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Figure 37 Results of sperm trajectory analysis for cropped frames ofsample 1
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Figure 38 Curvilinear velocity forsample 1



Another example of sperm trajectory analysis is presented in Figure 39. The examples
of few frames with less debris are presented in this figure. The trajectory analysis is
performed for these three sperms and their VCL and VSL are calculated. Sperm 5 is slow-
progressively motile where the sperm is moving in same area as its original location. This
sperm is also collided with sperms 4 and 6 where they are moving closely together in several
frames as can be seen in the 10*^, 15*^, and lO"" frames. The collision between sperms has
decreased their velocity which also supported in their plotted graph of VCL in Figure 40
where it is depicted that theVCL is low at the beginning of the travelled frames. Meanwhile,
sperm 6 is progressively motile with the average VCL of 3.73 pixel/sec which isclassified as
fast progressive motile sperms (Table 8).
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Figure 39Results of sperm trajectory analysis for cropped frames ofsample 2

The example of trajectory analysis for sample 3 and its respective VCL is plotted and
presented in Figures 41 and 42 respectively. Sperms 7 and 8 are classified as normal where
their trajectory is progressively motile where both sperms are categorized as fast progressive
motile with their average VCL of4.30 pixel/second and 3.87 pixel/second respectively (Table
4.6). Sperm 9 is considered as immotile {i.e. abnormal) where its distance travelled is the
smallest as compared to sperms 7 and 8. The proximal region of the sperm is non-
progressively moved which resulted in lower velocity as can be observed in the nearly zero
VCL for most travelled frame as plotted Figure 42.
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Figure 42 Curvilinear velocity for sample 3
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The trajectory analyses presented in Figures 37, 39 and 41 show that the motile sperms
are successfolly identified. The motile sperms are successfully tracked including the
occlusion cases between sperms as shown in Figures 37 and 41. Issues with occlusion cases
are previously addressed where individual sperms can be identified. The identification of the
sperms encountered in the occlusion case will ensure the accuracy of the sperm motile
detection. Therefore, the computed velocity can be used to classify the sperm into either three
categories of motile sperms (I.e. fast progressive motile, slow progressive motile and
immotile).

Table 8 summarised the average VCL and VSL for samples 7 /o 5 as presented in
Figures 37, 39 and 41 respectively. Results presented in this table indicate that the sperm 6 in
sample 2, sperm 7 in sample 3 and sperm 8 in sample 3 are classified as fast progressive
motile sperms with average VCL of 3.73 pixel/second , 4.30 pixel/second 3.87 pixel/second
respectively. Meanwhile, their VSL are 24.12pixel/second , 25.31 pixel/second and 24.43
pixel/second for sperm 6 {sample 2), sperm 7 {sample 3) and sperm 8 {sample i) respectively.

Sperm 9 from sample 3 are classified as immotile with the average VCL of 1.18
pixel/second and VSL of 12.19 pixel/second. The other sperms presented in this table are
classified as slow progressive motile since their average VCL is more than 1.5 pixel/second
however, their velocity is less than pre-defined threshold of fast progressive motile {i.e. 3
pixels/ second).

The performance of the proposed system on detecting the motile sperms is further
discussed where the accuracy, sensitivity and specificity are calculated. The four metrics are
true positive (TP), true negative (TN), false positive (FP), and false negative (FN) as
summarized in Table 7. These four metrics are assessed based on whether the system is able
to detect the motile sperms. Figures 43 (a), (b) and (c) show the example of the sperm
motility detection process for sample 7, sample 2 and sample 3 respectively. Figure 43 (a)
shows the example where total number of debris is more than the total number of sperms
whereby in Figures 43 (b) and (c), total number debris and sperms arealmost similar.
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training dataset. The evolving process continues until the over-fitting condition is realized
and therefore, a reasonable fuzzy rule-base is achieved.
(ii) Semantic meaning: Evolving information granule should be specific in a way that well-
defined semantics are experienced. Therefore, highly detailed information granule is required
for better reflection of the existing experimental data. The formation of the information
granule has to adhere to the interpretability constraints at both the fuzzy partition level and
rule-base level; these constraints are considered for the interpretability-accuracy tradeoff.

These two requirements are apparently in conflict and interpretability-accuracy
tradeoffappeals from the intuitive perspective [15]. Therefore, the operational framework for
evolving information granule is formed in the proposed BIG where a sound compromise can
be formed between interpretability and accuracy. Having these two requirements in mind,
evolving information granule for the output-context fuzzy system is described in detail in the
following sections. The proposed BIG evolves the information granule as a self-automated
process andfully datadriven approach. Figure44 shows the evolving process and consistency
model to ensure the aforementioned requirements. Figure 44(a) shows a flowchart to realize
the distinct information granule based on experimental evidence. Termination occurs in the
evolving process at an over-fitting state where an effective rule-base is realized and
termination index is fully online andestimated from the current and previous evolving states.
After the formation of the effective rule-base, the proposed BIG defines the consistency
model for rule-base which is depicted in Figure 44(b). Subsequently, the decision matrix is
defined for the ith validation input [x, djf"' which shows a logical view of the rule-base in
terms of the validation input. Logical representation explains the momentous value of the
validation input within the rule-base and hence a consistent rule is realized. The outcome on
the experimental data showsthe effectiveness ofthe proposed system.
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Figure 44 The proposed model adopted inthe BIG involves (a)evolving the information
granule to realize theeffective rule-base and (b) consistency model from effective rule-base

and its decision matrix.
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5.2 Consistency Model for Conflict Decision
The evolving process in the output domain is considered to obtain the output-contexts as

information granules. Each granule is embedded with the corresponding input clusters.
Unlike the grid-partitioning approach where a grid-like input partition is established [16], the
BIG finds prominent distinct output context and its corresponding input space (Figure 45).
The grid-partitioning approach isolates the rule centroids so as to ensure interpretability
whereas rules isolate themselves from each other in the BIG that are depicted in Figure 44.
Therefore, conflict decisions are observed as the data samples are distributed unevenly over
the input domain with low space coverage. To resolve the conflict, studies in fuzzy
classification focus on improving the decision boundaries in order to obtain high accuracy as
much as possible [15,17]. Another method for improving the interpretability of classifiers is
rule compression that discards the less significant antecedent part from the individual rules
[15,18,19]. Rule compression may cause conflict situation in the unusual part of the input
space and make the system lean more towards the inaccurate classifier for unseen samples
[15]. Therefore, the consistency model referred in the BIG has the objective to consider the
interpretability-accuracy trade-off.
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Figure 45 Rulecreation for the grid-partitioning approach and BIG. Ri to R5 depictthe
output-context associated withthe inputcluster (information granule or rule).

5.3 Termination Index

The estimation of the termination index is fully online and is not based on the predefined
threshold as in [16], approximated from the previous and the current evolving stage.
Evolving granule error (EGE) index is a straightforward index to recognize the over-fitting
situation in the evolving process and terminate the algorithm from further evolving.

whereF(t) and E(t —1) are the approximate training error at t and (t —1) evolving stage,
respectively.

5.4 Application in real world data
The proposed BIG has been compared with the existing models. The evaluation of the

proposed BIG is carried out for synthetic and real world data.
Example 1: Afunction approximation problem ofone-dimensional data is used to show the
performance. We consider 200 data points from the following single-input-single-output
nonlinear function:
y = 0.6 sin(7ix) + 0.3 sin(3TTx) + 0.1 sin(5'iTx)
where x G[—1,1]. These 200 data points are then randomly divided from the universe of
discourse x: 100for training and 100 for testing.
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Example 2: The function approximation problem involving two-dimensional data is used to
show the performance. We consider 200 data points from the following two-input-single-
output nonlinear function:

y = f(xi,X2) = 0.6 + 0.2xi + 4X2 + O.SX1X2 + 25sin(0.5:»Ci;c2)
where% G[-4,6] and X2 G[-2,4]. These 200 data points are then randomly divided from
the universe of discourse Xi and;i:2: 100 for training and 100 for testing.
Example 3:Considering thefollowing three-dimensional (3D) function approximation:
f(x,y,z) = (1 + + y-^ +
withA: G[1,6], y G[1,6], and z G[1,6], where 216 training data samples are generated with
the step size 1over this 3D Cartesian product. The test data samples are produced while x,y,
and z G[1.5, 5.5], 125test samplesare taken.
Example 4: Awell-known real-world data. Automobile Miles Per Gallon (MFC), isused [20]
to evaluate the performance. The output is the fuel consumption ofan automobile expressed
in miles per gallon; seven input variables are used to distinguish the actual output. For
evaluation, we randomly divide the data set into training (60%) and testing (40%) data sets
from 316 observations.

Example 5: This data set deals with real estate in the Boston area [21]. It contains 13 input
variables with 506 observations; the median value of the house is considered as an output
variable. We randomly divide the data set into training (60%) and testing (40%) data sets for
evaluation.

