10 research outputs found

    The configuration of design and manufacture knowledge models from a heavyweight ontological foundation

    Get PDF
    Problems related to knowledge sharing in design and manufacture, for supporting automated decision-making procedures, are associated with the inability to communicate the full meaning of concepts and their intent within and across system boundaries. To remedy these issues, it is important that the explicit structuring of semantics, i.e., meaning in computation form, is first performed and that these semantics become sharable across systems. This paper proposes an expressive (heavyweight) Common Logic-based ontological foundation as a basis for capturing the meaning of generic feature-oriented design and manufacture concepts. This ontological foundation serves as a semantic ground over which design and manufacture knowledge models can be configured in an integrity-driven way. The implications involved in the specification of the ontological foundation are discussed alongside the types of mechanisms that allow knowledge models to be configured. A test case scenario is then analysed in order to further support and verify the researched approach

    Influence of the ratio on the mechanical properties of epoxy resin composite with diapers waste as fillers for partition panel application

    Get PDF
    Materials play significant role in the domestic economy and defense with the fast growth of science and technology field. New materials are the core of fresh technologies and the three pillars of modern science and technology are materials science, power technology and data science. The prior properties of the partition panel by using recycled diapers waste depend on the origin of waste deposits and its chemical constituents. This study presents the influence of the ratio on the mechanical properties of polymer in diapers waste reinforced with binder matrix for partition panel application. The aim of this study was to investigate the influence of different ratio of diapers waste polymer reinforced epoxy-matrix with regards to mechanical properties and morphology analysis. The polymer includes polypropylene, polystyrene, polyethylene and superabsorbent polymer (SAP) were used as reinforcing material. The tensile and bending resistance for ratio of 0.4 diapers waste polymers indicated the optimum ratio for fabricating the partition panel. Samples with 0.4 ratios of diapers waste polymers have highest stiffness of elasticity reading with 76.06 MPa. A correlation between the micro structural analysis using scanning electron microscope (SEM) and the mechanical properties of the material has been discussed

    Network part program approach based on the STEP-NC data structure for the machining of multiple fixture pallets

    Get PDF
    partially_open4noThe adoption of alternative process plans, that is, process plans that include alternative ways of machining a workpiece, can improve system performance through a better management of resource availability. Unfortunately even if this opportunity is deeply analysed in literature, it is not frequently adopted in real manufacturing practice. In order to fill this gap, this article presents the network part program (NPP) approach for the machining of multiple fixture pallets. The NPP approach is based on the STEP-NC data structure which supports nonlinear sequences of operations and process flexibility. In the NPP approach, a machining system supervisor defines the machining sequences and generates the related part programs just before the execution of the pallet. This article provides an approach with high scientific value and industrial applicability based on the integration of new and existing process planning methods. A real industrial case study is considered in order to show that in real applications the final quality is unaffected by the change of the sequence of the operations due to the employment of nonlinear process plans. Since the results appear very encouraging, the proposed approach is a possible solution to accelerate the adoption of nonlinear process planning in real manufacturing practice.S. Borgia; S. Pellegrinelli; S. Petro'; T. TolioBorgia, Stefano; Pellegrinelli, Stefania; Petro', Stefano; Tolio, TULLIO ANTONIO MARI

    A mathematical model development for the lateral collapse of octagonal tubes

    Get PDF
    . Many researches has been done on the lateral collapse of tube. However, the previous researches only focus on cylindrical and square tubes. Then a research has been done discovering the collapse behaviour of hexagonal tube and the mathematic model of the deformation behaviour had been developed [8]. The purpose of this research is to study the lateral collapse behaviour of symmetric octagonal tubes and hence to develop a mathematical model of the collapse behaviour of these tubes. For that, a predictive mathematical model was developed and a finite element analysis procedure was conducted for the lateral collapse behaviour of symmetric octagonal tubes. Lastly, the mathematical model was verified by using the finite element analysis simulation results. It was discovered that these tubes performed different deformation behaviour than the cylindrical tube. Symmetric octagonal tubes perform 2 phases of elastic - plastic deformation behaviour patterns. The mathematical model had managed to show the fundamental of the deformation behaviour of octagonal tubes. However, further studies need to be conducted in order to further improve on the proposed mathematical mode

    STEP-NC Enabled Cross-Technology Interoperability for CNC Machining

    Get PDF

    A novel method for information rich costing in CNC manufacture

    Get PDF

    Process Comprehension for Interoperable CNC Manufacturing

    Get PDF
    Over the last 40 years manufacturing industry has enjoyed a rapid growth with the support of various computer-aided systems (CAD, CAPP, CAM etc.) known as CAx. Since the first Numerically Controlled (NC) machine appeared in 1952, there have been many advances in CAx resource capabilities. The information integration and interoperability between different manufacturing resources has become an important and popular research area over the last decade. Computer Numerically Controlled (CNC) machines are an important link in the manufacturing chain and the major contributor to the production capacity of manufacturing industry today. However, most of the research has focused on the information integration of upper systems in the CAD/CAPP /CAM/CNC manufacturing chain, leaving the shop floor as an isolated information island. In particular, there is limited opportunity to capture and feed shopfloor knowledge back to the upper systems. Furthermore, the part programs for the machines are not exchangeable due to the. machine specific postprocessors. Thus there is a further need to consider information interoperability between different CNC machine and other systems. This research investigates the reverse transformation of the CNC part programmes into higher level of process information, entitled process comprehension, to enable the shopfloor interoperability. A novel framework of universal process comprehension is specified and designed. The framework provides a reverse direction of information flow from the CNC machine to upper CAx systems, enabling the interoperability and recycling of the shopfloor knowledge. A prototype implementation of the framework is realised and utilised to demonstrate the functionalities through three industrially inspired test components. The major contribution of this research to knowledge is the new vision of the shopfloor interoperability associated with process knowledge capture and reuse. The research shows that process comprehension of part programmes can provide an effective solution to the issues of the shopfloor interoperability and knowledge reuse in manufacturing industries.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A framework to support semantic interoperability in product design and manufacture

    Get PDF
    It has been recognised that the ability to communicate the meaning of concepts and their intent within and across system boundaries, for supporting key decisions in product design and manufacture, is impaired by the semantic interoperability issues that are presently encountered. This work contributes to the field of semantic interoperability in product design and manufacture. An attribution is made to the understanding and application of relevant concepts coming from the computer science world, notably ontology-based approaches, to help resolve semantic interoperability problems. A novel ontological approach, identified as the Semantic Manufacturing Interoperability Framework (SMIF), has been proposed following an exploration of the important requirements to be satisfied. The framework, built on top of a Common Logic-based ontological formalism, consists of a manufacturing foundation to capture the semantics of core feature-based design and manufacture concepts, over which the specialisation of domain models can take place. Furthermore, the framework supports the mechanisms for allowing the reconciliation of semantics, thereby improving the knowledge sharing capability between heterogeneous domains that need to interoperate and have been based on the same manufacturing foundation. This work also analyses a number of test case scenarios, where the framework has been deployed for fostering knowledge representation and reconciliation of models involving products with standard hole features and their related machining process sequences. The test cases have shown that the Semantic Manufacturing Interoperability Framework (SMIF) provides effective support towards achieving semantic interoperability in product design and manufacture. Proposed extensions to the framework are additionally identified so as to provide a view on imminent future work.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore