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This paper dealswith the robust𝐻
∞
filter design problem for a class of uncertain neutral stochastic systemswithMarkovian jumping

parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability
condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribed𝐻

∞

performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linearmatrix inequalities
which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less
conservative and less complicated in computation.

1. Introduction

Time delay exists extensively in chemical process systems,
communication systems, economic systems, microwave
oscillator, and networked control systems. Meanwhile,
because of the modeling inaccuracies and changes in the
environment of the model parameter, uncertainties are
unavoidable in the process of modeling. The appearance of
time delay and uncertainties in many systems can often bring
instability, oscillation, and poor performance; considerable
attention has been focused on the stability analysis of
uncertain time delays systems; see [1–6] and the references
therein. On the other hand, a real system is often affected
by external disturbances such as stochastic perturbations.
The stochastic effects can also lead to oscillation, divergence,
or other poor performances. Therefore, the stability study
of stochastic systems with time delay has been paid
great attention and a lot of significant results have been
reported in the literature; see [7–12] and the references
therein.

In the past few decades, filtering problem has been a hot
issue in the fields of signal processing. Kalman filtering has
been successfully applied in many fields such as manufac-
turing systems, economic systems, and maneuvered target
tracking.However, the exact requirement of knowndynamics
system and precise noise statistics have restricted its practical

application. In such a case, we can resort to𝐻
∞
filtering [13–

22] and 𝐿2-𝐿∞ filtering [23–25]; see the references therein.
Markovian jump systems, originally raised by Krasovskii

and Lidskii [26], are famous for the description of many
dynamical practical systems whose structure and parame-
ters are subject to random changes. Therefore, the stability
analysis and filtering problem for Markovian jump systems
have been studied [27–34]. For example, the stability analysis
of impulsive stochastic neural networks with Markovian
jump are studied in [27, 29, 31, 34]; 𝐻

∞
control and mode-

dependent 𝐻
∞

filtering for discrete-time Markovian jump
linear systems with partly unknown transition probabilities
are, respectively, investigated in [28, 30, 32]. The design of
reduced-order 𝐻

∞
filter for Markovian jumping systems

with time delay is studied in [15]. The 𝐿2-𝐿∞ filter design
for stochastic time-varying delay systems with Markovian
jumping parameters is considered in [33].

Many methods are proposed in the process of robust
stochastic stability analysis and filtering design, which devel-
ops from the early solving Riccati equation to model trans-
formation method and cross-terms bounding technique [5],
free-weighting matrices method [11, 32], slack matrix vari-
ables [17–19, 24, 28], and delay-partitioning method [20].
However, model transformations may give rise to additional
dynamics of the original systems [13], and cross-terms
bounding techniques can bring conservatism. Moreover, as
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pointed out in [33], under certain circumstance, free matrix
variables may not lessen the conservatism. In recent years,
another popular method called Finsler Lemma is carried out
so as to decrease the computational cost as well [5], and
the Finsler Lemma in deterministic setting is extended to
generalized Finsler Lemma in stochastic systems in [5, 33, 34].

On the other hand, many dynamical systems can be
modeled by neutral systems which are organized by neutral
functional differential equations. Other than retarded time
delay systems containing delays only in states, a neutral
time delay system contains delays in both its state and its
derivatives of state. Recently, for neutral stochastic time delay
systems, the stability analysis and filter design problem are
mainly addressed in [4, 9, 19]. It is necessary to point out
that the delay-dependent robust 𝐻

∞
filtering for uncertain

neutral stochastic time delay system is studied in [19, 24].
Robust 𝐻

∞
filter design for neutral stochastic uncertain

systems with time-varying delay is studied in [13]. To the
best of the authors’ knowledge, the𝐻

∞
filtering problem has

not been reported about uncertain neutral stochastic systems
with Markovian jumping parameters and time delay, which
motivates the present study.

Motivated by the works in [5, 13, 17, 18], the robust 𝐻
∞

filtering for uncertain neutral stochastic systems withMarko-
vian jumping parameters and time delay is considered in this
paper. By generalized Finsler Lemma, the robust stochastic
stability condition is obtained. The presented condition is
simple and efficient. Finally, the effectiveness of the approach
is verified by illustrative examples including a comparison
with some recent results.

Throughout this paper, R𝑛 denotes the 𝑛-dimensional
Euclidean space. R𝑛×𝑚 is the set of 𝑛 × 𝑚 real matrices. 𝐼 is
the identity matrix. | ⋅ | denotes Euclidean norm for vectors
and ‖ ⋅ ‖ denotes the spectral norm of matrices. 𝑁 denotes
the set of all natural numbers; that is, 𝑁 = {0, 1, 2, . . .}.
(Ω,F, {F

𝑡
}
𝑡≥0,P) is a complete probability space with filtra-

tion {F
𝑡
}
𝑡≥0 satisfying the usual conditions.𝑀

𝑇 stands for the
transpose of the matrix𝑀. For symmetric matrices𝑋 and 𝑌,
the notation 𝑋 > 𝑌 (resp., 𝑋 ≥ 𝑌) means that the 𝑋 − 𝑌

is positive definite (resp., positive semidefinite). ∗ denotes a
block that is readily inferred by symmetry. E{⋅} stands for the
mathematical expectation operator with respect to the given
probability measureP.

2. Problem Description

Consider the following uncertain neutral stochastic systems
with Markovian jumping parameters and time delay:

𝑑 [𝑥 (𝑡) −𝐺 (𝑟
𝑡
) 𝑥 (𝑡 − ℎ)] = [𝐴 (𝑡, 𝑟

𝑡
) (𝑡) 𝑥 (𝑡)

+𝐴1 (𝑡, 𝑟𝑡) (𝑡) 𝑥 (𝑡 − ℎ) + 𝐵 (𝑟𝑡) V (𝑡)] 𝑑𝑡

+ [𝐷 (𝑡, 𝑟
𝑡
) (𝑡) 𝑥 (𝑡) +𝐷1 (𝑡, 𝑟𝑡) (𝑡) 𝑥 (𝑡 − ℎ)

+𝐷2 (𝑟𝑡) V (𝑡)] 𝑑𝑤 (𝑡) ,

𝑑𝑦 (𝑡) = [𝐶 (𝑟
𝑡
) 𝑥 (𝑡) +𝐶1 (𝑟𝑡) 𝑥 (𝑡 − ℎ) +𝐶2 (𝑟𝑡) V (𝑡)] 𝑑𝑡

+ [𝐸 (𝑟
𝑡
) (𝑡) 𝑥 (𝑡) + 𝐸1 (𝑟𝑡) 𝑥 (𝑡 − ℎ) +𝐸2 (𝑟𝑡) V (𝑡)] 𝑑𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐿1 (𝑟𝑡) 𝑥 (𝑡) + 𝐿2 (𝑟𝑡) 𝑥 (𝑡 − ℎ) + 𝐿3 (𝑟𝑡) V (𝑡) ,

𝑥 (𝜃) = 𝜓 (𝜏) ,

𝑟
𝑡
= 𝑟0 ∈ 𝑆, ∀𝜏 ∈ [−ℎ, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑦(𝑡) ∈ R𝑚 is themeasured
output, V(𝑡) ∈ R𝑞 is the disturbance input in 𝐿2[0,∞),
and 𝑧(𝑡) ∈ R𝑝 is the signal to be estimated. 𝐴(𝑡, 𝑟

𝑡
)(𝑡),

𝐴1(𝑡, 𝑟𝑡)(𝑡), 𝐵(𝑟𝑡),𝐷(𝑡, 𝑟𝑡)(𝑡),𝐷1(𝑡, 𝑟𝑡)(𝑡),𝐷2(𝑟𝑡),𝐶(𝑟𝑡),𝐶1(𝑟𝑡),
𝐶2(𝑟𝑡), 𝐸(𝑟𝑡), 𝐸1(𝑟𝑡), 𝐸2(𝑟𝑡), 𝐿1(𝑟𝑡), 𝐿2(𝑟𝑡), and 𝐿3(𝑟𝑡) are the
matrix functions of the random jumping process 𝑟(𝑡), where
𝑟(𝑡) is a finite-state Markovian jump process representing
the system mode; that is, 𝑟(𝑡) takes discrete values in given
finite set S = 1, 2, . . . , 𝑁. Here 𝜓(⋅) is the initial condition
and is assumed to be continuously differentiable on [−ℎ, 0].
Consider ℎ > 0 indicates the time delay. 𝑤(𝑡) is a scalar
Brownian motion (Wiener process) defined on the complete
probability space (Ω,F, {F

𝑡
}
𝑡≥0,P) satisfying

E {𝑑𝑤 (𝑡)} = 0,

E {𝑑𝑤2
(𝑡)} = 𝑑𝑡.