Theevaluation results show thatthe proposed EIG achieves reasonable accuracy, high
interpretability in terms ofdistinct information granules and also that it is reliable with the
consistency model. As compared with the existing models [16,18,22,23], this proposed
model shows theeffectiveness of theoperational framework to form the information granules
thathavea sound compromise between interpretability andaccuracy.

The implementation ofthis new classifier tool on sperm motility analysis exhibit good
and comparable results as presented in Section 4. However, this approach requires longer
time to be computed and its complexity is higher than the approach presented in previous
section. This technique has been successfully applied in another application as discussed in
detail in submitted paper no 3 (Section 7: Appendix). Therefore, this technique is currently
been improved and submitted for publication (paper no2, Section 7: Appendix).

6. Verification with Human Sperm Sample

Based on the successfulness of the proposed systemon detectingthe motile rat sperms,
the project is extended to be tested on human sperm samples. However, the project is still in
the process ofcollecting the data since the human ethic approval is expected to be received
ontheend of March 2014. The detection system onhuman sperm isconducted onthe human
sperm sample that the project obtained from the public database.

The proposed system has been modified to suit the detection of the human sperm
sample. Although with limited sperm sample obtained from public database, the proposed
system has able to detect the sperms and distinguish them from the non-sperm cells (debris)
as shown in Figure 46.
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(a) (b)
Figure 46 Human sperm sample detection on (a) frame 1 (b) frame 2

The verification on human sperm sample will be conducted in more thorough once the
project achieves its human ethic approval.
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Abstract A new enhancement technique basedon fuzzy
intensity measure isproposed inthis study to address prob
lems in non-uniform illumination and low contrast often
encountered in recorded images. The proposed algorithm,
namely adaptive fiizzy intensity measure, iscapable ofselec
tively enhancing dark region without increasing illumination
inbright region. A fuzzy intensity measure iscalculated to
determine the intensity distribution ofthe original image and
distinguish between bright and dark regions. Image illumi
nation is improved, whereas local contrast of the image is
increased to ensure detail preservation. Implementation of
the proposed technique on grayscale and color images with
non-uniform illumination images shows that in most cases
(i.e., except for processing time), the proposed technique
is superior compared with other state-of-the-art techniques.
The proposed technique produces images with homogeneous
illumination. In addition, the proposed method is computa
tionally fast (i.e., <1 s)and thus can beutilized inreal-time
applications.
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1 Introduction

Advancements in image processing have enabled theanaly
sis of digital images in most computer vision applications
[1-4], video surveillance [5-7], and biomedical engineer
ing [8-14]. Digital images are often low in quality and suffer
from non-uniform illumination orbrightness, loss ofdetails,
and poor contrast. These problems become critical when the
foreground ofinterest is difficult to be distinguished from the
background, which worsens the segmentation problem and
allows false recognitionand detection to occur.

Thehuman visual system has far larger dynamic ranges
than most commercial cameras and video cameras. These
devices have limited dynamic ranges; thus, recorded images
obtained from these devices are usually non-homogeneous
and low incontrast. Improper lighting condition and external
disturbances, which worsen the aforementioned problems,
are inevitable during imageacquisition.

Inthis respect, most ofthe images acquired through com
mercial cameras and video cameras exhibit problems in
non-uniform illuminationand low contrast. Althoughthese
images contain significant information, such information is
not visible because the images suffer from lack of sharp
ness and arc easily influenced by noise.Imageenhancement
plays an important role as apreprocessing task that can sig
nificantly improve image quality. The basic idea of image
enhancement is to increase the contrast of the bright and
darkregions inorder toattain better image quality. Thevisual
information of the image is increased for better interpreta
tion and perception to provide a clear image to the eye or
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assist infeature extraction processing incomputer vision sys
tems [15-18].

Various image enhancement algorithms have been pro
posed to enhance the degraded images in different appli
cations. Image enhancement can be categorized into three
broad types, namely transform, spatial, and fiizzy domains.
Therelated studies onthesethreeenhancement methods are
discussed and presented inthe succeeding section.

This paper is organized as follows. Related studies on
image enhancement based on transform, spatial, and fuzzy
domain approaches are elaborated in Sect. 2. Section 3
presents the proposed enhancement algorithm, and Sect. 4
explains the optimization procedure employed to obtain
an optimum fuzzification factor. Sections 5 and 6 present
the application of the proposed algorithm in color images
and image analysis, respectively. The proposed algorithm is
tested onnon-uniform grayscale and color images inSect. 7.
The test images are compared in terms ofvisual representa
tion and quantitative measures. Section 8 provides the con
clusions ofthis paper based onthe conducted analyses.

2 Related studies

The first method of image enhancement, namely the trans
form or frequency domain approach, is conducted by modi
fying the frequency transform ofthe image. Several enhance
ment techniques in the transform domain have been reported
recently to solve theproblemofnon-uniform image illumina
tion inface recognition and fingerprint enhancement applica
tions [19-23]. Inboth applications, images normally exhibit
non-uniform illumination; the details in the dark region of
the images are less discernible. Enhancement is performed
on the frequency transform ofthe image, and then the inverse
transform is computed to obtain the resultant image. The
intensities of the image are modified according to the trans
formation function [24,25].

Although enhancement inthe frequency domain produces
good results, the low- and high-frequency components inthe
image are not easily constructed. This isbecause, theinten
sity values for low-contrast and non-uniform illumination
images are mostly vague and uncertain. As a result, spatial
information of the intensityvaluesis insufficient;thus, image
representation based on frequency components is not eas
ily constructed. Furthermore, images enhanced byfrequency
domain methods are normally compressed and result in the
loss of valuable information and details. Computing a two-
dimensional transform for imageswithdifferentsizesis very
time consuming even with fast transformation techniques;
such procedure isnot suitable for real-time processing [26].

The second class of image enhancement methods modi
fies pixels directly. Histogram equalization (HE) represents
a prime example ofan enhancement technique in the spa
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tial domain. Although HE is suitable for overall contrast
enhancement, a few limitations exist. Enhancement by HE
causes level saturation (i.e., clipping) effects as a result of
pushing intensity values toward the left or right side of the
histogram inHE[27]. Saturation effects not only degrade the
appearance of the image but also lead to information loss.
Furthermore, the excessive change in the brightness level
induced through HEleads tothegeneration ofannoying arti
facts andunnatural appearance of theenhanced image.

Several brightness and detail-preserving modifications on
HE techniques, which include adaptive HE techniques [28-
35] aswell ashistogram specification [30,36,37], have been
widely utilized toovercome these limitations in enhancing
non-uniform illumination image.Adaptive methods provide
better identification of different gray level regions through
analysis ofhistogram in the local neighborhood window of
every pixel. One example ofmodified HE approach ismulti-
histogram equalization technique [32,38]. Inthis approach,
image histogram is partitioned into multiple segments based
onits illumination. Thebright anddarkregions in each seg
ment are equalized independently. The techniques involve
remapping the peaks, which produces perceivable changes
in mean image brightness.

Ibrahim and Kong [34] proposed brightness preserving
dynamic histogram equalization (BPDHE) to address the
peakremapping problem. BPDHE utilizes Gaussian smooth
ing kemel to smooth peak fluctuations. The valley regions
are then segmented, and the dynamic equalization is then
performed oneach segmented histogram.

Histogram equalization (HE) has furthermore been used
inthe contextoftone mapping (TM) [39] inorder toenhance
images with non-uniform illumination and low contrast. At
first, global histogram adjustment isconducted based on the
TM operator. Subsequently, the image is segmented, and
adaptive contrast adjustment with the TM operator is per
formed to increase the local contrast of theimage and pro
duce high-quality images.

The retinex approach was introduced by Land [40] to
address problem with degraded images that exhibit non-
uniform illumination and uneven brightness. This approach
compensates for non-uniform illumination by separating illu
mination from reflectance in the given image.

Enhancement of images with non-uniform illumination
can also bepossibly conducted through mathematical mor
phology operation of top hat transform. Top hat transform is
amathematical morphology approach that utilizes structural
elements toextract multi-scale bright and dark regions. The
image is enhanced by enlarging the extracted bright and dark
regions [41].

Another approach that addresses the non-uniform illumi
nation of the image has been proposed by Eschbach [42].
Anew parameter "exposure" was introduced and altered by
iteratively comparing image intensity with a pair of preset
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thresholds ofbright and dark regions. The image isprocessed
until the threshold conditions are satisfied.

Although attempts have been made to enhance images
by modifying every pixel in the spatial domain, vagueness
in intensity values, which are caused by non-uniform light
ing, have not been efficiently addressed. Therefore, a fuzzy
enhancement technique is employed to overcome theafore
mentioned problem. Pixels are converted and modified in the
fuzzy domain, which isthe third category ofimage enhance
ment. The fuzzy system tool is adopted in image enhance
ment because this tool can mimic human reasoning and is
beneficial indealing with ambiguous situations that occur in
non-uniform illumination image.

