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As process technology continues to scale to smaller geometries and re-

duces the supply voltage, reliability of the resulting semiconductor becomes

a greater concern. The effect of deep submicron noise, soft errors, variation,

and aging degradation pose challenges on the functional correctness of VLSI

systems and places roadblocks on reductions in scale. On the other side, as

computing moves toward mobile, the energy efficiency of digital systems be-

comes one of the most important design metrics. However, reliability and en-

ergy efficiency are contradicting design requirements. Adding a voltage guard

band is the most common method to mitigate the reliability impacts in such

instances. Low power design technique like voltage over-scaling (VOS) even

reduces the power by scaling the supply voltage just before data-dependant

timing errors start to appear.
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Concurrent error detection is the solution to tackle reliability and energy-

efficiency in a unified manner. Fault tolerance can be deployed at different

design hierarchies. Given its low overhead, algorithm level error detection is

an attractive approach. In this work, a generic weighted checksum code based

error detection algorithm targeted generic 2-D separable linear transform is

proposed. This technique encodes the input array at the 2-D linear trans-

formation level, and algorithms are designed to operate on encoded data and

produce encoded output data. The proposed error detection technique is a

system-level method and therefore can be used in existing hardware or soft-

ware 2-D linear transformation architectures with low overhead. The mathe-

matic proof of the algorithm is provided within the scope of this dissertation.

The checksum weighting vector for several common transforms are derived as

examples, error detection cost and algorithm effectiveness are analyzed.

In traditional fault tolerance study, the error is often evaluated at the

boolean level. Many DSP applications, like 2-D linear transformation used in

the multimedia compression system, do not require exactly correct results, but

rather that the quality of the output is within the acceptable range. A generic

quality aware error detection in the 2-D separable linear transform is proposed

by extending the above property and defining the errors at the functional

level. As an example, the quality-aware error detection technique is deployed

on a low-power wavelet lifting transform architecture in JPEG2000. A low-

cost Signal to Noise Ratio (SNR) aware detection logic based on proposed

scheme is integrated into the discrete wavelet lifting transform architecture.
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This detection logic checks whether the image quality degradation caused by

voltage over-scaling induced timing errors is acceptable and determines the

optimal voltage set point in operating conditions at run time. This novel

quality-based error detection approach is significantly different from traditional

error detection schemes which look for exact data equivalence. A simulation

result for one design shows that the supply voltage can be scaled down to

75% of the nominal voltage in typical process corner without significant image

quality degradation, which translates to 9.15mW power consumption (44%

power saving).
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Chapter 1

Introduction

1.1 Reliability Challenge in Emerging Digital VLSI Sys-
tems

The rapid scaling of CMOS process technology has resulted in signif-

icant improvement in the performance and transistor density of digital elec-

tronic devices. However, feature size and supply voltage reductions make cur-

rent and future VLSI systems less and less reliable. Systematic and random

variations in process, supply voltage and temperature pose a major challenge

for the design of future digital VLSI systems and change the design problem

from deterministic to probabilistic [1] [2].

The significant reliability challenges to scaling CMOS technology are

outlined in the following.

1.1.1 Deep Submicron Noise

Deep submicron (DSM) noise [3] [4] is defined as any disturbance in

device node voltage or current away from a nominal value causing intermit-

tent or permanent logic failure. The common mechanisms for such failures

are increased path delay as well as accidental charge/discharge of dynamic

nodes. Noise sources that have substantial impacts on the performance of
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digital circuits include crosstalk [5], IR drop [6], ground bounce [7], charge

sharing [8], process variations [9] and charge leakage [10]. These problems

worsen as technology scales further. Mezhiba’s research [11] has shown both

resistive and inductive noise are increasing with technology scaling. The emer-

gence of DSM noise is making it increasingly difficult to achieve the desired

level of noise immunity while maintaining the historic improvement trends in

performance and energy-efficiency of integrated circuits.

1.1.2 Soft Error

In addition to DSM noise, soft errors (single event upsets) are another

source of concern [12]. These errors are caused by alpha particles from con-

taminated packages and cosmic rays (energetic neutrons and protons) hitting

silicon chips, creating a charge on the nodes that flips a memory cell or logic

latch. Soft errors are transient and random. For memory, there is a relatively

easy way to detect these errors with parity checking and correct these errors

with the error-correcting code [13]. However, if a single event upset occurs in

a logic flip-flop, it is much more difficult to detect and rectify the error. Shiv-

akumar’s research [14] has shown that soft error rates (SER) per chip of logic

circuits will increase significantly due to technology scaling and superpipelined

designs. The reduction in critical charge of logic circuits with decreased feature

size makes the circuit more susceptible to external radiation.
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1.1.3 Static and Dynamic Variations

Variations have an impact even on today’s VLSI design and it is ex-

pected to get worse as technology scales. Static variations caused by random

dopant fluctuations and sub-wavelength lithography result in wider distribu-

tion of transistor threshold voltages. In the case of test escape, static varia-

tions could result into system errors in the field [2]. Dynamic variations such

as temperature variation and supply voltage variation (due to IR drop and

di/dt noise) is time and context variant [15].

Thermal distribution across the die depends on the application and

workload. Hotspots put more demand on power distribution networks and

result in dynamic supply voltage variations [2]. Both the device and intercon-

nect performance have temperature dependence, with hot temperature caus-

ing interconnect performance degradation and cold temperature causing de-

vice performance degradation [16]. Additionally, temperature variation across

communicating blocks on the same chip may cause performance mismatches,

which may lead to logic or functional failures.

Variations in switching activity across the die and diversity of the type

of logic, result in uneven power dissipation across the die. This variation results

in uneven supply voltage distribution and temperature hot spots, across a die,

causing transistor subthreshold leakage variation across the die. Packaging

and platform technologies do not follow the scaling trends of CMOS process.

Therefore, power delivery impedance does not scale with supply voltage and

voltage variation has become a significant percentage of the supply voltage [1].

3



Infrequent worst-case voltage droop could cause timing path failing and impact

reliability and stability [17].

1.1.4 Aging Degradation

As technology scales and device dimension shrink, the trend in the

Vt variability at both time zero and after NBTI (Negative Bias Temperature

Instability) aging shows an increase [18]. Random defects in the gate oxide

can cause aging-induced device delta Vt variability [19]. The electric fields and

current have increased continuously as a result of scaling and have reached the

maximum values that can be allowed for reliable CMOS operation. Increasing

power density leads to higher chip temperature and consequently an even faster

acceleration of chip degradation mechanisms [20]. Due to accelerated aging in

future technology nodes, early wear-out effects could occur during the product

life cycle and jeopardize the success of the functionality or safety of the system.

1.1.5 Reliability and Power Trade-Off

Energy-efficient VLSI design is of great interest given the proliferation

of mobile and pervasive computing devices. Reduced power consumption not

only leads to longer battery life but also results in reduced packaging cost,

increased reliability, lower cost of ownership and longer lifetime for VLSI de-

vices. However, there is a fundamental trade-off between energy-efficiency and

reliability. In traditional design practices, the DSM noise, variation, and aging

degradation issues are handled by adding a safety margin or so-called “guard
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band” to the supply voltage or timing requirement [21]. Although the impact

can be alleviated by raising the supply voltage at the expense of maximum

product frequency and yield, supply voltage increase has a direct impact on

power consumption. The necessity of ensuring correct operation even under

infrequent worst-case conditions results in clock frequency or supply voltage

guard bands that degrade performance and increase energy consumption. Low

power design technique like voltage over-scaling (VOS) reduces power by scal-

ing the supply voltage just before data-dependent timing errors start to ap-

pear [22]. Design for reliability also becomes mandatory for reducing power

dissipation. Voltage reduction strongly affects reliability by reducing noise

margins and thus the sensitivity to soft errors, and by increasing circuit delays

and thus the severity of timing faults.

1.2 Overview of Concurrent Error Detection

Concurrent error detection (CED) is the detection of errors or faults in

a circuit or data path concurrent with normal operation of the circuit [23].

Suppose the system under test realizes a function f and produces out-

put f(i) in response to an input sequence i. A CED scheme generally contains

another unit which independently predicts some special characteristic of the

system output f(i) (checker symbol) for every input sequence i. A checker unit

checks whether the special characteristics of the output actually produced by

the system in response to input sequence i is the same as the one predicted.

An error signal is generated when a mismatch occurs. The CED scheme aims

5



to preserve the data integrity which means that the system either produces

correct outputs or indicates erroneous situations when incorrect outputs are

produced. This property is also referred to as the fault-secure property [24].

CED can be deployed in digital systems to tackle the reliability challenges

encountered in technology scaling and provide a solution to achieve desired

reliability requirements. Figure 1.1 shows the general architecture of a general

CED scheme.

Figure 1.1: General architecture of a concurrent error detection scheme

Input

Function f

Output

Checker

Error

Output 
Characteristic 

Predictor

Predicted Output 
Characteristic

6



1.2.1 Redundancy

Fault tolerance is an exercise in exploiting and managing redundancy.

As the failures happen, redundancy is used to mask or work around these

failures, thus maintaining the desired level of functionality. Hardware faults are

usually dealt with by using hardware, time and information redundancy [25].

Software redundancy is used mainly against software failures which are outside

the scope of the dissertation.

1.2.1.1 Hardware Redundancy

Hardware redundancy is provided by incorporating extra hardware into

the design to either detect or override the effects of a failed component. The

simple form of the hardware redundancy is dual modular redundancy (DMR)

for error detection and triple modular redundancy (TMR) for error correction.

DMR uses a second copy of the circuit under operation as output characteristic

prediction and compares the results of the two circuits. TMR adds a third copy

of the circuit under operation to achieve error correction function through

voting [26].

1.2.1.2 Time Redundancy

Time redundancy attempts to reduce the amount of extra hardware

required for fault tolerance at the expense of additional time. Transient faults

can be detected by repeating the computation several times. Alternate-data-

retry [27] and Re-computation with shifted operands [28] are examples of time

7



redundancy. Although the hardware cost of time redundancy is generally less

than hardware redundancy, it also has a direct impact on system performance.

1.2.1.3 Information Redundancy

Information redundancy is provided by adding information (error de-

tecting codes and error correction codes) to data to tolerant faults. Informa-

tion redundancy is widely used in memory and communication application, for

example, parity codes and Hamming codes [13]. The arithmetic code can be

used to protect arithmetic functions. For checking arithmetic operations, data

is encoded before the operation. Code words are checked after the operation.

Two common types of arithmetic codes are AN codes and residue codes [29].

AN code is formed by multiplying each data work N by some constant A.

AN codes are invariant to addition and subtraction. If no error occurred, the

output can be evenly divisible by A. Residue codes are created by computing

a residue for data and appending it to the data. The residue is generated by

dividing a data by an integer, called a modulus. Decoding is done by simply

removing the residue. Residue codes are invariants with respect to addition.

1.2.2 Fault Tolerance at Different Design Level

Redundancy can be inserted at different design levels (circuit, architec-

ture, and algorithm) for fault tolerance and error detection.

8



1.2.2.1 Circuit Level

Razor [30] [31] employs error-tolerant dynamic voltage scaling (DVS)

technology which dynamically detects and corrects circuit timing errors to per-

mit design optimizations in typical circuit operational levels instead of worst

case corner. Razor eliminates the need for the voltage margins required for

“always correct” circuit operations. At the circuit level, a shadow latch con-

trolled by a delayed version of the clock augments each delay-critical flip-flop.

An error is detected whenever there is a mismatch between the main flip-flop

and shadow latch. Since the shadow latch always contains the correct value, it

can re-execute an instruction failure in one pipeline stage through the following

stage, while incurring a one-cycle penalty.

However, the error detection is done at the circuit level which requires

significant area and power overhead. In large designs, the Razor shadow latch

cannot be used if complex control signals are on the critical path. The Razor

flip-flop’s hold time is much larger than that of a conventional flip-flop. It

consumes area and energy to lengthen the short timing paths. How to choose

representative timing paths within area budget to be monitored is another

open challenge due to timing paths redistribution in post-silicon. Depend-

ing on the process corner, voltage, temperature variations, and also workload,

different timing paths which are not shown as critical in pre-silicon timing

analysis might become critical [32]. Razor leverages the existing timing path

skew within the design. If the timing paths within the design are well balanced,

the Razor method cannot be applied. Also, Razor checks for exact data equiv-

9



alence while the requirement can be relaxed for most digital signal processing

application as long as the signal-to-noise ratio (SNR) is above the threshold.