(2)

The transition probability matrix of systems (1) is given by

𝑃
𝑟
(𝑟
𝑡+Δ

= 𝑗 | 𝑟
𝑡
= 𝑖) =

{

{

{

𝜋
𝑖𝑗
Δ + 𝑜 (Δ) , 𝑗 ̸= 𝑖

1 + 𝜋
𝑖𝑖
Δ + 𝑜 (Δ) , 𝑗 = 𝑖,

(3)

where Δ > 0, lim
Δ→ 0(𝑜(Δ)/Δ) = 0, 𝜋

𝑖𝑗
≥ 0, ∀𝑗 ̸= 𝑖, is the

transition rate from mode 𝑖 at time 𝑡 to mode 𝑗 at time 𝑡 + Δ,
and

𝜋
𝑖𝑖
= −

𝑗=𝑁

∑

𝑗=1,𝑗 ̸=𝑖
𝜋
𝑖𝑗
< 0. (4)

For the purpose of simplicity, in this paper, for each 𝑟(𝑡) =
𝑖 ∈ S, 𝐴(𝑡, 𝑟

𝑡
)(𝑡), 𝐴1(𝑡, 𝑟𝑡)(𝑡), and 𝐵(𝑟𝑡) are denoted by 𝐴

𝑖
(𝑡),

𝐴1𝑖(𝑡), 𝐵𝑖, and so on. In systems (1),

𝐴
𝑖
(𝑡) = 𝐴

𝑖
+Δ𝐴
𝑖
(𝑡) ,

𝐴1𝑖 (𝑡) = 𝐴1𝑖 +Δ𝐴1𝑖 (𝑡) ,

𝐷
𝑖
(𝑡) = 𝐷

𝑖
+Δ𝐷
𝑖
(𝑡) ,

𝐷1𝑖 (𝑡) = 𝐷1𝑖 +Δ𝐷1𝑖 (𝑡) ,

(5)

and 𝐴
𝑖
, 𝐴1𝑖, 𝐵𝑖, 𝐷𝑖, 𝐷1𝑖, 𝐷2𝑖, 𝐶𝑖, 𝐶1𝑖, 𝐶2𝑖, 𝐸𝑖, 𝐸1𝑖, 𝐸2𝑖, 𝐿1𝑖,

𝐿2𝑖, and 𝐿3𝑖 are known real constant matrices with appro-
priate dimensions. Δ𝐴

𝑖
(𝑡), Δ𝐴1𝑖(𝑡), Δ𝐷𝑖(𝑡), and Δ𝐷1𝑖(𝑡) are

unknown matrices representing norm-bounded parameter
uncertainties, which are assumed to satisfy

[

Δ𝐴
𝑖
(𝑡) Δ𝐴1𝑖 (𝑡)

Δ𝐷
𝑖
(𝑡) Δ𝐷1𝑖 (𝑡)

] = [

𝑀1𝑖

𝑀2𝑖
]𝐹
𝑖
(𝑡) [𝑁1𝑖 𝑁2𝑖] , (6)

where 𝑀1𝑖, 𝑀2𝑖, 𝑁1𝑖, and 𝑁2𝑖 are known real constant
matrices and 𝐹

𝑖
(⋅) : R → R𝑘×𝑙 is an unknown time-varying

matrix function satisfying

𝐹
𝑇

𝑖
(𝑡) 𝐹
𝑖
(𝑡) ≤ 𝐼, ∀𝑡. (7)
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The parameter uncertainties Δ𝐴
𝑖
(𝑡), Δ𝐴1𝑖(𝑡), Δ𝐷𝑖(𝑡), and

Δ𝐷1𝑖(𝑡) are said to be admissible if both (6) and (7) hold.
In this paper, we make the following assumption on the

matrix 𝐺
𝑖
in systems (1).

Assumption 1. Thematrix 𝐺
𝑖
in systems (1) satisfies

𝜌 (𝐺
𝑖
) < 1, (8)

where the notation 𝜌(𝐺
𝑖
) denotes the spectral radius of 𝐺

𝑖
.

We now consider a full-order filter for systems (1) with
the following form:

(Σ
𝑓
) : 𝑑𝑥 (𝑡) = 𝐴

𝑓𝑖
𝑥 (𝑡) 𝑑𝑡 + 𝐵

𝑓𝑖
𝑑𝑦 (𝑡) ,

�̂� (𝑡) = 𝐶
𝑓𝑖
𝑥 (𝑡) ,

(9)

where 𝑥(𝑡) ∈ R𝑛 is the filter state, �̂�(𝑡) ∈ R𝑝 is the estimation
of 𝑧(𝑡), and 𝐴

𝑓𝑖
, 𝐵
𝑓𝑖
, and 𝐶

𝑓𝑖
(𝑖 ∈ S) are the filter parameters

with compatible dimensions to be determined.
Define

𝜉 (𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡)]

𝑇

,

𝑒 (𝑡) = 𝑧 (𝑡) − �̂� (𝑡) .

(10)

Then the filtering error systems can be obtained as follows:

𝑑 [𝜉 (𝑡) −𝐺
𝑖
𝐾𝜉 (𝑡 − ℎ)] = [𝐴

𝑖
(𝑡) 𝜉 (𝑡)

+𝐴1𝑖 (𝑡) 𝐾𝜉 (𝑡 − ℎ) + 𝐵𝑖V (𝑡)] 𝑑𝑡 + [𝐷𝑖 (𝑡) 𝜉 (𝑡)

+𝐷1𝑖 (𝑡) 𝐾𝜉 (𝑡 − ℎ) +𝐷2𝑖V (𝑡)] 𝑑𝑤 (𝑡) ,

𝑒 (𝑡) = 𝐿1𝑖𝜉 (𝑡) + 𝐿2𝑖𝐾𝜉 (𝑡 − ℎ) + 𝐿3𝑖V (𝑡) ,

(11)

where

𝐴
𝑖
(𝑡) = 𝐴

𝑖
+Δ𝐴
𝑖
(𝑡) ,

𝐴1𝑖 (𝑡) = 𝐴1𝑖 +Δ𝐴1𝑖 (𝑡) ,

𝐷
𝑖
(𝑡) = 𝐷

𝑖
+Δ𝐷
𝑖
(𝑡) ,

𝐷1𝑖 (𝑡) = 𝐷1𝑖 +Δ𝐷1𝑖 (𝑡)

(12)

with

𝐴
𝑖
= [

𝐴
𝑖

0
𝐵
𝑓𝑖
𝐶
𝑖
𝐴
𝑓𝑖

] ,

Δ𝐴
𝑖
(𝑡) = [

Δ𝐴
𝑖
(𝑡) 0

0 0
] ,

𝐴1𝑖 = [
𝐴1𝑖

𝐵
𝑓𝑖
𝐶1𝑖
] ,

Δ𝐴1𝑖 (𝑡) = [
Δ𝐴1𝑖 (𝑡)

0
] ,

𝐵
𝑖
= [

𝐵
𝑖

𝐵
𝑓𝑖
𝐶2𝑖
] ,

𝐷
𝑖
= [

𝐷
𝑖

0
𝐵
𝑓𝑖
𝐸
𝑖
0
] ,

Δ𝐷
𝑖
(𝑡) = [

Δ𝐷
𝑖
(𝑡) 0

0 0
] ,

𝐷1𝑖 = [
𝐷1𝑖

𝐵
𝑓𝑖
𝐸1𝑖
] ,

Δ𝐷1𝑖 (𝑡) = [
Δ𝐷1𝑖 (𝑡)

0
] ,

𝐷2𝑖 = [
𝐷2𝑖

𝐵
𝑓𝑖
𝐸2𝑖
]𝐾 = [𝐼 0] ,

𝐿1𝑖 = [𝐿1𝑖 −𝐶𝑓𝑖] ,

𝐺
𝑖
= [

𝐺
𝑖

0
] .

(13)

Then the problem of robust 𝐻
∞

filtering to be addressed
in this paper is formulated as follows: given the uncertain
stochastic delay systems (1) and a prescribed attenuation level
𝛾 > 0, design linear stochastic filter (Σ

𝑓
) as the form of

(9) such that the filtering error systems (11) are robustly
stochastically stable and under zero initial conditions, the
following inequality holds:

‖𝑒 (𝑡)‖2 < 𝛾 ‖V (𝑡)‖2 (14)

for all nonzero V(𝑡) ∈ 𝐿2[0,∞) and all admissible uncertain-
ties.

Before concluding this section, we introduce the follow-
ing Lemmas, which will be used in the derivation of ourmain
results in the next section.

Lemma 2. For any vectors 𝑥, 𝑦 ∈ R𝑛 and any scalar 𝜖 > 0,
matrices 𝐷, 𝐹, 𝐸 are real matrices of appropriate dimensions
with 𝐹𝑇𝐹 ≤ 𝐼, then the following inequality hold:

2𝑥𝑇𝐷𝐹𝐸𝑦 ≤ 𝜖−1𝑥𝑇𝐷𝐷𝑇𝑥+ 𝜖𝑦𝑇𝐸𝐸𝑇𝑦. (15)

Proposition 3 ([5], generalized Finsler Lemma (GFL)). Con-
sider stochastic vector 𝜃 ∈ R𝑛, symmetric and positive matrix
Θ ∈ R𝑛×𝑛, and matrixB ∈ R𝑚×𝑛 with rank (B) = 𝑟 < 𝑛. Let
B⊥ represent the right orthogonal complement of B, that is,
BB⊥ = 0, then the following four statements are equivalent:

(𝑇1) E{𝜃𝑇Θ𝜃} < 0, ∀𝜃 ̸= 0, 𝑡 > 𝑡0, E{B𝜃} = 0;
(𝑇2) B⊥𝑇ΘB⊥ < 0;
(𝑇3) ∃𝜖 ∈ R : Θ − 𝜖B𝑇B < 0;
(𝑇4) ∃Λ ∈ R𝑛×𝑚 : Θ + ΛB +B𝑇Λ𝑇 < 0.
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Remark 4. Based on generalized Finsler Lemma, the stability
of neutral stochastic systems with time delay has been
studied in [5, 34]. In addition, it should be noted that
the stochastic systems in [5, 34] are not Markovian jump
systems. And the filtering problem for stochastic time delay
systems with Markovian jumping parameters is considered
in [20]. However, it should be pointed out that the systems
in [20] do not include any analysis of neutral phenomena. So
𝐻
∞

filtering for neutral stochastic systems with Markovian
jumping parameters and time delay is considered in this
paper.