Fuzzy image enhancement was introduced as early as
1981 byPal and King [43]. The smoothing algorithm of a
linear non-recursive filter is employed. This filter acts as
defocussing tool in which a partof the intensity of pixels
isbeing distributed totheir neighbor. The image isenhanced
by optimizing objective parameters, namely index offuzzi-
ness and entropy. Fuzzy settheory concept iswidely adopted
in image enhancement either globally, locally [44,45], or
combined with other approaches such as fuzzy histogram
adjustment.

Sheetetal.[46] incorporated fuzzy settheory inhistogram
modification ofdigital images, anditsperformance wascom
pared with the BPDHE approach. This new approach exhib
ited improved performance compared with BPDHE because
theformer involves computations employing anappropriate
fuzzy membership function. Thus, the imprecision of gray
levels ishandled well,andhistograms appearsmootherin the
sense thatthey donotexhibit random fluctuations. Thenew
approach helps obtain meaningful bright and dark regions
for brightnesspreservingequalization.

Thefuzzy concept hasbeenadopted bya few researchers
[26,47,48]. The "exposure" parameter is further exploited,
anditsroleinfuzzy enhancement is improved. Theexposure
is calculated and clustered into overexposed and underex
posed regions. TVo different functions ofthe modified fu2^y
triangular membership function and power-law transforma
tion are utilized tospecifically enhance theoverexposed and
underexposed regions.

Thenon-uniform illumination problem was further inves
tigated and improved by Verma etal. [48]. The image was
categorized into three regions namely, underexposed, over
exposed, and mixed regions. Enhancement was performed on
color image, which the luminance component was modified
with specific functions according to the three aforementioned
regions. In this approach, the quantitative measure ofexpo
sure isoptimized through an iterative procedure to improve
image quality [47,49-51]. However, this approach requires a
complicatedoptimization process, which adds tothe existing
complication ofthe enhancement process inorder toachieve
good quality image.

Although numerous studies focus on thedevelopment of
the enhancement algorithm either locally or globally, the
enhancement process that produces images with optimum
and best quality remain debatable. An optimally enhanced
imagerefers to a well-illuminated image that with uniform
brighmess and detail preservation while existing noises are
not enhanced.

A newapproachin fuzzyenhancementis proposedin this
study, to address these problems and to efficiently enhance
images with the non-uniform illumination and low con
trast. The enhancement techniques proposed by the authors
in [52,53] successfully enhanced images with non-uniform
illumination. However, the details of the image are not well
preserved, and significant features are notenhanced and not
fully developed whichcaused significant decrementin clar
ityof theimage. Therefore, thenew fuzzy intensity measure
proposed in this study involves computations thatconsider
the mean and deviation of histogram intensity distribution.
The threshold that distinguishes between dark and bright
regions is then determined. Theimage is clustered intotwo
regions using the fuzzy membership function. Theimage is
enhanced separately in eachregion to obtain an image with
better quality.

3 Proposed algorithm

The proposed algorithm for adaptive fiizzy intensity mea
sure (AHM) is presented in this section. Considering that
image information is vague, the pixel values that constitute
the images with non-uniform illumination (i.e., non-uniform
intensity and brightness of the image) may not beprecise;
inherent imprecision is possibly embedded in the images.
Determining whether the pixels should be made darker or
brighter than their original intensity level during enhance
ment is difficult. Visual assessmentby a human observer is
subjective, and quantitative analysis of the image contrast
does not represent well the improvement that has been made
in the original image. This is because the image contrast is
quantitatively calculated by measuring the deviation in the
intensity values. This situation justifies the scenario ofhav
ing high value ofimage contrast while interms ofqualitative
evaluation, the image appears over-enhanced andunnatural.
Thequantitative measurement oftheimage contrast only cal
culates the deviation of the intensity values without consid
ering whether the image is naturally enhanced or unnatu
rally enhanced. The proposed approach thus adopts thefuzzy
approach which addresses vagueness and image uncertainty
to enhance the image. Theprocessis performed by associat
ing adegree ofbelonging toa particular cluster inthe fuzzy
membershipfunction.

Fuzzy image enhancement hasthree main stages, namely
image fuzzification, modification of membership value for
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Fig. 1 Fuz;q'image
enhancement

Original
Image

1 Fuzzification Modification of Defuzzification Enhanced

\ process r y membership p \ process r-J y Image
) function

f 1
1

Spatial domain Fuzzy domain
Spatial domain

Fig. 2 aGaussian membership funcUon, btrapezoidal membership function, ctriangular membership function

enhancementprocess, and imagedefuzzification (Fig. l).The
intensity levels (i.e., pixels values) are converted from spatial
to fuzzy domain in the image fnzzification process. Each
pixel isassigned either to the dark orbright regions based on
a predetermined threshold. The membership values ofeach
pixel are computed.

We consideran image with non-uniform illumination of
size RxC denotedas A with intensitylevelm at pixelposi
tion(i, j) in therange of [0L —1]in theimage fuzzification
stage. R and C are thenumber of rows andcolumns in the
image, respectively. L is thetotal number of gray levels in
theimage. fi(m)denotes themembership value of thepixels
of image A. ti(m) is calculated for every pixel, andin this
case,the/i,(m) is calculated globally to enhance theoriginal
image.

Forthepurpose offuzzification, theintensity distributions
inbothregions (i.e., darkandbright regions) areassumed to
be Gaussian. This means that the intensity distribution of
the image isuniformly distributed inGaussian shape which
the most intensity values are accumulated in the middle
of the histogram distribution (i.e., middle region of inten
sity values). This is because, in the low-contrast and non-
uniform illumination images, most oftheintensity values are
mainly concentrated in the middle ofthe histogram distribu
tion. This can beobserved in Fig. 2a where the histogram
has high amplitude at the middle region of the intensity
values.

Therefore, a modified Gaussian membership function is
utilized to determine the membership values ofthe pixels in
the image that lies in the range [0,1]. The Gaussian member
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ship function is selected in this study because even though
separate functions are utilized to enhance the bright and
dark regions, smooth transition isrequired to enhance both
regions. The Gaussian membership function with continuous
differentiablecurves isselected.Othermembership functions
such as triangular or trapezoidal membership functions do
notpossess suchabilities (Fig. 2).

A certain region in the image with non-uniform illumi
nation appears darker or brighter than the other regions in
theimage. Thus, a parameter called fuzzy intensity measure
is introduced. This parameter considers themean anddevia
tion ofhistogram intensity distribution, which isprovided by
Eqs. (l)-(3). These equations are calculated to determine the
non-homogeneous intensity distribution of the image. The
calculated fuzzy intensity measure isthen utilized todeter
mine a threshold T, which clusters theimage intobright and
dark regions based on Eq. (4). The dark region is clustered in
the range of[0 T- 1], whereas the bright region is clustered
in the rangeof [T, L —1].

Zm=0F('")

8d
fuzzy intensity measure = —

1/2

(1)

(2)

(3)

(4)
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where m is the intensity of the pixel at position (/, j) and
p{m) represents the number ofpixels in the histogram of
theentire image, gd and gaaredeviation and mean intensity
distributions, respectively.

Aftertheimage isdivided intotworegions (darkandbright
regions) basedon the valueofT,fuzzification isperformed in
each region separately. The modified Gaussian membership
function is utilized for thefuzzification of thedarkregion as
follows;

(mmax-(mavg-m))^"| form <7-
<d J

(5)

fjLdim) = exp

where fid 0^) isthemembership function inthedark region
and m is the intensity value in the dark region in the range
of [0 r - 1]. mavg and rnmax are the average intensity and
maximum intensity oftheimage, respectively, fdthefiizzifier
function of the dark region, is provided by:

^m=0 ~ 'Wdavg) ^m\
Ziii) [("^d - '"davg) - pijnd)

whereOm is the standard deviation of intensity of the entire
image, mdavg is the average intensity ofthe dark pixels, and
nid and p(md) are the intensities and histogram ofthe dark
region, respectively.

The mirrorfunctionof theaforementionedGaussianmem
bership function isutilized tofuzzify the bright region ofthe
imagefor m > T as follows:

(rnmax (mavg —(L —m)))

form > r 0)

where /Xb ("0 is themembership function of bright region,
fb is the fuzzifier function inthe bright region.

fib (m)

fb = a

=exp j^—

Zot=0 [(^b ~ ^bavg) P(^b)
Zot=0 [('̂ b ~ ''̂ bavg) ^m\ P('ttb)

where mbavg is the average intensity ofthe bright pixels, mb is
the intensity ofthe bright region, and p(mb) isthe histogram
of the bright pixels.

Thefuzzifier functions of fdandfbcalculate theintensity
deviation in the dark and bright regions, respectively, a is
the fuzzification factor that depends on theintensity values
of the input image. The selection ofa will be explained in
details in the succeeding section.

Once fuzzification iscompleted, the original input pixels
that exhibit non-uniform illumination and low contrast are
transformed into Gaussian distributed pixels. Thelocal con
trast ofthe image isbased on intensity difference in asmall
region, and it is computed to preserve the details ofthe image.
Local contrasts aredefined forthedarkandbright regions as:

(6)

(8)

Cu 0". j) = 2 (i, ])) - min(/id d, j))]
(iJ)eWij

(9)

Ctb ('. j) ~ XI (l j)) - niin(;xb (i, j))]

(10)

where fid (L j) andfib (i, j) represents the3 x 3 localfiizzi-
fied image (i.e., output image obtained after fuzzification
process) of fid and pb, respectively, which are centered at
position 0", j). Max (jid (i, j)) andmax (jib (/, j)) represent
the maximum gray level values of the local fuzzified image
fordarkandbrightregions, respectively. Min Qid 0", j)) and
min (pb (l j)) denote the minimum gray level values of
the local fuzzified image for dark and bright regions, respec
tively.

Modification of the fuzzified image is performed once
the aforementioned steps are executed. Modificationis per
formed to enhance the fuzzified image based on the dark and
bright regions, which include thelocal contrast of theimage
as shown in Eqs. (11)and(12),respectively.

, 1
^ ^ J g{—C/:,j[Md("')~"'davg]}

1
Mb dn) —̂ ^^(_Ct^[;ib(m)-»ibavg]l

where p'̂ and Mb modified membership functions in
thedark and bright regions, respectively. Cn andCz,b arethe
localcontrastof dark and bright regions,respectively, which
are computed topreserve the details in the image.

The above functions modify the original membership
functions of pd (m) and pb (m). The modified functions
are then defuzzified with the respective inverse membership
functions as shown in Eq. (13). Bothregions are combined
to obtainthe enhanced image.The pixels in the darkregion
are scaled back to the range [0 7-1], whereas the bright
region istranslated and scaled back to the region [7L - 1].

Md"' dn) "im <T
M =

Mb ^dn) ym>T

form<r (11)

for m > r (12)

(13)

where M is the enhanced image obtained from the defuzzi-
fication process.

4 Optimization of fuzzification factor

The fuzzification factor differs with different input images as
discussed in the previous section. As a result, the optimum
parameter value of ce must be selected to obtain a pleasant
image. Results obtained from simulation on300images with
non-uniform illuminationconsistingof 150grayscaleimages
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Fig. 3 a-c images with non-uniform illuminalion, d-f optinuzation graphs for images with non-uniform illumination (a-c). respectively

and 150color images show that the optimum value of a is
set to the parameter value that yields the maximum image
quality index {Q). Q is computed by modeling any image
distortion as a combination of three factors, namely loss of
correlation, luminance, and contrast distortions as shown in
Eq. (14).

Theoriginal andenhanced images areassumed to contain
m = Imyly = 1,2...Z} and M = [My\y =
respectively, my and My are the intensity levels of the orig
inal and enhanced images, respectively. The best value of
'1' is achieved if and only if niy = My. Q is defined as
[54]:

2m(M) 2T;nTjVf

where

1 ^
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y=l

CCmM = X ('"J' ~ ^

Figure 3 shows three non-uniform illumination inwhich
the illuminationand intensitydistributionof these imagesare
non-homogeneous. The plots ofQin Fig. 3a-c) illustrate the
changes in Qas fuzzification factor, a varies from 0 to 30.
Automated tuning isconducted until a homogeneous image
is obtained. The homogeneous image is attained when Q
reaches itsmaximum value. Figure 3shows that Qreaches its
highest value when alpha is 8,5, and 4as circled in Fig. 3d-f.
respectively.

The optimal procedure for selecting a. is described as fol
lows. For agiven input image (i.e., original image), the value
ofa isvaried from a minimum of 1toa maximum of 30.For
eachvalue of a, the following automated tuning procedures
are performed:

1- Apply the algorithm presented in Sect. 2 to generate an
enhanced image

2. Calculate Q with Eq. (14)
3. Select the parameter value that produces the maximum Q

as the optimum value ofa, after the two aforementioned
steps.



SIViP

The enhanced image is generated by adopting optimum
a according to theenhancement process in Sect. 2 to pro
duce thefinal output. Simulations areperformed on300test
images with non-uniform illumination to validate theauto
maticselection of or. Examplesof the automatic selection of
a are presented in Fig. 3.

5 Application in color images

The aforementioned algorithm can alsobe applied to color
images by modifying gray level values. Enhancement for
color images is conducted by converting Red, Green, and
Blue (RGB) color space into Hue, Saturation, and Inten
sity (HSI) color space. This conversion isperformed because
direct enhancement inRGB mayproduce colorartifacts. HSI
color space is able to separate chromatic from achromatic
information, thus ensuring thattheoriginal coloroftheimage
is not distorted.

Enhancement is performed by preserving thehuecompo
nent (H) and transforming theintensity component (I)based
onthealgorithm presented inSect. 2.Thesaturation (S)com
ponent is modified with a power transformation function as
shown in Eqs. (20)-(22).

2

meWij

CF(m) =
]E(ni)eW/j

^?^(m) = Td[Sd(m)]<^- '̂'>
5^(m) = Tb[5b(m)f-< '̂">

where Jnwij is the local average gray level value in Wij
window and cTmWij intensity deviation in the
Wij window. CF is the contrast factor that is calculated to
enhance thelocal contrast oftheimage. S'̂ im) and5b(''0 are
the modifiedsaturation values of the dark and bright regions
in the HSV color space, respectively. Sd (m) and S\j (m)
are the corresponding saturation components for the dark
and bright regions, respectively, idand Tb are the saturation
intensifier andde-intensifier selected experimentally.

In order to ensure the contrast and details in the local
neighborhood window are enhanced, the S component is
modified. The modification of S component is conducted
by considering the local average gray level value and local
intensity deviation as shown in Eqs. (20)-(22). The HSI color
space is converted back to RGB color space after the Sand /
components are adjusted toenhance the image.

6 Image analysis

The quantitative measures forimage analysis are presented
in this section. Image quality measurement is an impor-

(20)

(21)

(22)

tant research area. Establishing a correct and effective mea
sure to quantify the quality of the enhanced images is dif
ficult. The proposed algorithm as a new enhancement tech
nique is expected to significantly improvethe quality of the
image while preserving the details. The dark pixels should
be enhanced, and noises should not be amplified.

The performances of the proposed algorithm are eval
uated and compared based on four quantitative measures,
namely the image quality index (j2). contrast (C), clarity
index (PL) [41], and computational time it).

Q is computedwith Eq. (14) as discussed in Sect. 3. The
imagequality index,calledcolor fidelity metric, ficolor pro
posed by [55], is utilized for color images to observe qual
ity improvement duringenhancement. The enhanced image,
which is in RGB, is transformed to LAB color space, ficoior
is defined as:

Qcolor = (Ql)^ + WaiQtt)'̂ + Wp (Qp)^ (23)

where G/, Q«, and Qp represent the fidelity factors of /, a,
and p channels, respectively. wi.Wa,and wp are the corre
sponding weights attributed to the perceived distortions in
each of these channels.

As an addendum to the computed Q, C is employed
as the contrast enhancement measurement of the sample
images. Large C indicates that the enhancement technique
successfully attained appropriate contrast. C is calculated
with Eq. (24).

{My - M) XpiMy) (24)

where My, M, and piMy) are the intensity ofthe enhanced
image, mean intensity ofthe enhanced image, and histogram
of the enhanced image, respectively.

ThemeasureofFL[41]iscalculated tomeasure bothnoise
and clarity inthe image. PLiscomputed byconsidering the
peak signal-to-noise ratio iPSNR) and index offuzziness (y)
in the image,PL is definedas:

PSNR
PL = (25)

Alaige value oiPSNR indicates that the corresponding algo
rithm enhances the image appropriatelyand produces mini
mal noise, y is employed in the analysis because y is com
monly utilized tomeasure theclarity oftheenhanced images.
A smallvalueof y indicatesthat the enhancedresult is clear
and that enhancement of the corresponding algorithm pro
duces a goodquality image. Dividing thePSNR andy gen
erates a measure that includes noise condition and image
clarity. Alarge value ofPLindicates thattheenhanced image
contains minimal noise and that the clarity of the image is
increased. PSNR and y are calculated with Eqs. (26) and
(28), respectively.
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where

MSB =
MxN

L-l

y = — ^ min [/:„,(! - fcm)]
M=0

(26)

(27)

(28)

(29)

whereM and Mmax are the intensity and maximum intensity
of the enhanced image, respectively.

