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ABSTRACT 

The aim of this research was to develop an algorithm that will produce a 

considerable improvement in the quality of JPEG images, by removing blocking and 

ringing artifacts, irrespective of the level of compression present in the image. We review 

multiple published related works, and finally present a computationally efficient 

algorithm for reducing the blocky and Gibbs oscillation artifacts commonly present in 

JPEG compressed images. The algorithm alpha-blends a smoothed version of the image 

with the original image; however, the blending is controlled by a limit factor that 

considers the amount of compression present and any local edge information derived 

from the application of a Prewitt filter. In addition, the actual value of the blending 

coefficient (α) is derived from the local Mean Structural Similarity Index Measure 

(MSSIM) which is also adjusted by a factor that also considers the amount of 

compression present. We also present our results as well as the results for a variety of 

other papers whose authors used other post compression filtering methods.
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CHAPTER I 

INTRODUCTION 

Image compression is the minimization of the size of a graphics file, by reducing the 

number of bytes in the image while keeping the quality and visual integrity of the image 

within acceptable standards. The primary advantages of image processing are 

transmission and storage.  

With the rise of the popularity of the Internet as the principal medium of communication, 

the demand for faster transmission of data has never been more paramount. High-speed 

transfer of data in graphical format, via remote video communication, data from GPS and 

geo-stationary satellites, or instant image sharing hosts over the Internet, all benefit from 

reduction of the size of the graphic files via image compression, as smaller file sizes will 

require less bandwidth to be transferred over a network. The other benefit from reducing 

the size of the image files is the amount of data that can be stored in a storage device. The 

price of storage devices has been greatly reduced and the technology behind them has 

vastly improved over the last decade, but the compression of image files in order to 

increase the amount of data storage is still highly desirable. 

Image compression can be broadly classified into lossless and lossy compression. As 

their names suggest, in lossless compression all the data from the original image is 

preserved after it has been compressed. Some popular methods of lossless encoding 
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include run-length encoding, which takes identical and consecutive data elements and 

replaces them with a single value of that element and a count of the number of bits 

replaced, and DEFLATE [31], a compression technique that employs a combination of 

the LZ77 [32, 33] algorithm and Huffman coding. These methods can be used for BMP 

files and PNG files respectively.   

In lossy compression, a significant amount of data from the original image file is lost, 

which may sometimes result in the degradation in the quality of image. One of the most 

popular lossy compression technique is the standard set by the Joint Photographic Experts 

Group, or as commonly referred to by its acronym, JPEG [34]. 

JPEG is an extremely popular algorithm for lossy image compression, which sees 

extensive usage in digital images. The algorithm allows the users some freedom 

regarding the amount of compression to be used, which usually is a trade-off between the 

file size and the quality of the image. Performing optimally, the JPEG algorithm can 

produce compression ratios up to 10:1 with very little loss of quality in the compressed 

image.  

The standard for the JPEG algorithm was created by the Joint Photographic Experts 

Group, a committee created by two working groups, ISO (International Organization for 

Standardization) and ITU-T (International Telecommunication Union). The actual 

standard for JPEG algorithm is formally known as ISO/IEC IS 10918-1 | ITU-T 

Recommendation T.87 [34]. 

The JPEG compression algorithm, commonly used for digital images and video, works 

best when applied to photographs and paintings of realistic scenes that contain smooth 
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variations of tone and color. JPEG is not well suited for line drawings and other textual or 

iconic graphics, where the sharp contrasts between adjacent pixels can cause noticeable 

artifacts. Due to the lossy nature of the algorithm, which leads to loss of image data and 

creation of artifacts in the compressed image, JPEG is not suited for applications like 

scientific visualization or medical applications, which require exact reproduction of the 

original image data. The image in Figure 1 is an example of how the loss of data from the 

JPEG compression can lead to production of artifacts and distortions. The left part of the 

image has a higher amount of compression than the right part, as a result the left side 

shows a significant amount of loss of detail compared to the rest of the image. 

 

Figure 1. Loss of image data in JPEG compression; Source: Wikimedia commons 

JPEG uses a block-based discrete cosine transform (BDCT) coding scheme where an 

image is first divided into 8 x 8 non-overlapping blocks. Each block is then transformed 

using the discrete cosine transform (DCT), followed by quantization and variable length 

coding. Discrete cosine transform is a Fourier-like transform in which the basis function 

consists only of cosines (but no sines). Just like the discrete Fourier transform, the DCT 
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also operates on discrete, finite sequences. It can be shown, that the use of just the 

cosines in expressing a finite set of data points leads to efficient compression by reducing 

the size of the basis of the transform space. The DCT finds multiple applications in lossy 

compression because using this method the majority of the signal information is found 

within a range of low-frequency components, which are not lost. 

JPEG encoding provides users with some control over the compression process, allowing 

for tradeoffs between image quality and file size (compression ratio). Higher compression 

ratios may result in undesirable visual artifacts in the decoded image such as blockiness 

(artificial discontinuities along the block boundaries) and Gibbs oscillations (ringing 

artifacts near strong edges). 

Modern displays commonly use an 8 bit value to encode each color band (R, G, and B) 

producing a 24-bit pixel encoding. As JPEG compresses each color band of an image 

independently, color representations with high correlation between bands (like RGB) are 

not a good match for JPEG. Conversely, color representations with low correlation 

between bands (like Y’CbCr) are. 

The JPEG encoding process consists of several steps: 

1. Color Space Transformation - Convert the image color space from RGB to 

Y′CbCr. This is done to allow for greater compression as the brightness 

information (Y’), which is more important to the perceptual quality of the image, 

is confined to a single channel. 

2. Downsample - Reduce the resolution of the two chroma bands (Cb & Cr) by a 

factor of 2. 
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3. Block Splitting - Split each band into blocks of 8×8 pixels,  

4. Discrete Cosine Transform – Each block is converted to a frequency-domain 

representation, using a normalized, two-dimensional type-II discrete cosine 

transform (DCT): 

𝐺𝑢,𝑣 = ∑ ∑ ∝ (𝑢) ∝ (𝑣)𝑔𝑥,𝑦 cos [
𝜋

8
(𝑥 +

1

2
) 𝑢]

7

𝑦=0

7

𝑥=0

cos [
𝜋

8
(𝑦 +

1

2
) 𝑣] 

5. Quantization – As human vision is more sensitive to small variations in color or 

brightness over large areas than to the strength of high-frequency brightness 

variations, the magnitudes of the high-frequency components are stored with a 

lower accuracy than the low-frequency components. 

6. Entropy Coding - The resulting data for all 8×8 blocks is further compressed with 

a variant of Huffman encoding (lossless). 

A substantial body of literature addresses the question of reducing visual artifacts in the 

decoded image. Post processing approaches are common. One such approach is to use 

adaptive spatial filtering [13] or an adaptive fuzzy post-filtering approach [6]. These 

techniques commonly involve classification and low-pass filtering. They typically 

classify each block has having strong edges or weak edges and then apply a set of 

predefined spatial filters. The effectiveness of these methods is highly dependent on 

block characteristics and on the specific filter design.  