3. Main Results

Theorem 5. Consider the uncertain neutral stochastic Marko-
vian jump systems (1). For given scalars 𝛾 > 0, ℎ > 0,
systems (1) are robustly stochastically stable for all admissible
uncertainties satisfying (6) and (7), if there exist symmetric
positive matrices 𝑃

𝑖
> 0, 𝑅 > 0, 𝑄 = [

𝑄1 𝑄2
∗ 𝑄3

] > 0, and scalar
𝜖
𝑖
> 0 satisfying

Ω
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ω11𝑖 Ω12𝑖 −𝐾
𝑇

𝑅𝐺
𝑖

𝑃
𝑖
𝐵
𝑖

ℎ𝐴

𝑇

𝑖
𝐾
𝑇

𝑅 𝐷

𝑇

𝑖
𝑃
𝑖
𝐿

𝑇

1𝑖 𝑃
𝑖
𝑀1𝑖

∗ Ω22𝑖 Ω23𝑖 −𝐺

𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
ℎ𝐴

𝑇

1𝑖𝐾
𝑇

𝑅 𝐷

𝑇

1𝑖𝑃𝑖 𝐿
𝑇

2𝑖 −𝐺
𝑇

𝑖
𝑃
𝑖
𝑀1𝑖

∗ ∗ Ω33𝑖 0 0 0 0 0

∗ ∗ ∗ −𝛾
2
𝐼 ℎ𝐵

𝑇

𝑖
𝐾
𝑇

𝑅 𝐷

𝑇

2𝑖𝑃𝑖 𝐿
𝑇

3𝑖 0

∗ ∗ ∗ ∗ −𝑅 0 0 ℎ𝑅𝐾𝑀1𝑖

∗ ∗ ∗ ∗ ∗ −𝑃
𝑖

0 𝑃
𝑖
𝑀2𝑖

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖

𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (16)

where

Ω11𝑖 = 𝑃𝑖𝐴𝑖 +𝐴
𝑇

𝑖
𝑃
𝑖
+

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
+𝐾
𝑇

𝑄1𝐾+ 𝜖𝑖�̃�
𝑇

1𝑖�̃�1𝑖

−𝐾
𝑇

𝑅𝐾,

Ω12𝑖 = 𝑃𝑖𝐴1𝑖 −𝐴
𝑇

𝑖
𝑃
𝑖
𝐺
𝑖
−

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝐾
𝑇

𝑄2

+ 𝜖
𝑖
�̃�
𝑇

1𝑖𝑁2𝑖 +𝐾
𝑇

𝑅 (𝐺
𝑖
+ 𝐼) ,

Ω22𝑖 = −𝐺
𝑇

𝑖
𝑃
𝑖
𝐴1𝑖 −𝐴

𝑇

1𝑖𝑃𝑖𝐺𝑖 +𝐺
𝑇

𝑖

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝑄3 −𝑄1

+ 𝜖
𝑖
𝑁
𝑇

2𝑖𝑁2𝑖 − (𝐺𝑖 + 𝐼)
𝑇

𝑅 (𝐺
𝑖
+ 𝐼) ,

Ω23𝑖 = −𝑄2 + (𝐺𝑖 + 𝐼)
𝑇

𝑅𝐺
𝑖
,

Ω33𝑖 = −𝑄3 −𝐺
𝑇

𝑖
𝑅𝐺
𝑖
,

�̃�1𝑖 = 𝑁1𝑖𝐾 = [𝑁1𝑖 0] ,

𝑀1𝑖 = [
𝑀1𝑖

0
] ,

𝑀2𝑖 = [
𝑀2𝑖

0
] .

(17)

Proof. For the purpose of convenience, the following nota-
tions are adopted:

𝑧 (𝑡) = 𝜉 (𝑡) −𝐺
𝑖
𝐾𝜉 (𝑡 − ℎ) ,

𝑓V (𝑡, 𝜉 (𝑡) , 𝑖) = 𝐴𝑖 (𝑡) 𝜉 (𝑡) +𝐴1𝑖 (𝑡) 𝐾𝜉 (𝑡 − ℎ)

+ 𝐵
𝑖
V (𝑡) ,

𝑔V (𝑡, 𝜉 (𝑡) , 𝑖) = 𝐷𝑖 (𝑡) 𝜉 (𝑡) +𝐷1𝑖 (𝑡) 𝐾𝜉 (𝑡 − ℎ)

+𝐷2𝑖V (𝑡) ,

(18)

and then the filtering error systems (11) become

𝑑𝑧 (𝑡) = 𝑓V (𝑡, 𝜉 (𝑡) , 𝑖) 𝑑𝑡 + 𝑔V (𝑡, 𝜉 (𝑡) , 𝑖) 𝑑𝑤 (𝑡) . (19)

Choose the Lyapunov-Krasovskii functional candidate as
follows:

𝑉 (𝑡, 𝜉 (𝑡) , 𝑖) = 𝑧
𝑇

(𝑡) 𝑃
𝑖
𝑧 (𝑡) +∫

𝑡

𝑡−ℎ

𝜂
𝑇

(𝑠) 𝐾
𝑇

𝑄𝐾𝜂 (𝑠) 𝑑𝑠

+ ℎ∫

0

−ℎ

∫

𝑡

𝑡+𝛽

𝑓
𝑇

V (𝑠, 𝜉 (𝑠) , 𝑖) 𝐾
𝑇

𝑅𝐾𝑓V (𝑠, 𝜉 (𝑠) , 𝑖) 𝑑𝑠𝑑𝛽,

(20)

where 𝜂(𝑡) = [𝜉𝑇(𝑡) 𝜉𝑇(𝑡 − ℎ)]
𝑇

. According to Itô’s differen-
tial formula, the stochastic differential along systems (11) is

𝑑𝑉 (𝑡, 𝜉 (𝑡) , 𝑖) =L𝑉 (𝑡, 𝜉 (𝑡) , 𝑖) 𝑑𝑡

+ 2𝑧𝑇 (𝑡) 𝑃
𝑖
𝑔V (𝑡, 𝜉 (𝑡) , 𝑖) 𝑑𝑤 (𝑡) ,

(21)
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where

L𝑉 (𝑡, 𝜉 (𝑡) , 𝑖)

= 2𝑧𝑇 (𝑡) 𝑃
𝑖
𝑓V (𝑡, 𝜉 (𝑡) , 𝑖)

+ 𝑔
𝑇

V (𝑡, 𝜉 (𝑡) , 𝑖) 𝑃𝑖𝑔V (𝑡, 𝜉 (𝑡) , 𝑖)

+ 𝑧
𝑇

(𝑡)

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝑧 (𝑡) + 𝜂

𝑇

(𝑡) 𝐾
𝑇

𝑄𝐾𝜂 (𝑡)

− 𝜂
𝑇

(𝑡 − ℎ)𝐾
𝑇

𝑄𝐾𝜂 (𝑡 − ℎ)

+ ℎ
2
𝑓
𝑇

V (𝑡, 𝜉 (𝑡) , 𝑖) 𝐾
𝑇

𝑅𝐾𝑓V (𝑡, 𝜉 (𝑡) , 𝑖)

−∫

𝑡

𝑡−ℎ

𝑓
𝑇

V (𝑠, 𝜉 (𝑠) , 𝑖) 𝐾
𝑇

ℎ𝑅𝐾𝑓V (𝑠, 𝜉 (𝑠) , 𝑖) 𝑑𝑠.

(22)

Firstly, we show that the filtering error systems (11) with
V(𝑡) = 0 are robustly stochastically stable.

Taking mathematical expectation on both sides of system
(19) and by virtue of E{𝑑𝑤(𝑡) = 0}, we obtain

E {𝑑𝑧 (𝑡)} = E {𝑓V (𝑡, 𝜉 (𝑡) , 𝑖)} 𝑑𝑡. (23)

Integrating both sides of (23) from 𝑡 − ℎ to 𝑡, we have

∫

𝑡

𝑡−ℎ

E {−𝐼𝜉 (𝑡) + (𝐺
𝑖
𝐾+ 𝐼) 𝜉 (𝑡 − ℎ) −𝐺

𝑖
𝐾𝜉 (𝑡 − 2ℎ)

+ ℎ𝑓V (𝑠, 𝜉 (𝑠) , 𝑖)} 𝑑𝑠 = 0.
(24)

From the definition of 𝑓V(𝑡, 𝜉(𝑡), 𝑖)with V(𝑡) = 0 and (24), it is
easy to obtain

∫

𝑡

𝑡−ℎ

E {B
𝑖
𝜍
𝑖
} 𝑑𝑠 = 0, (25)

where

B
𝑖
= [

−𝐼 𝐴
𝑖
(𝑡) 𝐴1𝑖 (𝑡) 0 0

0 −𝐾 𝐾𝐺
𝑖
+ 𝐼 −𝐾𝐺

𝑖
ℎ𝐼

] ,

𝜍
𝑖
= [𝑓
𝑇

V (𝑡, 𝜉 (𝑡) , 𝑖) 𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − ℎ)𝐾
𝑇

𝜉
𝑇

(𝑡 − 2ℎ)𝐾𝑇 𝑓𝑇V (𝑠, 𝜉 (𝑠) , 𝑖) 𝐾
𝑇

]

𝑇

.