Computational time (t) is investigated to measure the
computational complexity of the enhancement algorithm, t
is definedas the total timerequiredto completelyprocessthe
input image. It changes dynamically depending on the size
of theimage which is closely related to the total number of
pixels of the image.

7 Results and discussions

Theperformance of theproposed enhancement technique is
presented inthis section. Quantitative and qualitative results
obtained from the proposed technique are also compared
with other fuzzytechniques such as BPDFHE [46] and fuzzy
quantitative measure(FQM)presentedin [48].

Brighmess preserving dynamic histogram equalization
(BPDHE) is utilized for comparison in this section because
thismethodconsiders thecrisp histogram of the image, which
is beneficial for the enhancement process. FQM is also uti
lized for comparison because it is related to the proposed
method, which computes the quantitative measures of gray
levels to enhance the image.

The proposed enhancement technique is also compared
with three other non-fuzzy techniques. The techniques
include TM presented in [39] which involves the enhance
ment of non-uniform illumination in high dynamic range
image. Discrete cosinetransform (DCT), whichisconducted
inthefrequency domain [56], isalsoincluded intheanalysis.
Gamma correction (GC) approach^ [24] is likewise adopted
for comparison.

The experimental results of this study are obtained by
implementing and processing the degraded images with Mat-
lab R2010a and Intel(R) Core(TM) i3 2100 3.I0GHz and
4GB RAM. The degraded images utilized for comparative
analysis include standard images with non-uniform illumina-

' In the GC approach, the value ofgamma ischosen based on the opti
mization procedure as presented in Sect. 4. However, for this approach,
the gamma values are incremented from 0.1 to 1.0and gamma value that
produces the maximum Qis chosen as the optimum value of gamma.
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tion (size of400 x 264), that are obtained from the California
Institute of Technology Computational Vision Database.

Subjectiveappearanceevaluationis performedon several
grayscale images withnon-uniform illumination asshown in
Figs. 4, 5, and 6. Comparative analysis includes observing
whether the techniques are able to enhance an entire image
without over-enhancing or under-enhancing certain regions
in theimage.The detailsof the imagesare observedto ensure
that no information loss occurs in the enhanced image. The
quantitative results from each image are also presented in
Figs. 4,5, and6.Theoriginal images presented inFigs. 4,5,
and 6 are having non-uniform illumination. These images
suffer from uneven lighting, where the dark regions accumu
late on Man 1 and Man 2's faces in Figs. 4 and 5. Meanwhile,
theforeground (i.e., Man3's face) inFig.6 appears brighter
than the background.

Figure 4 shows thatmost of theenhancement techniques
are able toenhancethe imageand significantlyimproveover
all brightness/illumination of the image. The performance
of the enhancementtechniques can be analyzedby observ
ing thebrightness of foreground (i.e., big rectangular area)
andbackground (i.e., small rectangular area). TMtechnique
attains the best-enhanced and best-illuminated foreground
in which the Man I's face (Fig. 40, appear the bright
est as compared to the other techniques. However, over-
enhancement is apparent in the background of the images
enhanced by this method. This is due to the image pixels
in thebackground are clipped to white; thus, thedetails of
theimage arenotpreserved. Similar situations areobserved
in theenhanced images produced by FQM(Fig.4c) andGC
(Fig. 4g). Although these methods improve theoverallbright
ness of the image,details of the images are loss during the
enhancementprocess. Thisscenario occursbecause although
specific functions are utilized and enhancement isconducted
separately for bright and dark regions, the local contrast of
theimage isnot considered, resulting in loss ofdetails.

Discrete cosine transform (DCT) and BPDFHE improve
image illumination whilemaintaining thebackgrounddetails.
However, bothtechniques produce darkregions onMan I's
face. BPDFHE amplifies the existingnoiseduringenhance
ment asexhibited bythelowest value ofPL(i.e., 22.63). This
finding indicates that BPDFHE does not reduce fuzziness in
the original image and the existing noise isde-attenuated.

The enhanced image produced by the proposed AHM
method (Fig. 4b)exhibits appropriate contrast; theedges of
the wall and tree in the background are clear.Furthermore,
theedges onMan I's face are clear and smooth ascompared
to its original image. As discussed in Sects. 3 and 6, Q is
computed by considering the luminance (i.e., illumination)
and contrast distortion as well as loss of correlation between
theoriginal and enhanced images. Therefore, the quantitative
result ofthe proposed method attains the highest Qof0.97,
implies that overall image quality isimproved without caus-



Fig. 4 Comparison of the
enhancement results, a Original
Man I image, b the proposed
AFIM method, c FQM [48], d
DOT [56], e BPDFHE [46], f
TM[39].gGC(y=0.6) [24]

(a) C" 86.98 (b) C= 88.83 e=0.97 PI-=54.39 ^=0.86s

(c) C=79.02 e=0-56 •^^=24^92 f^l.73s ^(d)C'=75.9112=0.77 PL >=30.88 ^6.20s

i

(e)C-83.35 <2=0.79 PZ-22.63 /=0.28s (f) C=S0.98j^.82Pi -26.97 ^=0.1Ss

I

(g) C- 72.84 2-0.88 PL -39.10 f-0.15s

ing any saturation effect. Local contrast is enhanced, whereas brightness at the background. Meanwhile, the proposed
noise issuppressed. AFIM method provides more suitable approach in which the

Although TM technique produces the brightest image illumination of the image can be performed using fuzzifier
(Fig. 4f), unnecessary enhancement is performed to the and membership functions presented in Eqs. (5) and (6) for
existing bright region (i.e., background), thus causing over- dark region as well asEqs. (7) and (8) for bright region. In



Fig. 5 Comparison of the
enhancement results a Original
Man 2 image, b the proposed
AFIM method, c FQM [48], d
DOT[56], e BPDFHE [46], f
TM[39],gGC(>'=0.8)[24]

ii^

(a) C= 82.87

mm

(b) C« 83.47 2=0.98 Pi=116.22 f=0J>8s

(c) C-76.98 2=0.55 PI»57.08 f-2.03s (d) C-82.28 2=0.76 PL =99.10 f=6.19s

SfirMv^ ; s. rV i
m^ \ . i

(e) C-81.01 2-0.88 PI-97.38 f-0.19s (f) C- 80.42 2-0.74 PL -97.94 M).26s

gti:'.-
Wm^

(g)C- 76.34 2-0.87 PL-98.634 H).10s

addition, thelocal contrast parameter inEqs. (9)and(10)can
be modified to preserve the image details.

Otherexamples ofnon-uniform illumination are presented
inFig. 5.The foreground ofthe image (i.e., Man 2'sface) in
Fig. 5 isdark, whereas the background ofthe image isdom

inated by the bright region. The brightness onMan 2's face
(i.e., dark region) is increased with the function presented
in Eq. (5). The proposed method successfully enhances the
image, preserves the details ofthe image, and enhances local
contrast asshown inEq. (9). Figure 5billustrates the details
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Fig. 6 Comparison ofthe
enhancement results a Original
Man3 image,b the proposed
AFIM method, c FQM [48], d
DCT[56], e BPDFHE [46], f
TM[39],gGC (y=0.4) [24]

(a) C-59.21

m: 1 > -• ij ir.„i::r

irH. §mM:

L-

(b) C= 65.48 0=0.95 PI=49.85 fc=0.80s

(c) c- 51.41 0=0.65 i>i=42.6l f=1.76s (d) C=58.06 0=0.69 PL =36.36 /=6.29s

\ ><:• h

(e) C=59.62 0=0.78 ?M7.12 (=0.26s (f) C- 46.24 Q=0.79 PZ. =28.54 /=0.17s

\ f.:;

(g) C= 53380=0.89 PL=32.28 t=0.13s

of the tree in the background are enhanced without causing Fuzzy quantitative measure (FQM) causes saturation in
any saturation. The enhanced image produced by the pro- the background. The foreground rs darker than the ongr-
posed method exhibits an increase in image contrast. Thus, nal image, causing the enhanced rmage to appear unnat-
ihe produced image looks natural. urai. FQM has the lowest value of Q, whtch is 0.55. Images
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Table 1 Average quantitative analysis of 150 grayscale images with non-uniform illumination

Proposed method FQM DCT BPDFHE TM Gamma

Q 0.97 ±0.03

C 69.71 ±7.78

PL 75.54 ±4.18

r(^) 0.93 ±0.04

0.74 ±0.14

52.78 ±3.41

49.39 ± 17.38

0.85 ±0.16

0.69 ±0.01

59.34 ±10.50

42.38 ±35.21

2.40 ±0.36

0.68 ±0.03

72.09 ±8.84

44.04 ±24.31

0.21 ±0.05

0.84 ±0.05

56.03 ± 11.88

34.04 ± 12.93

0.40 ±0.04

0.72 ±0.52

65.49 ±5.44

65.86 ±9.63

0.14 ±0.01

Valuestabulatedin this table are the average ± standard deviationvalues

enhanced by TM and GC over-enhance the existing bright
regions (i.e., the background ofthe image) which causes loss
of details at the background. DCT and BPDFHE are able
to improve image illumination; however, the foreground is
darker, and the edges are less smooth compared with images
enhanced by the proposed method.