The aim of this research was to develop an algorithm that will produce a considerable 

improvement in the quality of JPEG images, irrespective of the level of compression 
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present in the image. With that in mind, for this research, an adaptive low-pass filtering 

approach was chosen, as low pass filtering can potentially be applied to any image, 

irrespective of its compression level. An adaptive computationally efficient algorithm for 

reducing the artifacts, while preserving the level of quality in the images, is presented. 

The algorithm alpha-blends a smoothed version of the image with the original image; 

however, the blending is controlled by a limit factor that considers the amount of 

compression present and any local edge information derived from the application of a 

Prewitt filter. In addition, the actual value of the blending coefficient (α) is derived from 

the local Mean Structural Similarity Index Measure (MSSIM) which is also adjusted by a 

factor that also considers the amount of compression present.  
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CHAPTER II 

RELATED WORK AND RESEARCH ON BLOCKING AND RINGING 

ARTIFACTS 

When a digital image is compressed using a block transform algorithm, like the JPEG 

algorithm, the core principle of the compression algorithm leads to the creation of 

artifacts in the compressed image. In JPEG, the Discrete Cosine Transform is applied to 

8x8 block of pixels, followed by a quantization of the transform coefficients of each 

block. The greater the compression, the coefficients are quantized more coarsely. Since 

the quantization is applied to each 8x8 block separately, the DCT coefficients of each 

block will be quantized differently. This leads to discontinuities in color and luminosity 

between the neighboring blocks. This phenomenon is especially perceptible in areas of 

the image where there is a lack of complex detail that can camouflage the artifact. These 

artifacts are commonly referred to as Blocking artifacts, as demonstrated in the Figure 2. 

The left and right part of Figure 2 are the uncompressed and highly compressed versions 

of the same image respectively, the compressed version displaying blocking artifacts. 

  

Figure 2. Example of blocking artifacts; Source: Wikimedia commons
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Another type of artifact caused by the quantization of the coefficients is Ringing artifact. 

Ringing artifacts are a class of artifacts that occur specifically due to low-pass filter 

processing. To understand how they occur, a short account of the Gibb's phenomenon is 

in order.  

In 1898 Albert Michelson devised a method to compute the Fourier series decomposition 

of a periodic signal and then resynthesize those components to reproduce the original 

signal. He found that resynthesizing a square wave always gave rise to oscillations at 

jump discontinuities. In fact his results were consistent to that of several other 

contemporary mathematicians. However, it was later shown by J. Willard Gibbs in 1899 

that contrary to popular belief these oscillations were not actually a manifestation of 

mechanical flaws of the device used. The overshoot of the discontinuity is of a 

mathematical origin; no matter how many higher harmonics are considered, the 

oscillations never die down, they just approach a finite limit. This came to be known as 

the Gibb's phenomenon. 

 

Figure 3. Gibb’s oscillation; Source: Wikimedia commons 

So, when a signal is made to go through a low-pass filter, the response overshoots above 

and then undershoots below the steady-state value thus causing the formation of a ring, as 
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shown in the following Figure 4. In JPEG compression such artifacts may arise due to 

two reasons.  

1. After performing DCT on the 8x8 blocks, due to filtering, the higher frequency 

components are lost. Which cause the response to oscillate between an overshoot 

and an undershoot causing "ringing". 

2. Splitting the image in 8x8 blocks always run the risk that the number of blocks 

may not be an integer or an integer multiple of 8. The edges present in the image 

might be encoded poorly, spanning across multiple uneven blocks, leading to 

formation of rings. 

                      

Figure 4. Ringing artifacts; Source: Wikimedia commons 

Low-pass filtering and frequency domain techniques 

Lee et al [22] proposed a post processing algorithm that reduces blocking artifacts, 

staircase noise and corner outliers. Staircase noise are created when a transform block in 

the image contains an image edge. This causes the edge to degrade and results into 

formation of step-like artifacts along the image edge, as shown in Figure 5(a). Corner 

outliers are formed when, after the quantization of the DCT coefficients, the corner-most 

pixel in a transform block has far greater or smaller value than its neighboring blocks. 
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Figure 5(b) highlights a corner outlier pixel, which is easily distinguishable in the Figure 

5(a) as its pixel value is far greater than its neighboring pixels. 

Their proposed algorithm is a four step process. First, they use an edge detection operator 

to create the absolute gradient magnitude of the image. They use the Sobel operator for 

this purpose. This is followed by generating an edge map by thresholding the gradient 

image obtained from the Sobel filter. Further, using this edge map, the compressed image 

is classified into an edge area or monotone area. Similarly, a local edge map is also 

generated for each 8x8 transform block. A global and local threshold value are 

calculated. 

   

Figure 5 (a). Staircase Noise, (b). Corner outlier; Source: Lee et al [22] 

Their proposed algorithm is a four step process. First, they use an edge detection operator 

to create the absolute gradient magnitude of the image. They use the Sobel operator for 

this purpose. This is followed by generating an edge map by thresholding the gradient 

image obtained from the Sobel filter. Further, using this edge map, the compressed image 

is classified into an edge area or monotone area. Similarly, a local edge map is also 

generated for each 8x8 transform block. A global and local threshold value are 

calculated. 
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If the nth block does not contain much variation in it, the ratio 
𝜎𝑛

𝑚𝑛
, where σn is the 

standard deviation and mn is the mean of the nth block of the gradient image generated by 

the Sobel filter, is closer to zero, which results in the local threshold value Tn to be closer 

to Tg, the global threshold value. On the other hand, if the block contains sufficient 

variation, the ratio 
𝜎𝑛

𝑚𝑛
 in increased and generates the locall threshold value, that is much 

smalller than its global counterpart. A local edge map is generated using this local 

threshold value within 6x6 pixels of the nth block, excluding the edge pixels, so that the 

artifacts near the edge pixels, if any, are not detected as image edge details.  

Second, a smoothing filter is introduced to the JPEG compressed that removes both block 

artifacts in the areas with less variance and staircase noise along the edges of the image. 

The algorithm applies a 1-D directional smoothing filter along the edges on all points on 

the edge map.  The direction of all the edges on the edge map is calculated as: 

𝜃𝑒(𝑥, 𝑦) = 𝑄[𝜃(𝑥, 𝑦)] − 90𝑜 

Where, 𝜃𝑒(𝑥, 𝑦) is the direction of the edge at location (x, y), Q is the quantization factor 

and 𝜃(𝑥, 𝑦)is the direction of the gradient vector calculated by the application of the 

Sobel filter. The purpose of the edge-directional smoothing filter is to reduce the staircase 

noise generated along the edges in the image. 

Third, an adaptive 2-D lowpass filter is applied to the image. This step removes the 

blocking artifacts that are produced within the areas of the image that does not contain 
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much variance.

 

Figure 6 (a). Application of filtering, (b). kernel 1, (c). kernel 2; Source: Lee et al [22] 

Two separate kernels are used for filtering, as shown in Figure 6(b) and 6(c) respectively. 

