44 research outputs found

    Enhanced universal kriging for transformed input parameter spaces

    Get PDF
    With computational models becoming more expensive and complex, surrogate models have gained increasing attention in many scientific disciplines and are often necessary to conduct sensitivity studies, parameter optimization etc. In the scientific discipline of uncertainty quantification (UQ), model input quantities are often described by probability distributions. For the construction of surrogate models, space-filling designs are generated in the input space to define training points, and evaluations of the computational model at these points are then conducted. The physical parameter space is often transformed into an i.i.d. uniform input space in order to apply space-filling training procedures in a sensible way. Due to this transformation surrogate modeling techniques tend to suffer with regard to their prediction accuracy. Therefore, a new method is proposed in this paper where input parameter transformations are applied to basis functions for universal kriging. To speed up hyperparameter optimization for universal kriging, suitable expressions for efficient gradient-based optimization are developed. Several benchmark functions are investigated and the proposed method is compared with conventional methods

    Enhanced Universal Kriging for Transformed Input Parameter Spaces

    Full text link
    With computational models becoming more expensive and complex, surrogate models have gained increasing attention in many scientific disciplines and are often necessary to conduct sensitivity studies, parameter optimization etc. In the scientific discipline of uncertainty quantification (UQ), model input quantities are often described by probability distributions. For the construction of surrogate models, space-filling designs are generated in the input space to define training points, and evaluations of the computational model at these points are then conducted. The physical parameter space is often transformed into an i.i.d. uniform input space in order to apply space-filling training procedures in a sensible way. Due to this transformation surrogate modeling techniques tend to suffer with regard to their prediction accuracy. Therefore, a new method is proposed in this paper where input parameter transformations are applied to basis functions for universal kriging. To speed up hyperparameter optimization for universal kriging, suitable expressions for efficient gradient-based optimization are developed. Several benchmark functions are investigated and the proposed method is compared with conventional methods

    Angle-of-Arrival based localization using polynomial chaos expansions

    Get PDF
    International audienceIn this paper, polynomial chaos expansions are applied to angle-of-arrival based localization. By using a polynomial chaos expansion on a least squares estimator, a new positioning method is designed. Simulation results show that the proposed method returns precise information about the statistical distribution of the position

    Reliability analysis for data-driven noisy models using active learning

    Full text link
    Reliability analysis aims at estimating the failure probability of an engineering system. It often requires multiple runs of a limit-state function, which usually relies on computationally intensive simulations. Traditionally, these simulations have been considered deterministic, i.e., running them multiple times for a given set of input parameters always produces the same output. However, this assumption does not always hold, as many studies in the literature report non-deterministic computational simulations (also known as noisy models). In such cases, running the simulations multiple times with the same input will result in different outputs. Similarly, data-driven models that rely on real-world data may also be affected by noise. This characteristic poses a challenge when performing reliability analysis, as many classical methods, such as FORM and SORM, are tailored to deterministic models. To bridge this gap, this paper provides a novel methodology to perform reliability analysis on models contaminated by noise. In such cases, noise introduces latent uncertainty into the reliability estimator, leading to an incorrect estimation of the real underlying reliability index, even when using Monte Carlo simulation. To overcome this challenge, we propose the use of denoising regression-based surrogate models within an active learning reliability analysis framework. Specifically, we combine Gaussian process regression with a noise-aware learning function to efficiently estimate the probability of failure of the underlying noise-free model. We showcase the effectiveness of this methodology on standard benchmark functions and a finite element model of a realistic structural frame

    Development of reduced polynomial chaos-Kriging metamodel for uncertainty quantification of computational aerodynamics

    Get PDF
    2018 Summer.Includes bibliographical references.Computational fluid dynamics (CFD) simulations are a critical component of the design and development of aerodynamic bodies. However, as engineers attempt to capture more detailed physics, the computational cost of simulations increases. This limits the ability of engineers to use robust or multidisciplinary design methodologies for practical engineering applications because the computational model is too expensive to evaluate for uncertainty quantification studies and off-design performance analysis. Metamodels (surrogate models) are a closed-form mathematical solution fit to only a few simulation responses which can be used to remedy this situation by estimating off-design performance and stochastic responses of the CFD simulation for far less computational cost. The development of a reduced polynomial chaos-Kriging (RPC-K) metamodel is another step towards eliminating simulation gridlock by capturing the relevant physics of the problem in a cheap-to-evaluate metamodel using fewer CFD simulations. The RPC-K metamodel is superior to existing technologies because its model reduction methodology eliminates the design parameters which contribute little variance to the problem before fitting a high-fidelity metamodel to the remaining data. This metamodel can capture non-linear physics due to its inclusion of both the long-range trend information of a polynomial chaos expansion and local variations in the simulation data through Kriging. In this thesis, the RPC-K metamodel is developed, validated on a convection-diffusion-reaction problem, and applied to the NACA 4412 airfoil and aircraft engine nacelle problems. This research demonstrates the metamodel's effectiveness over existing polynomial chaos and Kriging metamodels for aerodynamics applications because of its ability to fit non-linear fluid flows with far fewer CFD simulations. This research will allow aerospace engineers to more effectively take advantage of detailed CFD simulations in the development of next-generation aerodynamic bodies through the use of the RPC-K metamodel to save computational cost

    Accelerating hypersonic reentry simulations using deep learning-based hybridization (with guarantees)

    Full text link
    In this paper, we are interested in the acceleration of numerical simulations. We focus on a hypersonic planetary reentry problem whose simulation involves coupling fluid dynamics and chemical reactions. Simulating chemical reactions takes most of the computational time but, on the other hand, cannot be avoided to obtain accurate predictions. We face a trade-off between cost-efficiency and accuracy: the simulation code has to be sufficiently efficient to be used in an operational context but accurate enough to predict the phenomenon faithfully. To tackle this trade-off, we design a hybrid simulation code coupling a traditional fluid dynamic solver with a neural network approximating the chemical reactions. We rely on their power in terms of accuracy and dimension reduction when applied in a big data context and on their efficiency stemming from their matrix-vector structure to achieve important acceleration factors (×10\times 10 to ×18.6\times 18.6). This paper aims to explain how we design such cost-effective hybrid simulation codes in practice. Above all, we describe methodologies to ensure accuracy guarantees, allowing us to go beyond traditional surrogate modeling and to use these codes as references.Comment: Under revie
    corecore