Other images with non-uniform illumination image are
presented in Fig. 6. In contrast to Figs. 4 and 5, the fore
ground (i.e., Man 3's face) in thisfigure is brighter than the
background. The TM operator over-enhances the existing
bright region on Man 3's face. The same effect also occurs
in FQM where illumination of the enhanced image is uneven
and non-homogeneous. Unwanted intensity saturations are
avoided in the proposed method, DCT, and BPDFHE.

Figure6alsoshowsthattheproposedAFEM methodyields
the best enhancement result with smooth edges and details
as shown in the small rectangle in the figure. Image illumi
nation is enhanced with Eqs. (11) and (12) as refer to its
dark and bright regions, respectively. The PL value of the
proposed algorithm is bigger than other algorithms, which
is 49.85. This result verifies that the proposed AFIM algo
rithm enhances non-uniform illumination while suppressing
existing noise. In addition, the proposed AFIM algorithm
improves image quality as exhibited by the highest Q and C
values of 0.95 and 65.48, respectively.

Apart from the grayscale images presented in Figs. 4, 5,
and 6, theenhanced images produced by the proposed method
in comparison with other techniques are presented in Table 3,
"Appendix1".Twentysupplementaryimages are illustrated,
and their respective quantitative analysis is tabulated in
Tables 5, 6, 7, and 8, "Appendix 2". In terms of the over
all performances, the proposed AFIM method outperforms
other enhancement techniques by producing most images
with either the highest or second highest C and the highest Q.
Thecapability of theproposed AFIMmethod toconsistently
produced high PL values indicates its advantage inproducing
image with improved clarity and minimal noises. Inaddition,
the proposed AFIM method requires <0.5 s (in most cases)
to compute which is comparable with other enhancement
techniques.

The performance ofthe proposed algorithm in enhancing
the grayscale images is evaluated by quantitative analysis of
150 grayscale non-uniform illumination images as tabulated
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in Table 1.Comparison isperformedbased on the average and
standard deviation values of Q, C, PL, and processing time,
t for 150 grayscale images with non-uniform illumination.
The best results are presented in bold for each analysis. The
error bars of the quantitative analysis of grayscale images
presented in Table 1 are also plotted in Figs. 10, 11, 12,
and 13 in "Appendix3". The error bars give better represen
tationof thequantitative analysis presented inTable1.Each
quantitative analysis (i.e., C, Q, PL and/) is plotted in the
errorbars andcomparedwithotherenhancementtechniques.
Figures 10,11,and12show thattheproposed AFIM method
attains the highestQ andPL with the loweststandarddevia
tion.Meanwhile the proposedAHM methodobtainssecond
highest rank in terms of C. Aselaborated in Sect. 6, highC
and Q indicate thattheimage is successfully enhanced with
better contrast and quality of image is improved. In addi
tion, high PL represents that the enhancement technique is
capable toenhance theimage without enhancing theexisting
noise.

The comparison presented in Table 1 indicates that in
termsof the averageand standard deviation values, the pro
posed AFIM method attains thehighest value of Q and PL
and outperforms other methods. Meanwhile, the proposed
method is able to preserve the details by considering the
local contrast of the dark and bright regions in Eqs. (9) and
(10), respectively. Imageinformation is retained, and over
allcontrast is improved. Theproposed method achieved the
second highest overall contrast afterBPDFHE. Theproposed
AFIM methodhas successfullyreduced the fuzzinessof the
image, resulting in the highest value of PL as indicated by
Eq. (25). Furthermore, theproposed AFIM method involves
less complex computations and is comparably easier (i.e.,
ranked fourth) to execute compared with other enhancement
techniques.

Comparison of enhancement performance is also con
ducted for color images (Figs. 7, 8, and 9) to examine
the enhancementeffect produced by the proposed method.
Figure 7a shows theoriginal image with non-uniform illu
minationwhere the foreground(i.e., Man 4's face) is darker
than thebackground. The details of the images are lost, and
the intensities in the dark regions are decreased, resulting
inthedim region surrounding theman's face. Enhancement
process is conducted to improve thequality of theoriginal



Fig. 7 Comparison of the
enhancement results a Original
Man 4 image,b the proposed
AFIM method, c FQM [48], d
DCT [56], e BPDFHE[46], f
TM[39].gGC (y=0.3) [24] lS:i I ' ; r
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image and to ensure that the processed image exhibits homo- enhanced by the proposed method obtained better illumina-
geneous illumination. tion and improved image details without causing any color

The proposed AHM method increases illumination in the saturation. The intensifier and de-intensifier as presented in
dark region (ie around the man's face) without causing Eqs. (21) and (22) are utilized in the color enhancement
any intensity saturation as compared to the FQM. The image process to ensure that the enhanced image appears natural
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Fig. 8 Comparison of the
enhancement results a Original
Man 5 image, b the proposed
AFIM method, c FQM [48], d
DOT [56],e BPDFHE [46], f
TM[39],gGC (>'=0.8) [24]
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with better homogeneous illumination. In addition, thepro
posed AFIM method produces enhanced image with the high
est Q, Cand PL of 0.78, 153.39, and 118.68, respectively.
The proposed algorithm outperforms the other enhancement
algorithms, obtains uniform illumination image with less
noise, andincreases image clarity.

^ Springer

Tone mapping (TM) produces a natural-looking enhanced
image, similar and comparable tothe image enhanced by the
proposed AFIM method. However, the TM operator over-
enhanced the existing bright region in the image, thereby
producing an over-bright region at the background of the
image. BPDFHE isable to improve overall image illumina-



Fig. 9 Comparison of the
enhancement results a Original
Man6 image, b the proposed
AFIM method, c FQM [48], d
DCT [56],e BPDFHE [46],f
TM [39],g GC(/ =0.6) [24]
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tion; however, the foreground is darker than the rest of the Another example ofnon-uniform illumination is depicted
regions in the image. Contrast is also increased which attains in Fig. 8. The bright regions are mainly distributed in the
thesecond highest ofC which is 115.06. foreground (i.e., around Man 5's face), andthebackground
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Table 2 Average quantitative analysis of150 color images with non-uniform illumination
Proposed method FQM DCT BPDFHE TM Gamma

Q 0.88 ±0.09 0.74 ±0.14 0.69 ±0.11 0.68 ±0.09 0.84 ±0.11 0.74 ±0.10

C 72.31 ± 11.94 52.78 ±40.85 59.34 ±15.69 72.09 ±26.79 56.03 ± 25.08 63.98 ±30.21

PL 66.95 ±23.01 49.39 ± 14.75 42.38 ±20.24 44.04 ±30.88 34.04 ± 15.17 63.08 ±44.21

t(s) 0.85 ±0.03 1.85 ±0.11 6.30 ±0.58 0.20 ±0.24 0.21 ±0.15 0.12 ±0.02

Values tabulated in thistable aretheaverage db standard deviation values

ofthe image isdark. Although this figure clearly shows that
mostofthemethodsenhancetheoriginalimage,theproblems
regarding over-enhancement still occur inthe existing bright
regions ofimages produced by DCT, BPDFHE, TM, and GC.
Although FQM de-enhanced the bright region, accumulated
onMan5's face, theenhanced image appears unnatural and
image appears blurred than the original image presented in
Fig. 8a. This finding issupported by the fact thatFQM has the
lowest value of Q which is only 0.66. Theproposed method
on the other hand has a Q value of 0.90.

Figure 9 presents other example of images with non-
uniform illumination. Visual appearance in this figure indi
cated that the proposed AFM method produces a better-
enhanced image where the intensity values in the bright
region are decreased accordingly and important features are
maintained. The saturation intensifierand de-intensifier are
applied accordingly with Eqs. (21) and (22) for the dark
and bright regions, respectively. Anatural-looking enhanced
image isattained as supported by the second highest value
of fit which is 0.82.

Discrete cosine transform (DCT), FQM, and GC
approaches enhance the existing bright regions inthe image
background, causing the background to be over-enhanced
and blurred. The edges anddetails of theimage appear dete
riorated resulting inalower value of Qand Ccompared with
the enhanced image obtained through theproposed method.
Unlikethe otherenhancement techniques, TM producedthe
brightest image; however, the image appears unnatural and
saturated, especially the foreground. The performance of
the proposed AFIM method is further depicted in Table 4,
"Appendix 1". Five non-uniform illumination color images
are tabulated in this table. It is attested from this table that the
proposed AFEM method successfully enhanced those color
images without causing lossof details in the image.

The qualitative results presented in Figs. 7, 8, and 9 are
supported by the average and standard deviation values pre
sented in Table 2. As highlighted in Table 2, the proposed
method attains thehighest values ofQ, C,andPL. This result
indicates that the proposedmethod successfully enhanced the
image while preserving the details and suppressing existing
noise. The graphs of 150 color images are plotted in these

^ Springer

figures for different enhancement techniques. The results
show that the proposed AFIM method obtains the highest
C, Q and PLformost of thecolor images. In addition, the
errorbarsinFigs.14,15,16, and 17depictthattheproposed
method produced the best results that possess the highest
average and low standard deviation values for most of the
analysis.

8 Condusions

A novel enhancement technique based on the fiizzy inten
sity measure was proposed in this study to solve problems
regarding degraded images with non-uniform illumination
and low contrast. Image illumination is improved byapply
ing aspecific Gaussian function for dark and bright regions.
Thelocal contrast oftheimage was enhanced with a sigmoid
function toensure that thedetails oftheimage arepreserved.
The intensifier and de-intensifier were also applied to the
saturation level of thecolorimages toavoid over-saturation.
Comparative analyses were performed to evaluate the perfor
mance ofthe proposed AFIM technique. The visual quality
oftheobtained images were compared, and theirquantitative
measures werecomputed. Qualitatively, theenhanced images
produced by the proposed technique are able to enhance the
dark region, and the existing noise was not enhanced. The
qualitative findings also supported by quantitative analysis,
which indicates that the proposed technique outperformed
the other techniques in terms of improving non-uniform
image illumination. The findings reveal that the proposed
method surpassed the other techniques and obtained the best
image quality index. The proposed algorithm was compara
bly fast because itselectively enhanced the image according
to its corresponding bright or dark regions. Existing noise
was successfully attenuated compared with the other tech
niques. Therefore, the proposed technique is suitable for use
in real-time applications.

Appendix 1

See Tables 3 and 4.
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Appendix 2

See Tables 5,6,7 and 8.

Ibble6 continued

Image Enhancement techniques

T^ble 5 Comparison of enhancement results based on image contrast
(C)

Image Enhancement technique

Original AFIM FQM DCT BPDFHE TM GC

1 58.06 73.70 51.98 56.59 61.47 59.91 54.74

2 37.07 50.11 46.62 36.12 49.77 42.36 35.21

3 31.31 52.14 48.88 29.95 56.55 29.28 28.33

4 21.73 36.02 22.26 21.21 35.40 30.11 31.43

5 34.38 62.66 52.43 31.93 56.43 35.41 28.48

6 52.53 67.24 65.67 51.69 53.90 44.20 57.19

7 49.22 67.70 66.28 48.21 52.72 41.12 63.59

8 60.19 66.03 61.30 58.46 71.01 54.70 46.95

9 67.53 72.74 72.03 65.44 67.79 62.42 57.88

10 47.31 64.11 62.03 46.11 49.66 40.48 42.81

11 36.79 41.35 25.41 62.21 65.08 64.10 40.58

12 31.40 59.39 26.31 56.74 39.53 31.21 35.21

13 76.79 80.30 58.97 77.95 34.91 25.42 82.14

14 73.39 79.53 56.39 87.09 77.82 26.97 77.83

15 79.42 84.63 59.34 41.79 86.46 23.65 83.97

16 78.22 82.68 42.31 92.35 42.11 28.74 82.67

17 65.35 97.80 56.91 65.08 43.45 36.51 69.99

18 57.15 68.62 55.12 50.53 84.16 41.23 61.05

19 76.21 88.61 51.32 84.02 53.74 45.31 80.76

20 40.41 66.81 24.36 44.19 17.67 28.41 44.35

Thebestresults are made bold . . i •
The image contrast is calculated and compared with the ori^nal image
(i.e., without enhancement) and the enhanced images obtained by dif
ferent enhancement techniques

Table 6 Comparison of enhancement results based on image quality
index (Q)

Image Enhancement techniques
GCAFIM FQM DCT BPDFHE TM

1 0.99 0.86 0.67 0.80 0.90 0.93

2 0.94 0.92 0.66 0.96 0.91 0.87

3 0.99 0.93 0.72 0.92 0.89 0.59

4 0.98 0.96 0.78 0.91 0.88 0.96

5 0.96 0.92 0.75 0.92 0.93 0.85

6 0.96 0.87 0.85 0.90 0.90 0.96

7 0.96 0.99 0.76 0.97 0.91 0.94

8 0.95 0.94 0.69 0.92 0.89 0.85

9 0.99 0.96 0.94 0.91 0.88 0.59

AFIM FQM DCT BPDFHE TM GC

10 0.94 0.95 0.91 0.96 0.93 0.86

11 0.72 0.41 0.54 0.69 0.57 0.72

12 0.66 0.38 0.50 0.64 0.56 0.67

13 0.97 0.93 0.90 0.96 0.92 0.96

14 0.93 0.84 0.89 0.83 0.91 0.94

15 0.96 0.93 0.95 0.97 0.85 0.98

16 0.95 0.82 0.93 0.96 0.83 0.97

17 0.94 0.83 0.76 0.84 0.88 0.93

18 0.88 0.67 0.70 0.81 0.73 0.81

19 0.96 0.84 0.93 0.83 0.65 0.78

20 0.66 0.48 0.54 0.76 0.56 0.68

The best results are madebold
The imagequality index iscomputedby consideringdifference between
original and enhanced image as presented in Eqs. (14) and (22) for
grayscale and color images, respectively. Thus, the quantitative results
attained by the proposed method are tabulated and compared with other
enhancement techniques

Ihblc 7 Comparison ofenhancement results based on PL

Image Enhancement techniques

AFIM FQM DCT BPDFHE TM GC

1 97.40 30.57 48.56 61.09 49.04 74.41

2 80.97 69.44 49.62 57.22 27.55 78.98

3 137.64 52.45 41.23 43.76 20.87 73.64

4 98.67 83.29 50.68 98.44 51.01 88.67

5 92.44 46.55 52.31 48.40 25.68 84.44

6 53.83 30.57 47.69 61.09 49.04 35.41

7 48.54 69.44 51.36 57.22 27.59 36.84

8 68.45 52.45 54.32 43.76 20.86 57.59

9 67.53 103.29 54.37 98.44 51.01 56.18

10 46.97 46.55 37.34 48.40 25.68 49.73

11 96.62 95.63 113.56 137.23 53.34 90.10

12 101.40 87.54 104.21 124.63 74.08 95.55

13 96.05 132.64 91.26 115.32 33.12 81.17

14 206.97 125.21 109.39 75.71 27.92 152.90

15 147.11 124.69 113.21 49.31 27.61 120.70

16 173.18 134.95 99.68 54.92 29.35 239.45

17 185.31 124.36 134.61 93.00 31.23 123.81

18 28934 123.18 93.21 194.24 45.80 163.44

19 173.12 126.41 104.32 164.84 25.93 171.39

20 506.97 129.74 81.24 165.93 52.83 491.73

Thebest results are madebold
The PL iscomputed by considering difference between original and
enhanced image as presented in Eq. (25). Thus, the quantitative results
attained by the proposed method are tabulated and compared with other
enhancement techniques
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Table 8 Comparison ofenhancement results based onprocessing time
(0 (in s)
Image Enhancement techniques

AFIM FQM DCT BPDFHE TM GC

1 0.19 1.40 6.72 0.71 0.58 0.49

2 0.09 0.71 5.67 0.18 0.18 0.04

3 0.07 0.66 5.67 0.14 0.14 0.06

4 0.10 0.59 5.61 0.15 0.16 0.07

5 0.06 0.69 5.58 0.14 0.13 0.05

6 0.18 1.30 7.21 0.73 0.57 0.42

7 0.45 0.80 5.72 0.18 0.18 0.15

8 0.35 0.69 5.65 0.15 0.16 0.09

9 0.31 0.62 5.65 0.14 0.14 0.09

10 0.49 0.74 5.61 0.15 0.14 0.19

11 0.51 1.15 7.50 1.22 0.86 0.19

12 0.43 1.09 6.18 0.59 0.50 0.07

13 0.43 1.07 5.94 0.51 0.56 0.06

14 0.44 1.21 5.91 0.51 0.53 0.05

15 0.42 1.17 6.02 0.51 0.52 0.06

16 0.42 1.27 6.04 0.50 0.48 0.05

17 0.41 1.13 6.02 0.50 0.52 0.09

18 0.42 1.44 5.92 0.61 0.48 0.09

19 0.43 1.29 5.99 0.53 0.47 0.07

20 0.44 1.25 5.89 0.52 0.61 0.07

The best results are made bold

Appendix 3

Quantitativeanalysis for grayscale images

See Figs. 10,11,12, and 13.
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Fig. 10 Error bars ofimage contrast for different enhancement tech
niques. Graph isplotted by computing average and standard deviation
of imagecontrast for 150grayscale images