(26)

The right orthogonal complements ofB
𝑖
is

B
⊥

𝑖
=

[

[

[

[

[

[

[

[

[

[

[

𝐴

𝑇

𝑖
(𝑡) 𝐼 0 0 𝐾

𝑇

ℎ

𝐴

𝑇

1𝑖 (𝑡) 0 𝐼 0 −

(𝐾𝐺
𝑖
+ 𝐼)

ℎ

𝑇

0 0 0 𝐼

(𝐾𝐺
𝑖
)

ℎ

𝑇

]

]

]

]

]

]

]

]

]

]

]

𝑇

. (27)

Taking mathematical expectation on both sides of (21)
and then substituting (22) into (21), we have

[𝑑E𝑉 (𝑡, 𝜉 (𝑡) , 𝑖)]
𝑑𝑡

= E {L𝑉 (𝑡, 𝜉 (𝑡) , 𝑖)}

≤ E{1
ℎ

∫

𝑡

𝑡−ℎ

𝜍
𝑇

𝑖
Γ
𝑖
𝜍
𝑖
𝑑𝑠}

=

1
ℎ

∫

𝑡

𝑡−ℎ

E {𝜍𝑇
𝑖
Γ
𝑖
𝜍
𝑖
} 𝑑𝑠,

(28)

where

Γ
𝑖
=

[

[

[

[

[

[

[

[

[

ℎ
2
𝐾
𝑇

𝑅𝐾 𝑃
𝑖
−𝑃
𝑖
𝐺
𝑖

0 0
∗ Γ22𝑖 Γ23𝑖 0 0
∗ ∗ Γ33𝑖 −𝑄2 0
∗ ∗ ∗ −𝑄3 0

∗ ∗ ∗ ∗ −ℎ
2
𝑅

]

]

]

]

]

]

]

]

]

,

Γ22𝑖 =
𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
+𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷
𝑖
(𝑡) +𝐾

𝑇

𝑄1𝐾,

Γ23𝑖 = −
𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷1𝑖 (𝑡) +𝐾

𝑇

𝑄2,

Γ33𝑖 = 𝐺
𝑇

𝑖

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝐷

𝑇

1𝑖 (𝑡) 𝑃𝑖𝐷1𝑖 (𝑡) +𝑄3 −𝑄1.

(29)

In order to prove the robust stochastic stability of the filtering
error systems (11) with V(𝑡) = 0, it suffices to show

E {𝜍𝑇
𝑖
Γ
𝑖
𝜍
𝑖
} < 0. (30)

By virtue of Proposition 3, (30) is equivalent to

E {Γ̂
𝑖
} = E {B⊥𝑇

𝑖
Γ
𝑖
B
⊥

𝑖
} < 0, (31)
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where

Γ̂
𝑖
=

[

[

[

[

Γ̂11𝑖 Γ̂12𝑖 −𝐾
𝑇

𝑅𝐾𝐺
𝑖

∗ Γ̂22𝑖 Γ̂23𝑖

∗ ∗ Γ̂33𝑖

]

]

]

]

,

Γ̂11𝑖 = ℎ
2
𝐴

𝑇

𝑖
(𝑡) 𝐾
𝑇

𝑅𝐾𝐴
𝑖
(𝑡) + 𝑃

𝑖
𝐴
𝑖
(𝑡) +𝐴

𝑇

𝑖
(𝑡) 𝑃
𝑖

+

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
+𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷
𝑖
(𝑡) + 𝑘

𝑇

𝑄1𝐾

−𝐾
𝑇

𝑅𝐾,

Γ̂12𝑖 = ℎ
2
𝐴

𝑇

𝑖
(𝑡) 𝐾
𝑇

𝑅𝐾𝐴1𝑖 (𝑡) + 𝑃𝑖𝐴1𝑖 (𝑡) −𝐴
𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐺
𝑖

−

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷1𝑖 (𝑡) +𝐾

𝑇

𝑄2

+𝐾
𝑇

𝑅 (𝐾𝐺
𝑖
+ 𝐼) ,

Γ̂22𝑖 = ℎ
2
𝐴

𝑇

1𝑖 (𝑡) 𝐾
𝑇

𝑅𝐾𝐴1𝑖 (𝑡) −𝐺
𝑇

𝑖
𝑃
𝑖
𝐴1𝑖 (𝑡)

−𝐴

𝑇

1𝑖 (𝑡) 𝑃𝑖𝐺𝑖 +𝐺
𝑇

𝑖

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖

+𝐷

𝑇

1𝑖 (𝑡) 𝑃𝑖𝐷1𝑖 (𝑡) +𝑄3 −𝑄1

− (𝐾𝐺
𝑖
+ 𝐼)

𝑇

𝑅 (𝐾𝐺
𝑖
+ 𝐼) ,

Γ̂23𝑖 = −𝑄2 + (𝐾𝐺𝑖 + 𝐼)
𝑇

𝑅𝐾𝐺
𝑖
,

Γ̂33𝑖 = −𝑄3 − (𝐾𝐺𝑖)
𝑇

𝑅𝐾𝐺
𝑖
.

(32)

It is obvious that Γ̂
𝑖
< 0 are implied by (16) according to Schur

complements.Therefore, if (16) is feasible, then filtering error
systems (11) with V(𝑡) = 0 are robustly stochastically stable.

Next, we will establish the 𝐻
∞

performance for the
filtering error systems (11) under the zero initial condition.

From the definition of𝑓V(𝑡, 𝜉(𝑡), 𝑖) and together with (24),
it implies

∫

𝑡

𝑡−ℎ

E {BV𝑖𝜍V𝑖} 𝑑𝑠 = 0, (33)

where

BV𝑖 = [
−𝐼 𝐴

𝑖
(𝑡) 𝐴1𝑖 (𝑡) 0 0 𝐵

𝑖

0 −𝐾 𝐾𝐺
𝑖
+ 𝐼 −𝐾𝐺

𝑖
ℎ𝐼 0

] ,

𝜍V𝑖 = [𝑓
𝑇

V (𝑡, 𝜉 (𝑡) , 𝑖) 𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − ℎ)𝐾
𝑇

𝜉
𝑇

(𝑡 − 2ℎ)𝐾𝑇 𝑓𝑇V (𝑠, 𝜉 (𝑠) , 𝑖) 𝐾
𝑇 V𝑇 (𝑡)]

𝑇

.

(34)

The right orthogonal complements ofBV𝑖 are

B
⊥

V𝑖 =

[

[

[

[

[

[

[

[

[

[

[

[

𝐴

𝑇

𝑖
(𝑡) 𝐼 0 0 𝐾

𝑇

ℎ

0

𝐴

𝑇

1𝑖 (𝑡) 0 𝐼 0 −

(𝐾𝐺
𝑖
+ 𝐼)

ℎ

𝑇

0

0 0 0 𝐼

(𝐾𝐺
𝑖
)

ℎ

𝑇

0

𝐵

𝑇

𝑖
0 0 0 0 𝐼

]

]

]

]

]

]

]

]

]

]

]

]

𝑇

. (35)

Noticing (21)-(22) together with E{𝑑𝑤(𝑡)} = 0, we can
obtain

[𝑑E𝑉 (𝑡, 𝜉 (𝑡) , 𝑖)]
𝑑𝑡

= E {L𝑉 (𝑡, 𝜉 (𝑡) , 𝑖)}

≤ E{1
ℎ

∫

𝑡

𝑡−ℎ

𝜍
𝑇

V𝑖ΓV𝑖𝜍V𝑖𝑑𝑠}

=

1
ℎ

∫

𝑡

𝑡−ℎ

E {𝜍𝑇V𝑖ΓV𝑖𝜍V𝑖} 𝑑𝑠,

(36)

where

ΓV𝑖 = [
Γ
𝑖
ΓV

∗ Γ66𝑖
] ,

ΓV = [0 Γ
𝑇

26𝑖 Γ
𝑇

36𝑖 0 0]
𝑇

,

Γ26𝑖 = 𝐷
𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷2𝑖,

Γ36𝑖 = 𝐷
𝑇

1𝑖 (𝑡) 𝑃𝑖𝐷2𝑖,

Γ66𝑖 = 𝐷
𝑇

2𝑖𝑃𝑖𝐷2𝑖,

(37)

and set

𝐽 = E{∫
∞

0
[𝑒
𝑇

(𝑡) 𝑒 (𝑡) − 𝛾
2V𝑇 (𝑡) V (𝑡)] 𝑑𝑡} . (38)

Adding the right side of (38) to both sides of (36) and
integrating both sides of (36) from 0 to ∞ and then taking
the zero initial condition into account, we can acquire

𝐽 ≤

1
ℎ

∫

∞

0
∫

𝑡

𝑡−ℎ

E {𝜍𝑇V𝑖HV𝑖𝜍V𝑖} 𝑑𝑠 𝑑𝑡, (39)
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where

HV𝑖 = ΓV𝑖 +Π
𝑇

Π+ diag {0, 0, 0, 0, 0, − 𝛾2𝐼} , (40)

and Π = [0 𝐿1𝑖 𝐿2𝑖 𝐾 0 0 𝐿3𝑖].
According to Proposition 3, E{𝜍𝑇V𝑖HV𝑖𝜍V𝑖} < 0 is equivalent

to

Θ
𝑖
=B
⊥𝑇

V𝑖 HV𝑖B
⊥

V𝑖 =

[

[

[

[

[

[

Θ11𝑖 Θ12𝑖 −𝐾
𝑇

𝑅𝐾𝐺
𝑖
Θ14𝑖

∗ Θ22𝑖 Θ23𝑖 Θ24𝑖

∗ ∗ Θ33𝑖 0
∗ ∗ ∗ Θ44𝑖

]

]

]

]

]

]

< 0,

(41)

where

Θ11𝑖 = Γ̂11𝑖 +𝐿
𝑇

1𝑖𝐿1𝑖,

Θ12𝑖 = Γ̂12𝑖 +𝐿
𝑇

1𝑖𝐿2𝑖,

Θ22𝑖 = Γ̂22𝑖 +𝐿
𝑇

2𝑖𝐿2𝑖,

Θ23𝑖 = Γ̂23𝑖,

Θ33𝑖 = Γ̂33𝑖,

Θ14𝑖 = ℎ
2
𝐴

𝑇

𝑖
(𝑡) 𝐾
𝑇

𝑅𝐾𝐵
𝑖
+𝑃
𝑖
𝐵
𝑖
+𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷2𝑖

+𝐿

𝑇

1𝑖𝐿3𝑖,

Θ24𝑖 = ℎ
2
𝐴

𝑇

1𝑖 (𝑡) 𝐾
𝑇

𝑅𝐾𝐵
𝑖
−𝐺

𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+𝐷

𝑇

1𝑖 (𝑡) 𝑃𝑖𝐷2𝑖

+𝐿
𝑇

2𝑖𝐿3𝑖,

Θ44𝑖 = ℎ
2
𝐵

𝑇

𝑖
𝐾
𝑇

𝑅𝐾𝐵
𝑖
+𝐷

𝑇

2𝑖𝑃𝑖𝐷2𝑖 +𝐿
𝑇

3𝑖𝐿3𝑖 − 𝛾
2
𝐼.

(42)

According to Schur complement and (12), we can obtain

Θ
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Π11𝑖 Π12𝑖 −𝐾
𝑇

𝑅𝐺
𝑖

𝑃
𝑖
𝐵
𝑖

ℎ𝐴

𝑇

𝑖
𝐾
𝑇

𝑅 𝐷

𝑇

𝑖
𝑃
𝑖
𝐿

𝑇

1𝑖

∗ Π22𝑖 Π23𝑖 −𝐺
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
ℎ𝐴

𝑇

1𝑖𝐾
𝑇

𝑅 𝐷

𝑇

1𝑖𝑃𝑖 𝐿
𝑇

2𝑖

∗ ∗ Π33𝑖 0 0 0 0

∗ ∗ ∗ −𝛾
2
𝐼 ℎ𝐵

𝑇

𝑖
𝐾
𝑇

𝑅 𝐷

𝑇

2𝑖𝑃𝑖 𝐿
𝑇

3𝑖

∗ ∗ ∗ ∗ −𝑅 0 0
∗ ∗ ∗ ∗ ∗ −𝑃

𝑖
0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Θ11𝑖 Θ12𝑖 0 0 ℎΔ𝐴

𝑇

𝑖
(𝑡) 𝐾
𝑇

𝑅 Δ𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
0

Θ21𝑖 Θ22𝑖 0 0 ℎΔ𝐴

𝑇

1𝑖 (𝑡) 𝐾
𝑇

𝑅 Δ𝐷

𝑇

1𝑖 (𝑡) 𝑃𝑖 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

ℎ𝑅𝐾Δ𝐴
𝑖
(𝑡) ℎ𝑅𝐾Δ𝐴1𝑖 (𝑡) 0 0 0 0 0

𝑃
𝑖
Δ𝐷

𝑇

𝑖
(𝑡) 𝑃

𝑖
Δ𝐷1𝑖 (𝑡) 0 0 0 0 0

0 0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(43)

where

Π11𝑖 = 𝑃𝑖𝐴𝑖 +𝐴
𝑇

𝑖
𝑃
𝑖
+

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
+ 𝑘
𝑇

𝑄1𝐾−𝐾
𝑇

𝑅𝐾,

Π12𝑖 = 𝑃𝑖𝐴1𝑖 −𝐴
𝑇

𝑖
𝑃
𝑖
𝐺
𝑖
−

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝐾
𝑇

𝑄2

+𝐾
𝑇

𝑅 (𝐾𝐺
𝑖
+ 𝐼) ,

Π22𝑖 = −𝐺
𝑇

𝑖
𝑃
𝑖
𝐴1𝑖 −𝐴

𝑇

1𝑖𝑃𝑖𝐺𝑖 +𝐺
𝑇

𝑖

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝑄3

−𝑄1 − (𝐾𝐺𝑖 + 𝐼)
𝑇

𝑅 (𝐾𝐺
𝑖
+ 𝐼) ,

Π23𝑖 = −𝑄2 + (𝐾𝐺𝑖 + 𝐼)
𝑇

𝑅𝐾𝐺
𝑖
,

Π33𝑖 = −𝑄3 − (𝐾𝐺𝑖)
𝑇

𝑅𝐾𝐺
𝑖
,

Θ11𝑖 = 𝑃𝑖Δ𝐴𝑖 (𝑡) + Δ𝐴
𝑇

𝑖
(𝑡) 𝑃
𝑖
,

Θ12𝑖 = 𝑃𝑖Δ𝐴1𝑖 (𝑡) − Δ𝐴
𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐺
𝑖
,

Θ21𝑖 = Δ𝐴
𝑇

1𝑖 (𝑡) 𝑃𝑖 −𝐺
𝑇

𝑖
𝑃
𝑖
Δ𝐴
𝑖
(𝑡) ,

Θ22𝑖 = −𝐺
𝑇

𝑖
𝑃
𝑖
Δ𝐴1𝑖 (𝑡) − Δ𝐴

𝑇

1𝑖 (𝑡) 𝑃𝑖𝐺𝑖.

(44)
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Then by Lemma 2, it can be seen that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Θ11𝑖 Θ12𝑖 0 0 ℎΔ𝐴

𝑇

𝑖
(𝑡) 𝐾
𝑇

𝑅 Δ𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
0

Θ21𝑖 Θ22𝑖 0 0 ℎΔ𝐴

𝑇

1𝑖 (𝑡) 𝐾
𝑇

𝑅 Δ𝐷

𝑇

1𝑖 (𝑡) 𝑃𝑖 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

ℎ𝑅𝐾Δ𝐴
𝑖
(𝑡) ℎ𝑅𝐾Δ𝐴1𝑖 (𝑡) 0 0 0 0 0

𝑃
𝑖
Δ𝐷

𝑇

𝑖
(𝑡) 𝑃

𝑖
Δ𝐷1𝑖 (𝑡) 0 0 0 0 0

0 0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= Υ𝐹
𝑖
(𝑡) Ω+Ω

𝑇

𝐹
𝑖
(𝑡)
𝑇

Υ
𝑇

≤

1
𝜖
𝑖

ΥΥ
𝑇

+ 𝜖
𝑖
Ω
𝑇

Ω, (45)

where Υ = [𝑀

𝑇

1𝑖𝑃𝑖 −𝑀
𝑇

1𝑖𝑃𝑖𝐺𝑖 0 0 ℎ𝑀1𝑖𝐾
𝑇

𝑅 𝑀

𝑇

2𝑖𝑃𝑖 0]
𝑇

,
Ω = [�̃�1𝑖 𝑁2𝑖 0 0 0 0 0].

By (41), (46), and Schur complements,Θ
𝑖
< 0 holds if and

only ifΩ
𝑖
< 0. This completes the proof.

Remark 6. Theorem 5 is established based on GFL. For the
sake of reducing the computational complexity, similar to [6,
8, 10], the first two equivalent conditions of Proposition 3 are
adopted in this paper.

Now we are in a position to present the 𝐻
∞

fil-
ter design for uncertain neutral stochastic system with

Markovian jumping parameters and time delay based on
Theorem 5.