Razor generally requires an additional pipeline stage to enable recovery after

error detection, which will require a modification of the architecture.

1.2.2.2 Architecture Level

To take the advantage of chip multiprocessor (CMP) for architecture

level fault tolerance, the redundant execution approach executes copies of the

same program on two independent threads and compares the results [33]. Un-

used processor cores can be used to run redundant threads as full utilization

of cores is not usually feasible. Dynamic core coupling (DCC) [34] allows ar-

bitrary processors cores to verify each other in a DMR setup to avoid static

binding overhead. Chip-level redundant threading (CRT) [35] extends redun-

dant multi-threading techniques for single simultaneous multithreading (SMT)

to CMP. EDDI (Error Detection by Duplicate Instruction) [36] and SWIFT

(Software implemented fault tolerance) [37] are software-based redundant tech-

niques that provide low-cost alternatives to hardware-based redundant meth-

ods. Dynamic verification [38] is an error detection technique that operates

at runtime and uses dedicated hardware checkers to verify the validity of spe-

cific invariants assumed to be true in error-free operation. The key point in a

dynamic verification approach is to define a comprehensive set of invariants.

10



1.2.2.3 Algorithm Level

To reduce the overhead incurred by redundancy, deploying the redun-

dancy at algorithm level is an attractive approach. However, algorithm level

fault tolerance is often application specific and needs to develop different pro-

tection scheme for the different algorithms.

Algorithm-based fault tolerance (ABFT) is an effective error detection

and correction technique for matrix operation [39]. ABFT achieves fault tol-

erance at the algorithm level rather than providing hardware level protection.

ANT (Algorithmic Noise Tolerance) [40] was one of the earliest propos-

als to leverage the inherent error resilience of algorithms to achieve energy effi-

ciency and tolerance to deep submicro noise. Subsequent efforts [41] [42] [43] [44]

proposed variants of the ANT approach and demonstrated significant energy

benefits for DSP algorithms. Different algorithm may need different type of

the ANT. However, the area overhead of ANT is significant in some cases.

Significance Driven Computation is introduced in Roy’s work [45] [46] [47] [48].

The concept of significance driven computation is to identify the important

computation and make sure these computations are executed correctly across

all process corners in the early design phase. It allows the non-important com-

putation to fail. The method involves no error detection or error correction.

The algorithm and micro-architecture techniques are employed to avoid the

timing errors on critical computation. The method has been deployed on color

interpolation filtering, FIR filter, discrete cosine transform (DCT), and motion

11



estimator applications. The limitation of this approach is that each different

DSP application requires a different algorithm to identify and isolate the im-

portant computation, and some applications do not have a known solution.

Also, the method can only handle the timing errors but not soft errors.

1.2.3 Fault Tolerance of Approximate Computing

Approximate computing [49] [50] is an emerging design paradigm and

broadly refers to a class of design techniques that leverage intrinsic application

resilience to design more efficient (better power/performance/area) comput-

ing platforms. Today, approximate computing is predominantly proposed for

multimedia and signal processing applications that have a certain degree of

inherent error tolerance. However, a gap exists in extending the technique to

other compute-intensive tasks in science and engineering. To close the gap, it

requires that the allowed error or the required minimum precision of the ap-

plication is either known beforehand or reliably determined online to deliver

trustworthy and useful results. Errors outside the allowed range have to be

reliably detected and tackled by appropriate fault tolerance measurements.

Although approximate computing looks promising, there exist chal-

lenges to deploying the technique in the actual product. There is a need to

develop fault tolerance techniques of approximate compute algorithms [51].

Approximate circuits need to be protected by online testing and concurrent

error detection to cover the entire lifecycle of the application. The error detec-

tion scheme must be developed with appropriate metrics and characterization
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procedures to access whether the circuit is either critical, marginal or non-

critical. The quality aware error detection scheme is essential to explore the

benefit of the approximate computing. To reduce the area and performance

overhead, an algorithm level quality aware error detection scheme is attractive.

However, the technique is naturally algorithm-specific.

1.3 Research Motivation

Putting it all together, the current and future VLSI chip will have tens

of billions of transistors but many of them might be unusable because of ex-

treme static variation. In addition, circuits will encounter dynamic variations

of supply voltage and temperature, frequent and intermittent soft errors and

slow performance degradation over time due to aging. As technology scales

into the deep submicron regime, reliability is becoming a metric of comparable

importance to power, performance and area (PPA) for the analysis and design

of VLSI digital systems.

Since 2001, the International Technology Roadmap for Semiconductor

(ITRS) [52] has stated the reliability and energy-efficiency as two of the crit-

ical design technology challenges. These technology trends show the strong

demand for techniques to design reliable and energy-efficient digital systems.

Designing energy-efficient VLSI systems in the presence of above variation and

error sources is a challenging research problem since it calls the need to tackle

the issues of energy reduction and reliable operation in a unified manner.

The challenge can be attained only through a new design paradigm to
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achieve system reliability as opposed to component reliability. Despite these

difficulties introduced by technology scaling, the chips cannot be retested at

the factory after product shipment, thus users expect the system to remain

reliable and to continue to deliver the required performance. The behavior

of reliability failure mechanisms is becoming more stochastic/random, volt-

age/temperature/workload dependent and widely distributed in time. The

need for concurrent error detection and on-line testing becomes more and more

important. Low cost and power efficient fault tolerant schemes going beyond

double/triple redundancy are needed. This research will focus on algorithm

level concurrent error detection to improve reliability and energy-efficiency in

digital system design.

1.4 Overview

The dissertation is organized as follows. In this chapter 1, an overview

of the reliability challenge in deep sub-micro technology is provided and the

source of errors and variations in emerging digital VLSI systems is summa-

rized. The concurrent error detection overview is presented. The concept of

redundancy (hardware, time, and information) and fault tolerance at different

design levels (circuit, architecture, and algorithm) are introduced.

The trade-off between reliability and power is discussed. Power con-

sumption and system stability often have contradictory requirements. Jointly

considering reliability and energy efficiency in VLSI design, calls for the need

to develop low cost, concurrent error detection scheme.
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Chapter 2 presents the generic 2-D separable linear transform error

detection algorithm. Mathematical proof is provided to demonstrate the pro-

posed algorithm. Several common 2-D linear transforms are studied as exam-

ples and the checksum weighting vector associated with them are derived. The

error detection overhead and effectiveness are studied and compared with prior

work. Multiple faults and common mode failures of the proposed algorithm is

analyzed and showed the effectiveness of the proposed method.

Chapter 3 presents the novel concept of error modeling. The errors at

functional level instead of boolean level are defined and a generic quality aware

error detection in the 2-D separable linear transform is proposed. The quality-

aware error detection technique is deployed on a low power implementation of

2-D Discrete Wavelet Transform (DWT) application via voltage over-scaling

(VOS). An SNR-aware error detection scheme built on top of the proposed

algorithm is used as the quality sensor to guide adaptive voltage scaling based

on output image quality.

Chapter 4 summarizes and concludes the dissertation with discussions

on future work in this research direction.
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Chapter 2

Concurrent Error Detection Algorithm in 2-D

Separable Linear Transform

This chapter describes the proposed concurrent error detection algo-

rithm for 2-D separable linear transform in details. Mathematical proof of the

algorithm is provided. The error detection capability is validated via Matlab

simulation.

2.1 Background

2-D separable linear transformation is widely used in multimedia and

digital signal processing. 2-D signals such as images are usually partitioned

into square blocks of N×N samples where N is the width of the square block.

In this work, 2-D linear transforms are considered, which maps a 2-D input

vector X, into a 2-D output vector Y . The attention is restricted to invertible

transforms in this work.

Definition 1.0: A 1-D unitary transform is defined by matrix T which

maps N samples, possibly complex-valued, into N transform coefficient [53].

y = Tx (2.1)

16



where y and x are N × 1 data vectors and T is N × N matrix. The

coefficients in y are often visualized as being in a frequency domain. Any

normalizing factors are incorporated in the transform matrix T and its inverse

T−1. An important characteristic of a unitary matrix connects the inverse T−1

to the Hermitian transpose of T , written as T ∗.

T−1 = T ∗ (2.2)

x = T ∗y (2.3)

Definition 1.1: Let an N ×N 2-D input vector X and an N ×N 2-D

output vector Y be denoted by

X = [x(m,n)], 0 ≤ m,n ≤ N − 1 (2.4)

Y = [y(k, l)], 0 ≤ k, l ≤ N − 1 (2.5)

The forward and inverse 2-D linear transforms are defined as

y(k, l) =
N−1∑
m=0

N−1∑
n=0

w(k, l;m,n)x(m,n) (2.6)

x(m,n) =
N−1∑
k=0

N−1∑
l=0

v(m,n; k, l)y(k, l) (2.7)

where 0 5 k, l,m, n 5 N − 1. And w(.) and v(.) are the forward and inverse

transform kernels.
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In most practical multimedia applications, the 2-D transform kernels

are separable and symmetric. Therefore, the 2-D transform kernel can be

expressed as the product of two 1-D unitary, orthogonal or bi-orthogonal basis

functions. If the 1-D transform operator is denoted by M , the forward and

inverse transformations can be expressed in matrix form as

Y = M∗XMT (2.8)

X = MTYM∗ (2.9)

The above formulations show that the image transformation can be done in two

stages: by taking the transformation M of each row of the 2-D input vector,

and then by applying transformation M∗ to each column of the intermediate

result.

Discrete Fourier Transform (DFT), Discrete Hartley Transform (DHT),

Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are

few examples of 2-D linear separable transforms.

2.2 Related Work

2.2.1 Algorithm-Based Fault Tolerance

Algorithm-based Fault Tolerance (ABFT) [39] [54] is a system level

method to provide fault detection and diagnosis through data redundancy.

The data redundancy is implemented at algorithm level. ABFT techniques

have been developed for matrix-based and signal processing applications such

as matrix multiplication, matrix inversion, LU decomposition and the Fast
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Fourier Transform [55]. Data redundancy in matrix operations is implemented

using a checksum code. Given an m×n matrix X, the column checksum matrix

XC is defined as

XC =

[
X
eX

]
(2.10)

where e = [1 1 · · · 1] is a row vector containing m 1s. The elements

in the last row of XC are the checksums of the corresponding columns of X.

Similarly, the row checksum matrix XR is defined as

XR =
[
X Xf

]
(2.11)

where f = [1 1 · · · 1]T is a column vector contains n 1s. Finally, the full

(m+ 1)× (n+ 1) checksum matrix XF is defined as

XF =

[
X Xf
eX eXf

]
(2.12)

The column or row checksum matrix can be used to detect a single fault

in any row or column of X, respectively, whereas the full checksum matrix can

be used to locate a single erroneous element of X. If the computed checksums

are accurate, locating the erroneous element allows error correction as well.

The above column, row, and full checksums can be used to detect or correct

errors in various matrix operations. For example, the matrix addition A+B =

C can be replaced by AC + BC = CC or AR + BR = CR or AF + BF = CF .
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Similarly, instead of calculating AB = C, the arithmetic can be computed as

ABR = CR or ACB = CC or ACBR = CF . Figure 2.1 shows the graphical

representation of ABFT encoding for matrix multiplication protection.

Figure 2.1: Graphical representation of ABFT encoding for matrix multipli-
cation protection
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Weighted checksum code based ABFT [54] extends the error correction

capability to matrix-vector multiplication, LU-decomposition, and matrix in-

version. Another row/column weighted checksum is generated with weighting

factor ew = [1 2 · · · 2m−1] and fw = [1 2 · · · 2n−1].

2.2.2 Parity Check Error Detection

A basic approach to fault tolerance in transform algorithms employs er-

ror detection based on comparing two parity values, one computed by forming

a weighted sum of the transform coefficients and the other one form a com-

parable weighted sum over the input data. By comparing these related parity

values, errors are detected and the complete transform can be recomputed.

