scene

is the blue screen or chroma-keying approach. While manual extraction of objects is required for

high quality film production since a perfect definition of object boundaries is needed and temporal

coherence has to be guaranteed, blue screens and chroma-keying allow a fully automatic extraction

of natural objects thanks to a specific scene set-up. In the chroma-keying approach, the objects

of interest are filmed in front of a uniformly colored background, which is usually blue or green.

The extraction of objects is then performed by eliminating pixels having the known background

color. Lighting is carefully controlled in order to avoid the effects of shadows cast by objects onto

the background. An example of the use of chroma-keying in television studios is the production of

weather bulletins. The anchorperson is filmed against the known background, its image is separated

from it and placed over a background image representing the weather map.

Shadow effects are carefully avoided in the blue screen approach thanks to expensive controlled

lighting or the use of specific background material and special cameras [55]. Illumination effects have

however an important role in the perception of visual scenes and the fact of discarding them can limit

the visual quality of the scene composition due to a lack of naturalness. Shadows cast by objects

on a background surface can be in fact informative about the shape of the object, the shape of the

background and the spatial arrangement of the object relative to the background. Among all these

roles, it has been found [94] that cast shadows are perceptually most relevant for the recovery of

spatial arrangement, especially when the shadow is in motion. Shadows are shown to be particularly

salient cues to depth in dynamic scenes∗. Techniques for the automatic identification of shadows

cast by moving objects in real world conditions, without blue screen and ad-hoc lighting, allow then

not only to cut production costs but also to increase the quality of the visual content created. When

shadows cast by objects are explicitely segmented, they can be rendered in the composited scene and

the overall quality can be improved by an augmented naturalness. The proposed tool for moving

cast shadow segmentation can be therefore used to manipulate video content in a more perceptually

relevant way.

∗The perception of cast shadows is discussed in more detail in Section A.3.
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(a) (b)

Figure 7.13: Sample frame from the test sequence used for video composition (a) and background

image (b).

Figure 7.13 (a) shows a sample frame of a test sequence we have recorded with a digital camera

in an ordinary room, where illumination is given by a table lamp and the light entering the room

from the windows. We have extracted from the scene’s background the moving object and moving

shadow with the combination of the proposed shadow segmentation approach and the statistical

change detector described in the previous chapter. We have then built a composited video emulating

a weather forecast bulletin by placing the extracted object over a weather forecast map (Figure 7.13

(b)). Figure 7.14 (a) shows some sample frames of the obtained composited scene. The absence of

illumination effects due to shadows gives the impression of a flat 2D scene. The human brain does

not in fact receive strong cues to infer depth information in the scene.

For each point in the extracted shadow region we have then modified the color channels in

the background image according to the measured decrease in RGB values due to the shadow in the

original sequence. The comparison of the obtained composition in Figure 7.14 (b) with that obtained

without considering the cast shadow in Figure 7.14 (a) demonstrates the perceptual importance of

shadows. The hand appears now clearly positioned in a 3D space in front of the weather map and a

photorealistic result is obtained, as if the hand had been filmed directly in front of the background

image. The effect is more evident when the entire sequence is viewed since the object and shadow

motion enhances the depth perception, in accordance with the conclusions of Mamassian in [94].

The described shadow manipulation technique can be directly applied in scenes, such as that

discussed above, where the 3D geometry of the surface upon which the moving shadow is cast in

the original video is the same as that of the surface upon which the shadow is cast in the artificial

background. In addition to the discussed example, this is the case for rich media presentations and

authoring tools such as that proposed by the art.live project, where the multimedia author creates

the graphical background (see Figure 7.15) for the mixed-reality scene based on a 3D analysis of

the visual scene obtained by means of camera calibration. The shadow segmentation technique

proposed in this thesis can then be used to improve the impact of the created narratives by allowing

a more realistic rendering of natural objects in the graphical backgrounds created by the multimedia

authors.
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(a) (b)

Figure 7.14: Photorealistic scene composition results thanks to shadow segmentation and manip-

ulation. (a) Scene composition without considering the shadow; (b) with the shadow.
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Figure 7.15: Graphical background fitting a 3D perspective for the creation of immersive narratives

within the European project art.live.

7.5 Summary

In this chapter, applications of the proposed shadow segmentation method are presented in which it

is possible to appreciate the benefits introduced by shadow detection in video processing. They aim

at demonstrating that the tools developed in this thesis allow a more effective treatment of visual

information.

The first application is the elimination of shadows for improving the accuracy of video object

extraction, tracking and description operations, which are the first fundamental steps in a wide

range of object-based applications. In particular, the encouraging results obtained in the framework

of object segmentation for interactive immersive environments within the European project art.live

demonstrate the reliability of the proposed methodology.

The second application of the proposed approach is the manipulation of shadows for video com-

position without the use of studio equipment. The rendering of shadows in a composited scene make

one perceive a spatial relationship between the scene components which increases the naturalness

of the result.
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Figure 7.16: Shadows cast by a person’s own body parts can bridge the gap between personal and

extrapersonal space (Section A.4).
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Conclusions 8
8.1 Summary of achievements

This thesis has discussed the problem of extracting shadows from images and image sequences.

Shadows are a frequent occurrence in natural scenes and they represent an important element of

visual information. In many image analysis applications, such as video surveillance and immersive

gaming, shadows interfere with fundamental tasks such as object extraction, tracking and descrip-

tion. They have therefore to be identified and eliminated. In different applications, such as video

production and mixed-reality, on the other hand, shadows, when taken into account, can increase

the naturalness of visual scenes.

In literature, a list of cues has been identified on the basis of which an observer recognizes

shadows in a visual scene. The list comprises spectral cues related to the brightness and color of

shadows, geometric cues which relate a shadow to the shadow casting object, the casting surface and

the light source whose light is occluded, and temporal cues regarding the motion of a shadow with

respect to the motion of the shadow casting object and the light source. Among these cues, the most

significant ones for the purpose of designing a fully automatic shadow segmentation approach have

been selected and investigated. Significant, in the context of this thesis, means that they can be

exploited basing only on image-derived information and with a limited number of assumptions about

the scene. A shadow segmentation method that is general and flexible is in fact highly desirable

for image analysis applications that deal with scenes whose content is not known a priori, as for

instance video editing and visual surveillance.

The selected shadow properties which provide the major amount of information for shadow

segmentation in digital images are those related to the brightness and color of shadows. Due to the

nature of the problem, that is very underconstrained, it is nevertheless important to exploit also the

other cues. The methodology for shadow segmentation developed in this thesis checks therefore, in

addition to shadow spectral properties, the position of shadows with respect to the shadow casting

objects and the temporal coherence of shadows. These properties can be defined without any

knowledge of the structure of the objects and of the scene. The combination of multiple constraints

based on shadows spectral, spatial and temporal properties represents an element of originality of
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the proposed method with respect to the state of the art.

With regards to the use of color information for the analysis of shadows, different solutions

have been proposed in literature, with regard to both the physical models of shadows adopted

and to the color features exploited. This thesis has provided an original complete picture of the

existing solutions with respect to this issue, having pointed out the fundamental assumptions, the

adopted color models and the link with research problems such as computational color constancy

and color invariance. Since the problem of shadow detection is now clearly defined with respect

to such problems, the benefits of advances in those research areas could then be easily exploited

by novel shadow detection methods. From the analysis, a model of shadow that is common to

all shadow detection approaches that are fully automatic and do not require active processes (e.g.

camera calibration and user intervention) has emerged. The model is only implicit in the majority

of methods that use the invariance properties of some color transformations in presence of shadows.

It has been made explicit and it has been used in the proposed method.

On the basis of the discussed theoretical background, a new analysis method for the segmentation

of cast shadows has been proposed. The validity of the approach has been demonstrated through

two implementations, one for the segmentation of moving cast shadows in video sequences and one

for the segmentation of cast shadows in still images. As the problem of separating moving cast

shadows from moving objects in image sequences is particularly relevant for an always wider range

of applications, from video analysis to video coding, and from video manipulation to interactive

environments, particular attention has been dedicated to the segmentation of shadows in video.

As above-stated, the proposed method exploits three sources of information, namely spectral,

spatial and temporal properties of shadows. An initial shadow hypothesis is formulated on the basis

of color analysis. The RGB color space as well as photometric invariant features are considered

to this end. The photometric invariant features used in the proposed method have been selected

basing on an extensive analysis of their behavior in presence of shadows in real images and image

sequences. They are different from those typically used in literature and this represents an element

of originality of the proposed approach. The initial shadow hypothesis then undergoes a spatio-

temporal verification stage which allows to refine the segmentation results and improve the overall

system’s performance. The spatial analysis does not make any assumption about scene geometry

nor about object shape. It tests the position of each hypothesized shadow with respect to the

shadow casting object and allows to provide a first refinement of shadow segmentation results. The

object is automatically extracted by means of a statistical model-based change detection algorithm.

The temporal analysis is based on a novel shadow tracking technique. Shadow tracking was not

previously addressed in literature. Based on tracking results, a temporal reliability estimation of

shadows is derived which allows to discard shadows which do not present time coherence. The use

of a temporal reliability estimation for improving the accuracy of shadow segmentation results is

also an element of originality of the proposed approach.

The proposed approach has been evaluated by means of subjective and objective quality assess-

ments on a wide variety of video data. It has been shown to achieve accurate segmentation results in

different kind of scenes representing real world indoor and outdoor environments. The achieved gen-

erality has been demonstrated by the method’s capability of dealing with different types of objects,

such as vehicles and people, different types of shadows, such as strong and diffuse shadows, and

different types of background geometry, such as planar and curved, horizontal and vertical surfaces.

