789 research outputs found

    High-Rate Space-Time Coded Large MIMO Systems: Low-Complexity Detection and Channel Estimation

    Full text link
    In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-MIMO systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16x16 and 32x32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.Comment: v3: Performance/complexity comparison of the proposed scheme with other large-MIMO architectures/detectors has been added (Sec. IV-D). The paper has been accepted for publication in IEEE Journal of Selected Topics in Signal Processing (JSTSP): Spl. Iss. on Managing Complexity in Multiuser MIMO Systems. v2: Section V on Channel Estimation is update

    A Fast Decodable Full-Rate STBC with High Coding Gain for 4x2 MIMO Systems

    Get PDF
    In this work, a new fast-decodable space-time block code (STBC) is proposed. The code is full-rate and full-diversity for 4x2 multiple-input multiple-output (MIMO) transmission. Due to the unique structure of the codeword, the proposed code requires a much lower computational complexity to provide maximum-likelihood (ML) decoding performance. It is shown that the ML decoding complexity is only O(M^{4.5}) when M-ary square QAM constellation is used. Finally, the proposed code has highest minimum determinant among the fast-decodable STBCs known in the literature. Simulation results prove that the proposed code provides the best bit error rate (BER) performance among the state-of-the-art STBCs.Comment: 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London : United Kingdom (2013

    Full Diversity Space-Time Block Codes with Low-Complexity Partial Interference Cancellation Group Decoding

    Full text link
    Partial interference cancellation (PIC) group decoding proposed by Guo and Xia is an attractive low-complexity alternative to the optimal processing for multiple-input multiple-output (MIMO) wireless communications. It can well deal with the tradeoff among rate, diversity and complexity of space-time block codes (STBC). In this paper, a systematic design of full-diversity STBC with low-complexity PIC group decoding is proposed. The proposed code design is featured as a group-orthogonal STBC by replacing every element of an Alamouti code matrix with an elementary matrix composed of multiple diagonal layers of coded symbols. With the PIC group decoding and a particular grouping scheme, the proposed STBC can achieve full diversity, a rate of (2M)/(M+2)(2M)/(M+2) and a low-complexity decoding for MM transmit antennas. Simulation results show that the proposed codes can achieve the full diversity with PIC group decoding while requiring half decoding complexity of the existing codes.Comment: 10 pages, 3 figures

    Signal detection for non-orthogonal space-time block coding over time-selective fading channels

    Get PDF
    In the case of non-quasi-static (i.e., time-selective fast fading) channels, which do exist in practice, the performance of the existing NO-STBC detectors can suffer from an irreducible error floor. To this end, this letter proposes a zero-forcing-based signal detector, which is not only computationally simple but also highly effective in mitigating the impact of channel variation on system performance

