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ABSTRACT 
This paper presents two new approaches to remove block- 

ing effect in low-bit rate transform coded images by using 
subband decomposition/reconstruction technique. They are 
designed to act as a supplementary post-processing step of 
the JPEG standard. Both approaches make use of the noise 
characteristic of each snbband to bound the maximum tol- 
erable error and the smoothness of the restored images in 
restoring snbband images with regularization. One of them 
will also utilize the spatial activity of the restoring images 
to tighten the bounds. Computer simulations showed that 
the new adaptive objective functions could achieve a bet- 
ter restoration performance in terms of both subjective and 
objective measures than did other conventional objective 
functions. 

1. INTRODUCTION 

Discrete cosine transform (DCT) coding is a well es- 
tablished technique for image compression and has been 
adopted as the basic compression algorithm in the JPEG 
standard. In DCT compression, image is first divided into 
small non-overlapping blocks (usually 8 x 8 or 16 x 16) and 
each block is transformed with a 2-dimensional (2-D) DCT. 
Then, high-frequency (HF) coefficients of the transformed 
blocks are discarded, and the remaining low-frequency (LF) 
coefficients are quantized. However, block-based transform 
coding results in “blocking effect” [l, 21 at high-compression 
ratio. The blocking effect leads to the perception of visible 
discontinuity between adjacent blocks. In this paper, we 
present a spatially non-adaptive and a spatially adaptive 
subband approaches to remove this annoying artifact in the 
reconstructed images. These approaches are fully compati- 
ble with the JPEG standard. 

2. REGULARIZATION APPROACH 

A linear space-invariant image degradation system can 
be modeled as 

?/=Bf+n, (1) 
where vectors g ,f and n (lexicographically ordered by ei- 
ther column or row, from the size of N x N into N Z  x 1) 
are the degraded image, the original image and the additive 
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noise, respectively. Matrix B is the linear distortion opera- 
tor of size N 2  x N 2 ,  and y would be the blocky image that 
we reconstructed. In our case, B represents an operation 
which consists of the block DCT compression, quantization 
and decompression. 

Regularization [6, 71 is an effective technique to convert 
an ill-posed problem to a well-posed one. Ya.ng, Galatsanos, 
and Katsaggelos proposed an objective function (CLSI) [l] 
for tackling the blocking effect. In particulax, the objective 
function is defined as : 

where S is a regularizing operator of dimension N 2  x N 2 ,  
which is generally a high-pass filter usedL to reduce the 
amount of noise (usually in the form of HF) in the restored 
image. 11 0 1 1  represents the Euclidean norm. Let c: and 
e: be the bounds for IIy - f 1 I 2  and llSf112, respectively, i.e., 
lly-f1I2 5 c:, and llSf112 5 6 ; .  The former bound is for the 
error that we can tolerate. With this constraint only, the 
solution obtained is an inverse filter which will amplify the 
noise during the restoration. Hence, satisfying the former 
constraint may have a side effect of noise amplification. The 
latter bound imposes a smoothness upperbound and sup- 
presses the HF content of the whole image by means of 
the regularizing operator. The principle of regularization is 
to find the best estimate that compromises these two con- 
straints. The ratio 011 (= 5)  is the regularization parame- 
ter that controls the degree of smoothness of the resulting 
image. 

A solution to the fore-mentioned problem can be ob- 
tained by minimizing the objective function (eqn.(2)) with 
respect to f. The iterative method, which has a number of 
advantages [8], is given by 

4 

where I is the identity matrix and X t  denotes the trans- 
pose of matrix X. The relaxation parameter /31 is a scalar, 
which has to be within the range 0 < p1 < to 

111 + a1StSII 
ensure the convergence of the iteration. The iteration f(k) 
will converge to a unique estimate of the original image. 
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3. PROBLEM FORMULATION IN SUBBAND 
DOMAIN 

The basic technique of subband decomposition and re- 
construction [3] can be briefly explained as follows: The 
input image is decomposed into several narrow bands by 
passing through an analysis filter bank. Subband images 
are then sub-sampled for further processing. In reconstruc- 
tion, processed subbands are up-sampled and filtered for 
interpolation with a synthesis filter bank. Then they are 
recombined to form the reconstructed image. I t  is desirable 
to design the analysis/synthesis filter banks 131 in such a 
way that they can remove aliasing between subbands and 
achieve perfect reconstruction. 