Robustness to different physically important independent variables, such as type of illumination and

surface type upon which shadows are cast, has moreover been demonstrated. The integrated use of

appropriate constraints derived from the analysis of the nature of shadows has allowed the proposed

technique to achieve an improvement with respect to the state of the art, as demonstrated by the
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comparison with different existing techniques.

Examples of application of the proposed shadow segmentation tool to the enhancement of video

object segmentation, tracking and description operations, and to video composition without studio

equipment, have demonstrated the advantages of a shadow-aware video processing. The application

of the proposed approach in the framework of the European project art.live, whose achievements

have been demonstrated in public trials, has moreover proved its reliability.

8.2 Perspectives

The modular structure of the proposed approach to shadow segmentation makes it particularly

suitable for extending its capabilities and performances. Each level of analysis can be independently

extended and improved. Some directions for further work are proposed below.

• In the developed implementation of the proposed method for shadow segmentation in video,

a static camera has been assumed. This scenario is valid for many applications, such as video

surveillance and immersive interactive environments. One natural extension of this work is to

deal with moving camera sequences, by integrating the global motion information.

• The analysis of the behavior of different color invariant features has highlighted the trade-off

between the degree of invariance and the inherent instability of the features in certain regions

of the color space. In the color analysis stage, a selective use of color invariants could be

envisaged. Different features could be selected according to the color content of the different

parts of the image. Hue could be used in areas with highly saturated colors and normalized

rgb or c1c2c3 features in the rest of the image.

• Developments in color invariance allowing improvements with respect to stability and discrim-

inative power of photometric invariant features could improve the performances of the system.

New invariant transformation could simply replace the features used in the current implemen-

tation without the need of modifying the system. Moreover, in case the targeted framework

allows it, i.e. when control on the camera is considered, different invariant derivations, such

as those proposed in [35] and [95], could be considered.

• The proposed approach addresses applications that use a monocular camera. For applications

that employ stereo or multiple cameras, the segmentation algorithm could be extended to

exploit further constraints based on homography and 3D geometric analyses. This would allow

to improve the performances of the spatial analysis stage.

• The proposed methods for shadow segmentation in still images are based on the use of edge

detection. Due to the uncertainty in defining the shadow lines when shadows present a very

diffuse penumbra, more sophisticated operators than that used in this work, such as that

proposed in [176], could be used to extend the proposed method.

• In the evaluation of the proposed approach, two different sets of parameters have been used,

one set for indoor and outdoor overcast scenes and one set for outdoor sunny scenes. They

have been set based on extensive experiments on different test sequences. To automatically

adapt the parameters to the different type of illumination conditions, it would be interesting

to define a learning process based on an objective evaluation criterion.
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Shadows: from art to

neurosciences A
“Quam multa vident pictores

in umbris et eminentia

quae nos non videmus”

Cicero, Accademica II.20,86

As human beings, we process and interpret visual information to find our way in the world

without conscious awareness of such processing. We all see the same world around us, but, as the

amount of information that our eyes transmit to the brain is huge, our perception must be selective.

We thus develop the ability to select and focus our perceptive attention on specific aspects of the

surrounding environment of which we would otherwise be unaware. In the reported quotation, for

example, Cicero underlies that artists “see in shadows and protuberances much more than we see” as

they are trained to observe the world in order to reproduce it. Similarly, when carrying out a research

into a certain problem we are necessarily induced to be selective and focus our attention on some

among the possible aspects of the problem. Different points of view about the problem correspond

to very different selectivities. Keeping an eye on such different approaches to the problem, even in

domains that are far from that in which the research takes place, can be source of new ideas and

intuitions.

The problem we have tackled in this work is that of defining an automatic analysis method for

the identification of shadows in digital images and image sequences. At the root of such problem

lies a question: What is a shadow? We have answered to this question by describing shadows as a

physical phenomenon caused by objects which obstruct light from a source of illumination. As such,

they can be characterized by means of the laws of physics and optics. This is however only one of

the possible answers to the above-mentioned question. When examining them thoroughly, shadows

reveal themselves as an extremely complex object. By urging our curiosity beyond the limits of

our specific problem, we discovered that the investigation on the nature of shadows is becoming in

recent years the central point of a very lively dialog among researchers from a number of different

167



168 Chapter A. Shadows: from art to neurosciences

domains.

Papers about the mechanisms behind shadow processing in the human visual system, published

in journals such as Nature [120], Perception [81], Trends in Cognitive Science [94], and Vision

Research [18], have contributed to make this topic of great impact within scientific research areas

such as neuroscience, experimental psychology and vision. In parallel, prominent figures within the

philosophical and history of arts domains have published interesting essays and books on shadows

and illumination [10, 17, 54, 154]. Most of these works explicitly refer to the link between the artistic

and scientific investigation of the nature of shadows. Experts in different fields are currently working

to create opportunities for an active interaction between artists and scientists to discuss such an

important aspect of our visual experience. A first international symposium∗ has been organized in

November 2003 to provide an opportunity to share scientific results, ideas and experiences.