Figure 6(a) represents the manner in which the adaptive filtering, as described below: 

 If the center pixel of the 5x5 block, that is being filtered, contains an image edge, no 

filtering is applied. Whether or not the center pixel is an edge can be determined from the 

global edge map or local edge map of the block. 

 If no edge pixel is contained within the block, center or otherwise, then average 

mean filtering is applied to the block by convoluting it with kernel a. 

 If the block does contain an edge pixel, not in the central point but the 

neighboring pixel around the center, a weighted average filtering is applied to the 

block by setting the pixels containing the edges and their neighboring pixels to 0, 

followed by convoluting the remaining pixels of the block with the weights from 

the kernel b and calculating the average of the block. 



13 
 

Finally, a 2x2 block window is used to detect and remove any corner outliers in the 

image. The 2x2 window compares the difference between the corner pixel, its neighbors 

and a threshold value, which is 20% of the global threshold previously determined, and 

determines if the corner pixel is greater or smaller than its neighbors by a large margin. 

Upon detection of a corner outlier, the pixel and its immediate neighbors are re-calculated 

as α and α1: 

∝= 𝑅𝑜𝑢𝑛𝑑[3𝑎 + 𝑏 + 𝑐 + 𝑑 6⁄ ] 

∝1= 𝑅𝑜𝑢𝑛𝑑 [
2𝑎1+∝

3
] 

∝2= 𝑅𝑜𝑢𝑛𝑑 [
2𝑎2+∝

3
] 

Where, a, b, c and d are the corner outlier and the corner pixels of the neighboring blocks, 

and a1 and a2 are the pixels next to corner outlier within the block.  

Singh et al [13] proposes a novel procedure that models a blocking artifact between two 

neighboring block of pixels. Using the model they detect the presence of any blocking 

artifact and remove them by filtering adaptively, based on the Human Visual System.  

The Human Visual System model is based on the biological and psychological processes 

of human perception of images, colors and luminosity. In image and video processing, it 

is often used to take advantage of the capabilities and limits of human vision to optimize 

existing technology to deliver optimum results as the human eye can perceive without 

loss of quality. The HVS model states that the human eye can perceive changes in 

luminosity better than change in color, and cannot perceive high frequency details of an 
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image, thus allowing the high frequency components to be quantized without noticing the 

loss of image data.  

For two adjacent blocks, b1 and b2, after a DCT quantization, an artifact may be created 

between the pair, due to each block being quantized separately. This artifact can be 

modeled by a 2-d step function and can be simulated as a new block created from the 

existing blocks b1 and b2.  

The step function is defined as: 

𝑠(𝑖, 𝑗) =  {
−

1
8 , ∀ 𝑖𝜖[0,7], 𝑗𝜖[0,7]

1
8 , ∀ 𝑖𝜖[0,7], 𝑗𝜖[0,7]

 

And the new block b is derived as: 

𝑏(𝑖, 𝑗) =  𝛽𝑠(𝑖, 𝑗) + 𝜇 + 𝑟(𝑖, 𝑗),   ∀ 𝑖, 𝑗 𝜖[0,7] 

Where, β is the amplitude of s, the 2-d step function, μ is the mean of the block b, and r is 

the residual block.  

Upon application of DCT upon the block b, the above mentioned parameters are 

computed as: 

𝜇 =
𝐵(0,0)

8
,   𝛽 = ∑ 𝑣𝑗𝐵(0, 𝑗)

7

𝑗=0

    

Applying DCT on the residual block r, the transformed block R is derived as follows: 

𝑅 = 𝐵,     𝑅(0,0) = 0,     𝑅(0, 𝑖) = 𝑅(0, 𝑖) − 𝛽𝑣𝑖, ∀𝑖 ∈ [0,7] 
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Applying the parameters calculated above into the HVS model: 

𝜂 =
|𝛽|

(1 + 𝐴𝑡𝑜𝑡𝑎𝑙
ℎ )(1 + (𝜇/𝜇0)𝛾)

 

Where, 𝐴𝑡𝑜𝑡𝑎𝑙
ℎ  is the horizontal activity in the block b. 𝜇0 is set to 150 and 𝛾 is set to 2. 

If the visibility 𝜂 of a DCT block is less than a threshold value, 𝜏, then no filtering is 

applied to that block. If the visibility is greater or equal to the threshold value, then 

different filtering techniques are applied to that block, based on whether it falls in a 

smooth or non-smooth region. 

A block, or a region of blocks, is classified as smooth or non-smooth based on its 

frequency properties. If the two blocks b1 and b2 have similar frequency and the block b 

between them, that is comprised of the edge between the b1 and b2, does not contain high 

frequency components, then b1 and b2 are classified as smooth regions, and vice versa.  

If a block is classified as smooth, blocking artifacts are reduced by modifying the first 

row of the DCT coefficient matrix of block b, using the weighted average of adjacent 

blocks b1, b2 and b as: 

𝑀𝐵(0, 𝑗) = 𝛼0𝐵(0, 𝑗) + 𝛽0[𝐵1(0, 𝑗) + 𝐵2(0, 𝑗)],   ∀𝑗 ∈ [0,1] 

𝑀𝐵(0, 𝑗) = 𝛼1𝐵(0, 𝑗) + 𝛽1[𝐵1(0, 𝑗) + 𝐵2(0, 𝑗)],   ∀𝑗 = 2𝑛 + 1, 𝑛 ∈ [1,3] 

𝑀𝐵(0, 𝑗) = 𝐵(0, 𝑗),     ∀𝑗 = 2𝑛,   𝑛 ∈ [1,3] 

Where  𝛼0 + 2𝛽0 = 1 and  𝛼1 + 2𝛽1 = 1, and the values of the constants 𝛼0 = 0.6,  𝛽0 =

0.2, 𝛼1 = 0.5, 𝛽1 = 0.25 are chosen by trial and error, varied from 0.0 to 1.0. 
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If a block is classified as non-smooth, then the previous technique is not applied, as it 

may lead to increase in artifacts present in the compressed image. Instead, a smoothing 

Sigma filter is used. The Sigma filter, based on the sigma probability of the Gaussian 

distribution, smooths the image noise by averaging only those neighborhood pixels which 

have the intensities within a fixed sigma range of the center pixel, preserving the image 

edges and finer details. A 5x5 window is chosen for the filter, as it is found to return best 

results by experimentation. 

Singh et all [27] further improves the above work by classifying the blocks as smooth, 

non-smooth and intermediate, and using an adaptive pixel replacement algorithm. This 

approach improves the result of their previous attempt at preserving the detail of the 

image with minimum loss of image data. This method also reduces the complexity and 

computational overload by a considerable extent. 

Filtering is applied to the compressed image based on the classification of the area of the 

image, and its frequency properties, the filter is being applied to. The smooth regions 

contain low frequency components, the non-smooth areas contain high frequency, and the 

regions classified as intermediate contain mid-range frequency components. As before, to 

determine whether an area is smooth, non-smooth or intermediate- from two adjacent 8x8 

blocks, b1 and b2, 4 pixels are taken from either side of the block boundary, thus forming 

a block b comprising of half of each of the two adjacent blocks. The variation in pixels 

within b is calculated as: 

𝐴(𝑝) = ∑ ∅(𝑝𝑘 − 𝑝𝑘+1) 

7

𝑘=1
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Where, 𝐴(𝑝) is the block boundary activity and p are the pixel intensities of the block. 