For alias-free subband decomposition, the degradation 
model in subband domain [4, 51 becomes 

yz = B,f,  +n ,  f o r i  = 1, ... , M. (4) 

where y t ,  B,, fz, and nz are the sub-sampled observed im- 
age, the subband distortion operator, the original image, 
and the noise respectively of the zth subband. M is the 
number of decomposed subbands. 

Figure 1 depicts four subband images of a JPEG en- 
coded image (0.26 bit/pixel). The image is decomposed 
with an 8-tap perfect reconstruction-quadrature mirror fl- 
ters (PR-QMFs) [3]. Subband LL is very close to the JPEG 
encoded version. Subbands LH, HL and HH contain the 
horizontal, vertical and diagonal features of the original 
JPEG encoded image, respectively. The appearance of the 
horizontal and vertical line segments in subbands LH and 
HL are caused by the quantization process of the inde- 
pendent block-based transform coding scheme. It  is ob- 
vious that,  better images could be achieved by adapting 
the restoration models to the characteristic of each sub- 
band separately. In other words, we aim at adapting the 
regularization technique to the appearance of the blocking 
artifact of each subband. 

4. SPATIALLY NON-ADAPTIVE SUBBAND 
APPROACH 

We propose the following new subband objective func- 
tions for a M-subband approach : 

where s E M subbands. In these functions, W i  and W i  are 
diagonal weighted matrices of dimension $ x g. Param- 
eter a:, S" ,  f" and y" are defined as before for a particular 
subband. There exists a trade off between computational 
load and the number of subbands. We have found that a 4- 
subband system is robust enough for this application, with 
an acceptable increase in computational load only. For a 
4-subband system, we have s E A 

In highly compressed JPEG encoded natural images, 
most HF DCT coefficients are discarded. Therefore, in sub- 
band domain, the low-frequency subband (subband LL) will 
contain relatively large amount of signal energy than the 
mid-frequency (subbands LH and HL) and high-frequency 
subbands (subband HH). Usually, subband HH almost con- 
tains no signal energy. Hence, for subband HH, where the 
signal-to-noise ratio (SNR) is the lowest, noise suppression 

{ LL, LH, HL, HH }. 

should have an overwhelming effect. Subbands LH and HL 
are with moderate SNRs, and characterized by the block- 
ing artifact, which is apparently observed as hori 
vertical lines segments. Therefore, noise suppressi 
be specifically strengthened in these segments, while mod- 
erate restoration condition is applied to other regions. 
most of the signal energy is retained in subband LL, similar 
restoration conditions should be applied as in the fullband 
image. 

Based on the above arguments, we adjust parameters 
W i  and W$ for particular subband. To simplify the 
weighted matrices determination, subband LL is taken as 
the reference for determining the weighted matrices for the 
other subbands. Hence, we have W i L  = W i L  = I .  For 
subband HH, we have WEH = 0 1  and W f H  = 71, where 
y 1 1, to remove the HF component amplification effect and 
enhance the noise suppression effect simultaneously. Sim- 
ilarly, for subbands LH and HL, where noise suppression 
strength can be approximated to be that in subband HH, 
we have Wi" = W f L  = W F H .  As for Wk" and 
they should be determined according to their noise cha 
teristics as follows : 

0 

p otherwise, 

if it is coincides with the 
line segments, 

"2 fo r i  = 1, ..., T .  

where p is a scalar weight, with the range 0 < p < 1. Hence, 
we can rewrite eqn.(5) as : 

i wi"(a, i) OT W,""(Z, 2) = 

J:: = a211SLLfLL112 + IlyLL - fLL112, 

J:: = ya2IIS f II + IIw:H(YLH - fLN)1I2, 
Jo"," = Y'Y211S f  11 + IIWRHL(YHL - f H L ) l l 2 ,  
JU"," = Y 4 I S  f II . 

(6) 
L H  L H  2 

H L  H L  2 

H H  H H  2 
(9) 

Instead of looking for a solution whic 
four objective functions with respect to their CO 

subband images simultaneously, we minimi 
bination of the above equations with respect 
image. In formulation, we have 

Since it is very difficult to determine an optimal reg- 
ularization operator (S ' )  for each subband, an alternative 
objective function (SCLS1) given as 

9L 82 

Ja3 = mIIS [w;S"l IT + II [Wi3YC - f"1 I? (11) 
s € A  SEA 

9L 
is exploited instead, where [e] is the reconstruction op- 

SEA 
erator which combines all four subbands to reconstruct an 
image with the synthesis filter bank. teration, 
instead of performing regularization to nd sepa- 
rately, the subbands predicted and the prediction error of 
each subband are respectively weighted by their specific W i  
and W i  first. Then, the weighted terms are reconstructed 
into fullband domain before SCLSl is performed. 