Figure 2.2 shows the error detection scheme overview.

The input parity P ′ can be described using a weighting vector d and
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Figure 2.2: Protection of Fast Unitary Transform Implementations
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the inner product applied to the input vector x

P ′ =< d, x >= d ∗ x (2.13)

The output parity P can be described using a weighting vector b and

the inner product applied to the output transform vector y

P =< b, y >= b ∗ y (2.14)

P =< b, Tx >=< T ∗ b, x >= b ∗ Tx (2.15)

In a fault-free situation, the input parity equals output parity P = P ′,

therefore

d = T ∗ b (2.16)
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The error detection is achieved by comparing P and P ′ in a totally

self-checking checker (TSCC) [56]. The checker forms the syndrome S, the

difference between the two parties, and determines if its magnitude is small

which below a chosen threshold indicating acceptable round-off tolerance.

Fault tolerance technique for FFT algorithms has been discussed in

many papers. Jou [57] first proposed a concurrent error detection method

for FFT networks which utilizes a coding relationship in the FFT computa-

tions to achieve fault-secure results and to distinguish round-off errors and

functional errors. Fault location is accomplished using a time-redundancy

method. The method can be used to detect a single error in either the multi-

plier or input/output set of lines. Tao’s work [58] enhanced fault coverage of

FFT networks error detection and provided a detailed round-off error analy-

sis. Oh’s work [59] [60] proposed linear weighting factors at FFT network level

by leveraging FFT algorithm property. The scheme supports one-dimensional

and multidimensional FFT. Reddy [61] proposed SOS (Sum of Square) system-

level checking scheme based on Parseval’s theorem and deployed the checks on

FFT. Parseval’s theorem can be expressed as N
∑N−1

i=0 X2(i) =
∑N−1

i=0 Y 2(i).

Although the method has less hardware complexity than previous work, how-

ever, the fault model is weaker and thus the fault coverage can be lower than

others. Wang [62] implemented weighted checksum scheme for FFT network

based on algorithm based fault tolerant. The design is similar to Oh’s work [59]

with a more simplified output checksum calculation. Above work can be sum-

marized at the theoretical form of the parity check scheme depicted in Fig-
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ure 2.2. Although there are many researches utilizing weighted checksum code

for FFT error detection, the works have focused on protecting against a single

high-level error appearing on a single line between stages. The error detection

scheme and weighting factor are often tied to specific fast algorithm architec-

ture. The prior error detection technique does not appear to be transferable

to different transforms.

2.2.3 Fault Tolerance for Generic Linear Transformation

Redinbo [63] proposed a generic concurrent error detection method for

fast unitary transform based on parity weighted sum which utilizes iterative

code design methodology (Figure 2.3) to come up specific parity for each trans-

form application.

For each error ε to be detected, based on Equation 2.13 and 2.15,

syndrome S need to be not equal to zero for each individual error in each

stage and line.

S = P − P ′ = b ∗ (y + ε)− b ∗ Tx = b ∗ ε 6= 0 (2.17)

The method requires the computer program to create error gain matrix and

output error patterns for errors in each matrix factorization stage and line. The

error detection linear functional is formed based on error patterns matrix. The

algorithm starts with initial weighting vector and computes error gain vector

iteratively to check if all gains are non-zero and weightings are non-zero. If

the condition is not meet, it will modify the weightings and retry until the
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weighting vector meets the requirement. Although the method seems generic,

the code design process is heuristic and iterative. A poor choice for a parity

weighting vector can lead to poor detection capability.

Redinbo and Nguyen’s work [64] [65] extended parity weighted sums

for discrete wavelet lifting transforms (DWT) error detection. The technique

can detect errors introduced at a lifting section. However, it still relies on an

iterative design process to determine the parity weighting vector and can lead

to poor detection capability if weighting vector is not carefully chosen. No

error correction capability can be achieved based on this technique. Since this

method can be used only in 1-D DWT, in 2-D DWT applications, the parity

weighted sum generation and detection needs to be implemented for each 1-D

row/column-wise DWT stage. The resulting overhead is significant.

2.3 Proposed Algorithm

The proposed 2-D linear transform error detection method does not

depend on the particular hardware or software structure of the transform being

targeted. The foundation of the proposed method is Algorithm-based fault

tolerance (ABFT) [39]. However, the naive implementation of ABFT cannot

be directly applied in 2-D linear transform due to the following reasons.

1. ABFT can be used to detect and correct errors in matrix multiplica-

tion. A column checksum matrix multiplying a row checksum matrix

will produce a full checksum matrix. However, multiplying a full check-
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Figure 2.3: Code Design Methodology
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sum matrix by row, column or full checksum matrices will not create

a full checksum matrix. If ABFT technique is applied directly on 2-

D linear transform, the error detection needs to be done at each 1-D

transform, which incurs a lot of overhead.

2. Linear transform operations may include row swapping/rearrangement

at inputs or outputs. For example, In the wavelet lifting transform,

the row data need to be rearranged to separate odd/even indices or

to reposition the high/low-frequency subband. The encoding technique

needs to be able to work even when the row data has been rearranged

during the transformation.

3. Some linear transforms have the sparse coefficient matrix structure. To

reduce computation cost, the actual implementation of the transforma-

tion may not keep the matrix format. For example, wave lifting structure

is the popular method to implement discrete wavelet transform (DWT).

Also, many popular linear transforms have fast HW architecture imple-

mentation which does not keep matrix structure either. For example,

there are many different FFT algorithms/architectures to compute DFT

sequences. The data encoding technique needs to be able to be inte-

grated into the existing non-matrix form structure without significant

architecture modifications.

To resolve the issues above, a generic weighted checksum code based

fault tolerance technique (2DLTC) targeted to 2-D separable linear transfor-
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mation is developed. It has proven that gate-level single stuck-at fault models

are not satisfactory as any physical defect which affects a given area on a chip

will affect a great amount of the circuitry and will cause a large block of logic

to become faulty. The general module level fault model is assumed which

allows a computation module to produce arbitrary erroneous outputs under

failure condition.

The details are described in the following section. First, a few exten-

sions of ABFT are introduced.

Definition 1.2: fr() is defined as the function takes a 2-D array as

input to do a row-wise operation to reposition the rows in array in specific

order defined by the transform equation.

For instance, in DWT, the following row reordering function froe(X) and

frhl(X) are being implemented.

• Xoe = froe(X), X = [x0 · · · x2n−1]T, where x0, · · · , x2n−1 are 1 ∗N array.

Then Xoe = [x1x3 · · ·x2n−1x0x2 · · ·x2n−2]T

froe() function takes a 2-D array as input to do a row-wise operation to

move an even index row to the upper region of the array in order and

move an odd index row to the lower region of the array, in order.

• Xhl = frhl(X), X = [x0 · · ·x2n−1]T, where x1, · · · , x2n−1 are 1 ∗N array.

Then Xhl = [xn · · ·x2n−1x0 · · ·xn−1]T

frhl() function takes a 2-D array as input to do a row-wise operation to
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move the lower region of the array to the upper region and move the

upper region of the array to the lower region.

The 2-D linear separable transform can be generalized in the following

matrix form. Given a 2-D N ×N input array X,

Xc = fr2(M ∗ fr1(X)) (2.18)

Ycr = (fr2(M ∗ fr1(XT
c )))T (2.19)

Xc is the result of 1-D column-wise transform

Ycr is the result of 2-D transform which applies a 1-D column-wise

transform first and then row-wise transform later.

M is the consolidated transform coefficient matrix.

fr1 and fr2 are matrix row reordering function. These functions are

defined to generalize the matrix form to support transform like DWT. For

linear transformation which does not need row reordering, these functions will

be defined as No-Ops.

Corollary 1.1: When applying function fr() on a full checksum matrix Cf , the

column checksum of C and the check of the checksum can be preserved. The

function will be applied to C and the row checksum of C. Column checksum

will not be reordered by fr() as fr() is meant to apply on the transform matrix

only.
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C = A ∗B (2.20)

Cf =

[
AB

eTAB

ABe

eTABe

]
(2.21)

fr(Cf ) =

[
fr(AB)

eTAB

fr(ABe)

eTABe

]
(2.22)

Theorem 1.1: For 2-D separable linear transform, the result of applying

the 1-D linear transform column-wise first and then row-wise, is the same as

the result of applying the 1-D linear transform row-wise first and then column-

wise.

Proof: This is possible because the 2-D separable transform linear func-

tions can be expressed as separable functions which are the product of two 1-D

linear transform functions [66].

In the case of column first, Xc is the intermediate result,

Xc = M∗X; Y = (M(Xc)
T )T = M∗XMT (2.23)

In the case of row first, Xr is the intermediate result,

Xr = (MXT )T = XMT ; Y = M∗Xr = M∗XMT (2.24)

The theorem holds true even the row reordering operation fr() has been applied

to the matrix.
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Xc = fr2(M ∗ fr1(X)) (2.25)

Xr = (fr2(M ∗ fr1(XT)))T (2.26)

Yrc = fr2(M ∗ fr1(Xr)) (2.27)

Y = Ycr = Yrc (2.28)

Xr: the result of 1-D row-wise transform.

Yrc: the result of 2-D transform which applies 1-D row-wise first and

then column-wise later.

Y : the result of 2-D transform.

Theorem 1.2: For 2-D linear separable transform, there exists an in-

put array column checksum weighting vector, so that the result array column

checksum is the input array column weighted checksum applied to the 1-D

transform.

Proof:

Based on Equation 2.21, 2.22 and 2.25, the full checksum of Xc can be
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derived as

Xcf = fr2

([
M
eTM

]
∗
[
fr1(X) fr1(X)e

])
= fr2

([
Mfr1(X)

eTMfr1(X)

Mfr1(X)e

eTMfr1(X)e

])
=

[
fr2(Mfr1(X))

eTMfr1(X)

fr2(Mfr1(X)e)

eTMfr1(X)e

]
=

[
Xc

eTMfr1(X)

fr2(Mfr1(X)e)

eTMfr1(X)e

]
(2.29)

And the row checksum of XT
c can be represented as

XT
c e = (eTMfr1(X))T (2.30)

fr1(X
T
c )e = fr1((e

TMfr1(X))T) (2.31)

and based on Equation 2.19, 2.21, 2.22 and 2.31 the full checksum of

Y can be derived as

Yf =

(
fr2

([
M

eTM

]
∗
[
fr1(X

T
c ) fr1(X

T
c )e

]))T

(2.32)

=

(
fr1

([
M

eTM

]
∗
[
fr1(X

T
c ) fr1((e

TMfr1(X))T)
]))T

=

(
fr2

([
Mfr1(X

T
c )

eTMfr1(X
T
c )

Mfr1((e
TMfr1(X))T)

eTMfr1((e
TMfr1(X))T)

]))T

=

([
fr2(Mfr1(X

T
c ))

eTMfr1(X
T
c )

fr2(Mfr1((e
TMfr1(X))T))

eTMfr1((e
TMfr1(X))T)

])T

=

[
Y

(fr2(Mfr1((e
TMfr1(X))T)))T

(eTMfr1(X
T
c ))T

eTMfr1((e
TMfr1(X))T)

]
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Therefore, the result array column checksum is

(fr2(Mfr1((e
TMfr1(X))T)))T = (fr2(Mfr1((WCX)T)))T (2.33)

where WC is the input array column checksum weighting vector. Since eTM is

known as the coefficient matrix is pre-determined, WC can be obtained simply

by reordering vector eTM based on the reverse of function fr1 .

WC = f−1r1 (eTM) (2.34)

Figure 2.4 illustrates the graphical representation of Theorem 1.2.

Theorem 1.3: For 2-D linear separable transform, there exists an input

array row checksum weighting vector, so that the result array row checksum

is the input array row weighted checksum being applied the 1-D transform.

Proof:

Based on Equation 2.21, Equation 2.22, and Equation 2.26, the full

checksum of Xr can be derived as
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Figure 2.4: Graphical representation of Theorem 1.2

February 21, 2009 1

* =M fr1(X) Mfr1(X)
fr2( ) Transpose

Xc=fr2(Mfr1(X))

1-D Column-Wise Linear Transform

Xc
T

* =M fr1(Xc
T)

M*fr1(Xc
T)

fr2( )

fr2(M*fr1(Xc
T))

Ycr
Transpose

eTMfr1(X) eTMfr1(X)

eT M
f r1

(X
)

f r1
((

eT M
f r1

(X
))

T

M
f r1

((
eT M

f r1
(X

))
T )

f r2
(M

f r1
((

eT M
f r1

(X
))

T ))

(fr2(Mfr1((eTMfr1(X))T)))T

= (fr2(Mfr1((WCX)T) ))T

1-D Row-Wise Linear Transform

Xrf =

(
fr2

([
M

eTM

]
∗
[
fr1(X

T) fr1(X
T)e

]))T

=

(
fr2

([
Mfr1(X

T)

eTMfr1(X
T)

Mfr1(X
T)e

eTMfr1(X
T)e

]))T

=

([
fr2(Mfr1(X

T))

eTMfr1(X
T)

fr2(Mfr1(X
T)e)

eTMfr1(X
T)e

])T

=

[
Xr

(fr2(Mfr1(X
T)e))T

(eTMfr1(X
T))T

eTMfr1(X
T)e

]
(2.35)

And the row checksum of Xr can be represented as

Xre = (eTMfr1(X
T))T (2.36)

fr1(Xr)e = fr1((e
TMfr1(X

T))T) (2.37)
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and the full checksum of Y as

Yf = fr2

([
M

eTM

]
∗
[
fr1(Xr) fr1(Xr)e

])
= fr2

([
M

eTM

]
∗
[
fr1(Xr) fr1((e

TMfr1(X
T))T)

])
= fr2

([
Mfr1(Xr)

eTMfr1(Xr)

Mfr1((e
TMfr1(X

T))T)

eTMfr1((e
TMfr1(X

T))T)

])
=

[
fr2(Mfr1(Xr))

eTMfr1(Xr)

fr2(Mfr1((e
TMfr1(X

T))T))

eTMfr1((e
TMfr1(X

T))T)

]
=

[
Y

eTMfr1(Xr)

fr2(Mfr1((e
TMfr1(X

T))T))

eTMfr1((e
TMfr1(X

T))T)

]
(2.38)

Therefore, the result array row checksum is

fr2(Mfr1((e
TMfr1(X

T))T)) = fr2(Mfr1((WRX
T)T)) (2.39)

where WR is the input array column checksum weighting vector. Since

eTM is known, WR can be obtained simply by reordering vector eTM based

on the reverse of function fr1 .

WR = f−1r1 (eTM) (2.40)

Figure 2.5 illustrates the graphical representation of Theorem 1.3.

From Equation 2.33 and Equation 2.39 shown before, the following

equations can be derived
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Figure 2.5: Graphical representation of Theorem 1.3
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WCx = eTMfr1(x) (2.41)

WRx
T = eTMfr1(x

T) (2.42)

WC = WR = f−1r1 (eTM) (2.43)

Base on the coefficient matrix of the transform, the checksum weighting

vector for given transform can be derived using Equation 2.43. The checksum

weighting vector is essentially column checksum of the coefficient matrix eTM .

Some transforms like DWT have complicated form, and Matlab symbolic com-

putation can be used to find out the consolidated coefficient matrix. In case

the transform involves row re-ordering, the reverse ordering can be applied to

derive the checksum weighting factor.
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2.4 Error Detection Scheme

The proposed error detection scheme utilized both data redundancy

and time redundancy at algorithm level to lower the protection overhead. The

error detection scheme is described below.

1. Encode input array using transformation specific checksum weighting

vector as described in Equation 2.43.

2. Perform 1-D transform on encoded input vector to generate golden col-

umn and row checksum.

3. Compute the sum of output array elements in each row and column to

form revised column and row checksum.

4. Compare each computed sum with the corresponding checksum vector

entry. Due to potential round-off errors, a small tolerance should be

allowed for this comparison.

5. An inconsistent row or column is detected when there is a mismatch in

comparison. If any such case happens, an error is detected in the 2-D

linear transform application.

The block diagram of proposed error detection scheme is shown in Fig-

ure 2.6.
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Figure 2.6: 2-D Linear Transform Error Detection
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2.5 2-D Discrete Fourier Transform Error Detection

2.5.1 Background

The discrete Fourier transform (DFT) converts a finite sequence of

equally-spaced samples of a function into an equivalent-length sequence of

equally-spaced samples of the discrete-time Fourier transform. The DFT is

a frequency domain representation of the original input sequence. The DFT

is the critical discrete transform used to perform Fourier analysis in many
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practical applications. In digital signal processing, the samples can be any

physical measurement over a finite time interval. In image processing, the

samples can be the values of pixels along a row or column of the raw image.

The DFT is also used to conveniently solve partial differential equations and

to perform other arithmetic such as convolutions. The 2-D DFT is a direct

extension of the 1-D case and is given by

y(k, l) =
1

N2

N−1∑
m=0

N−1∑
n=0

x(m,n)e−j2π(
km+ln
N

) (2.44)

for k, l = 0, 1, 2, . . . , N − 1.

2.5.2 Checksum Weighting Vector

For 2-D N ×N DFT, the checksum weighting vector can be derived as,

WDFT [0] =N ; (2.45)

WDFT [i] =1 +
N−1∑
k=1

e(
−2πj
N

)
ik

(2.46)

where i = 1, · · · , N − 1

2.6 2-D Discrete Cosine Transform Error Detection

2.6.1 Background

Discrete Cosine Transform (DCT) has emerged as the effective image

transformation in most visual systems. DCT has been widely deployed by
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present video coding standards, for example, MPEG, JPEG, etc. The 2-D

DCT is a direct extension of the 1-D case and is given by

y(k, l) = α(k)α(l)
N−1∑
m=0

N−1∑
n=0

x(m,n)cos(
π(2m+ 1)k

2N
)cos(

π(2n+ 1)l

2N
) (2.47)

for k, l = 0, 1, 2, . . . , N − 1. α(k) and α(l) are defined as

α(k) =


√

1

N
, for k = 0.√

2

N
, for k 6= 0.

(2.48)

2.6.2 Checksum Weighting Vector

For 2-D N × N DCT, the checksum weighting vector can be derived

as,

WDCT [i] =

√
1

N
+

√
2

N

N−1∑
j=1

cos((
πj

2N
)(2i+ 1)) (2.49)

where i = 0, · · · , N − 1

2.7 2-D Discrete Hartley Transform Error Detection

2.7.1 Background

A discrete Hartley transform (DHT) is a Fourier-related transform of

discrete, periodic data similar to the discrete Fourier transform (DFT), with
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similar applications in signal processing and related fields. Its main difference

from the DFT is that the transform converts real inputs to real outputs, with

no natural involvement of complex numbers. Same as the DFT is the discrete

analogue of the continuous Fourier transform, the DHT is the discrete ana-

logue of the continuous Hartley transform, introduced by R. V. L. Hartley in

1942 [67].

Since there are fast algorithms for the DHT analogous to the fast

Fourier transform (FFT), the DHT was originally proposed by R. N. Bracewell

in 1983 as a more efficient computational tool in the common case where the

data are purely real [68].

y(k, l) =
N−1∑
m=0

N−1∑
n=0

x(m,n)cas(
2πkm

N
)cas(

2πln

N
) (2.50)

for k, l = 0, 1, 2, . . . , N − 1.

cas(
2πkm

N
) = cos(

2πkm

N
) + sin(

2πkm

N
) (2.51)

2.7.2 Checksum Weighting Vector

For 2-D N × N DHT, the checksum weighting vector can be derived

as,
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WDHT [0] =N ; (2.52)

WDHT [i] =1 +
N−1∑
k=1

(sin(
2π

N
ik) + cos(

2π

N
ik)) = 0 (2.53)

where i = 1, · · · , N − 1.

In 2-D DHT, as there is only one non-zero element in checksum weight-

ing vector, it will take only N multiplications to derive input checksum vector.

This application-specific property for 2-D DHT checksum weighting vector can

greatly reduce the error detection computation overhead.

2.8 2-D Discrete Wavelet Transform Error Detection

2.8.1 Background

The Discrete Wavelet Transform (DWT) has become a widely used

signal processing tool over the last decade. It has been effectively used in

signal and image processing applications since its multi-resolution analysis

capability. 2-D DWT is also at the center of JPEG 2000 image compression

standard. DWT is ultimately implemented in either hardware or software,

and it is susceptible to transient failure caused by either radiation, noise, or

timing errors as well. Due to its pipelined structure and multi-rate processing

requirements, a single numerical error in one stage can easily affect multiple

outputs in the final result. Most importantly, the influence of these failure

mechanisms increases with technology scaling trends. It is desirable to develop

a low-cost error detection method for 2-D DWT.
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A discrete wavelet transform (DWT) is any wavelet transform for which

the input signal and wavelet parameters are discretely sampled. DWT has

traditionally been implemented using convolution or FIR filter bank struc-

tures. This kind of implementation leads to a very large number of arithmetic

computations and requires a large amount of storage. Wave lifting [69] is

a mathematical formulation for wavelet transformation based on the spatial

construction of the wavelets and a very versatile scheme for its factorization.

Wave lifting implementation breaks up the high-pass and low-pass wavelet fil-

ters into a sequence of upper and lower triangular matrices and converts the

filter implementation into banded matrix multiplications. Wave lifting im-

plementation requires far fewer computations compared to convolution based

DWT. The lifting factorization can be represented in the following forms.

P̃ (z) =

(
m∏
i=1

[
1 s̃i(z)
0 1

] [
1 0

t̃i(z) 1

])[K 0

0
1

K

]
(2.54)

where s̃i(z) and t̃i(z) are Laurent polynomials, and K is a constant act as a

scaling factor.

The lifting based forward wavelet transform essentially first splits the

input stream into even and odd samples, then alternately executes update and

predict lifting steps, and finally scales the two output streams by 1/K and K,

respectively, to produce low-pass and high-pass subbands. A prediction step

consists of predicting each odd sample as a linear combination of the even

samples and subtracting it from the odd sample to form the prediction error.

An update step consists of updating the even samples by adding them to a
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linear combination of the prediction errors to form the updated sequence.

The block diagram of filter bank based forward and inverse DWT is

shown in Figure 2.7. The block diagram of wave lifting is shown in Figure 2.8.

Figure 2.7: Filter bank based forward and inverse DWT
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The data dependency of the wave lifting scheme can be explained via

a dataflow graph as shown in Figure 2.9. For DWT filters which can be

decomposed into four lifting factors, the computation is done in four stages.

The value of a, b, c, d, and K depend on the selection of the DWT filters. Once

the DWT filters are chosen, they are constant throughout the processing. The

intermediate results generated in the first two stages for the first two lifting

steps are stored temporarily and these intermediate results are subsequently

processed to produce the high-pass (HP) outputs in the third stage followed
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Figure 2.8: Lifting based forward DWT (Analysis) and inverse DWT (Synthe-
sis)
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by the low-pass (LP) outputs in the final stage. For the DWT filters requiring

fewer factors, the intermediate stages can be simply bypassed.

Figure 2.9: Data dependency diagram of lifting-based DWT with four lifting
factors [66]
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The proposed error detection technique can be used with any variation

of the wavelet transform. However, the 9/7 wavelet transform which is being

adopted in JPEG 2000 standard will be used as an example to demonstrate the

idea [70]. The application of the technique to the 5/3 wavelet transforms is also

shown. For other types of wavelet transforms, the same encoding technique

can still be applied, with just the weighting vector being different.

The 9/7 wavelet is implemented in four lifting steps. For 1-D DWT,

the original matrix forms for wave lifting steps 1 and 2 are shown below.

Given a 1-D vector x,
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d(0) = [d
(0)
0 · · · d

(0)
n−1]

T = [x1 · · · x2n−1]T (2.55)

s(0) = [s
(0)
0 · · · s

(0)
n−1]

T = [x0 · · · x2n−2]T (2.56)[
d(1)

s(1)

]
=

[
I αMa

βMd αβMb

] [
d(0)

s(0)

]
= M1 ∗

[
d(0)

s(0)

]
(2.57)

Ma =


1 1 0

. . . . . .