The number of pixels to be modified by filtering depend on the type of region being 

filtered. Six pixels are modified while filtering a smooth region, as highlighted in Figure 

7, four for non-smooth regions and only two for the regions classified as intermediate. If 

the block boundary activity of two adjacent blocks is less than a threshold value, i.e., 

(𝑝) < 𝑇1 , then block b, the intermediate block that comprises of half of either of the 

adjacent blocks, is classified as smooth. An offset value at the block boundary is 

calculated as: 

𝑂𝑓𝑓𝑠𝑒𝑡 = |(𝑀 + 𝐿) − (𝑁 + 𝑂)| 

Where M, L, N, and O are pixels across the boundary between the two adjacent blocks. 

                                          

Figure 7. Pixels adjacent to the block boundary; Source: Singh et all [27] 

A second condition is used to confirm the smooth nature of the region. For the region to 

be smooth, |(𝑀 + 𝐿) − (𝑁 + 𝑂)| < 2𝑄, where Q is the quality parameter of the JPEG 

algorithm. If the parameters hold true, then filtering is applied as: 
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𝐼𝑓 (𝑀 + 𝐿) > (𝑁 + 𝑂) 

𝑘 = 𝐾 −
𝑜𝑓𝑓𝑠𝑒𝑡

8
;   𝑙 = 𝐿 −

𝑂𝑓𝑓𝑠𝑒𝑡

6
;   𝑚 = 𝑀 −

𝑂𝑓𝑓𝑠𝑒𝑡

4
 

𝐸𝑙𝑠𝑒 𝑖𝑓(𝑀 + 𝐿) < (𝑁 + 𝑂) 

𝑘 = 𝐾 +
𝑜𝑓𝑓𝑠𝑒𝑡

8
;   𝑙 = 𝐿 +

𝑂𝑓𝑓𝑠𝑒𝑡

6
;   𝑚 = 𝑀 +

𝑂𝑓𝑓𝑠𝑒𝑡

4
 

Similarly, if 𝐴(𝑝) > 𝑇2, i.e., the block boundary activity is greater than the threshold 

value T2, the region can be classified as non-smooth. The offset is calculated the same 

way as before. 

𝑂𝑓𝑓𝑠𝑒𝑡 = |(𝑀 + 𝐿) − (𝑁 + 𝑂)| 

The second condition confirming the non-smooth nature of the region is |(𝑀 + 𝐿) −

(𝑁 + 𝑂)| < 𝑄, where Q is the quality parameter of the JPEG algorithm. If the parameters 

hold true, then filtering is applied as: 

𝐼𝑓 (𝑀 + 𝐿) > (𝑁 + 𝑂) 

𝑙 = 𝐿 −
𝑂𝑓𝑓𝑠𝑒𝑡

6
;   𝑚 = 𝑀 −

𝑂𝑓𝑓𝑠𝑒𝑡

4
 

𝐸𝑙𝑠𝑒 𝑖𝑓(𝑀 + 𝐿) < (𝑁 + 𝑂) 

𝑙 = 𝐿 +
𝑂𝑓𝑓𝑠𝑒𝑡

6
;   𝑚 = 𝑀 +

𝑂𝑓𝑓𝑠𝑒𝑡

4
 

Finally, the region is classified as intermediate region if any one of the following 

conditions are fulfilled: 
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𝑇1 < 𝐴(𝑝) < 𝑇2 

𝐴(𝑝) < 𝑇1   &&  |(𝑀 + 𝐿) − (𝑁 + 𝑂)| >  2𝑄 

𝐴(𝑝) < 𝑇2   &&  |(𝑀 + 𝐿) − (𝑁 + 𝑂)| >  𝑄 

If the blocks are classified as an intermediate region, then a 3x3 smoothing low pass filter 

is applied to the pixels M and N on either side of the block boundary. 

Saig et al [1] propose the use of optimal interpolation and decimation filters in block 

coders. Like most algorithms that depend on a block-based approach, typical block 

coders are of high speed and low-complexity, and perform reasonably well, but suffer 

from the creation of artifacts in the decoded image while processing images of low bit-

rate.  

 

Figure 8. Flowchart of a block coder 

A typical block coder takes an input image X, as depicted in Figure 8, and down-samples 

X by a factor of k after convolving it with a filter f. The image is then encoded using the 

respective encoding algorithm. While decoding the image, X is up-samples it by a factor 

of k again and convolves the result with a filter g, producing the result. The proposed 

algorithm works in two parts: initially, determining an optimal framework for the 
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interpolation filter g, and finally, determining an optimal framework for the decimation 

filter (f) with respect to the previously determined optimal interpolation filter (g).   

Application of the optimal interpolation (g) and decimation (f) filters in the block coder 

algorithm returns reasonable improvement in quality over the original decoded image. 

Kieu et al [2] proposes a technique to reduce the blocking artifacts, created in the low 

activity regions of the image, using a ternary polynomial surface to model the pixel 

intensities of the image and recover the image details lost during quantization by 

compensating the DCT coefficients lost during quantization.  

 

Figure 9. Macro block 

In Figure 9, a 2x2 macro block of the JPEG image, the highlighted boundaries are the 

targets areas where blocking artifacts will be removed from. The ternary surface 

modeling the image intensity for the 2x2 macro block is calculated, and linear 

programming techniques are applied to minimize the difference between the pixel values 

across the block boundary of the macro block, while compensating for the quantization 

error introduced in the images after the JPEG compression. 
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Abboud [7] present a simple adaptive low-pass filtering approach that reduces the 

blocking artifacts present in the image without degrading the quality of the image. This 

approach exploits a property of HVS, such that the human vision is more sensitive to 

blocking artifacts present in smoother areas than areas that have a lot of activity. The 

algorithm classifies regions of the image into highly smooth,   relatively smooth, and 

highly detailed, and then applies strong filtering and weak filtering respectively.  

To classify the image into different type of regions, the following function is used: 

𝑐𝑜𝑢𝑛𝑡 =Φ(𝑣0 − 𝑣1) +Φ(𝑣1 − 𝑣2) +Φ(𝑣2 − 𝑣3) +Φ(𝑣4 − 𝑣5) +Φ(𝑣5 − 𝑣6)

+Φ(𝑣6 − 𝑣7) 

Where v0 to v7 are adjacent pixel values along the edges in 8x8 block, as shown in 

Figure 10. If the count equals 6, the area is classified as very smooth. If the value of 

count falls between 1 to 5, the area is classified as relatively smooth. If the count is 0, 

then the area is classified as highly detailed. 

 

Figure 10. Adjacent blocks of pixels 
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For blocks of the image classified as highly detailed, a low amount of filtering is applied 

by using a factor a = 0.5. For relatively smooth blocks, a moderate amount of filtering is 

applied using a = 0.4. Finally, for blocks that are very smooth, strong filtering is applied 

using a = 0.3. Filtering is applied horizontally and vertically to the vertical and horizontal 

block boundaries respectively. 