Theorem 7. Consider systems (1), for given scalars ℎ > 0,
𝛾 > 0; then there exists a linear stochastic full-order filter
with the form (9), such that filter error systems (11) are robustly
stochastically stable and satisfy prescribed 𝐻

∞
disturbance

attenuation level 𝛾 for all admissible uncertainties (6) and (7)
if there exist symmetric positive matrices 𝑋

𝑖
> 0, 𝐹

𝑖
> 0,

𝑄 = [
𝑄1 𝑄2
∗ 𝑄3

] > 0, and 𝑅 > 0 and matrices 𝐴
𝐹𝑖
, 𝐵
𝐹𝑖
, 𝐶
𝐹𝑖
,

scalars 𝜖
𝑖
> 0, such that the following LMI holds:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Υ11𝑖 Υ12𝑖 Υ13𝑖 −𝑅𝐺𝑖 Υ15𝑖 ℎ𝐴
𝑇

𝑖
𝑅 Υ17𝑖 Υ18𝑖 𝐿

𝑇

1𝑖 − 𝐶
𝑇

𝐹𝑖
Υ110𝑖

∗ Υ22𝑖 Υ23𝑖 0 Υ25𝑖 0 0 0 −𝐶
𝑇

𝐹𝑖
−𝐹
𝑖
𝑀1𝑖

∗ ∗ Υ33𝑖 Υ34𝑖 Υ35𝑖 ℎ𝐴
𝑇

1𝑖𝑅 Υ37𝑖 Υ38𝑖 𝐿
𝑇

2𝑖 −𝐺
𝑇

𝑖
𝑋
𝑖
𝑀1𝑖

∗ ∗ ∗ Υ44𝑖 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝛾
2
𝐼 ℎ𝐵

𝑇

𝑖
𝑅 Υ57𝑖 Υ58𝑖 𝐿

𝑇

3𝑖 0
∗ ∗ ∗ ∗ ∗ −𝑅 0 0 0 ℎ𝑅𝑀1𝑖

∗ ∗ ∗ ∗ ∗ ∗ −𝑋
𝑖
+ 𝐹
𝑖

0 0 Υ710𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐹
𝑖

0 −𝐹
𝑖
𝑀2𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖

𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (46)

where

Υ11𝑖 = (𝑋𝑖 −𝐹𝑖) 𝐴 𝑖 +𝐴
𝑇

𝑖
(𝑋
𝑖
−𝐹
𝑖
) +

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
(𝑋
𝑗
−𝐹
𝑗
)

+𝑄1 −𝑅+ 𝜖𝑖𝑁
𝑇

1𝑖𝑁1𝑖,

Υ12𝑖 = −𝐴
𝑇

𝑖
𝐹
𝑖
+𝐶
𝑇

𝑖
𝐵
𝑇

𝐹𝑖
+𝐴
𝑇

𝐹𝑖
,

Υ22𝑖 = 𝐴𝐹𝑖 +𝐴
𝑇

𝐹𝑖
+

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝐹
𝑗
,

Υ13𝑖 = (𝑋𝑖 −𝐹𝑖) 𝐴1𝑖 −𝐴
𝑇

𝑖
𝑋
𝑖
𝐺
𝑖
+𝐶
𝑇

𝑖
𝐵
𝑇

𝐹𝑖
𝐺
𝑖
+𝐴
𝑇

𝐹𝑖
𝐺
𝑖

+

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
(𝐹
𝑗
−𝑋
𝑗
)𝐺
𝑖
+𝑄
2
+𝑅 (𝐺

𝑖
+ 𝐼) + 𝜖

𝑖
𝑁
𝑇

1𝑖𝑁2𝑖,

Υ23𝑖 = −𝐹𝑖𝐴1𝑖 +𝐵𝐹𝑖𝐶1𝑖 +𝐴
𝑇

𝐹𝑖
𝐺
𝑖
+

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝐹
𝑗
𝐺
𝑖
,

Υ33𝑖 = −𝐺
𝑇

𝑖
𝑋
𝑖
𝐴1𝑖 −𝐴

𝑇

1𝑖𝑋
𝑇

𝑖
𝐺
𝑖
+𝐺
𝑇

𝑖
𝐵
𝐹𝑖
𝐶1𝑖 +𝐶

𝑇

1𝑖𝐵
𝑇

𝐹𝑖
𝐺
𝑖

+𝐺
𝑇

𝑖

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑋
𝑗
𝐺
𝑖
+𝑄3 −𝑄1 − (𝐺𝑖 + 𝐼)

𝑇

𝑅 (𝐺
𝑖
+ 𝐼)

+ 𝜖
𝑖
𝑁
𝑇

2𝑖𝑁2𝑖,
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Υ34𝑖 = −𝑄2 + (𝐺𝑖 + 𝐼)
𝑇

𝑅𝐺
𝑖
,

Υ44𝑖 = −𝑄3 −𝐺
𝑇

𝑖
𝑅𝐺
𝑖
,

Υ15𝑖 = (𝑋𝑖 −𝐹𝑖) 𝐵𝑖,

Υ25𝑖 = −𝐹𝑖𝐵𝑖 +𝐵𝐹𝑖𝐶2𝑖,

Υ35𝑖 = −𝐺
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
+𝐺
𝑇

𝑖
𝐵
𝐹𝑖
𝐶2𝑖,

Υ17𝑖 = 𝐷
𝑇

𝑖
(𝑋
𝑖
−𝐹
𝑖
) ,

Υ37𝑖 = 𝐷
𝑇

1𝑖 (𝑋𝑖 −𝐹𝑖) ,

Υ57𝑖 = 𝐷
𝑇

2𝑖 (𝑋𝑖 −𝐹𝑖) ,

Υ18𝑖 = −𝐷
𝑇

𝑖
𝐹
𝑖
+𝐸
𝑇

𝑖
𝐵
𝑇

𝐹𝑖
,

Υ38𝑖 = −𝐷
𝑇

1𝑖𝐹𝑖 +𝐸
𝑇

1𝑖𝐵
𝑇

𝐹𝑖
,

Υ58𝑖 = −𝐷
𝑇

2𝑖𝐹𝑖 +𝐸
𝑇

2𝑖𝐵
𝑇

𝐹𝑖
,

Υ110𝑖 = (𝑋𝑖 −𝐹𝑖)𝑀1𝑖,

Υ710𝑖 = (𝑋𝑖 −𝐹𝑖)𝑀2𝑖.

(47)

Meanwhile, the filter parameters are given by

𝐴
𝑓𝑖
= 𝐹
−1
𝑖
𝐴
𝐹𝑖
,

𝐵
𝑓𝑖
= 𝐹
−1
𝑖
𝐵
𝐹𝑖
,

𝐶
𝑓𝑖
= 𝐶
𝐹𝑖
.

(48)

Proof. We note that, from (48), it is easy to see [ 𝑋𝑖 −𝐹𝑖
−𝐹𝑖 𝐹𝑖

] > 0,
and𝑋

𝑖
> 𝐹
𝑖
> 0. Define

𝑃
𝑖
= [

𝑋
𝑖
−𝐹
𝑖

−𝐹
𝑖
𝐹
𝑖

] ; (49)

then applying Schur complement,𝑋
𝑖
− 𝐹
𝑖
𝐹
−1
𝑖
𝐹
𝑖
= 𝑋
𝑖
− 𝐹
𝑖
> 0

guarantees 𝑃
𝑖
> 0. Let

J = diag {𝑇, 𝐼, 𝐼, 𝐼, 𝐼, 𝑇, 𝐼, 𝐼, 𝐼} , (50)

where 𝑇 = [
𝐼 0
𝐼 𝐼
]. Substituting 𝑃

𝑖
and (12) into (16), then

pre- and postmultiplying (16) byJ𝑇 andJ, respectively, and
using (51), the desired result (48) follows immediately. This
completes the proof.

Remark 8. Theorem 7 considers the 𝐻
∞

filtering problem
for uncertain neutral stochastic time delay systems with

Markovian jumping parameters. It should be noted that
the proposed conditions are formulated in terms of LMIs.
Therefore, by MATLAB LMI toolbox, for given different ℎ
or 𝛾, the lower bound of performance index 𝛾 and the upper
bound of ℎ can be efficiently obtained by solving a generalized
eigenvalue problem.

Nowwe would like to proceed to present the𝐻
∞
filtering

for uncertain neutral stochastic time delay systems without
Markovian jumping parameters. Considering the system (Σ)

without the Markovian jumping parameters, the following
systems can be obtained:

(Σ
𝐷
) : 𝑑 [𝑥 (𝑡) −𝐺𝑥 (𝑡 − ℎ)]

= [𝐴 (𝑡) 𝑥 (𝑡) +𝐴1 (𝑡) 𝑥 (𝑡 − ℎ) + 𝐵V (𝑡)] 𝑑𝑡

+ [𝐷 (𝑡) 𝑥 (𝑡) +𝐷1 (𝑡) 𝑥 (𝑡 − ℎ) +𝐷2V (𝑡)] 𝑑𝑤 (𝑡) ,

(51)

𝑑𝑦 (𝑡)

= [𝐶𝑥 (𝑡) +𝐶1𝑥 (𝑡 − ℎ) +𝐶2V (𝑡)] 𝑑𝑡

+ [𝐸𝑥 (𝑡) + 𝐸1𝑥 (𝑡 − ℎ) +𝐸2V (𝑡)] 𝑑𝑤 (𝑡) ,

(52)

𝑧 (𝑡) = 𝐿1𝑥 (𝑡) + 𝐿2𝑥 (𝑡 − ℎ) + 𝐿3V (𝑡) , (53)

𝑥 (𝜃) = 𝜓 (𝜏) ,

𝑟
𝑡
= 𝑟0 ∈ 𝑆, ∀𝜏 ∈ [−ℎ, 0] ,

(54)

where

𝐴 (𝑡) = 𝐴+Δ𝐴 (𝑡) ,

𝐴1 (𝑡) = 𝐴1 +Δ𝐴1 (𝑡) ,

𝐷 (𝑡) = 𝐷+Δ𝐷 (𝑡) ,

𝐷1 (𝑡) = 𝐷1 +Δ𝐷1 (𝑡) ,

(55)

andΔ𝐴(𝑡),Δ𝐴1(𝑡),Δ𝐷(𝑡), andΔ𝐷1(𝑡) are unknownmatrices
satisfying

[

Δ𝐴 (𝑡) Δ𝐴1 (𝑡)

Δ𝐷 (𝑡) Δ𝐷1 (𝑡)
] = [

𝑀1

𝑀2
]𝐹 (𝑡) [𝑁1 𝑁2] . (56)

We can obtain the following Corollary 9 for system (Σ
𝐷
).