The aim of this appendix is to present some of the results and ideas emerging from the multi-

disciplinary discussion around the nature of shadows. Such results, even if not directly related to

the research domain of this thesis and coming also from fields that are usually not considered in

scientific investigations, allow a better understanding of the shadow phenomenon and can provide

hints for further research.

The presentation is organized in four sections, which span different domains from art to neu-

rosciences. In Section A.1 we have chosen a couple of representative examples from a book by

Stoichita [154], an art historian who has investigated the representation and the significance at-

tributed to shadows in the history of Western art from the origin of Painting to the present time.

We introduce moreover the work of a contemporary artist whose research focuses on the develop-

ment of shadows as a creative medium. In Section A.2, we present some findings about how the idea

children have of shadows evolves over time. It is only at the age of eight, nine that our reasoning

about shadows becomes purely geometric and we explain them as caused by objects which occlude

light from a source of illumination. The long apprenticeship required to develop a correct cognition

of shadows explains the difficulty of dealing with them for human observers and for machines. The

processing of shadows in the human visual system and the ability of human observers to use infor-

mation from shadows to arrive at an understanding of a visual scene are important issues related to

the work presented in this thesis. Their understanding could in fact allow a better use of shadows in

the creation of visual content mixing objects from different sources. In Section A.3, we provide then

an overview of the works focusing on the role of shadows in visual perception. In Section A.4, we

finally present an interesting study of Pavani and Castiello. In [120], they show that cast shadows

could also provide cues about body position in relation to objects in the world, enhancing the ability

to interact with objects in real as well as virtual environments.

A.1 Shadows and art

According to art historians, shadows have always played an important role in arts. In his book A

Short History of the Shadow [154], Stoichita explains how the origin of Painting is related to shadows

and how cinematography used shadows as a new form of expression.

A.1.1 Mythological shadows

The myth of the origin of Painting is reported by the Latin author Pliny the Elder in his Naturalis

Historia. According to Pliny, Painting was born the first time the shadow of a man was outlined

on a wall. The picture of Figure A.1 shows an illustration of Pliny’s myth by the German painter

∗http://www.unitn.it/convegni/neuroscienze.htm
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Figure A.1: Eduard Deage, The origin of Painting, 1832.

Eduard Daege (1832): a woman, the daughter of Butades, potter from Sycion, was in love with the

young man; when he had to leave the country, she fixed on the wall the contour of his shadow.

According to Stoichita, the first actor in Pliny’s myth is nature, which, by projecting the shadow,

reduces the three-dimensional world to a bidimensional image. Art does not originate therefore from

the direct observation of the world but from a copy (the outlined shadow) of a copy (the shadow)

of reality.

In his analysis, Stoichita relates moreover Pliny’s myth to Plato’s myth of the cave which marks

the origin of the theory of knowledge in Western culture. In his The Republic, Plato relates of a

cave where some prisoners have been living since their infancy in chains. They are forced by chains

to look at the wall on the opposite side of the cave’s entrance and they cannot turn their head

around. Therefore, they consider the shadows projected by the external world on the cave’s wall as

real until they are allowed to turn their heads and to recognize they have made a mistake. Shadows

represent for Plato the first fake semblances of reality and the starting point of the path toward real

knowledge.

According to Stoichita’s analysis, both art and knowledge originate from shadows.

A.1.2 Cinematographic shadows

Shadows assume during the entire Expressionist period (1919-1933) a fundamental role in cinematog-

raphy. Stoichita analyzes two famous frames taken from two masterpieces of German Expressionist

cinema, The Cabinet of Dr. Caligari (Das Kabinett des Doktor Caligari), realized between 1919 and

1920 by Robert Wiene and Willy Hameister, and Nosferatu, A Symphony of Horror (Nosferatu, eine

Symphonie des Grauens), realized in 1922 by Friedrich Wilhelm Murnau. In an Expressionist film,

each frame is conceived in such a way that it refers by analogy or by contrast to the entire film. It

is then correct and indeed useful to analyze a single image as is done for paintings, something that
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Figure A.2: Robert Wiene and Willy Hameister, frame from The Cabinet of Dr. Caligari, 1919-

1920.

Figure A.3: Friedrich Murnau, frame from Nosferatu, A Symphony of Horror, 1922.

should not be normally done for films. All the more that Murnau and Wiene declare openly to be

indebted to the past’s Painting.

The chosen frame from The Cabinet of Dr. Caligari is shown in Figure A.2. It shows the Doctor

on the left hand side of the image and the giant projection of his shadow on the right hand side.

