65 research outputs found

    Design and Optimization of Graph Transform for Image and Video Compression

    Get PDF
    The main contribution of this thesis is the introduction of new methods for designing adaptive transforms for image and video compression. Exploiting graph signal processing techniques, we develop new graph construction methods targeted for image and video compression applications. In this way, we obtain a graph that is, at the same time, a good representation of the image and easy to transmit to the decoder. To do so, we investigate different research directions. First, we propose a new method for graph construction that employs innovative edge metrics, quantization and edge prediction techniques. Then, we propose to use a graph learning approach and we introduce a new graph learning algorithm targeted for image compression that defines the connectivities between pixels by taking into consideration the coding of the image signal and the graph topology in rate-distortion term. Moreover, we also present a new superpixel-driven graph transform that uses clusters of superpixel as coding blocks and then computes the graph transform inside each region. In the second part of this work, we exploit graphs to design directional transforms. In fact, an efficient representation of the image directional information is extremely important in order to obtain high performance image and video coding. In this thesis, we present a new directional transform, called Steerable Discrete Cosine Transform (SDCT). This new transform can be obtained by steering the 2D-DCT basis in any chosen direction. Moreover, we can also use more complex steering patterns than a single pure rotation. In order to show the advantages of the SDCT, we present a few image and video compression methods based on this new directional transform. The obtained results show that the SDCT can be efficiently applied to image and video compression and it outperforms the classical DCT and other directional transforms. Along the same lines, we present also a new generalization of the DFT, called Steerable DFT (SDFT). Differently from the SDCT, the SDFT can be defined in one or two dimensions. The 1D-SDFT represents a rotation in the complex plane, instead the 2D-SDFT performs a rotation in the 2D Euclidean space

    Toward adaptive radiotherapy

    Get PDF
    Intensity Modulated Radiotherapy (IMRT) and proton therapy are the state-of-art external radiotherapy modalities. To make the most of such precise delivery, accurate knowledge of the patient anatomy and biology during treatment is necessary, as unaccounted variations can compromise the outcome of the treatment. Treatment modification to account for deviations from the planning stage is a framework known as adaptive radiotherapy (ART). To fully utilise the information extracted from different modalities and/or at different time-points it is required to accurately align the imaging data. In this work the feasibility of cone-beam computed tomography (CBCT) and deformable image registration (DIR) for ART was evaluated in the context of head and neck (HN) and lung malignancies, and for IMRT and proton therapy applications. This included the geometric validation of deformations for multiple DIR algorithms, estimating the uncertainty in dose recalculation of a CBCT-based deformed CT (dCT), and the uncertainty in dose summation resulting from the properties of the underlying deformations. The dCT method was shown to be a good interim solution to repeat CT and a superior alternative to simpler direct usage of CBCT for dose calculation; proton therapy treatments were more sensitive to registration errors than IMRT. The ability to co-register multimodal and multitemporal data of the HN was also explored; the results found were promising and the limitations of current algorithms and data acquisition protocols were identified. The use of novel artificial cancer masses as a novel platform for the study of imaging during radiotherapy was explored in this study. The artificial cancer mass model was extended to generate magnetic resonance imaging (MRI)-friendly samples. The tumoroids were imageable in standard T1 and T2 MRI acquisitions, and the relaxometric properties were measured. The main limitation of the current tumour model was the poor reproducibility and controllability of the properties of the samples