    Transmission and detection for space-time block coding and v-blast systems

    Get PDF
    This dissertation focuses on topics of data transmission and detection of space -time block codes (STBC). The STBCs can be divided into two main categories, namely, the orthogonal space-time block codes (OSTBC) and the quasi-orthogonal space-time codes (Q-OSTBC). The space-time block coded systems from transceiver design perspective for both narrow-band and frequency selective wireless environment are studied. The dissertation also processes and studies a fast iterative detection scheme for a high-rate space-time transmission system, the V-BLAST system. In Chapter 2, a new OSTBC scheme with full-rate and full-diversity, which can be used on QPSK transceiver systems with four transmit antennas and any number of receivers is studied. The newly proposed coding scheme is a non-linear coding. Compared with full-diversity QOSTBC, an obvious advantage of our proposed new OSTBC is that the coded signals transmitted through all four transmit antennas do not experience any constellation expansion. In Chapter 3, a new fast coherent detection algorithm is proposed to provide maximum likelihood (ML) detection for Q-OSTBC. The new detection scheme is also very useful to analysis the diversity property of Q-OSTBC and design full diversity Q-OSTBC codes. The complexity of the new proposed detection algorithm can be independent to the modulation order and is especially suitable for high data rate transmission. In Chapter 4, the space-time coding schemes in frequency selective channels are studied. Q-OSTC transmission and detection schemes are firstly extended for frequency selective wireless environment. A new block based quasi-orthogonal space-time block encoding and decoding (Q-OSTBC) scheme for a wireless system with four transmit antennas is proposed in frequency selective fading channels. The proposed MLSE detection scheme effectively combats channel dispersion and frequency selectivity due to multipath, yet still provides full diversity gain. However, since the computational complexity of MLSE detection increases exponentially with the maximum delay of the frequency selective channel, a fast sub-optimal detection scheme using MMSE equalizer is also proposed, especially for channels with large delays. The Chapter 5 focuses on the V-BLAST system, an important high-rate space-time data transmission scheme. A reduced complexity ML detection scheme for VBLAST systems, which uses a pre-decoder guided local exhaustive search is proposed and studied. A polygon searching algorithm and an ordered successive interference cancellation (O-SIC) sphere searching algorithm are major components of the proposed multi-step ML detectors. At reasonable high SNRs, our algorithms have low complexity comparable to that of O-SIC algorithm, while they provide significant performance improvement. Another new low complexity algorithm termed ordered group-wise interference cancellation (O-GIC) is also proposed for the detection of high dimensional V-BLAST systems. The O-GIC based detection scheme is a sub-optimal detection scheme, however, it outperforms the O-SIC

    Four-Group Decodable Space-Time Block Codes

    Full text link
    Two new rate-one full-diversity space-time block codes (STBC) are proposed. They are characterized by the \emph{lowest decoding complexity} among the known rate-one STBC, arising due to the complete separability of the transmitted symbols into four groups for maximum likelihood detection. The first and the second codes are delay-optimal if the number of transmit antennas is a power of 2 and even, respectively. The exact pair-wise error probability is derived to allow for the performance optimization of the two codes. Compared with existing low-decoding complexity STBC, the two new codes offer several advantages such as higher code rate, lower encoding/decoding delay and complexity, lower peak-to-average power ratio, and better performance.Comment: 1 figure. Accepted for publication in IEEE Trans. on Signal Processin

    On the MIMO Channel Capacity of Multi-Dimensional Signal Sets

    No full text
    In this contribution we evaluate the capacity of Multi-Input Multi-Output (MIMO) systems using multi-dimensional PSK/QAM signal sets. It was shown that transmit diversity is capable of narrowing the gap between the capacity of the Rayleigh-fading channel and the AWGN channel. However, since this gap becomes narrower when the receiver diversity order is increased, for higher-order receiver diversity the performance advantage of transmit diversity diminishes. A MIMO system having full multiplexing gain has a higher achievable throughput than the corresponding MIMO system designed for full diversity gain, although this is attained at the cost of a higher complexity and a higher SNR. The tradeoffs between diversity gain, multiplexing gain, complexity and bandwidth are studied

    A New Low-Complexity Decodable Rate-5/4 STBC for Four Transmit Antennas with Nonvanishing Determinants

    Full text link
    The use of Space-Time Block Codes (STBCs) increases significantly the optimal detection complexity at the receiver unless the low-complexity decodability property is taken into consideration in the STBC design. In this paper we propose a new low-complexity decodable rate-5/4 full-diversity 4 x 4 STBC. We provide an analytical proof that the proposed code has the Non-Vanishing-Determinant (NVD) property, a property that can be exploited through the use of adaptive modulation which changes the transmission rate according to the wireless channel quality. We compare the proposed code to the best existing low-complexity decodable rate-5/4 full-diversity 4 x 4 STBC in terms of performance over quasi-static Rayleigh fading channels, worst- case complexity, average complexity, and Peak-to-Average Power Ratio (PAPR). Our code is found to provide better performance, lower average decoding complexity, and lower PAPR at the expense of a slight increase in worst-case decoding complexity.Comment: 5 pages, 2 figures and 1 table; IEEE Global Telecommunications Conference (GLOBECOM 2011), 201
    corecore