^ Springer

1.0 n

O 0.8

X
0)
T3

S 0.6

CO

§ 0.4
o
D)
n

E 02

0.0

AFIM FQM DCT BPDFHE TM

Enhancement Techniques

SIViP

GC

Fig. 11 Errorbars of image quality index fordifferent enhancement
techniques. Graph isplotted bycomputing average and standard devi
ationof imagecontrastfor 150grayscaleimages
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Appendix 4

Quantitative analysis for colorimages

See Figs. 14,15,16, and 17.
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Fig. 14 Envrbars ofimage contrast for different enhancement tech
niques. Graph isplotted by computing average and standard deviation
of imagecontrast for 150colorimages
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Abstract This paper proposes a new histogram equal
ization method for effective and efficient mean bright
ness preservation and contrast enhancement, which prevents
intensity saturation and has the ability to preserve image fine
details. Basically, the proposed method first separates the test
image histogram into two sub-histograms. Then, the plateau
limits are calculated from the respective sub-histograms, and
they are used to modify those sub-histograms. Histogram
equalization is then separately performed on the two sub-
histograms to yield aclean and enhanced image. To demon
strate the feasibility ofthe proposed method, atotal of190 test
images are used in simulation and comparison, in which72of
them are standard test images, while the remainder are made
up ofreal natural images obtained from personal digital cam
era. The simulation results show that the proposed method
outperforms other state-of-the-art methods, both in terms of
visual and runtime comparison. Moreover, the simple imple
mentation and fast runtime further underline the importance
of the proposed method in consumer electronic products,
such as mobile cell-phone, digital camera, and video.
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1 Introduction

Histogram equalization (HE) is widely used due to its sim
plicity and effectiveness in providing contrast enhancement.
Infact, HE-based methods have been used in the field ofcon
sumer electronics, medical image processing, image match
ing and searching, speech recognition, and texture synthesis
[1]. Basically, HE transforms the resultant image according
to the probability distribution function ofthe test image. It
stretches and flattens thedynamic range of theimage. Asa
result, the overall contrastofthe processed image isimproved
[1]. However, sometimes itcan degenerate the quality ofthe
resultant image by introducing the washed-out appearance
and by producing unnecessary visual degradation. This is
especially true for low-contrast images, (i.e., images with
few bins in the histogram contain most of the weight of the
input image histogram) where washed-out appearance will
occur after applying HE. Furthermore, HE is also known
for shifting the mean brightness of the enhanced image, in
which themean brightness oftheinput image issignificantly
alteredfromthatoftheresultantimage.Dueto thissignificant
change inmean brightness, unnecessary visual deterioration
is unavoidable.

In order to solve the aforementioned problem, many
HE-based methods have been proposed. Chen and Ramli
[2] introduce minimum mean brightness error bi-histogram
(MMBEBHE). The objective of this method is to provide
maximum brightness preservation in the enhanced image.
MMBEBHE firstly separates the input image histogram
into two sub-histograms using a separating point. Then, it
independently applies HE to the two sub-histograms. The
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Abstract An improved genetic algorithm procedure is in
troduced in this work based on the theory ofthe most highly
fitparents (both male and female) aremost likely toproduce
healthiest offspring. It avoids thedestruction of nearoptimal
information and promotes further search around the poten
tial region by encouraging the exchange of highly important
information among the fittest solution. A novel crossover
technique called Segmented Multi-chromosome Crossover
is also introduced. It maintains the information contained in
gene segments and allows offspring to inherit information
from multiple parent chromosomes. The improved GA is
applied for theautomatic and simultaneous parameter opti
mization and feature selection of multi-layer perceptron
network in medical disease diagnosis. Compared to the
previous works, the average accuracy of the proposed algo
rithmis the best among all algorithmsfor diabetesand heart
dataset, and the second best for cancer dataset.

Keywords Genetic algorithm -Multi-layer perceptron
network •Feature selection and intelligent medical diagnosis
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Introduction

Research advancement in healthcare technology has signifi
cantly improved the quality of human health. Various tech
niques and engineering principles have been adopted and
these attempts have resulted innew invention and innovation
in the area related to the healthcare deliverysuch as medical
imaging and instrumentation [1,2], automatic disease diagno
sis [3,4] and functional electrical stimulation system [5, 6].

Inparticular, intelligent and automatic disease diagnosis
has become an important healthcare research area in
supporting pathologist for neoplastic disease classification,
especially when dealing with large amount and high dimen
sional medical database. With the increase number of new
reported chronic diseases nationwide, manual diagnosis
which relies on pathologist experience to recognize the
presence ofcertain pattern fiom the database is impractical.

Artificial neural networks (ANN) architecture, the multi
layer perceptron network (MPL) is one of the intelligent
based diagnosis systems that have attracted great intention
of healthcare research community. This is because of their
ability toapproximate an arbitrary function mapping [7] and
inmany cases surpass the conventional statistical technique
for the prediction and classification purposes in various
fields of applications [8]. However, designing MLP in
volved optimization of various design parameters and it is
a complex task. The works of [9-11] revealed the incorpo
ration of feature selection (PS) into the MLP and simulta
neously optimize with design parameters has led to
significantly improved performance.

Genetic algorithm (GA) is one of the most widely used
optimization tool. It is a computational paradigm based on
the survival of the fittest which mimics the natural evolution
process. Unlike othersearch techniques thatusually stuck in
local convergence, GA can efficiently explore the entire
search space owing to the global and multi-directional
search characteristic through the iterative optimization ofa set
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Figure 14 Parallel disconnected object in (a) grayscale (b) binary (c) model ofparallel
disconnected object where angles between centers are measured

Figure 14 depicts that by relying on the distance between objects or ^:r+zl^, object J

appears to be closer to Kthan its correct combination ofobject I. Therefore, another criterion

is considered to solve this case, where the angle between centres of the disconnected objects

is calculated (Figure 14 (c)). The angles between centers are calculated in clockwise direction

and it is observed that angle between centers of objects I and K is higher than the angle

between centers of objects I and J. With the assumption that the same orientation of

disconnected objects indicates that they are belong to one object, the correct coordinate

combination is chosen.

The accurate coordinate combination should attain minimum angle between centers as

compared to the other pair combinations as shown in Figure 14 (c). The chosen coordinate

combination is connected using the similar equations (equations (27) and (28) as Case 1

disconnected object and its implementation is presented in Figure 15.





































































































b] = 5'-' *E(t - 1) (36)

Nevertheless, > 5^"*^ for t and (t —1) evolving stages. Furthermore, if SM > /?, then a

prominent distinction is observed and the EOCFS forms a new rule (see Algorithm 2), which

means that the proposed EOCFS adds a new rule to reach a lower error region while evolving

proceeds. Therefore, these two propositions may be written in the form of the inequality

E(t) < E(t - 1) while the number of rules is > 5^"^. This implication is true for both the

worst and best cases. This finding ends the proof. •

Remark 3: InAlgorithm 2, anevolving index, the RPE index, is used for thetermination criteria

in Step 5. In Theorem 2, as the evolving stage proceeds, training error ^(t) is expected to be

reduced. However, in practice, two issues arise in the proposed EOCFS that cause the output

structure partition to become unbalanced, namely, over-fitting and under-fitting. In the EOCFS,

the basic idea is to tune the width of the output stmcture for each evolving stage according to Eq.

(6). We begin firom the initial evolving stage where a single rule exists and use the EOCFS to

locate the data sample with the largest error. Afterward, evolving proceeds by partitioning the

output domain, which means adding more fuzzy rules (detail in Section 3.2.2). This initial rule-
based system is in an under-fitting state with a high approximation error. As the evolving stage
proceeds, the EOCFS partitions the output structure, reduces the error (Theorem 2), and then
adds more fuzzy rules. Evolving continues and will reach a condition wherein ^(t) > E(t 1),
which then contradicts Theorem 2. We define this condition as the over-fitting stateand analyze

the reason behind this state. As the evolving stage proceeds, the width of the output structure

becomes small and the EOCFS leads to very fine partitions in the output domain. At a specific

evolving stage, the width of the output structure becomes extremely small, resulting in an
unbalanced state, which cannot properly represent the data. Therefore, this unbalanced state

leads to afuzzy system with alarge number of rules and causes over-fitting (i.e., the data fit is
very close because ofthe small width of the output structure).

The strategy used in Theorem 2is discussed in Remark 3. The RPE index is used to handle
situations from the under-fitting to the over-fitting. RPE is a straightforward index used to
recognize an unbalanced situation in the evolving process and to prevent the algorithm from
further evolving.
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