    Fast and Efficient Foveated Video Compression Schemes for H.264/AVC Platform

    Get PDF
    Some fast and efficient foveated video compression schemes for H.264/AVC platform are presented in this dissertation. The exponential growth in networking technologies and widespread use of video content based multimedia information over internet for mass communication applications like social networking, e-commerce and education have promoted the development of video coding to a great extent. Recently, foveated imaging based image or video compression schemes are in high demand, as they not only match with the perception of human visual system (HVS), but also yield higher compression ratio. The important or salient regions are compressed with higher visual quality while the non-salient regions are compressed with higher compression ratio. From amongst the foveated video compression developments during the last few years, it is observed that saliency detection based foveated schemes are the keen areas of intense research. Keeping this in mind, we propose two multi-scale saliency detection schemes. (1) Multi-scale phase spectrum based saliency detection (FTPBSD); (2) Sign-DCT multi-scale pseudo-phase spectrum based saliency detection (SDCTPBSD). In FTPBSD scheme, a saliency map is determined using phase spectrum of a given image/video with unity magnitude spectrum. On the other hand, the proposed SDCTPBSD method uses sign information of discrete cosine transform (DCT) also known as sign-DCT (SDCT). It resembles the response of receptive field neurons of HVS. A bottom-up spatio-temporal saliency map is obtained by linear weighted sum of spatial saliency map and temporal saliency map. Based on these saliency detection techniques, foveated video compression (FVC) schemes (FVC-FTPBSD and FVC-SDCTPBSD) are developed to improve the compression performance further.Moreover, the 2D-discrete cosine transform (2D-DCT) is widely used in various video coding standards for block based transformation of spatial data. However, for directional featured blocks, 2D-DCT offers sub-optimal performance and may not able to efficiently represent video data with fewer coefficients that deteriorates compression ratio. Various directional transform schemes are proposed in literature for efficiently encoding such directional featured blocks. However, it is observed that these directional transform schemes suffer from many issues like ‘mean weighting defect’, use of a large number of DCTs and a number of scanning patterns. We propose a directional transform scheme based on direction-adaptive fixed length discrete cosine transform (DAFL-DCT) for intra-, and inter-frame to achieve higher coding efficiency in case of directional featured blocks.Furthermore, the proposed DAFL-DCT has the following two encoding modes. (1) Direction-adaptive fixed length ― high efficiency (DAFL-HE) mode for higher compression performance; (2) Direction-adaptive fixed length ― low complexity (DAFL-LC) mode for low complexity with a fair compression ratio. On the other hand, motion estimation (ME) exploits temporal correlation between video frames and yields significant improvement in compression ratio while sustaining high visual quality in video coding. Block-matching motion estimation (BMME) is the most popular approach due to its simplicity and efficiency. However, the real-world video sequences may contain slow, medium and/or fast motion activities. Further, a single search pattern does not prove efficient in finding best matched block for all motion types. In addition, it is observed that most of the BMME schemes are based on uni-modal error surface. Nevertheless, real-world video sequences may exhibit a large number of local minima available within a search window and thus possess multi-modal error surface (MES). Hence, the following two uni-modal error surface based and multi-modal error surface based motion estimation schemes are developed. (1) Direction-adaptive motion estimation (DAME) scheme; (2) Pattern-based modified particle swarm optimization motion estimation (PMPSO-ME) scheme. Subsequently, various fast and efficient foveated video compression schemes are developed with combination of these schemes to improve the video coding performance further while maintaining high visual quality to salient regions. All schemes are incorporated into the H.264/AVC video coding platform. Various experiments have been carried out on H.264/AVC joint model reference software (version JM 18.6). Computing various benchmark metrics, the proposed schemes are compared with other existing competitive schemes in terms of rate-distortion curves, Bjontegaard metrics (BD-PSNR, BD-SSIM and BD-bitrate), encoding time, number of search points and subjective evaluation to derive an overall conclusion

    Compressed Sensing based Low-Power Multi-View Video Coding and Transmission in Wireless Multi-Path Multi-Hop Networks

    Get PDF
    Wireless Multimedia Sensor Network (WMSN) is increasingly being deployed for surveillance, monitoring and Internet-of-Things (IoT) sensing applications where a set of cameras capture and compress local images and then transmit the data to a remote controller. Such captured local images may also be compressed in a multi-view fashion to reduce the redundancy among overlapping views. In this paper, we present a novel paradigm for compressed-sensing-enabled multi-view coding and streaming in WMSN. We first propose a new encoding and decoding architecture for multi-view video systems based on Compressed Sensing (CS) principles, composed of cooperative sparsity-aware block-level rate-adaptive encoders, feedback channels and independent decoders. The proposed architecture leverages the properties of CS to overcome many limitations of traditional encoding techniques, specifically massive storage requirements and high computational complexity. Then, we present a modeling framework that exploits the aforementioned coding architecture. The proposed mathematical problem minimizes the power consumption by jointly determining the encoding rate and multi-path rate allocation subject to distortion and energy constraints. Extensive performance evaluation results show that the proposed framework is able to transmit multi-view streams with guaranteed video quality at lower power consumption

    Low-complexity Multidimensional DCT Approximations

    Full text link
    In this paper, we introduce low-complexity multidimensional discrete cosine transform (DCT) approximations. Three dimensional DCT (3D DCT) approximations are formalized in terms of high-order tensor theory. The formulation is extended to higher dimensions with arbitrary lengths. Several multiplierless 8×8×88\times 8\times 8 approximate methods are proposed and the computational complexity is discussed for the general multidimensional case. The proposed methods complexity cost was assessed, presenting considerably lower arithmetic operations when compared with the exact 3D DCT. The proposed approximations were embedded into 3D DCT-based video coding scheme and a modified quantization step was introduced. The simulation results showed that the approximate 3D DCT coding methods offer almost identical output visual quality when compared with exact 3D DCT scheme. The proposed 3D approximations were also employed as a tool for visual tracking. The approximate 3D DCT-based proposed system performs similarly to the original exact 3D DCT-based method. In general, the suggested methods showed competitive performance at a considerably lower computational cost.Comment: 28 pages, 5 figures, 5 table

    Development of Computational Intelligent Infertility Detection System Based on Sperm Motility Analysis

    Get PDF
    corecore