1 1
0 2

 ,Md =


2 0
1 1

. . . . . .

0 1 1

 (2.58)

Mb =



2 +
1

αβ
2 0

1 2 +
1

αβ
1

. . . . . . . . .

1 2 +
1

αβ
1

0 1 3 +
1

αβ


(2.59)

where α = −1.586134342, β = −0.05298011854.

Wave lifting step 3 and step 4 are similar to step 1 and step 2, except

that the coefficients are changed. α is replaced by γ, and β is replaced by δ.

[
d(2)

s(2)

]
=

[
I γMa

δMd γδMc

] [
d(1)

s(1)

]
= M2 ∗

[
d(1)

s(1)

]
(2.60)
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Mc =



2 +
1

γδ
2 0

1 2 +
1

γδ
1

. . . . . . . . .

1 2 +
1

γδ
1

0 1 3 +
1

γδ


(2.61)

where γ = 0.8829111, δ = 0.4435068.

The normalization can be written in the following matrix form.

[
d
s

]
=

K2 I 0

0
1

K
I

[d(2)
s(2)

]
= Ms ∗

[
d(2)

s(2)

]
(2.62)

where k = 1.2301741.

The 2-D DWT can be represented in the following matrix form.

Given a 2-D N ×N array X,

Xc = fhl(Ms ∗M2 ∗M1 ∗ foe(X)) (2.63)

Ycr = (fhl(Ms ∗M2 ∗M1 ∗ foe(XT
c )))T (2.64)

Xc: the result of 1-D column-wise wavelet transform

Ycr: the result of 2-D wavelet transform which applies a 1-D DWT

column-wise first and then row-wise later.
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foe(): the function takes a 2-D array as input to do a row-wise operation

to move an even index row to the upper region of the array in order and move

an odd index row to the lower region of the array, in order.

Xoe = foe(X), x = [x0 · · ·x2n−1]T, where x0, · · · , x2n−1 are 1 ∗N array.

Then Xoe = [x1x3 · · ·x2n−1x0x2 · · · x2n−2]T

fhl(): the function takes a 2-D array as input to do a row-wise operation

to move the lower region of the array to the upper region and move the upper

region of the array to the lower region.

Xhl = fhl(X), Xhl = [x0 · · ·x2n−1]T, where x1, · · · , x2n−1 are 1∗N array.

Then Xhl = [xn · · ·x2n−1x0 · · ·xn−1]T

For convenience, Ms, M2, and M1 can be consolidated into a single

matrix M , where

M = Ms ∗M2 ∗M1 (2.65)

Equation 2.63 and Equation 2.64 can be simplified to below which is

the same as generic 2-D linear separable transformation format and therefore

the proposed error detection algorithm can be applied on also discrete wavelet

transform although the coefficient matrix seems complicate.
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Xc = fhl(M ∗ foe(X)) (2.66)

Ycr = (fhl(M ∗ foe(XT
c )))T (2.67)

2.8.2 Checksum Weighting Vector

To come up with the checksum weighting vector of 2-D DWT, the consolidated

coefficient matrix M need to be derived. The matrix M has a complicated

form, but for encoding purpose, only the column checksum for this consolidated

coefficient matrix need to be calculated. Matlab symbolic computation is used

to find the following pattern. For coefficient matrix M with size N ∗ N , the

column checksum of M for 9/7 wavelet transform will be

For n = 1,

eTM [n] =
k

2
+

(3δ)

k
+

(3β(2γδ + 1))

k
+ 2βγk +

(5βγδ)

k
= 1.2669

For n = 2,

eTM [n] =
k

2
+

(2δ)

k
+

(2β(2γδ + 1))

k
+ 2βγk +

(5βγδ)

k
= 0.9831

For 2 < n <
N

2
− 1,

eTM [n] = 1

For n =
N

2
− 1,

eTM [n] =
k

2
+

(2δ)

k
+

(β(2γδ + 1))

k
+
β(3γδ + 1)

k
+

(5βγk)

2
+

3βγδ

k
=

0.9712
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For n =
N

2
,

eTM [n] =
k

2
+

(δ)

k
+

(β(3γδ + 1))

k
+

(3βγk)

2
+
βγδ

k
= 0.7788

For n =
N

2
+ 1,

eTM [n] =
αk

2
+

(2αβ + 1)(2γδ + 1)

k
+
γk(2αβ + 1)

2
+

3αδ

k
+
αβ(2γδ + 1)

k
+

γδ(2αβ + 1)

k
+ αβγk +

3αβγδ

k
= 0.3015

For n =
N

2
+ 2,

eTM [n] = αk+
(2αβ + 1)(2γδ + 1)

k
+γk(2αβ+1)+

5αδ

k
+

3αβ(2γδ + 1)

k
+

3γδ(2αβ + 1)

k
+ 2αβγk +

4αβγδ

k
= −0.0782

For n =
N

2
+ 3,

eTM [n] = αk+
(2αβ + 1)(2γδ + 1)

k
+γk(2αβ+1)+

4αδ

k
+

2αβ(2γδ + 1)

k
+

2γδ(2αβ + 1)

k
+ 2αβγk +

5αβγδ

k
= 0.0267

For
N

2
+ 3 < n < N − 1,

eTM [n] = 0

For n = N − 1,

eTM [n] = αk+
(2αβ + 1)(2γδ + 1)

k
+γk(2αβ+1)+

4αδ

k
+
αβ(2γδ + 1)

k
+

2γδ(2αβ + 1)

k
+
αβ(3γδ + 1)

k
+

5αβγk

2
+

3αβγδ

k
= 0.0456

For n = N ,

eTM [n] =
3αk

2
+

(3αβ + 1)(3γδ + 1)

k
+

3γk(3αβ + 1)

2
+

4αδ

k
+
αβ(2γδ + 1)

k
+

γδ(3αβ + 1)

k
+ αβγk +

2αβγδ

k
= −0.2956
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N is an even number since symmetric extension of the input array is

assumed in this work. It can be observed that no matter how big the matrix is,

there are only 9 non-zero or one column checksum for this coefficient matrix.

From equations shown before,

WCx = eTMfoe(x) (2.68)

WRx
T = eTMfoe(x

T) (2.69)

WC = WR (2.70)

Since the pattern of eTM is already known, W can be obtained simply

by reordering vector eTM based on the reverse of function foe().

W9/7DWT =[0.3015, 1.2669,−0.0782, 0.9831, 0.0267,

1, 0, 1 · · · , 0, 1, 0.0456, 0.9712,−0.2956, 0.7788]

Although these results are only for the 9/7 wavelet transform, the

derivation of other wavelet transform coefficient matrix column checksums

can be obtained in the same manner. For example, the checksum weighting

vector for 5/3 wavelet transform can be represented below.

W5/3DWT = [0.375, 1.25,−0.125, 1, 0, 1 · · · , 0, 1,−0.25, 0.75]
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Although only the encoding and checksum generation of forward DWT

is shown, the encoding and checksum generation of reverse DWT can be ob-

tained via the same method. Also, the weighted checksum code scheme pro-

posed here is totally different than Jou’s study [71]. In proposed method, only

the single checksum is used, and the weighting vector is different.

2.8.3 Integration with existing wave lifting VLSI architecture

From Equation 2.33 and 2.39, it can be observed that the output array

column checksum is essentially the input array column checksum WCX being

applied to 1-D DWT, and the output array row checksum is essentially the

input array row checksum (WRX
T)T being applied to 1-D DWT. Once the

input array checksum is calculated, the result can be feed into the existing

wave lifting VLSI architecture pipeline and just be treated as an additional

row or column. Therefore, this encoding scheme can work with existing wave

lifting VLSI architectures without significant modification.

2.9 Simulation and Analysis

2.9.1 Error Detection Capability

Error detection capability is the most important metric to be evaluated

for the proposed scheme. The proposed scheme need to ensure that there ex-

ists an error threshold which can be used to detect a small error while the false

alarm will not be triggered due to checksum rounding. Matlab simulation is

performed to verify the metric. The main purpose of the simulation is to in-
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vestigate the proper value of error detection threshold. In the simulation, the

input array with size N×N is randomly generated. Each element of the array

is assigned integer range from 0 to 255. Different 2-D linear transforms (DCT,

DWT and DHT) are performed on an array without error and with single error

injection. The simulation program randomly selects the stage/node on which

a random magnitude error with zero mean and various variance is superim-

posed. The input array is encoded with proposed weighted checksum scheme

and compared with output array golden (from error free computation) and

revised (from error injected computation) checksum. By comparing encoded

checksum and golden output checksum, maximum checksum rounding error

can be derived. Maximum and minimal checksum error can be obtained by

comparing encoded checksum and revised output checksum across iterations.

For each error variance, the simulation runs 100000 iterations and logs maxi-

mum/minimal checksum error and maximum rounding error ever observed.

The simulation results are summarized in Table 2.1, Table 2.3 and Table

2.2. As shown in simulation result, across different 2-D linear transform test

cases, minimal checksum difference due to error injection is several magnitudes

larger than maximum rounding error ever observed. It demonstrates that there

exists an error threshold setting which can avoid false alarm triggering due to

checksum rounding and detect all injected error in simulation.
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Table 2.1: 2-D DCT Transform Single Error Injection and Detection Matlab
Simulation Result

Array
Size N

Err Variance Max Checksum
Difference

Min Checksum
Difference

Max Rounding
Error

100 1 28.4017 8.2206 ∗ 10−6 9.8225 ∗ 10−11

100 5 182.5088 1.5561 ∗ 10−5 9.7856 ∗ 10−11

1000 1 66.8016 3.2522 ∗ 10−6 8.5565 ∗ 10−9

1000 5 302.7623 6.9888 ∗ 10−6 8.4983 ∗ 10−9

Table 2.2: 2-D DHT Transform Single Error Injection and Detection Matlab
Simulation Result

Array
Size N

Err Variance Max Checksum
Difference

Min Checksum
Difference

Max Rounding
Error

100 1 320.6826 2.0031 ∗ 10−5 4.9593 ∗ 10−8

100 5 1568.6 4.5884 ∗ 10−5 4.936 ∗ 10−8

1000 1 2303.9 6.786 ∗ 10−5 2.2456 ∗ 10−5

1000 5 9564.5 6.8337 ∗ 10−5 2.2158 ∗ 10−5

Table 2.3: 2-D 9/7 DWT Transform Single Error injection and Detection
Matlab Simulation Result

Array
Size N

Err Variance Max Checksum
Difference

Min Checksum
Difference

Max Rounding
Error

100 1 5.8504 1.6058 ∗ 10−5 3.7018 ∗ 10−8

100 5 28.1763 2.6628 ∗ 10−5 3.7828 ∗ 10−8

1000 1 5.7566 1.5747 ∗ 10−5 1.3148 ∗ 10−7

1000 5 29.4913 1.6634 ∗ 10−5 1.3523 ∗ 10−7

54



2.9.2 Error Detection Overhead Analysis

In this section, the computation overhead of proposed generic 2-D lin-

ear transform error detection scheme is compared to prior work which target

general transform application. The weighted check sum technique in Jou’s

work [71] is excluded from the comparison since its cost is obviously higher

than ABFT. The cost to encode and compute an N × N array is used as an

example.

1. 2-D Linear Transform Error Check (2DLTC): The proposed algorithm

is referred as 2-D linear transform error check (2DLTC). WCX = WRX

has been shown therefore either row or column checksum can be used

for error detection. For 9/7 2-D DWT, there is only 9 non zero-or-one

element in weighting vector and half of the weighting vector element are

zero regardless the array size. For 2-D DHT, there is only one non zero

element in weighting vector regardless the array size. The computation

cost to calculate input checksum in each row/column can be further re-

duced due to these specific transform properties. The encoded checksum

then needs to go through the 1-D transformation in order to get the

output predictive row/column checksum. Finally, the elements in each

row/column of the output array are sum up to create output checksum.