The shadow is much bigger than the character. It serves in fact to reveal his inner being, as if the

movie camera was able, through the shadow, to plunge in the consciousness of the character and to

project his internal mental states on the wall. The wall has then the role of a second screen and the

projection of the shadow is a metaphor of the film creation. The shadow shows what is happening

inside the character, that is what the character is. Stoichita makes us notice the contrast between

the Doctor’s attitude and his shadow. The shadow is emanating directly from the character but it is

distorted and projects his psyche on the screen. The stress laid on the hand which represents action

aims at conveying the idea that the shadow itself can be an active, evil instrument. What we see

in this frame is the embodiment of the phantoms of the narrator of the entire story, Francis, a mad
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Figure A.4: Larry Kagan, At.

man. It is just a “projection”, an illusion, and nothing more. In the whole film Wiene is playing

with the fact that the narrator is a metaphor for a film director and the projection of the shadow

is, as stated above, a metaphor for the film creation which reveals its power to trick.

In the very famous frame from Nosferatu shown in Figure A.3, the shadow has a more delicate

function. Does the silhouette of the vampire represent its shadow or the vampire himself? The

deformation of hands and arms seem to support the first hypothesis but Murnau and the spectator

know that, according to an old tradition, vampires do not project shadows. The only possible answer

is then that the silhouette is Nosferatu himself, a kind of octopus with tentacles, translucent, almost

a phantom. He lives in an underground universe, full of doors, corridors, and stairs, whose structure

has been compared to that of the unconscious according to Freud. The film director then acts as “a

man who shows the shadows”, that is who reveals the obscure content of consciousness. The analogy

between shadow and film frame is made clear to the spectator only at the end of the film, when the

first ray of sunshine reaches Bremen and disintegrates Nosferatu and, most of all, when light floods

into the movie theater and the screen becomes white again.

A.1.3 Wall sculptures in steel and shadow

Figure A.4 and Figure A.5 show two works by Larry Kagan∗, a contemporary artist that uses

shadows as an art medium. The works are created by casting light through the contours of a steel

wire sculpture that protrudes from the wall. At first glance, Kagan’s sculptures seem to be a mass

of jumbled steel. Lit from above, however, their shadows are shaped into well-articulated sketches

of everyday life.

In Kagan’s art, the wires hold the critical information in an encrypted, deconstructed way that

is then reassembled by light. The artist explains this concept by drawing an analogy with the

delivery of information through an e-mail. The message in the e-mail gets broken up into chunks

and distributed to different routes. An algorithm then reconnects the pieces to be delivered as one

∗http://www.arts.rpi.edu/˜kagan/
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Figure A.5: Larry Kagan, Couch.

neatly packaged message to another’s inbox. In the case of his steel-and-shadow sculptures the wires

present the paths distributing chunks of information. The algorithm is the light, and all of a sudden

the pieces connect and make sense.

A.2 Shadows and psychology

Between the two World Wars, the Swiss psychologist Jean Piaget (1896-1980) initiated the research

about children’s cognitive development. In 1927, he published in his The Child’s Conception of Phys-

ical Causality (La causalité physique chez l’enfant), among other results of his studies, his findings

about children’s cognition of shadows. Roberto Casati in his book The discovery of the shadow [17]

provides an overview of Piaget’s and later experiments about children’s ability to anticipate and

explain objects’ cast shadows. We summarize them here.

A.2.1 Baby shadows

To find out what children think about shadows Piaget interviewed them. Children’s aged between

five and ten years took part in his study. The reported answers are subtle and inventive. The

shadow of a hand is dark because the hand has bones, says for instance Gall. Shadows are created

by the night for Tab. For Roy, the shadow is a substance which takes up space and is impermeable

to light.

From the analysis of children’s answers, Piaget concluded that their understanding of shadows

can be characterized by four stages. In the first stage, beginning from the age of five, the shadow of

an object emanates from the environment’s shadows. The night or the darkness of a room corner

are some kind of “black clouds” of which shadows are made of. In the second stage, around the

age of six, seven, shadows do not appear any more as emanated by the night but rather by the

shadow-casting object. Consequently, the child is not able to anticipate the position of the shadow

with respect to the light source. He tries to make the shadow rotate in the room by turning right
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Figure A.6: The sphere, the shadow and the box can move independently. First experiment: in

the unnatural situation, the shadow moves when the sphere stays still; in the natural situation, the

shadow moves when the sphere moves. Second experiment: in the unnatural situation, the shadow

moves when the box moves; in the natural situation, the shadow stays still below the sphere when

the shadow moves.

round instead of going round the lamp. In the third stage, around the age of seven, eight years,

children discover that a shadow has a geometric relationship with the light source, but they do not

yet understand the cause-effect relationship between the emitted light and the shadow. They believe

for instance that an object casts a shadow also during the night. In the fourth stage, around the

age of eight, nine, the explanation of shadows becomes purely geometric and corresponds to that of

adults: shadows are caused by objects which occlude light from a source of illumination.

Piaget’s experiments were replicated in more recent years by the psychologist Rheta DeVries

with a greater number of children. The experimental methodology in this case was different from

the interviewing technique of Piaget. Children were involved in a game inside a room where a mobile

lamp was present to create shadows on a wall and various objects were made available to children

to cast shadows. Children were asked to perform different tasks, such as making their own shadow

bigger than that of the toys, making their shadow touch that of the experimenter, or making their

own shadow move or disappear. They were moreover asked many questions aimed at verifying if

their ideas where coherent. As Piaget, DeVries found that the idea children have of shadows changes

over time. However, she did not find that shadows are part of the night.

The reported experiments and results tell us something about what children say about shadows

or what researches have been able to deduce from contradictions in their answers. Do these concepts

derive from what children have heard from adults and what they have learned when playing, or are

they related to previous phases of their cognitive development? Gretchen Van de Walle, Jayne

Rubenstein and Elizabeth Spelke have conducted some experiments with children aged only some

months, that is children that are not yet able to talk.

In the Sixties, a methodology has been introduced which allows to study the mental universe

of children from their first weeks. By means of this methodology, researches have discovered that

newborns know a lot of things. One is induced to think that they have a theory of the world or

perhaps a battery of mini-theories, one for each object. What about shadows? Do newborns have

a theory of shadows? Van de Walle, Rubenstein and Spelke made two experiments with respect to

this question with children at ages between five and eight months. They showed to children a sphere

floating in space above a box on which it casts a shadows (See Figure A.6).

The first experiment tried to understand if infants found more surprising the situation where the

shadow moves while the sphere stays still or the natural situation where the shadow moves when
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the sphere moves. On the contrary to adults, newborns prefer the unnatural situation where the

sphere stays still. An hypothesis which could explain this preference is that the natural motion of

the shadow violates one of the principles of the physical theory of children which states that objects

do not act at a distance. The shadow should not move because it is attached to the box and not

to the sphere. The second experiment tried to understand if newborns found more surprising the

situation where the box moves and the shadow stays still below the sphere, as it is natural, or the

situation where the shadow moves together with the box, as if it was attached to it. As before, the

natural situation is more surprising for children.

On the basis of these experiments it can be arguably said that newborns do not have a theory

of shadows. They treat shadows as objects, probably because this requires little effort, since they

already have a theory for objects. A theory of shadows comes into play when children understand

that shadows do not behave as objects do.

A.3 Shadows and vision

We have identified two main threads of research about shadows in visual perception and cognitive

neuroscience. The first includes works on the informational structure of cast shadows, that is on

the information they offer to the human visual system for the interpretation of a visual scene and

the use that human observers make of this information. The second thread comprises studies on

the role of both self and cast shadows in the recognition of objects. In this section, we present an

overview of the main results of these two threads.

A.3.1 Shadows in the brain

The perceptual interpretation of cast shadows has been thoroughly investigated by Mamassian,

Kersten and Knill [81, 94]. Cast shadows are related to two distinct surfaces, the surface of the

casting object and the surface on which the shadow is cast. Cast shadows are therefore potentially

informative about the shapes of both the surfaces and about the spatial layout of the scene, that is

about the spatial relationship between surfaces. As the result of numerous psychophysical experi-

ments, the above-mentioned authors have found that the human visual system does not effectively

use cast shadows as cues to surface shape, despite the potential reliability of the information they

provide [83]. This seems to hold for both static and moving cast shadows. Cast shadows are shown,

on the other hand, to be very salient cues to the spatial layout of objects in a scene, especially in

dynamic scenes.

A detailed investigation of this issue has been carried out by the authors in [81]. They show

that moving cast shadows provide to the human visual system a robust source of information about

depth that is resistant to conflicting cues and high-level knowledge. Shadow motion induces in fact

apparent motion of an object in depth even when the object’s size does not change and the object

does not move. Shadow motion can override these cues which suggest the stationarity of the object.

This effect is illustrated in Figure A.7. If the object’s image keeps its size fixed but the object moves

in the image plane, cast shadow motion still induces apparent motion of the object in depth, as

illustrated in Figure A.8. The effect of apparent motion in depth is moreover resistant to changes

in contrast, opacity and even some significant deformations in the shape of the shadow. Replacing

the ellipsoidal shadow of the ball in the scene of Figure A.8 with a square shadow, for example, did

not reduce the effect.

The motion of a cast shadow is inherently ambiguous. If Figure A.7 is considered, it is clear

that the location of the shadow cast by the square on the background could be the results of an
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Figure A.7: Increasing the displacement between the cast shadow and the foreground object

induces an impression of increasing depth relative to the background (images from [94]).

Figure A.8: When the shadow trajectory is horizontal, an impression of seeing the ball rise above

the checkerboard floor is induced. When the shadow trajectory matches that of the ball, the ball

appears to recede smoothly in depth along the floor (images from [94]).

infinite number of combinations of the positions of the viewpoint, the light source, the object and

the background surface. The fact that a displacement of the cast shadow produces a percept of a

square moving in depth indicates that the human visual system uses some a priori constraints to

resolve the ambiguity in the cast shadow information. Kersten, Knill and Mamassian found that the

experimental results are consistent with the hypothesis that the visual system assumes light sources

and background surfaces to be stationary in the scene.