Post-processing is applied in two ways. The first algorithm applies the filtering along the 

vertical boundaries of the blocks, followed by the horizontal boundaries. 

After count has been calculated, if it equals 6, the above equations are calculated for v3 

and v4 using h(n) for a=0.3, v2 and v5 using a=0.4, and v1 and v6 using a=0.5. If count 

falls between 1 and 5, indicating the region to be relatively smooth, v3 and v4 are 

calculated using a=0.4, and v2 and v5 are calculated using a=0.5. If the count is 0, then 

the region is complex in nature, and only v3 and v4 are calculated using a=0.5.  

The second algorithm follows all the steps of the first one, differing only when dealing 

with the pixels that are filtered both vertically and horizontally. For these pixels, the 

horizontal and vertical filtering is applied independent of the other, and the mean of the 

two values is chosen. 

Liaw et al [12] proposes an approach in image deblocking and restoration based on 

Classified Vector Quantization. In CVQ, a codebook, consisting of codewords generated 

from a set of training vectors, is used for both the encoding and decoding process.  

Before the application of CQV, a deblocking algorithm is applied to the image. The 

algorithm works in two steps: classification and deblocking. During the classification 

phase, the image is downsampled into 8x8 blocks. Each block is classified into smooth 
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and non-smooth based on the block’s DCT coefficients. Following the classification, 

deblocking is applied to the block Bm,n and its neighbors. If Bm,n and its neighboring 

block Bm+1,n are smooth, then a 1-D filter {1, 1, 2, 4, 2, 1, 1} is applied to one half of the 

block Bm,n and the adjacent half of the neighboring block Bm+1,n. If the blocks are non-

smooth, then a 1-D filter {1, 4, 1} is applied instead. This process is repeated for all the 

neighboring blocks of Bm,n. 

 

Figure 11. Image restoration using CQV 

Traditionally, Vector Quantization uses a single codebook for both encoding and 

decoding, and this codebook is generated by the application of Generalized Lloyd 

algorithm. The authors modify this method to suit their task better, and device two 

separate codebooks, for encoding and decoding respectively, as shown in Figure 11. The 

two codebooks are not completely independent of either.  

Once both codebooks have been derived, restoration of the image is applied via further 

classification of the image. The images are broken into 4x4 blocks, and the mean of the 

pixel intensities of the blocks is calculated and is used to classify the blocks into different 

sub-categories: uniform, texture and edge. If the block has been classified as non-

uniform, further classification is required to determine whether it falls under an edge 
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class or a texture class. If the block belongs to the edge class, the edge orientation is 

determined as well. 

Finally, using the information gathered so far, the process of restoration of the image, 

which consists of encoding and decoding, begins. For the encoding part, the mean of a 

block of the image is determined and using the information the block is classified and 

sub-classified into its respective category. If it belongs to a non-edge class, then its 

respective codeword is determined from the corresponding class of codewords in the 

codebook. If the block does belong to the edge-class, then the edge direction is calculated 

and the corresponding code word is retrieved from the code book based on class, type and 

direction. If a suitable codeword is found, it is subtracted from the input block to 

calculate the differential vector, and the codeword index and the differential vector are 

recorded. If no suitable codeword is found, then the block is not changed. This process is 

repeated till all the blocks have been encoded. 

The decoding part of the image restoration works similarly. The mean values of the 

blocks are obtained from the indices that had been recorded. Using the mean value the 

class of the block is determined. If the block is of non-edge type, then its respective 

codeword is determined from the corresponding class of codewords in the codebook, 

determined uniquely from the class and block information. If the block does belong to the 

edge-class, then the edge orientation is calculated and the corresponding code word is 

retrieved from the code book based on class, type and orientation. This process is 

repeated till all the blocks have been decoded. By the combination of encoding and 

decoding the blocks of the compressed image, the image quality can be restored. 
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Chou et al [9] present a simple post-processing algorithm that attempts to estimate the 

quantization error present in the JPEG compressed images. They model each DC 

coefficient of all the blocks of the image as Gaussian random variables, and each AC 

coefficient as zero-mean Laplacian random variables. They apply a probabilistic 

framework to estimate the mean squared error of each DCT coefficient, and an estimate 

of quantization error for each n x n block, taking advantage of the fact that DCT being a 

unitary transform, the mean squared quantization error in DCT domain is equal to the 

mean squared error in spatial domain. They proceed to determine row and column vectors 

of discontinuities of the pixel intensities across the image, and using a threshold value 

determined from the mean squared errors previously, attempt to identify the 

discontinuities caused by quantization error. Upon identification of an anomaly in the 

pixel intensities, a new pixel intensity is calculated for the relevant pixels by using a 

proportionality constant determined from the threshold value and the mean of the image. 

The algorithm is low on complexity and returns impressive results, upon application of 

the test image Lena, as shown in Figure 12. The compressed image is shown on the left 

and the filtered result is displayed on the right. 

 

Figure 12. Lena, before and after 
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Triantafyllidis et al [10] proposes a very similar algorithm, which attempts to determine 

the quantization error by reconstructing the quantization coefficients. They go further, 

classifying the regions of the image into high and low detail, so an adaptive filtering can 

be applied. 

Projection Onto Convex Sets 

Another popular deblocking method uses the concept of projection onto convex sets. A 

convex set is defined as one in which a every point on a line segment drawn through two 

elements of the set, lies within the set, as shown in Figure 13(a). Figure 13(b) shows a 

non-convex set, that doesn’t follow this condition. 

POCS is an algorithm which ensures that given a set of closed convex sets, if we project a 

point onto one of them, then after a number of iterations it will converge into a point 

on the intersection of the closed convex sets.  

                                    

                                     Figure 13. (a) Convex set, (b) Non-Convex set 

Mathematically it means, if we define a point by X in Euclidean space and 

C1,C2,C3....,Cn as closed convex sets such that C1 U C2 U C3 U C4 U......Cn is non 
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empty, then application of a projection operator which projects a point on to Ci cause X 

to converge on to a point X* E Ui=1 to m Ci. 

Several deblocking methods using POCS can be found in literature. In all such methods, 

whether the pixel intensity will be adjusted to the global or regional threshold methods, is 

a binary decision. And different constraints are imposed on certain critical parameters 

that helps in making this decision. These constraints are described by closed convex sets. 

So if one projects the data pertaining to an image onto one of these constraint sets, POCS 

ensures that after a certain number of iterations it gets projected on to the intersection of 

all these constraint sets thereby ensuring optimum result. The trick then lies is designing 

the constraint sets. 

Ju Jia Zou et al [4] constraint are used; two locally adaptive smoothness constraints, a 

locally adaptive quantization constraint and an intensity constraint. The deblocking effect 

is noticeable. Additionally, it preserves image details while reducing artifacts. Peak signal 

to noise ratio (PSNR) is used to quantify the quality of the reconstructed image. The 

results of this paper demonstrate the superiority of this method over standard JPEG-

decoder method. 