Corollary 9. Consider the system (Σ
𝐷
), for given scalars ℎ > 0,

𝛾 > 0; then there exists a linear stochastic full-order filter with
the form (9), if there exist symmetric positive matrices 𝐹 > 0,
𝑋 > 0, 𝑅 > 0, 𝑄 = [

𝑄1 𝑄2
∗ 𝑄3

] > 0, matrices 𝐴
𝐹
, 𝐵
𝐹
, 𝐶
𝐹
, and

scalar 𝜖 > 0, such that the following LMI holds:
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Ξ =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ11 Ξ12 Ξ13 −𝑅𝐺 Ξ15 ℎ𝐴
𝑇

𝑅 Ξ17 Ξ18 𝐿
𝑇

1 − 𝐶
𝑇

𝐹
(𝑋 − 𝐹)𝑀1

∗ Ξ22 Ξ23 0 Ξ25 0 0 0 −𝐶
𝑇

𝐹
−𝐹𝑀1

∗ ∗ Ξ33 Ξ34 Ξ35 ℎ𝐴
𝑇

1𝑅 Ξ37 Ξ38 𝐿
𝑇

2 −𝐺
𝑇

𝑋𝑀1

∗ ∗ ∗ Ξ44 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝛾
2
𝐼 ℎ𝐵
𝑇

𝑅 Ξ57 Ξ58 𝐿
𝑇

3 0
∗ ∗ ∗ ∗ ∗ −𝑅 0 0 0 ℎ𝑅𝑀1

∗ ∗ ∗ ∗ ∗ ∗ −𝑋 + 𝐹 0 0 (𝑋 − 𝐹)𝑀2

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐹 0 −𝐹𝑀2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (57)

where

Ξ11 = (𝑋−𝐹)𝐴+𝐴
𝑇

(𝑋−𝐹) +𝑄1 −𝑅+ 𝜖𝑁
𝑇

1𝑁1,

Ξ12 = −𝐴
𝑇

𝐹+𝐶
𝑇

𝐵
𝑇

𝐹
+𝐴
𝑇

𝐹
,

Ξ13 = (𝑋−𝐹)𝐴1 −𝐴
𝑇

𝑋𝐺+𝐶
𝑇

𝐵
𝑇

𝐹
𝐺+𝐴

𝑇

𝐹
𝐺

+ 𝜖𝑁
𝑇

1𝑁2 +𝑄2 +𝑅 (𝐺+ 𝐼) ,

Ξ15 = (𝑋−𝐹) 𝐵,

Ξ17 = 𝐷
𝑇

(𝑋−𝐹) ,

Ξ18 = −𝐷
𝑇

𝐹+𝐸
𝑇

𝐵
𝑇

𝐹
,

Ξ22 = 𝐴𝐹 +𝐴
𝑇

𝐹
,

Ξ23 = −𝐹𝐴1 +𝐵𝐹𝐶1 +𝐴
𝑇

𝐹
𝐺,

Ξ25 = −𝐹𝐵+𝐵𝐹𝐶2,

Ξ33 = −𝐺
𝑇

𝑋𝐴1 −𝐴
𝑇

1𝑋𝐺+𝐺
𝑇

𝐵
𝐹
𝐶1 +𝐶

𝑇

1𝐵
𝑇

𝐹
𝐺+𝑄3

−𝑄1 − (𝐺+ 𝐼)
𝑇

𝑅 (𝐺+ 𝐼) + 𝜖𝑁
𝑇

2𝑁2,

Ξ34 = −𝑄2 + (𝐺+ 𝐼)
𝑇

𝑅𝐺,

Ξ35 = −𝐺
𝑇

𝑋𝐵+𝐺
𝑇

𝐵
𝐹
𝐶2,

Ξ37 = 𝐷
𝑇

1 (𝑋−𝐹) ,

Ξ38 = −𝐷
𝑇

1𝐹+𝐸
𝑇

1𝐵
𝑇

𝐹
,

Ξ44 = −𝑄3 −𝐺
𝑇

𝑅𝐺,

Ξ57 = 𝐷
𝑇

2 (𝑋−𝐹) ,

Ξ58 = −𝐷
𝑇

2𝐹+𝐸
𝑇

2𝐵
𝑇

𝐹
;

(58)

then the robust𝐻
∞

filtering problem is solvable. Furthermore,
the parameters of the desired robust𝐻

∞
filter can be given as

𝐴
𝑓
= 𝐹
−1
𝐴
𝐹
,

𝐵
𝑓
= 𝐹
−1
𝐵
𝐹
,

𝐶
𝑓
= 𝐶
𝐹
.

(59)

Remark 10. The proof of Corollary 9 follows the same lines
as that in the proof of Theorem 7, so the detailed procedure
is omitted here. When 𝐷2 = 0, 𝐸 = 0, 𝐸1 = 0, and 𝐸2 =
0, systems (52)–(55) in this paper reduces to systems (1) in
[18]. It is noticed that the filtering problem studied in [18] is a
special case of this paper. For comparisons of our results with
that in [18], see Example 1 in detail.

4. Numerical Examples

In this section, numerical examples and simulations are
given to illustrate the validity and benefits of the proposed
approach.

Example 1. Consider systems (52)–(55) without Markovian
jumping parameters as follows:

𝐴 = [

−1 0
0 −0.9

] ,

𝐴1 = [
−1 0
−1 −1

] ,

𝐵 = [

0.2 0
−0.1 0.1

] ,

𝐷 = [

0.2 0
0 0.2

] ,

𝐷1 = [
0.1 0
0.3 −0.2

] ,

𝐷2 = [
0.2 0
0 0.2

] ,
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Table 1: Upper bounds of ℎ for different 𝛾 (Example 1).

𝛾 0.3 0.8 1.2 1.8 2.4 3.0
ℎ by Corollary 9 1.079 1.786 1.954 2.089 2.167 2.219

𝐶 = [

0.1 0
0 0.1

] ,

𝐶1 = [
0 0.15
−0.1 0.1

] ,

𝐶2 = [
0.2 0.1
0 0.1

] ,

𝐸 = [

0.5 0.5
1.0 0

] ,

𝐸1 = [
1.0 0.2
0.3 −1

] ,

𝐸2 = [
0.2 0.5
0.3 0.4

] ,

𝐿1 = [
−0.1 0.1
0 −0.1

] ,

𝐿2 = [
0.1 −0.15
0 0.15

] ,

𝐿3 = [
0.2 0
−0.15 0.1

] ,

𝑀1 = [
0.2 0
0 0.2

] ,

𝑀2 = [
0.1 0.1
0 0.2

] ,

𝐺 = [

0.1 0
0.1 0.1

] ,

𝑁1 = [
0.1 0
0 0.1

] ,

𝑁2 = [
0.1 0.1
0 0.1

] .

(60)

For different given noise attenuation levels 𝛾, the upper
bounds of delay for systems (52)–(55) in Corollary 9 of this
paper are presented in Table 1. For different given time delays,
the lower bounds of noise attenuation level 𝛾 for systems (52)–
(55) in Corollary 9 of this paper are provided in Table 2.

In particular, when 𝐷2 = 0, 𝐸 = 0, 𝐸1 = 0, and
𝐸2 = 0, systems (52)–(55) in this paper reduce to systems

Table 2: Lower bounds of 𝛾 for different ℎ (Example 1).

ℎ 0.5 1.0 1.5 2.0 2.2 2.4
𝛾 by Corollary 9 0.275 0.291 0.473 1.364 2.745 10.940

Table 3: Upper bounds of ℎ for different 𝛾 (Example 1).

𝛾 0.3 0.8 1.2 1.8 2.4 3.0
ℎ byTheorem 3 [18] 1.157 1.808 1.926 1.991 2.025 2.046
ℎ by Corollary 9 1.409 2.138 2.263 2.335 2.371 2.394

Table 4: Lower bounds of 𝛾 for different ℎ (Example 1).

ℎ 0.5 1 1.5 2 2.1 2.2
𝛾 byTheorem 3 [18] 0.264 0.270 0.630 1.919 8.235 infeasible
𝛾 by Corollary 9 0.264 0.266 0.340 0.712 0.766 0.925

(1) in [18]. For different given noise attenuation levels 𝛾,
the comparison of the upper bounds of delay in [18] with
our results is presented in Table 3, and, for different given
time delays, the lower bounds of noise attenuation level 𝛾 for
systems (1) in [18] and the same systems in this paper are
provided in Table 4.

Besides,Theorem 2 in [13] fails to give a feasible solution.
The number of decision variables of Theorem 3 in [18] is
(13𝑛2 + 5𝑛 + 2)/2, which is the same as that in Corollary 9 of
this paper. From Tables 3 and 4, we can see that our proposed
method is less conservative than that in [18].