The effects of shadows on the performance of object recognition tasks have been studied by

Braje, Legge, and Kersten [15] and by Castiello and colleagues [18, 19]. Braje, Legge, and Kersten

have explored the effects shadows have on the recognition of natural objects such as fruits and

vegetables. They found that recognition performance was not affected by the presence of shadows.

In [18], Castiello investigated whether recognition performance of familiar objects other than fruits

and vegetables is sensitive to different features (presence, position, and shape) of both naturally

cast and artificially attached shadows. A general increase in response time was found when naming

objects in incongruent shadow conditions, that is when the object was presented in conjunction

with a shadow that originated from a different object. Overall, these studies indicate that humans

can either marginalize the effects shadow have so that object processing is invariant across different

shadow conditions, or be affected by shadows in object recognition tasks when specific shadow

manipulations are performed.

The work of [18] has been extended in [19]. The first aim of this study is that of investigating to

what extent the processing of shadows during an object recognition task occurs without conscious

awareness. Patients with visual neglect are tested to this end. Visual neglect is a neurological

phenomenon which is observed after the occurrence of lesions in various regions of the brain, but

especially those involving the right parietal lobe. Visual neglect refers to the defective ability of
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patients with unilateral brain damage to attend to the side of space contralateral to the lesion, and

to report stimuli presented in that portion of space. Neurological evidence was found that neglect

patients were still able to process shadows to optimize object shape perception, that is shadow

processing is outside conscious awareness. The second aim of the study is that of determining the

locus or loci of shadow processing within the human brain. This could allow to better understand

the nature of the mechanisms underlying the ability to recognize objects under different illumination

conditions and the residual mechanisms that allow patients with lesions in areas that may be critical

for object recognition to preserve some ability to interact with environment. The results suggest

that the link between object and shadow shape may occur within the brain’s temporal lobe.

A.4 Shadows and neuroscience

As discussed in the previous section, shadows help our visual system decide about spatial relation-

ships between objects and their movement and play a role in the recognition of objects. A very

recent study has shown that, in addition to their effects on visual perception, cast shadows could

provide cues about body position in relation to objects in the world, enhancing the ability to interact

with objects in real as well as virtual environments. We present these findings here.

A.4.1 Near my shadow, near my body

Artificial body parts, such as sham arms, or repeated tool use alter the perceived position of the

body in space. In relation to these situations, it has been shown that the internal representation

of the body’s spatial extent, the so-called body schema, can extend beyond the physical limit of the

skin. The recent findings of Pavani and Castiello [120] indicate that body schema can also extend

to incorporate shadows cast by an individual’s body parts.

In their experiments, the authors tested ten individuals in a visuo-tactile interference experiment.

They placed stimulators on the thumbs and index fingers of subjects and asked them to indicate via

foot levers when a particular digit was being touched (see Figure A.9). When people are asked to

discriminate a touch on the thumb or index finger, visual distracters, such as flashes of light, near

the location of the touch, that is near the hand, are known to increase reaction times and error rates.

This is what is called visuo-tactile interference. It happens because the subject is busy processing

two separate inputs from the same region of the brain’s body map. Pavani and Castiello’s tests

studied then whether visual distracters near the hand’s shadow have a similar effect.

They carried different experiments where participants saw the shadow cast by one of their hands

projected on a table surface (Figure A.9 (a)), the polygonal shadow cast by a shaped glove they were

wearing (Figure A.9 (b)) and a line drawing silhouette of a hand (Figure A.9 (c)), respectively. In the

first case, they observed that visuo-tactile interference was significantly stronger when stimulations

were presented at the hand casting the shadow. This suggests that the hand shadow bound visual

distractors in extrapersonal space to touches presented at the hand.

In the case of participants wearing shaped gloves projecting a polygonal shadow near the visual

distracters the visuo-tactile interference was almost the same as the one with the hand not casting

a shadow. In this case, the polygonal shadow movements were in accordance with the hand’s

movements but the shadow had no resemblance to a hand. The result then suggested that merely

seeing a shadow stretching out of the body is not sufficient to produce a personal-extrapersonal

binding.

In the last case, the silhouette mimicked the shape of the hand shadow while bearing no re-

semblance to a shadow. In addition, no real shadows of the hand were visible. Also in this case,
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Figure A.9: Experimental setup for Pavani and Castiello’s experiments (image from [120]). Par-

ticipants sat with their chin on a rest, fixating on a green LED on the table surface (green central

circle). The blue arrows indicate the electromagnetic stimulators attached to the fingertips. Visual

distracters consisted in three successive flashes delivered by a pair of red LEDs (red side circles). In

(a) participants saw the shadow cast by one hand; in (b) the polygonal shadow cast by a shaped

glove; in (c) a line drawing silhouette of a hand.

visuo-tactile interference was not significantly different with respect to the case of the hand with

no silhouette. Unlike in the first experiment, the polygonal shadow and the silhouette did not

differentially affect touch discrimination performance at one hand as compared to the other.

