908 research outputs found

    Subband adaptive regularization method for removing blocking effect

    Get PDF
    Version of RecordPublishe

    Removal Of Blocking Artifacts From JPEG-Compressed Images Using An Adaptive Filtering Algorithm

    Get PDF
    The aim of this research was to develop an algorithm that will produce a considerable improvement in the quality of JPEG images, by removing blocking and ringing artifacts, irrespective of the level of compression present in the image. We review multiple published related works, and finally present a computationally efficient algorithm for reducing the blocky and Gibbs oscillation artifacts commonly present in JPEG compressed images. The algorithm alpha-blends a smoothed version of the image with the original image; however, the blending is controlled by a limit factor that considers the amount of compression present and any local edge information derived from the application of a Prewitt filter. In addition, the actual value of the blending coefficient (α) is derived from the local Mean Structural Similarity Index Measure (MSSIM) which is also adjusted by a factor that also considers the amount of compression present. We also present our results as well as the results for a variety of other papers whose authors used other post compression filtering methods

    Removal Of Blocking Artifacts From JPEG-Compressed Images Using Neural Network

    Get PDF
    The goal of this research was to develop a neural network that will produce considerable improvement in the quality of JPEG compressed images, irrespective of compression level present in the images. In order to develop a computationally efficient algorithm for reducing blocky and Gibbs oscillation artifacts from JPEG compressed images, we integrated artificial intelligence to remove blocky and Gibbs oscillation artifacts. In this approach, alpha blend filter [7] was used to post process JPEG compressed images to reduce noise and artifacts without losing image details. Here alpha blending was controlled by a limit factor that considers the amount of compression present, and any local information derived from Prewitt filter application in the input JPEG image. The outcome of modified alpha blend was improved by a trained neural network and compared with various other published works [7][9][11][14][20][23][30][32][33][35][37] where authors used post compression filtering methods

    Compression of phase-only holograms with JPEG standard and deep learning

    Full text link
    It is a critical issue to reduce the enormous amount of data in the processing, storage and transmission of a hologram in digital format. In photograph compression, the JPEG standard is commonly supported by almost every system and device. It will be favorable if JPEG standard is applicable to hologram compression, with advantages of universal compatibility. However, the reconstructed image from a JPEG compressed hologram suffers from severe quality degradation since some high frequency features in the hologram will be lost during the compression process. In this work, we employ a deep convolutional neural network to reduce the artifacts in a JPEG compressed hologram. Simulation and experimental results reveal that our proposed "JPEG + deep learning" hologram compression scheme can achieve satisfactory reconstruction results for a computer-generated phase-only hologram after compression
    corecore