2. Algorithm Based Fault Tolerant (ABFT): Since 2-D linear transform

can be represented in matrix form, ABFT [39] can be implemented at
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each matrix multiplication for protection. However, the computation

overhead is big as the encoding is done at each matrix multiplication

level rather than 2-D linear transform level. For 2-D linear transform,

encoding and detection need to be performed in each column-wise or

row-wise 1-D transformation. The naive ABFT implementation cannot

take advantage of more efficient transform algorithm. For example, in

DWT, matrix implementation can create huge overhead compared to

lifting implementation due to its sparse coefficient matrix. Here, the

overhead which matrix multiplication incurs is ignored, and only the

encoding and checksum creation cost are compared.

3. Parity Weighted Sum (PW): Parity weight sum [63] utilizes iterative

code design methodology to design specific weighting vector for each

transform application For 2-D linear transform, encoding and detection

need to be performed every time when column-wise or row-wise 1-D

transformation is calculated. To consider the computation overhead, the

weighted parity for output is also calculated.

Table 2.4 summarizes the encoding cost, computation overhead, and

total cost of the above calculation. The proposed 2DLTC method is clearly

shown to be better than the Parity Weighted Sum (PW) method and ABFT.

For 2DLTC method, it takes N2 multiplications and N2−N additions

to compute input array weighted checksum (encoding cost). The computation

overhead can be divided into output array checksum calculation (N2−N addi-
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tions) and 1-D transform of input array weighted checksum (N2 multiplications

and N2 − N additions). There will be hardware overhead to compute input

array weighted checksum and output array checksum (N2 multiplications and

2N2 − 2N additions). The 1-D transform of input array weighed checksum

can reuse the existing transformation hardware. The hardware overhead can

be traded off with minor performance overhead ( 1
2N

of the total computation

latency).

If 16-bit multiplication in the application is considered, the cost of

doing one multiplication is roughly equal to doing 15 additions. For a better

comparison, the cost of different methods are translated into an equivalent

number of additions required. The comparison result is shown in Figure 2.10.

It can be seen that the 2DLTC method has the least amount of cost.

Table 2.4: Comparison of Computation Overhead
Algorithm Encoding Cost Computation Overhead Total Cost

2DLTC
(Generic)

N2 mult, N2 −N
add

N2 mult, 2N2 − 2N
add

2N2 mult, 3N2 − 3N
add

2DLTC
(DHT)

N mult N2 mult, 2N2 − 2N
add

N2 + N mult,
2N2 − 2N add

2DLTC
(9/7

DWT)

9N mult, N2

2 + 4N
add

3N mult, N2 + 3N add 12N mult, 3N2

2 + 7N
add

ABFT 4N2 − 4N add 2N3 − 2N2 mult,
2N3 − 6N2 − 4N add

2N3 − 2N2 mult,
2N3 − 2N2 − 8N add

PW 2N2 mult,
2N2 − 2N add

2N2 mult, 2N2 − 2N
add

4N2 mult, 4N2 − 4N
add
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Table 2.5: Comparison of Computation Overhead with different algorithm and
array size N . Normalized to number of additions

N 100 200 300 400 500 600 700 800 900 1000

2DLTC
(Generic)

3.30E+05 1.32E+06 2.97E+06 5.28E+06 8.25E+06 1.19E+07 1.62E+07 2.11E+07 2.67E+07 3.30E+07

2DLTC
(DHT)

1.71E+05 6.83E+05 1.53E+06 2.73E+06 4.26E+06 6.13E+06 8.34E+06 1.09E+07 1.38E+07 1.70E+07

2DLTC
(9/7

DWT)

3.37E+04 9.74E+04 1.91E+05 3.15E+05 4.69E+05 6.52E+05 8.66E+05 1.11E+06 1.38E+06 1.69E+06

ABFT 3.17E+07 2.55E+08 8.61E+08 2.04E+09 3.99E+09 6.90E+09 1.10E+10 1.64E+10 2.33E+10 3.20E+10

PW 6.40E+05 2.56E+06 5.76E+06 1.02E+07 1.60E+07 2.30E+07 3.14E+07 4.10E+07 5.18E+07 6.40E+07

Figure 2.10: Comparison of Computation Overhead
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2.9.3 Multiple Faults and Common Mode Failures Analysis

Common-mode failures are a special and very important cause of multi-

ple faults. Common-mode failures (CMFs) produce multiple faults, generally

occurring due to a single cause [72]. In the presence of CMFs, the system

data integrity may not be guaranteed. These include design mistakes and

operational failures that may be due to external (such as EMI, power-supply

disturbances and radiation) or internal causes.

Redundant systems are subject to common-mode failures (CMFs). De-

sign diversity has been proposed in the past to protect redundant systems

against common-mode failures [73]. Unlike systems with duplication, concur-

rent error detection techniques based on error detection codes introduces in-

herent diversity in the system. Thus, these systems are well-protected against

CMFs The section analyses the CMF vulnerability of the proposed algorithms.

In ABFT [39], it is shown that if an error is located in a row or a column

of an output array which does not contain any other error, the error will cause

an inconsistent row or column which can be detected. But when the errors

are connected to form a loop, the errors may mask each other and cannot be

detected.

To analyze the multiple faults detection capability of the proposed al-

gorithm, a given noise source causing an error in a d bits N ×N output array

element is assumed. The error is described as correct d bits data having de

bit flip in the location specified by error vector [ed−1, · · · , e0] where ei = {0, 1}
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and ei = 1 represents bit flip in ith bit location and these bits are generated

randomly. The probability that the error in one element masks the sum of

the errors in the other elements is less than 2−de since the errors are generated

randomly. The probability of the undetectable errors in a column or a row

Pundetect is less than 2−de and the probability of the undetectable errors of the

whole output array is less than (Pundetect)
N = 2−de×N . The probability of error

detection (Pdetect)min is not less than 1− Pundetect.

The calculation of the minimal error detection probability in multiple

faults scenarios is summarized in Table 2.6. Even with error pattern with

single bit flip, when array size N is larger than 15, the minimal error detection

probability is 99.99695%. As the N increases, the minimal error detection

probability converges to 100%. Even with just 2 bits flip in error pattern, the

minimal error detection probability converges to 100% even with smaller array

size.

Table 2.6: The Minimal Error Detection Probability in Multiple Faults Sce-
narios Assuming Errors are Randomly Generated

N (Pdetect)min
(de=1)

(Pdetect)min
(de=2)

(Pdetect)min
(de=3)

(Pdetect)min
(de=4)

(Pdetect)min
(de=5)

5 96.87500% 99.90234% 99.99695% 99.99990% 100.00000%

10 99.90234% 99.99990% 100.00000% 100.00000% 100.00000%

15 99.99695% 100.00000% 100.00000% 100.00000% 100.00000%

50 100.00000% 100.00000% 100.00000% 100.00000% 100.00000%

100 100.00000% 100.00000% 100.00000% 100.00000% 100.00000%

1000 100.00000% 100.00000% 100.00000% 100.00000% 100.00000%
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Chapter 3

Quality Aware Error Detection Algorithm in

2-D Separable Linear Transform

3.1 Background

Besides reliability, power consumption is also one important design con-

straint in digital hardware design. However, reliability and low-power design

often have conflicting design requirement. Conventional digital design strate-

gies guarantee timing correctness of all corners/conditions. Voltage guard

band is often allocated in VLSI systems to tackle different kinds of variation

and uncertainty to ensure function correctness. Reducing the supply voltage

could introduce timing errors into the design.

One way to achieve low power design is to design circuit at typical

corner instead of worst case corner and reduce the voltage margin. Voltage

over-scaling (VOS) technique even reduces power by scaling the supply voltage

until data-dependent timing errors start to appear. Technology trends show

the need for a more efficient error detection technique for VLSI systems. Many

DSP applications, like 2-D linear transformation used in the multimedia com-

pression system, do not require exactly correct results, but rather require that

the Signal-to-Noise Ratio (SNR) is above a certain threshold. In this chapter,
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this property is explored and the proposed generic error detection method in

the 2-D separable linear transformation is extended to be quality aware to

solve the reliability and energy efficiency problems.

3.2 Inherit Error Tolerance in Applications

A wrong output signal produced by a defective system is called an

error. Traditionally, an error of the digital systems is defined at the boolean

function level. In the classical Von Neumann fault model [74], an unreliable

gate is modeled as a gate that with probability 1−p (0 ≤ p < 1
2
) computes the

correct output on its inputs and with probability p, it produces an incorrect

output (its binary value is flipped). However, the boolean level error definition

may be too pessimistic for some applications which do not require exact correct

output.

Multimedia applications are inherent error tolerant. Many computa-

tions addressed in these areas focus on good or bounded but not necessary

exactly correct results. There are several interesting aspects to the computa-

tional requirements for such applications [75].

• The result of computation is not measured regarding being right or

wrong, but rather at the perceptual quality. As the output is consumed

by a human user, the perceptual quality is defined to determine if the

output acceptable to the human user.

• Many such applications are by design lossy, in the sense that the out-
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puts deviate from perfection due to the sampling of input signals, con-

version to digital, quantization, lossy encoding, decoding and conversion

to analog signals. The multimedia information has undergone sampling,

quantization, lossy compression, lossy transmission and A/D and D/A

conversion. The data conversion may have Boolean values that differ

from the ideal. There may be room for still additional ”noise” to be

added to these signals induced via noisy or unreliable circuitry.

• Many such applications require parallel computation architectures as

they are computationally intensive and have real-time performance con-

straints. Even if some arithmetic unit occasionally produces errors, this

unit only processes a small portion of the results and hence its results

may not be too detrimental to the overall results from the system.

Breuer proposed the methodology for analysis of error tolerance [76] to

increase the effective yield for a given design and domain.

3.3 Related Work

Several efforts in the past have explored the possibility of trading off

DSP system quality for lower energy.

Algorithmic Noise Tolerance (ANT) is first introduced in Shanbhag’s

work [40] [77] to compensate for degradation in the system output due to

timing errors introduced by voltage over-scaling. There are many different

variations of ANT and each has its application.
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In prediction-based ANT [40] [77], a low complexity linear forward pre-

dictor is employed to get an estimate of the current sample of the filter output

based on its past samples. Error cancellation-based ANT [41] requires a sep-

arate filter called the error canceller that generates an estimate of the noise.

The error canceller needs to be trained first to learn the correlation structure

between noise and signal input. During normal operation, the noisy output is

improved by subtracting the estimated noise. In reduced precision redundancy

(RPR) based ANT [41], the low precision replica of the main DSP module com-

putes only the MSB of the error free output. If the difference between noisy

output and replica is above a predefined threshold, the system will choose

the low precision replica as the final output. Input subsampled replica (ISR)

ANT [78] is proposed to resolve the situation where the main DSP block has

smaller number bit range. In such a case, RPR will lead to an inaccurate

result. ISR ANT subsamples the input data using the same precision as the

main DSP block, but power consumption is reduced due to operation at a

divided frequency. However, ISR ANT estimator is the same size of the main

DSP block.

The main disadvantage of ANT is its area cost. All versions of ANT re-

quire replicas in different flavors of complexity. The key underlying assumption

of ANT is that the error control block is error-free, though this assumption is

no longer valid in the presence of soft errors. Algorithmic Soft Error-Tolerance

(ASET) [79] based on ANT is also proposed to solve the soft error issue. How-

ever, it even incurs a higher cost than ANT.
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Chippa and Roy proposed the concept of Dynamic Effort Scaling (DES) [80]

which a feedback control framework regulates the effort scaling to maintain

output quality at or above a specific limit. DES leverages the time-varying

resilience in the application and dynamically navigates the trade-off between

output quality and efficiency. The challenge in DES scheme is accurate qual-

ity estimation to guide effort scaling. Sensors for quality estimation at circuit,

architecture and algorithm levels are reviewed. Circuit-level quality sensors

are generic and can be applied to different algorithms. However, critical path

based error detection may not correlate well with output quality and could

leave a margin for further optimization. Architecture-level sensors can be

implemented as datapath reduced precision replica. The area overhead is mit-

igated with reduced precision replica. Algorithm-level sensors are attractive

given its low overhead. Internal variables produced during the computation

was proposed to serve as the quality estimator at algorithm level. However, the

output quality of the application is input pattern and algorithm dependent.

The selection of internal variable is often empirical and not mathematically

proven.