In a final experiment, Pavani and Castiello compared the magnitude of the interference effect

when the hand shadow was cast near the visual distracters with the interference observed when

either the left or the right hand was physically near the distracting light, that is resting on the table

surface immediately adjacent to the distracting lights. In this case, visuo-tactile interference was

larger at the hand physically near the distracting lights than at the hand casting its shadow near

the distracters. Although the body schema can extend to incorporate body shadows, the actual

boundaries of the body remain understandably more relevant for estimating peripersonal space.

The authors suggest that body shadows may represent a new means for investigating the relation-

ship between dynamic coding of peripersonal space and the control of action. They conclude that

shadows cast by a person’s own body parts can bridge the gap between personal and extrapersonal

space.
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• Water–polo: 2nd Swiss league player with Lausanne Water–polo Club (since October 2001).

• Reading: literature and arts.

Publications

Journal papers

• E. Salvador, A. Cavallaro and T. Ebrahimi, ’Cast shadow segmentation using invariant color

features’, Computer Vision and Image Understanding, vol. 95, n. 2, August 2004, pp. 238-259.

• A. Cavallaro, E. Salvador and T. Ebrahimi, ’Shadow-aware object-based video processing’,

submitted to IEE Proceedings Vision Image & Signal Processing.



Curriculum Vitae 193

Conference papers

• A. Cavallaro, E. Salvador and T. Ebrahimi, ’Shadow detection in image sequences’, Proc. of

IEE Conference on Visual Media Production (CVMP), London, UK, March 2004.

• E. Drelie Gelasca, E. Salvador and T. Ebrahimi, ’Intuitive Strategy for Parameter Setting

in Video Segmentation’, Proc. of SPIE, Visual Communications and Image Processing 2003,

Vol. 5150, p. 998-1008, Lugano, Switzerland, July 2003.

• E. Salvador, A. Cavallaro and T. Ebrahimi, ’Spatio-temporal Shadow Segmentation and Track-

ing’, Proc. of SPIE, Image and Video Communications and Processing 2003, Vol. 5022, pp.

389-400, Santa Clara, California, USA, January 2003.

• E. Salvador and T. Ebrahimi, ’Cast Shadow Recognition in Color Images’, Proc. of 11th

European Conference on Signal Processing (EUSIPCO), Vol. 3, pp. 555-558, Toulouse, France,

September 2002.

• E. Salvador, A. Cavallaro and T. Ebrahimi, ’Shadow Identification and Classification using

Invariant Color Models’, Proc. of IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), Vol. 3, pp. 1545-1548, Salt Lake City, Utah, USA, May 2001.


	Title
	Contents
	Acknowledgments
	Abstract
	Version abrégée
	Introduction
	Motivations
	Investigated approach
	Main contributions
	Organization of the thesis

	From physical scenes to digital images
	Introduction
	Light
	Units
	Light sources

	Surfaces
	Diffuse surfaces
	Specular surfaces

	Light and surfaces: Reflection models
	The Dichromatic Reflection Model
	Model extension

	Color generation
	The human eye
	Color image formation

	Color representation
	Colorimetric color spaces
	Device-oriented color spaces
	User-oriented color spaces

	Summary

	Shadows and shadow detection
	Introduction
	What is a shadow?
	Terminology and definitions
	Shadow cues

	Modeling shadows appearance in images
	The spectral appearance of shadows
	The geometric appearance of shadows

	Shadow detection: state of the art
	Model-based techniques
	Property-based techniques
	Still images
	Image sequences

	Summary

	Photometric invariants for shadow analysis
	Introduction
	From color constancy to shadow analysis
	Photometric color invariants
	The Dichromatic Reflection model in color space
	Construction of color invariants

	Invariance to shadows
	Discussion

	Summary

	Segmentation of cast shadows
	Introduction
	Overview of the proposed approach
	Invariant color features selection
	Color components analysis
	Edge maps analysis
	Discussion

	Color analysis
	Pre-processing
	Initial evidence
	Additional evidence

	Spatial analysis
	Moving object extraction
	Probability-based thresholding for color analysis
	Shadow boundaries analysis

	Temporal analysis
	Moving cast shadows tracking
	Temporal reliability estimation

	Cast shadow segmentation in still images
	Color analysis
	Spatial analysis
	Cast shadow segmentation by color edge filling

	Summary

	Performance evaluation
	Introduction
	Results on image sequences
	Segmentation results
	Objective performance evaluation and comparison
	Segmentation and tracking results

	Results on still images
	Summary

	Shadow-aware video processing
	Introduction
	Shadow elimination for improved video object extraction
	Immersive interactive environments
	Photorealistic scene composition
	Summary

	Conclusions
	Summary of achievements
	Perspectives

	Shadows: from art to neurosciences
	Shadows and art
	Mythological shadows
	Cinematographic shadows
	Wall sculptures in steel and shadow

	Shadows and psychology
	Baby shadows

	Shadows and vision
	Shadows in the brain

	Shadows and neuroscience
	Near my shadow, near my body


	Bibliography
	Curriculum Vitae



