4 research outputs found

    Output Strictly Passive Control of Uncertain Singular Neutral Systems

    Get PDF
    This paper concerns the problem of output strictly passive control for uncertain singular neutral systems. It introduces a new effective criterion to study the passivity of singular neutral systems. Compared with the previous approach, this criterion has no equality constraints. And the state feedback controller is designed so that the uncertain singular neutral systems are output strictly passive. In terms of a linear matrix inequality (LMI) and Lyapunov function, the strictly passive criterion is formulated. And the desired passive controller is given. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed approach

    Robust H

    Get PDF
    This paper deals with the robust H∞ filter design problem for a class of uncertain neutral stochastic systems with Markovian jumping parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribed H∞ performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linear matrix inequalities which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less conservative and less complicated in computation

    A new result on stability analysis for stochastic neutral systems

    No full text
    This paper discusses the mean-square exponential stability of stochastic linear systems of neutral type. Applying the Lyapunov-Krasovskii theory, a linear matrix inequality-based delay-dependent stability condition is presented. The use of model transformations, cross-term bounding techniques or additional matrix variables is all avoided, thus the method leads to a simple criterion and shows less conservatism. The new result is derived based on the generalized Finsler lemma (GFL). GFL reduces to the standard Finsler lemma in the absence of stochastic perturbations, and it can be used in the analysis and synthesis of stochastic delay systems. Moreover, GFL is also employed to obtain stability criteria for a class of stochastic neutral systems which have different discrete and neutral delays. Numerical examples including a comparison with some recent results in the literature are provided to show the effectiveness of the new results
    corecore