Gan et al [6],[18] propose a novel smoothness constraint set using the concept of Wiener 

filtering. They use a least mean-square formulation of the noise statistics obtained from 

the Wiener filter. This gives an advantage over adaptive Wiener filtering which leads to 

loss of information. Limiting output of low-pass filter may salvage some details but this 

method has been proven to be non-convergent unless the filter is ideal. This approach 
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therefore utilizes the effectiveness of Wiener filtering while eliminating the artifacts by 

use of POCS. They define two constraint sets as follows: 

𝐶𝑤 = {𝑋: (𝑋 − �̅�)𝑡𝑀(𝑋 − �̅�) ≤ 𝐸𝑤} 

𝐶𝑟 = {𝑋: (𝑋 − 𝑌)𝑡𝑅(𝑋 − 𝑌) ≤ 𝐸𝑟} 

Where X is the DCT of the image x, X' the prior mean of X and Y the quantized DCT 

coefficients, M and R are two matrices constructed using the mean square errors for noise 

σn and mean square errors of the DCT coefficients σx . Ea helps in setting a threshold 

ensuring our image lies within the space which can be projected onto the chosen convex 

sets.  

This algorithm is computationally less taxing as it operates only in the transform domain, 

i.e., BDCT is not applied in each iteration of POCS. 

In [11], Weerasinghe et al. use a new family of convex smoothness constraint sets. 

These sets preserves edge details and smoothes different regions of the image differently. 

A fuzzy c-means clustering algorithm is used to segment the image into homogenous 

regions while leaving out the ambiguous pixels. These pixels are estimated during POCS 

iteration by imposing the constraints on them. 

The smoothness constraints are then imposed on these regions thereby constructing the 

convex sets. Then the deblocking is achieved by application of the POCS algorithm. The 

advantage of this approach is that it does not oversmooth the edges as they form the 

boundaries of the homogenous regions which remain unaffected by the constraints. On 

the negative side, this approach is limited only to images that have homogenous regions. 
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The results obtained are displayed in Figure 14, 14(a) showing the original image, 14(b) 

the compressed version and finally 14(c) the result after processing the compressed 

image. 

     

Figure 14. (a) Original, (b) After DCT transform, (c) Result after deblocking 

Alter et al [3] propose a POCS method based on Total Variation minimization. The TV 

method yields good results in smoothing artifacts without smoothing the edges present in 

the images, which lead to loss of details in the image. TV method is most effective 

against Gibbs phenomenon, and in order to increase the efficacy of the method, the 

algorithm attempts to reconstruct the DCT coefficients, that have been lost due to 

quantization, which removes blocking artifacts present in the image. 

To preserve the textures present inside the blocks, the Total Variance regularization 

needs to be stronger near the edges of the blocks. To maintain this a positive weight α is 

introduced, such that the value of α is greater in smoother areas and lower near the edges 

and textures. Using this weight, the DCT coefficients of the original image are modeled 

as a convex set U, and the deblocked image U* is obtained by optimizing a derived 

convex function Jα(U
*). By the application of POCS, the image data lost during 

quantization is minimized in the reconstruction of the deblocked image. 
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Other popular methods 

Apart from the methods described above, a large number of other algorithms are 

commonly used. A network designed and trained to create a distortion recovery image 

that gets added to the decompressed image reducing artifacts has also been proposed [32]. 

Several proposals have been made that make use of wavelet transforms [8, 28]. Hyuk and 

Kim [28] use the wavelet transform domain to decompose the image into subbands. They 

then reduce the blocky noise by a linear minimum mean square error filter, which fully 

exploits the characteristics of the signal and noise components in each subband. After the 

blocky noise is reduced, the granular noise can further be decreased by exploiting its 

nonstructuredness. Finally, methods using different variations of vector quantization have 

been made [26]. 
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CHAPTER III 

THE ALPHABLEND ALGORITHM 

There are multiple methods that can be applied to improve the quality of an image 

compressed with the JPEG algorithm. An adaptive low pass filtering was chosen for this 

study, over multiple other processing techniques, for a number of reasons. Low pass 

filtering is a post processing technique that can be potentially applied to any image, 

irrespective of the compression level or other relevant meta-data. Methods like MAPS 

rely on prior knowledge of the image, which makes the method of limited effectiveness if 

the original image is absent. Methods like POCS achieve great results in restoration of 

images, but at a very high cost of computational complexity and processor overhead. Our 

approach doesn’t need the original image data to be present, it can be applied to images 

of multiple formats of JPEG algorithm, and it can be also applied to other image formats 

as well, with little modification to the algorithm. The post-processing algorithms are 

simple to implement, and they do not require a large computational overhead. 

Two different approaches have been made in an attempt to remove blocking artifacts 

from the compressed JPEG images. The first method uses the Peak Signal-to-Noise Ratio 

(PSNR) [13] values of the images with an adaptive limit to alter the pixel values of the 

compressed image. This approach, though it returned improved results, was deemed 

unsuitable as it required the original uncompressed image in order to determine the limit 

that it uses to calculate the values for pixel replacement. For assessment of image quality, 
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PSNR and Mean Structural Similarity Index Measure (MSSIM) [13] are used. PSNR is 

the ratio between the maximum possible power of a signal and the maximum power of an 

intermingled noise that corrupts the original signal. PSNR is most commonly used in 

image processing as a measure of quality for reconstructed images from lossy algorithms. 

The original signal is the original image data before compression, and the noise being the 

artifacts caused by the loss of data due to compression. For an mxn image I: 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 

MSE is the Mean Squared Error, an error estimate between the original image I and the 

final processed image K. From this equation, PSNR can be calculated as: 

𝑃𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) 

Where, MAX is the maximum pixel value of the original image I. 

MSSIM, or Mean Structural Similarity Index Measure [13], is the method of measuring 

the amount of similarity between two given images. MSSIM, as a full reference metric, 

references the uncompressed data of the original image to determine the quality of a 

compressed image. For an image SSIM is calculated over a nxn window x of the original 

image and another window y of the same dimensions of the processed image.  

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
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Where, 𝜇𝑥 and 𝜇𝑦 are the average of the pixel values of x and y respectively, 𝜎𝑥
2 and 𝜎𝑦

2 

are the variance of x and y respectively, and 𝜎𝑥𝑦 is the covariance of x and y. c1 and c2 

are two constants.  

Using the equation above, MSSIM of an image can be derived by calculating the mean of 

the SSIM values of all the nxn windows of the image. 

The second attempt, as stated previously, is an adaptive low-pass filter. The filter is 

designed to return optimal results over a large spectrum of compression. It does not 

require any prior knowledge of the image to be filtered. The algorithm is based on the 

concept of alpha blending used in image processing. Alpha blending is the method that 

combines an image with a background in a way such that the two images blend in 

partially or perfectly.   

Alphablend filter 

The Alphablend filter’s goal is to reduce noise and artifacts in the compressed image, 

while ensuring that the details of the image are not lost during filtering. The algorithm 

uses an adaptive limit value, which is calculated from the compression ratio of the image 

being filtered, to determine whether or not a pixel needs to be altered. An edge map of 

the image is derived using the Prewitt filter, and the pixel values of the edge map are 

compared with the limit. If the pixel value of the edge map is greater than the limit, 

which it usually is for an edge within the image, then no filtering is applied to that pixel, 

in order to retain the edge details present in the image. If the pixel value of the image is 

lower than the limit, then the value is altered using the following Alpha blending 

equation as used in computer graphics. 
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𝑀[𝑖][𝑗] = 𝑅𝑂𝑈𝑁𝐷((1.0−∝) ∗ 𝑀[𝑖][𝑗]+∝∗ 𝐿𝑜𝑤𝑃𝑎𝑠𝑠[𝑖][𝑗]) 

Where, LowPass is the image M after the application of a low pass filter, and the alpha 

value is calculated as: 

∝ =  𝐶𝐿𝐴𝑀𝑃 (0.0, 1.0,
𝑀𝑆𝑆𝐼𝑀(𝑖, 𝑗, 𝑀)

𝐶
 ) 

Where, the alpha value (∝), ranged between 0 and 1, is calculated from the MSSIM of the 

block containing the pixel (i, j) in image M.  C is constant determined from the 

compression ratio of the image.  

The Proposed Algorithm 

The original algorithm for the alphablend filter can be summarized by the flowchart in 

Figure 15. 

A low-pass filter (One_Pass_Filter()) is applied to the image and the result is stored 

separately. This step is followed by the creation of the edge map (Two_Pass_Filter()) 

using the Prewitt operator. The Prewitt operator is one of the most popular edge detection 

operator. It uses a vertical and horizontal kernel, which are convolved with an image to 

calculate approximate derivatives of the image pixels in both vertical and horizontal 

directions.  

𝐺𝑥 = [
−1 0 +1
−1 0 +1
−1 0 +1

] ∗ 𝐴           𝐺𝑦 = [
−1 −1 −1
0 0 0

+1 +1 +1
] ∗ 𝐴 
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Figure 15. Flowchart of the original Alphablend algorithm 

Where, Gx and Gy are the horizontal and vertical gradient approximations of every point 

on image A, and * is the convolution operation between A and the horizontal and vertical 

kernels of the Prewitt operator. 
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From the horizontal and vertical gradient approximations, for each point or pixel of A, 

the magnitude of the gradient can be derived as: 

𝑇𝑤𝑜_𝑃𝑎𝑠𝑠[𝑥][𝑦] = √𝐺𝑥
2 + 𝐺𝑦

2 

  

Figure. 16 (a) Lena original, (b) Image gradient map generated by applying the Prewitt 

filter 

After the edge map has been created, the original image is downsampled in to 12x12 

blocks of pixels centered on each 8x8 pixel block. The alpha value is calculated from the 

MSSIM for each block using the formula: 

∝ =  𝐶𝐿𝐴𝑀𝑃 (0.0, 1.0,
𝑀𝑆𝑆𝐼𝑀(𝑥, 𝑦, 𝑀)

𝐶
 ) 

A constant value limit is set to 64, and the denominator C is set to 2. For each 12x12 

block, the corresponding pixels on the edge map is compared with the limit. If the 

pixel is an image edge, then no processing is applied to the image. However, if the 

pixel value falls under the limit, it is altered as follows: 
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𝑀[𝑖][𝑗] = 𝑅𝑂𝑈𝑁𝐷((1.0−∝) ∗ 𝑀[𝑖][𝑗]+∝∗ 𝐿𝑜𝑤𝑃𝑎𝑠𝑠[𝑖][𝑗]) 

This process is repeated iteratively by shifting the 12x12 block by one pixel horizontally 

at every iteration until it reaches the extreme edge of the image, then moving it back to its 

original position and shifting it one pixel vertically followed by the horizontal shift again. 

This process is repeated until every pixel in the image has been processed.   

In Table 1, the results obtained by application of the algorithm on the test images are 

displayed. The paper original and paper result are an amalgamation of results obtained 

from various published works, the columns contain the PSNR values of the images before 

and after processing respectively. The test images are generated with their bits per pixel 

values are as close to that of the images used in the published results. The percentage 

increase columns show the increase in PSNR values, after processing, compared to the 

original PSNR values of the test images. 

Table 1. Initial results obtained from using the original algorithm 
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The results above clearly show the improvement in the quality of the image, but upon 

comparison with the results from published works on JPEG image enhancement, the 

initial results fall short.  

The initial algorithm used the image data from the original uncompressed image, along 

with the compressed image, in calculating the MSSIM, which it later uses to calculate the 

alpha value used for filtering. Since one of the goals of the algorithm was to be 

independent of original image, further changes were required. Moreover, the algorithm 

used a fixed limit in its calculation and the other goal for it was to be adaptive to the 

amount of compression present in the image.  

The results obtained from the initial algorithm are plotted as a graph in Figure. 17. The 

higher the PSNR ratio, better the quality of the image after post-processing. The results 

were mostly inferior to the ones obtained from other published results. 

 

Figure 17. Initial results compared with the results obtained from various published 

works 
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The first change made to the algorithm was in the calculation of MSSIM. Initially, 

MSSIM was calculated for the compressed image with respect to the original image. The 

code was modified to now calculate the MSSIM value between the compressed image 

and the low pass filtered version of the image.  

As it can be seen in Table 2, the change in the algorithm returned improved results in 

images with high compression, increasing from 0.87% to 2.92%. On the other hand, in 

case of images of low compression, the returned results displays a massive degradation of 

image quality, up to a decrease of almost 10% PSNR value. This showed that the 

algorithm worked better on some compression levels than others, and a second change 

was required, as previously stated, to make the algorithm adaptive to a broad range of 

compression level present in the images. 

Table 2. Results after changing the MSSIM code to be independent of the original image 
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The compression in an image is represented by bits per pixel (bpp). The bpp value of an 

image decreases as the amount of compression applied to the image is increased. The bits 

per pixel value of a image is calculated as: 

𝑏𝑖𝑡𝑠 = 𝑖𝑚𝑎𝑔𝑒𝑠𝑖𝑧𝑒  ∗ 8  

𝑝𝑖𝑥𝑒𝑙𝑠 = 𝑖𝑚𝑎𝑔𝑒ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑚𝑎𝑔𝑒𝑤𝑖𝑑𝑡ℎ 

𝑖𝑚𝑎𝑔𝑒𝑏𝑝𝑝 = 𝑏𝑖𝑡𝑠/𝑝𝑖𝑥𝑒𝑙𝑠 

Since a grayscale image has 8 bits per pixel, the number of bits present in the image can 

be calculated by multiplying the image size in bytes by 8. The total number of pixels 

present in the image can be easily determined by multiplying the width and height of the 

image in number of pixels. This, compression ratio of an image can be determined from 

the number of bits present and the total number of pixels. 

Once the compression ratio of the image is determined, a set of test images (Lena and 

Peppers) are created. The test images have an even range of compression, ranging from 

5% to 95%. Then, upon each image from the set of test images, a brute force technique is 

applied over the value of the constant C in the function for calculating the alpha value 

that had been set to 2. 