Function SCLSl is spatially non-adaptive as it is based 
on the linear space-invariant image model (eqn.(l)). Since 
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this model may simplify the nature of natural images, per- 
forming SCLSl on spatial varying images may not get a 
good result. In this case, modification of SCLSl is neces- 
sary to preserve the high spatial activity components (e.g. 
edges) of the restoring images. 

5. SPATIALLY ADAPTIVE SUBBAND 
APPROACH 

In order to restore the sharpness of the restored images, 
a new spatial adaptive subband function (SCLS2) that em- 
beds the spatial activity information of the restoring images 
is presented. This function is defined as 

w w 

S E A  SEA 
(12) 

where R and L are both diagonal weighted matrices and 
defined as in [2], so as t o  compromise the effect of the con- 
straints with respect t o  the spatial activity [2]. Minimizing 
the objective function (12) with respect to f results in the 
following iterative equation : 

f(k 4-1) = f ( k )  +P4(RtRy - (Rt  R+a4St L t L S ) f ( k ) ) .  (13) 

6. SIMULATION RESULTS 

In our computer simulations, three typical 256-level test 
images, ‘Baboon’, ‘Lena’ and ‘Hat’ were selected. They are 
a l l  of size 256 x 256. The spatial activity distribution of 
these images range from high to low [SI. The test images 
were divided into 8 x 8 blocks and transform-coded with 
JPEG scheme to  generate blocky images. The blocky im- 
ages were then restored by making use of CLSl (eqn.(Z)), as 
well asour proposed SCLSl (eqn.(ll)) and SCLS2 (eqn.(l2)), 
with initial estimates prepared by using the approach pro- 
posed in [2]. 

A 3 x 3 Laplacian filter was used as the regularization 
operator S. The regularization parameters were chosen to 
be (YI = (z)2 and a3 = a 4  N 4~x1. 8-tap PR-QMFs, which 
are designed to minimize the interband aliasing energy of 
the filtered signals [3], were used as the analysis/synthesis 
filter banks. The PPSNR was used as an objective criterion 
of merit. Criterion Il’k-’‘-1’la , l rk l ,a  5 2 x lo-” was used to 
terminate the iterative processes. The PPSNR is defined as 

where gr,3 and z ~ , ~  are the ( i ,  j ) t h  pixels of the original and 
the output images respectively. 

Table 1 lists the PPSNR improvements (IPPSNR) of 
the restored images and the number of iterations required to 
achieve these performance. It is obvious that our proposed 
functions yield better objective measures than CLSl does. 
On the average, the objective improvement of our proposed 
functions are approximately 3.4 times over that of CLSl in 
terms of dB. It  is easy to realize that,  SCLS2 yields the best 
objective measures among the three functions, for all test 
images. 

Figure 2 shows the magnified portion of a JPEG en- 
coded ‘Lena’ (PPSNR = 28.3573 dB). Figure 3, 4 and 5 are 
the magnified portions of ‘Lena’ after being processed by 
CLSI, SCLSl and SCLS2 respectively. With our proposed 
objective functions, the restored images are free from the 
blocking effect. Especially with SCLS2, the sharpness of 
the restored images is well restored and preserved. 

7. CONCLUSIONS 

In this paper, we presented two new adaptive objective 
functions for the constrained least square regularization ap- 
proach to remove the blocking artifact. Findings reveal that 
the proposed objective functions performed better than the 
regularization approach proposed in [l], on both objective 
and subjective measures. 
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a: subband LL 
size: $ x + 

JPEG 
encoded image 

‘Baboon’ 
‘Lena’ 
‘Hat’ 

b: subband LH 
size: $ x + 

IPPSNR (# of iterations) 
SCLSl SCLS2 bit/pixel cLsl [11 

0.33 0.084dB(13) 0.146dB(04) 0.151dB(08) 
0.26 0.136dB(13) 0.490dB(07) 0.541dB(19) 
0.28 0.210dB(14) 0.994dB(20) 1.037dB(20) 

c: subband HL 
size: $ x $ 

d: subband HH 
size: $ x + 

Figure 1: Four subbands of a JPEG encoded image. 

Figure 2:  JPEG encoded ‘Lena’ Figure 3: CLSl processed ‘Lena’. 

Figure 4: SCLSl processed ‘Lena’. Figure 5: SCLS2 processed ‘Lena’. 
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