ERSA (Error Resilient System Architecture) [81] is a programmable

multi-core architecture which combines a few reliable cores with many small

unreliable cores to reliably execute probabilistic applications. It uses asym-

metric reliability, software optimization, and light-weight checks to overcome

the reliability issues. ERSA utilizes algorithmic convergence damping and

filtering to control the quality of the algorithm output.
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He [82] proposed low energy 2-D IDCT design by controlling timing

error induced by voltage over-scaling. Architecture and micro-architecture

level implementation techniques like dynamic adder width reduction, dynamic

accumulation reordering, and algorithm steps rescheduling are deployed to

avoid/reduce the timing error. Although the proposed techniques are general,

algorithm classification and study is required to convert the hardware to robust

implementation.

3.4 Proposed Algorithm

Applications like multimedia have inherent error resilient. Few errors

introduced in an application may not cause noticeable impact if output array

meet the quality requirement. The output array quality is often measured by

SNR (Signal-to-Noise Ratio). In this work, SNR is defined the same as the

definition in Andra’s study [83]. Here each data element in golden/revised

output array data is one pixel.

SNR = 20log10(

∑
|Ygolden[i, j]|∑

|Ygolden[i, j]− Yrevised[i, j]|
) (3.1)

Let SNRT be the output array SNR targeted after 2-D linear trans-

form; The upper bound of the sum of the column checksum difference to meet

the output array quality requirement can be derived. The equation can be

rewritten since the summation of the absolute value of golden/revised array

element delta will be greater or equal than the summation of the absolute
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value of golden/revised array column checksum difference.

∑
|Ygolden[i, j]|
10

SNRT
20

=
∑
|Ygolden[i, j]− Yrevised[i, j]|

≥
N−1∑
j=0

|
N−1∑
i=0

Ygolden[i, j]−
N−1∑
i=0

Yrevised[i, j]| (3.2)

Assuming 1-D column-wise linear transform is performed first and fol-

lowed up 1-D row-wise linear transform, it is easier to calculate the predicted

column checksum and the output image column checksum. Following the

proof presented in Chapter 2, the equation can be rewritten to be based on

the column checksum. Since the creation of column checksum does not take

an absolute value, the equation above can be rewritten to,

10
−SNRT

20 × ((
N−1∑
j=0

|fr2(Mfr1((WCX)T)))T[j]|) + ξ) ≥

N−1∑
j=0

|fr2(Mfr1((WCX)T)))T[j]−
N−1∑
i=0

Y [i, j]| (3.3)

where ξ is the margin to account for mismatch due to the absolute value.

This shows if the sum of the column checksum difference between golden and

revised output array is less than a fraction of the sum of the golden column

checksum, the SNR of the output array can be guaranteed to be within an

acceptable range.
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3.5 Correlation between Sum of Checksum Difference
and SNR

To verify the proposed algorithm, Matlab simulation is performed to

evaluate the correlation between the sum of checksum difference and SNR. A

100 × 100 array is randomly generated which each array element is ranged

from 0 to 255 to emulate the pixel data range. 10000 iterations are run with

error injection on random magnitude, location and occurrence on the targeted

array. The result is shown in Figure 3.1. As the sum of the checksum difference

increases, the SNR reduces exponentially. By setting the required threshold

of the sum of the checksum difference in error detection, SNR of the output

can be maintained within the acceptable range.

3.6 Quality Aware Error Detection for Low-Power Dis-
crete Wavelet Lifting Transform in JPEG 2000

The JPEG 2000 standard adopted the 5/3 and 9/7 wavelet lifting trans-

forms for implementation. The 9/7 wavelet transform got its name from the

fact that the low and high-pass analysis filters have 9 and 7 taps respectively.

This transform has been found to yield optimal or near optimal performance

in image compression application and has enjoyed widespread popularity in

the image compression community. Although the dissertation only discusses

the 9/7 wavelet transforms, the same encoding technique can still be applied

to other types of wavelet transforms with just the weighting vector being dif-

ferent.
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Figure 3.1: Sum of checksum difference v.s SNR
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A reliable low-power implementation of the discrete wavelet transform

(DWT) is desired for portable and battery operated multimedia devices. In

this research, low power DWT is achieved by over-scaling the supply voltage.

However, reliability and low-power have conflicting design requirements. Re-

ducing the supply voltage introduces timing errors into the design. Many DSP

applications, including DWT, do not require exactly correct results, but rather

require that the Signal-to-Noise Ratio (SNR) is below a certain threshold. It

is desire to find the optimal operation voltage which achieves low power while

maintaining acceptable image quality. Normally, SNR values cannot be ob-

tained on-line, which limits exploration of dynamic voltage scaling for image

applications. The weighted checksum code based error detection developed

earlier is extended to estimate image SNR at runtime and detect any image

quality degradation due to timing errors. This information can then be used

to choose the optimal voltage setting in dynamic voltage scaling. Since power

reduction is achieved by reducing the supply voltage, and the error detection

scheme is independent of the underlying DWT architecture, this technique can

be applied to existing low power DWT architectures to save additional power.

3.7 SNR-Aware DWT Architecture

The weighted checksum error detection technique is independent of the

underlying DWT architecture. It can be used in any existing DWT architec-

ture to enhance design reliability to overcome process variations and provides

extra power saving via voltage-over-scaling. To demonstrate the idea, the
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low-cost detector is implemented on the general purpose 2-D DWT hardware

based on the architecture proposed by Andra [83] with minor modifications

to simplify the implementation. The architecture calculates the DWT in row-

column fashion on a block of data of size N ∗ N . To perform the DWT, the

hardware reads in the block of data, carries out the transform, and outputs

the LH/HL/HH sub-band data at each level of decomposition. The LL sub-

band is used for the next level of decomposition. Figure 3.2 shows the block

diagram of SNR-aware DWT architecture. RP/CP represent row/column pro-

cessors, MEM1/2 are on-chip SRAMs and REG1/2 are register files. The

checker processor is a new module introduced in addition to the original DWT

architecture. The row processor and column processor have the same micro-

architecture structure. Some modifications are done in row and column proces-

sors so that the same hardware can be reused in the weighting multiplication

phase to reduce the checker hardware overhead. Figure 3.3 shows the block

diagram of the row/column processor. Figure 3.4 shows the block diagram of

the checker processor.

Without checking, the original computation takes 267296 cycles to fin-

ish transforming one 512x512 grayscale image, which translates to 165.54M

samples/sec. (design cycle time is 5650ps). To parallelize the checking task

and reduce the hardware overhead, the overall computation is divided into 5

operation phases. The cycle numbers shown below are based on the time to

transform one 512 ∗ 512 gray scale image.

(1) Weighting Multiplication: Each row/column processor is config-
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ured to be weighting multiplication mode to multiply 9 none-zero or none-one

weighting coefficients with the corresponding input data and accumulate the

result to form a partial checksum. Each row/column processor is responsible

for calculating a fourth of the columns input data. The temporary column

checksum is stored into MEM1. It takes 2560 cycles to complete this step. In

Figure 3.3, the shaded component indicates that it is additional to the original

architecture. To further reduce the hardware overhead, the low-cost checksum

is implemented by dividing the input data by 16 for checksum calculation

(shifter1 right shifts the data by 4-bit).

(2) Column-Wise 1-D DWT Phase: Row/column processors are con-

figured to operate in functional mode. The row/column processors take input

data and perform 1-D DWT. The checker processor takes even samples of

input data, divided by 16 (right shifts by 4-bits) and continues to calculate

the input data column checksum by adding the partial checksum read from

MEM1. Besides the one multiplied by the weighting factor in the previous

phase, odd samples do not need to be considered in checksum calculation since

their weighting factors are zero. After completion, the input data checksum

is stored back into MEM1. It takes 133648 cycles to complete this step. The

checker processor is over-designed to make sure it can operate in a voltage-

over-scaling condition without timing errors.

(3) Output Checksum Prediction: The input weighted checksum stored

in MEM1 is fed into the wavelet transform pipeline to be treated as an addi-

tional row to calculate the predicted output checksum. After completion, the
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predicted output checksum is stored in MEM2. It takes 520 cycles to complete

this step.

(4) Row-Wise 1-D DWT Phase: Row/column processors are in func-

tional mode. The processors take input data and perform 1-D row-wise DWT.

The checker processor takes high/low pass output data divided by 16 to cal-

culate the output row checksum (after a transpose, it becomes the final result

column checksum). It takes 133648 cycles to complete this step.

(5) Final Check Phase: The checker processor calculates the sum of

the predicted column checksum and the sum of column checksum differences.

Then the sum of the column checksum difference is compared with the di-

vided version of the sum of the predicted column checksum to check the image

quality. It takes 1034 cycles to complete this step.

To enforce the correctness of the checking process in weighting multipli-

cation, output checksum prediction, and final check phases, the clock frequency

is divided by 2 to avoid any timing error. The cycle number shown above al-

ready considers this latency overhead. Overall, the checker takes an additional

4114 cycles to compute, this impacts the overall latency by about 1.54%. This

is achieved by only adding checker processor hardware and some control logic

overhead. For color images, each plane Y/Cb/Cr will take the same amount

of computation time as one gray scale image. Additionally, one extra step is

taken to add up the predicted checksum and checksum difference from all 3

planes.

73



Figure 3.2: SNR-Aware DWT Architecture Top Level Block Diagram
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Figure 3.4: SNR-Aware DWT Architecture Checker Processor Block Diagram
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3.8 Simulation Framework

To demonstrate the idea, a floating-point Matlab model of the DWT

architecture is developed to verify the correctness of the algorithm. A fixed-

point Matlab model is developed as a golden reference for the Verilog model

and is also used to study the accuracy of the fixed-point implementation.

The precision analysis method in Andra’s work [83] is followed in this

study. The pixels in RGB format are ranged from 0 to 255. In JPEG, the

pixel data in RGB format is converted to YCbCr format where Y ranges from

16 to 235, Cb ranges from 16 to 240, and Cr ranges from 16 to 240. To get

the desire image quality in the fixed-point implementation, the input pixel

data value is scaled by 32. The filter coefficients are multiplied by 512 and
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a = −812, b = −27, c = 452, d = 227, k1 = 416 and k2 = 314 can be derived.

The signal dynamic range in the intermediate DWT pipelines is calcu-

lated at each stage to determine the optimal datapath width. A 20-bit (1-bit

sign and 19-bit value) datapath is chosen and implemented in the design. The

Verilog model is then developed and compared against the result from the

fixed-point Matlab model to validate model correctness.

The design was synthesized by Synopsys Design Compiler using the

Faraday cell library in UMC 0.13µm technology. The area of the design is

228520 µm2. Standard delay format (SDF) files, which contain actual delay

information for worst/typical/best corners, are exported from the timing tool

and back-annotated into the gate-level Verilog model for dynamic timing anal-

ysis. To model the effect of voltage-over-scaling on signal propagation delay,

the delay in the SDF file is scaled by a certain ratio according to the scaled

voltage. The ratio is characterized by running Spectre simulation on a ring

oscillator with different supply voltages in different process corners compared

to the delay in 1.2v supply voltage. The dt/dv ratio is approximately 1.6 while

the ring oscillator is in the typical corner. The characteristic result is shown

in Figure 3.6. The SDF Verilog simulation output is then fed back to Matlab

post-processing simulation to display result image and calculate actual SNR.

The algorithm to gate level end-to-end simulation flow is shown at Figure 3.5.
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Figure 3.5: Algorithm to Gate Level End-to-End Simulation Flow

3.9 Simulation Results

Seven images from the USC-SIPI image database [84] have been simu-

lated in both Matlab and the gate level Verilog model to validate the idea. The

information of these images is shown in Table 3.1. Gate level dynamic tim-

ing analysis with different supply voltages and process corners are performed

on those images. Figure 3.10(a) to 3.10(d) show the simulation result of the

relationship between the supply voltage scaling and the sum of the checksum

differences/SNR in typical and best case corner. More specifically, the sum

of checksum differences increased significantly where the SNR of those trans-

formed images has a drastic drop in the simulation results. Although only

the result of two images is shown here, all seven images show a similar trend

for the sum of checksum differences and SNR. The SNR for a decompressed
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image is higher than the SNR for a compressed image, showing that the image

compression application is inherently error tolerant. This gives a little more

room to further push the supply voltage down. Figure 3.11(a) to 3.12(d) shows

the decompressed image compressed by hardware running at different supply

voltage in the typical corner.