∝ =  𝐶𝐿𝐴𝑀𝑃 (0.0, 1.0,
𝑀𝑆𝑆𝐼𝑀(𝑥, 𝑦, 𝑀)

𝐶
 ) 

The value of C is ranged between 0 and 10, incremented by 0.1. The PSNR values of all 

the results for each value of limit, from1 to 255, is recorded and the best result is selected 

for each image.  



41 
 

The purpose of this is to determine which value of the constant C returns the best results 

for that level of compression, so a function for the constant can be created over the bits 

per pixel values of the image. The data received from the brute force method is applied to 

a curve fitting tool in Matlab and the following function is determined. 

𝐶 = 0.3727 ∗ 𝑏𝑝𝑝3 − 2.1423 ∗ 𝑏𝑝𝑝2 + 5.2906 ∗ 𝑏𝑝𝑝 + 0.055 

Table 3 shows the results obtained by the brute force iteration, the optimum value of 𝐶′ 

that returns the best PSNR values for each version of Lena. A second value for the 

constant, shown in the column C, is obtained by using the above equation to determine 

the optimal value of C, with respect to the compression present in the image. 

A second brute force application is set up, with respect to the new adaptive C value. This 

time, the value of the limit, which had been fixed at 64, is ranged from 1 to 255, and is 

applied to every image in the test set, the denominator C in the function being 

dynamically calculated from the compression ratio of the image. The PSNR values of all 

the results for each value of limit, from1 to 255, is recorded and the best result is selected 

for each image. The best results for every level of compression is selected and the 

corresponding limit value is fit into the curve fitting tool, with respect to the compression 

level, to generate the following function for the limit: 

𝑙𝑖𝑚𝑖𝑡 = 34.12 ∗ 𝑏𝑝𝑝−0.8432 + 42.11 
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Table 3. Results after the brute force attempt to calculate the optimal value of the 

constant C 

 

Table 4, as the previous table, shows the results obtained by the second brute force 

iteration. The optimum values of the limit that return the best PSNR values, for each 

version of Lena, are shown in the column 𝐿𝑖𝑚𝑖𝑡′. A second value of the limit is obtained 

by using the above equation to determine the values of limit dynamically, instead of a 

brute force approach, with respect to the compression present in the image. These values 

are shown in the column labeled 𝐿𝑖𝑚𝑖𝑡. 

Furthermore, a third brute force application is set up, in a similar manner, to re-calculate 

the denominator C of the alpha function, now taking the adaptive limit into consideration. 

C is once again ranged between 0 to 10, incremented by 0.1, and applied to every image 
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Table 4. Results after the second brute force attempt to calculate the optimal limit with 

respect to the optimal value of the constant C 

 

in the test set. The resulting data is fitted into the curve fitting tool in Matlab and the 

following function is generated: 

𝐶 = 5.243 ∗ 𝑒 (− (
(𝑏𝑝𝑝 − 2.414)

1.224
)

2

) + 3.374 ∗ 𝑒 (− (
(𝑏𝑝𝑝 − 1.057)

0.8201
)

2

) 

Final Results 

The following table lists the final results of the algorithm: 
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Table 5. Final results of the alphablend algorithm, with dynamically calculated limit & 

constant C 

 

The results obtained from the final algorithm are plotted as a graph in Figure. 18. The 

higher the PSNR ratio, better the quality of the image after post-processing. The results 

show significant improvement over the ones obtained from the initial algorithm, and are 

better than multiple published results, for images with the same bits-per-pixel value. 
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Figure 18. Final results 

Figure 19 provides example images for low compression (0.323 bpp), medium 

compression (0.204 bpp), and high compression (0.153 bpp) images. The top row are the 

original image sections (Lena), while the bottom row are the results for each image after 

application of the Alphablend filter. 

 

Figure 19. Zoomed-in sample from Lena, before and after processing (a) Low 

compression (0.323 bpp), (b) Medium compression (0.204 bpp), (c) High Compression 

(0.153 bpp) 
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Figure 20. (a) Lena with low compression (0.323 bpp) (b) Filtered image 

  

Figure 21 (a) Lena with medium compression (0.204 bpp) (b) Filtered image 
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Figure 22 (a) Lena with high compression (0.153 bpp) (b) Filtered image 
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CHAPTER IV 

CONCLUSION 

Due to high demand for faster transmission of data, image processing plays a very 

important role in applications ranging from video communication, data from GPS 

satellites, etc. to data storage devices. Image compression techniques fall between two 

categories –lossless and lossy. The former category suffers no loss of information after 

the application of the compression algorithm, while algorithms falling in the latter 

category suffer from a significant loss of information from the original image after 

compression. One of the most popular lossy compression algorithms is JPEG. 

An extremely popular and widely used algorithm, JPEG can produce compression ratios 

up to 10:1 with very little deterioration of image quality. JPEG uses a block-based 

discrete cosine transform (BDCT) coding scheme, dividing the image into 8x8 blocks and 

transforming each block using DCT, followed by a quantization of the transform 

coefficients of each block. Each block is quantized separately, so the DCT coefficients of 

each block are quantized differently. This leads to the creation of blocking artifacts from 

the discontinuities in color and luminosity between adjacent blocks. Also, due to the loss 

of the high-frequency components during the quantization, ringing artifacts are created 

along the edges present in the original image.
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The aim of this research was to develop an algorithm that will produce a considerable 

improvement in the quality of JPEG images, irrespective of the level of compression 

present in the image. With that in mind, an adaptive low-pass filtering approach was 

chosen. Low pass filtering can potentially be applied to any image, irrespective of its 

compression level. While methods like POCS based algorithms are highly successful in 

restoring the image quality, they come with a high computational complexity and 

processor overhead, unlike this method.  

The results show a clear improvement in the overall quality of the images, and the image 

samples after post-processing clearly demonstrate that the blocking and ringing artifacts 

are smoothed out to a certain degree. The algorithm returns better results than those 

obtained from multiple published works, such as Kieu, V.T. and Nguyen [2], Singh et al 

[27] and Li et al [30]. 

The advantage of the Alphablend algorithm is that it can be applied to any image with 

any level of compression. It has very low computational complexity, and the algorithm is 

easy to implement. Although some of the published works have returned better results 

than the Alphablend algorithm, few of these works have been applied over images with 

such a broad spectrum of compression, whereas the Alphablend algorithm returns 

improved results consistently. At present, the algorithm can be applied to grayscale 

images. With minor changes to the algorithm, it can be tailored to work on RGB color 

images as well. As RGB images have 24-bits (8-bits for each band) instead of 8-bits in 

grayscale images, the bits per pixels for the images will have to be calculated differently. 

Also, the additional color pixels will have to be taken into account while calculating the 

MSSIM for the images. Furthermore, there is scope of greatly increasing the 
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effectiveness of the algorithm. The precision of the algorithm can be further improved by 

applying it over a broader spectrum of test images, the data from which can be used to 

generate much more accurate values for the constants used in the Alphablend functions. 
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