Now in the case when 𝛾 = 2.4, ℎmax = 2.167, we resort to
theMATLAB LMI control toolbox to solve the LMI (59), and
the feasible solution can be obtained as follows:

𝑑𝑥 (𝑡) = [

−2.6806 −0.1892
−8.4386 −2.0417

]𝑥 (𝑡) 𝑑 (𝑡)

+ [

0.0232 0.0476
−0.1573 0.3199

]𝑑𝑦 (𝑡) ,

�̂� (𝑡) = [

−0.3127 0.0474
0.1536 −0.0621

]𝑥 (𝑡) .

(61)

The initial conditions are also taken as 𝑥(0) = [1 −1]𝑇 and
𝑥(0) = [−2 2]𝑇. The simulation results of the state response
of the system are plotted in Figures 1–3. The filter state 𝑥1(𝑡)
and its estimation𝑥1(𝑡) and state𝑥2(𝑡) and its estimation𝑥2(𝑡)
are given in Figures 1 and 2, respectively. Figure 3 depicts
the estimation error 𝑒(𝑡) = 𝑧(𝑡) − �̂�(𝑡). The simulation
results demonstrate that the designed𝐻

∞
filters are feasible,

effective and the stochastic stability of the error systems is
ensured.
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Figure 1: State 𝑥1(𝑡) and its estimation 𝑥1(𝑡) in Example 1.
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Figure 2: State 𝑥2(𝑡) and its estimation 𝑥2(𝑡) in Example 1.

Example 2. Consider systems (1) with Markovian jumping
parameters as follows.

Mode 1. Consider

𝐴1 = [
−2.0 0
0 −1.9

] ,

𝐴11 = [
−1 0
−1 −1

] ,

𝐵1 = [
0.15 0.4
0.2 0.3

] ,

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

e1

e2

Figure 3: The error responses 𝑒1(𝑡) and 𝑒2(𝑡) in Example 1.

𝐷1 = [
−0.1 0
0 −0.1

] ,

𝐷11 = [
0.2 0
0 0.2

] ,

𝐺1 = [
−0.5 0
0 −0.5

] ,

𝐶1 = [
0.2 0
0 0.2

] ,

𝐶11 = [
0.2 0
0 0.2

] ,

𝐶21 = [
0.3 0.9
0.2 0.1

] ,

𝐸1 = [
1.0 0.2
0.3 −1

] ,

𝐸11 = [
0.2 0.5
0.3 0.4

] ,

𝐸21 = [
0.5 0.5
1.0 0

] ,

𝐿11 = [
0.8 0.6
0.4 0.3

] ,

𝐿21 = [
0.4 0.6
0.5 0.8

] ,

𝐿31 = [
0.6 0.5
0.3 0.4

] ,
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𝑀11 = [
0.2 0
0 0.2

] ,

𝑀21 = [
0.2 0
0 0.2

] ,

𝑁11 = [
0.1 0
0 0.1

] ,

𝑁21 = [
0.3 0
0 0.3

] .

(62)
Mode 2. Consider

𝐴2 = [
0.5 0
0 0.3

] ,

𝐴12 = [
−1.0 0
−1.0 −0.5

] ,

𝐵2 = [
0.15 0.4
0.2 0.31

] ,

𝐷2 = [
0.2 0
0 0.3

] ,

𝐷12 = [
0.3 0
0 0.3

] ,

𝐺2 = [
−0.6 0
0 −0.6

] ,

𝐶2 = [
0.1 0
0 0.1

] ,

𝐶12 = [
0.1 0
0 0.1

] ,

𝐶22 = [
0.3 0.9
0.2 0.15

] ,

𝐸2 = [
0.5 0.6
1.2 0

] ,

𝐸12 = [
1.0 0.3
0.4 −1.0

] ,

𝐸22 = [
0.25 0.5
0.3 0.4

] ,

𝐿12 = [
0.8 0.5
0.6 0.8

] ,

Table 5: Upper bounds of ℎ for different 𝛾 (Example 2).

𝛾 0.5 2 3 4 5
ℎ byTheorem 7 0.104 0.232 0.311 0.343 0.361

Table 6: Lower bounds of 𝛾 for different ℎ (Example 2).

ℎ 0.1 0.2 0.3 0.4
𝛾 byTheorem 7 1.493 1.806 2.774 15.047

𝐿22 = [
0.4 0.8
0.3 0.5

] ,

𝐿32 = [
0.5 1.0
0.6 0.4

] ,

𝑀12 = [
0.3 0
0 0.3

] ,

𝑀22 = [
0.1 0
0 0.1

] ,

𝑁12 = [
0.2 0
0 0.2

] ,

𝑁22 = [
0.2 0
0 0.2

] ,

𝜋11 = − 1,

𝜋22 = − 2,

𝜋12 = 1,

𝜋21 = 2.
(63)

In this section, the purpose of this example is to design a
full-order filter in the form of (9) such that the filtering
error system is robustly stochastically stable for all admissible
uncertainties and satisfies the required 𝐻

∞
performance

level.
ByTheorem 7, for different given noise attenuation levels

𝛾, the upper bounds of delay for systems (1) are presented
in Table 5. For different given time delays, the lower bounds
of noise attenuation level 𝛾 for systems (1) are provided in
Table 6.

Now in the case when 𝛾 = 2, ℎmax = 0.232, we resort to
theMATLAB LMI control toolbox to solve the LMI (48), and
we obtain the solution as follows:

𝑄1 = [
9.6525 −1.9471
−1.9471 1.6603

] ,

𝑄2 = [
−10.1587 −0.2297
2.2216 −1.6233

] ,
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𝑄3 = [
10.8069 −0.0873
−0.0873 2.3599

] ,

𝑅 = [

39.1583 −0.3727
−0.3727 8.8082

] ,

𝑋1 = [
2.8376 0.1553
0.1553 2.4043

] ,

𝑋2 = [
4.3724 0.4730
0.4730 5.8205

] ,

𝐹1 = [
0.2942 0.2896
0.2896 1.1395

] ,

𝐹2 = [
1.2783 0.9020
0.9020 2.8727

] ,

𝜖1 = 1.1107,

𝜖2 = 8.1439,

𝐴
𝐹1 = [

−0.9169 −0.6283
−1.6111 −2.5633

] ,

𝐵
𝐹1 = [

0.1262 0.0730
0.2392 0.3601

] ,

𝐶
𝐹1 = [

0.5690 0.9257
0.4004 1.0310

] ,

𝐴
𝐹2 = [

−1.4295 −1.3599
−2.9406 −2.5256

] ,

𝐵
𝐹2 = [

1.8563 −0.7369
3.0463 −1.0766

] ,

𝐶
𝐹2 = [

1.1602 1.1086
0.7364 0.9807

] .

(64)

Therefore, the full-order stochastic filter parameters are
given as follows:

𝐴
𝑓1 = [

−2.3001 0.1251
−0.8294 −2.2813

] ,

𝐵
𝑓1 = [

0.2963 −0.0837
0.1346 0.3373

] ,

𝐶
𝑓1 = [

0.5690 0.9257
0.4004 1.0310

] ,

𝐴
𝑓2 = [

−0.5087 −0.5697
−0.8639 −0.7003

] ,

0 2 4 6 8 10
t (s)
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x̂1
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Figure 4: State 𝑥1(𝑡) and its estimation 𝑥1(𝑡) in Example 2.

𝐵
𝑓2 = [

0.9043 −0.4008
0.7765 −0.2489

] ,

𝐶
𝑓2 = [

1.1602 1.1086
0.7364 0.9807

] .

(65)

The initial conditions are also taken as 𝑥(0) = [−1 1.5]𝑇 and
𝑥(0) = [−0.5 1]𝑇.The simulation results of the state response
of the system are plotted in Figures 4–7. The filter state 𝑥1(𝑡)
and its estimation 𝑥1(𝑡) and state 𝑥2(𝑡) and its estimation
𝑥2(𝑡) are, respectively, given in Figures 4 and 5. Assuming the
simulation step sizeΔ = 0.1, one of the possible realizations of
the Markovian jumping mode is plotted in Figure 6. Figure 7
depicts the estimation error 𝑒(𝑡) = 𝑧(𝑡) − �̂�(𝑡). It is clearly
observed from the simulation results that the designed 𝐻

∞

filter satisfies the specified requirements and the expected
objectives are well achieved.

Remark 3. In order to reduce conservatism, many methods
such as cross-terms bounding techniques, free-weighting
matrices method, and cross-terms bounding techniques are
often adopted in the stability analysis of stochastic systems.
In this paper, the generalized Finsler Lemma is utilized in
uncertain neutral stochastic systems, which can bring the low
conservatism and less computational cost.

5. Conclusions

In this paper, the robust filtering problem for a class of
uncertain neutral stochastic systems with Markovian jump-
ing parameters and time delay has been considered. Based on
the Lyapunov-Krasovskii functional theory and generalized
Finsler Lemma, a delay-dependent sufficient condition is
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Figure 5: State 𝑥2(𝑡) and its estimation 𝑥2(𝑡) in Example 2.
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Figure 7: The error responses 𝑒1(𝑡) and 𝑒2(𝑡) in Example 2.

proposed for the existence of 𝐻
∞

filters which reduces
the conservatism. The obtained result ensures the robust
stability and a prescribed 𝐻

∞
performance level of the

filtering error system for all admissible uncertainties. Two
numerical examples and simulations have been presented to
demonstrate the usefulness and effectiveness of the proposed
filter design method.
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