Figure 3.7 shows a strong negative correlation between the sum of

checksum differences and the SNR of the transformed images. This demon-

strates that the sum of checksum differences is an efficient metric to predict

the SNR of the transformed images. In the Verilog implementation, the sum

of the checksum differences in error-free conditions is not zero due to the

floating-point to fixed-point conversion. The effective checksum mismatch in

each pixel is about 0.8%, which is acceptable. The reason for the high slope

around SNR = 30 is due to this fixed offset.

Due to design tool limitation and large size of input samples, direct

power consumption simulation is not feasible. For a 512 × 512 image input,

there are 262144 samples which is not feasible to simulate via SPICE. Also, the

standard cell timing libraries only contains the timing information for support

voltage supply. To solve the above limitations, the scaling method is used to

estimate the power consumption in different supply voltage condition. The

power consumption of the proposed design in each voltage setting is estimated

by scaling the typical corner power simulated in Synopsys Design Compiler.

The total dynamic power of the proposed design is 16.34mW in the typical

corner. The dynamic power scaling is performed by scaling the voltage using
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the equation P = αCV 2. The equivalent voltage in each simulation corner

is scaled back to the nominal voltage. The result shows the supply voltage

can be scaled down to 75% of the nominal voltage in the typical corner with-

out significant image quality degradation, which translates to 9.15mW power

consumption (44% power saving). In the best case corner, the supply voltage

can be further scaled down to 60% of the best case voltage which translates to

8.16mW power consumption (64% power saving). Table 3.2 shows the mini-

mal supply voltage in the typical corner to maintain the decompressed image

SNR greater than 30.

Table 3.1: Images Used in Simulation
Image Description Size Type

4.2.01 Splash 512 Color

4.2.02 Girl(Tiffany) 512 Color

4.2.03 Mandrill 512 Color

4.2.04 Girl (Lena) 512 Color

4.2.05 Airplane (F-16) 512 Color

4.2.06 Sailboat on lake 512 Color

4.2.07 Peppers 512 Color

Table 3.2: Min. Voltage in Typ. Corner for Decompressed Image SNR > 30
Image Min.

Voltage
Image SNR

(decompressed)
Image SNR

(compressed)
Sum of Checksum

Difference

4.2.01 0.89 32.824 20.2491 183424

4.2.02 0.86 34.6052 15.1434 287879

4.2.03 0.86 34.9199 22.4807 170027

4.2.04 0.86 30.8851 14.376 301766

4.2.05 0.86 30.5887 8.7766 522223

4.2.06 0.86 32.9012 17.4348 228068

4.2.07 0.86 32.0065 17.1362 225877
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Figure 3.6: Delay variation due to scaled voltage
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3.10 Conclusions

A generic quality aware 2-D linear transformation error detection algo-

rithm is presented. Matlab simulation shows the correlation between the sum

of checksum difference and SNR. The inherent error tolerance in the applica-

tion is discussed and related works are reviewed. The key element needed to

leverage inherent error for low power operation is the online quality estima-

tor. The proposed method can be used as low-cost online quality estimator

to determine the optimal supply voltage to enable precise dynamic voltage

scaling.

2-D DWT architecture in the JPEG 2000 standard is selected as an ex-

ample to demonstrate the SNR-aware error detection and voltage-over-scaling

capability. A low-cost weighted checksum is used to estimate image SNR. If
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Figure 3.7: Correlation between SNR and Sum of the checksum difference
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Figure 3.8: Supply voltage scaling v.s. SNR/Sum of checksum difference for
image 4.2.01/4.2.03
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(a) 4.2.01 Typ. case process corner
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(b) 4.2.01 Best case process corner
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(c) 4.2.03 Typ. case process corner
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(d) 4.2.03 Best case process corner
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Figure 3.9: Supply voltage scaling v.s. SNR/Sum of checksum difference for
image 4.2.04/4.2.07
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(a) 4.2.04 Typ. case process corner
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(b) 4.2.04 Best case process corner
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(c) 4.2.07 Typ. case process corner
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(d) 4.2.07 Best case process corner
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Figure 3.10: Voltage scaling impact to image quality in typical corner for image
4.2.04

(a) 1.2V, SNR=37.3 (b) 0.96V, SNR=37.3

(c) 0.912V, SNR=36.757 (d) 0.84V, SNR=1.0134
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Figure 3.11: Voltage scaling impact to image quality in typical corner for image
4.2.07

(a) 1.2V, SNR=36.7444 (b) 0.96V, SNR=36.7444

(c) 0.888V, SNR=35.153 (d) 0.84V, SNR=23.7729
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the checksum difference is below a certain threshold, the decompressed image

quality can be guaranteed. The existing wavelift HW architecture is revised

to add checksum generation and checker logic with small overhead.

The simulation result showed that the supply voltage can be scaled

down to 75% of the nominal voltage in typical process corner without signifi-

cant image quality degradation, which translates to 9.15mW power consump-

tion (44% power saving).
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Chapter 4

Conclusions and Future Work

4.1 Conclusion

As the process technology continuously shrinks the transistor geometry

and improves device performance and power, reliability becomes the major

challenge for current and future VLSI design. Static variations cause a wide

distribution of transistor threshold voltages could result to timing errors in the

case of test escape. The time and context varying dynamic variations such as

temperature variation and supply voltage variation affect circuit performance

based on workload. Infrequent worst-case voltage droop could cause timing

errors and impact stability. Aging degradation throughout the product life

cycle jeopardizes the functionality of the system over time. The reduction in

critical charge of logic circuits makes the circuit more susceptible to soft error.

Concurrent error detection is essential for digital VLSI system to tackle these

instability factors in the field.

On the other hand, reliability and power have contradicted design re-

quirement. Voltage margin (guardband) which is often allocated to account

for variation and uncertainty causes significant power impacts. A low power

design technique like voltage over scaling (VOS) scales down the voltage to re-
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duce power consumption until data-dependent timing error occurs in systems.

Concurrent error detection at different design levels (circuit, architecture and

algorithm) can be used as quality estimator to guide adaptive voltage scaling

and achieve optimal performance/power/quality operation point.

In this work, a low-cost weighted checksum code based error detection

algorithm (2DLTC) for generic 2-D linear separable transform has been pro-

posed. The technique encodes the input array at 2-D linear transformation

level, and algorithms are designed to operate on encoded data and produce

encoded output data. The proposed error detection technique is a system-

level method. The scheme primarily leverages the interchangeable property of

column/row-wise linear transform and special patterns in the transform coef-

ficient matrix. The mathematics proof of the coding technique is presented. It

shows the proposed 2DLTC technique can detect the errors at 2-D linear sep-

arable transforms system level. The hardware implementation has very little

overhead and can perfectly fit into the existing 2-D linear separable trans-

form VLSI implementation given the system level encoding/decoding which

is independent of the hardware architecture/implementation selection. The

generation of weighted checksum code is discussed. The weighted checksum

code for different 2-D linear transforms is presented in mathematics form. Cost

analysis shows this technique provides error detection capability with the least

hardware overhead compared to prior work. In the 2-D DHT, there is only

one non-zero element in weighted checksum vector regardless the array size.

In the 2-D DWT, there are only nine non-zero or one element in weighted
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checksum vector regardless the array size. The above transformation specific

property can dramatically reduce the encoding cost and make the proposed

error detection algorithm even more attractive. Multiple faults and common

mode failures are studied. The proposed technique can detect multiple faults

at the minimal error detection probability 99.99% if the array size is larger

than 15 or there is more than 2 bits flip in error pattern.

For multimedia and RMS (Recognition, Mining and Synthesis) appli-

cation, the exact precise output is often not needed. The result of the compu-

tation is measured at perceptual quality and many of them are by design lossy.

The traditional boolean level error definition is too pessimistic for this type of

the application. In this work, a quality aware error detection extension of the

checksum check is presented. It is shown as long as the sum of the column

checksum delta can be constrained within a certain threshold, output array

quality can be controlled within an acceptable range.

To demonstrate the concept, the quality-aware error detection hard-

ware on the low power 2-D DWT architecture used in JPEG2000 standard

has been implemented. The low-cost weighted checksum is extended to esti-

mate image SNR. If the checksum difference is below a certain threshold, the

decompressed image quality can be guaranteed. Based on the quality estima-

tor output from checker unit, the supply voltage can be adjusted to optimal

point considering quality/power balance. Unlike traditional DVFS techniques

utilize a delay chain or a lookup table to determine the minimum voltage nec-

essary to guarantee error-free operation at a particular frequency [85]. With
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algorithm level quality estimator, system controller can optimize voltage and

enable more aggressive power saving. The proposed method shows that the

supply voltage of the 2-D DWT wavelift hardware can scale down to 75% of

the nominal voltage in typical process corner without significant image qual-

ity degradation The design consumes 9.15mW power only which translates to

44% power saving.

4.2 Future Work

Future work is to develop more comprehensive algorithm or architec-

ture level techniques and design methodologies for reliable and energy efficient

digital systems design to tackle the challenge posted by process scaling.

4.2.1 Online Quality Estimator for RMS application

It is well known that the RMS application does not need exact result

correctness. However, lacking a trustworthy quality estimator for the compu-

tation prevents the exploration of potential power savings for an application.

It is still possible that the errors introduced in critical location will cause appli-

cation level errors. The massive amount of computation in RMS applications

makes naive error protection extremely cost ineffective. Prior work [86] in this

area often uses an empirical approach to find the internal variables to moni-

tor instead of the mathematical approach in this dissertation. The empirical

approach is not a solid proof and has the major drawback. The quality of the

application output depends on not only the computation itself but also the
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input vectors. There could be a possibility that input/computation combina-

tions are not being considered and this could lead to incorrect outputs.

4.2.2 Fault Tolerance Algorithm for Approximate Computing

Approximate computing which trades off output accuracy for signif-

icant gains in energy efficiency is an emerging research filed. However, the

challenge remains for adoption of approximate computing in industry prod-

ucts. To extend the scope of approximate computing beyond multimedia and

signal processing, it is necessary that the allowed error or the required min-

imum precision of the application is either known beforehand or reliability

determined online to deliver trustworthy and useful results. Errors outside

the allowed range have to be reliably detected and tackled by appropriate

fault tolerance measures. To have reliable result in approximate computing, it

is necessary to either prove that the approximation is acceptable offline, or a

concurrent error detection technique needs to be implemented to enforce the

quality online. In the case of proving the technique offline, the performance

and accuracy of the application must be confirmed at design time, and be fully

tested in post-silicon to guarantee the capability. In online testing case, the

effort spent on each iteration or instance of the computation can be adjusted

based on the quality metric indicator. Fault tolerance algorithm for approxi-

mate computing [51] is the key to make the design methodology to be widely

used.
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4.2.3 Robust Energy Efficient DSP Architecture and Design Method-
ology

The objective for this research is to develop robust energy efficient DSP

architecture and design methodology for multimedia and RMS (Recognition,

Mining, and Synthesis) application. These application have inherent error

tolerant property. Previous research consider only low power, means only do

voltage scaling, given a throughput requirement, both voltage and frequency

scaling can be considered to minimize the energy consumption.

The area overhead for ANT approach is big. It is desire to develop arith-

metic code based end-to-end solution which leverage the existing computation

in the algorithm for concurrent error detection. Given the DSP algorithm

specification (quality and throughput requirement), the goal is to develop a

methodology to achieve the lowest possible energy consumption.

4.2.4 Control and Data Flow Graph Level Optimization for Energy
Efficient and Resilience Computation

Application can be described as control and data flow graph (CDFG).

A CDFG exhibits data dependencies inside basic blocks and captures the con-

trol flow between those basic blocks. The high level information embedded

in CDFG may be analyzed to explore the cross layer optimization for relia-

bility and energy efficiency enhancement. The information can be used for

better design partitioning between control and data flow functions. Different

error detection techniques can be deployed on control and data flow functions

separately. The control function can be also over-designed to guarantee the
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function correctness. Different techniques can be employed to relax the data

flow function requirement as long as the performance requirement is met.
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