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Abstract

Some fast and efficient foveated video compression schemes for H.264/AVC platform
are presented in this dissertation. The exponential growth in networking technologies
and widespread use of video content based multimedia information over internet for
mass communication applications like social networking, e-commerce and education have
promoted the development of video coding to a great extent. Recently, foveated imaging
based image or video compression schemes are in high demand, as they not only match with
the perception of human visual system (HVS), but also yield higher compression ratio. The
important or salient regions are compressed with higher visual quality while the non-salient
regions are compressed with higher compression ratio. From amongst the foveated video
compression developments during the last few years, it is observed that saliency detection
based foveated schemes are the keen areas of intense research. Keeping this in mind, we
propose two multi-scale saliency detection schemes.

(1) Multi-scale phase spectrum based saliency detection (FTPBSD);

(2) Sign-DCT multi-scale pseudo-phase spectrum based saliency detection
(SDCTPBSD).

In FTPBSD scheme, a saliency map is determined using phase spectrum of a given
image/video with unity magnitude spectrum. On the other hand, the proposed SDCTPBSD
method uses sign information of discrete cosine transform (DCT) also known as sign-DCT
(SDCT). It resembles the response of receptive field neurons of HVS. A bottom-up
spatio-temporal saliency map is obtained by linear weighted sum of spatial saliency map
and temporal saliency map.
Based on these saliency detection techniques, foveated video compression (FVC) schemes
(FVC-FTPBSD and FVC-SDCTPBSD) are developed to improve the compression
performance further.
Moreover, the 2D-discrete cosine transform (2D-DCT) is widely used in various video
coding standards for block based transformation of spatial data. However, for directional
featured blocks, 2D-DCT offers sub-optimal performance and may not able to efficiently
represent video data with fewer coefficients that deteriorates compression ratio. Various
directional transform schemes are proposed in literature for efficiently encoding such
directional featured blocks. However, it is observed that these directional transform schemes
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suffer from many issues like ‘mean weighting defect’, use of a large number of DCTs
and a number of scanning patterns. We propose a directional transform scheme based
on direction-adaptive fixed length discrete cosine transform (DAFL-DCT) for intra-, and
inter-frame to achieve higher coding efficiency in case of directional featured blocks.
Furthermore, the proposed DAFL-DCT has the following two encoding modes.

(1) Direction-adaptive fixed length ―high efficiency (DAFL-HE) mode for higher
compression performance;

(2) Direction-adaptive fixed length ― low complexity (DAFL-LC) mode for low
complexity with a fair compression ratio.

On the other hand, motion estimation (ME) exploits temporal correlation between video
frames and yields significant improvement in compression ratio while sustaining high visual
quality in video coding. Block-matching motion estimation (BMME) is the most popular
approach due to its simplicity and efficiency. However, the real-world video sequences may
contain slow, medium and/or fast motion activities. Further, a single search pattern does not
prove efficient in finding best matched block for all motion types. In addition, it is observed
that most of the BMME schemes are based on uni-modal error surface. Nevertheless,
real-world video sequences may exhibit a large number of local minima available within
a search window and thus possess multi-modal error surface (MES). Hence, the following
two uni-modal error surface based and multi-modal error surface based motion estimation
schemes are developed.

(1) Direction-adaptive motion estimation (DAME) scheme;

(2) Pattern-basedmodified particle swarm optimizationmotion estimation (PMPSO-ME)
scheme.

Subsequently, various fast and efficient foveated video compression schemes are developed
with combination of these schemes to improve the video coding performance further while
maintaining high visual quality to salient regions.
All schemes are incorporated into the H.264/AVC video coding platform. Various
experiments have been carried out on H.264/AVC joint model reference software (version
JM 18.6). Computing various benchmark metrics, the proposed schemes are compared
with other existing competitive schemes in terms of rate-distortion curves, Bjontegaard
metrics (BD-PSNR, BD-SSIM and BD-bitrate), encoding time, number of search points and
subjective evaluation to derive an overall conclusion.

Keywords: Block matching motion estimation (BMME); Direction adaptive transform;
Discrete cosine transform (DCT); Foveated video compression (FVC); Human vision
system (HVS); Motion estimation (ME); Saliency detection; Video coding.
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Chapter 1

Introduction

Preview

Recently, the exponential growth in networking technologies and widespread use of
video content based multimedia information over internet for mass communication through
social networking, e-commerce, education, etc. have promoted the development of video
coding to a great extent. Various video coding schemes have already been designed for
seamless transmission of digital video data and for mass storage of digital information. The
primary goal of a video coding standard is to achieve higher compression performance
while maintaining high visual quality. A human eye is space-variant non-uniform
resolution sampling system. Hence, foveation based video coding yields higher compression
performance by varying the visual quality of video data across the space to match the
non-uniform spatial sampling of a human eye. In the present doctoral research work, efforts
are made to develop fast and efficient foveated video compression schemes that achieve
higher compression performance as well as higher visual quality at a lower computational
complexity.

The following topics are covered in this chapter.

• Digital video

• Introduction of video compression schemes

• Performance metrics

• Problem statement

• Chapter-wise organization of thesis

• Conclusion

1.1 Digital Video

Digital video is a three-dimensional data of a dynamic visual scene, sampled spatially and
temporally. A visual scene temporally sampled at any time instant is known as a frame.
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Figure 1.1: Illustration of spatio-temporal sampling of a video scene

The sampling is done repetitively and its sampling rate should not be below 1/25 second
for producing smooth moving vision effect without any jerking artefacts [1]. Figure 1.1
illustrates the spatio-temporal sampling of a scene for producing digital video. Each
spatio-temporal sample is represented by a pixel f(i, j, t). Every frame has a width of W
pixels and height of H pixels that gives frame size as H × W pixels [2]. Each pixel has a
fixed number of bits which is known as intensity-range or colour depth. More the number
of bits representing a pixel, better will be the colour depth and hence better contrast.

Usually, a monochrome video is represented by 1-byte pixels, whereas a colour video
by 3-byte pixels each having three colour components separately represented by one byte
each. There are various colour space models that describe a colour video. The most
common models used to represent digital colour video data are RGB and YCbCr [3]. In
RGB colour space, each pixel comprises three numbers representing red, green and blue
components. The combination of these colour components will produce any desired colour.
In Figure 1.2, colour components are shown for a video frame. Figure 1.2(a) is the original
image. Figure 1.2(b) represents red component, where the red colour pixels are brighter,
whereas in Figure 1.2(c) which is green colour component of original frame, green colour
pixels are brighter. Similarly, for Figure 1.2(d) blue colour pixels are brighter than others.
The RGB colour space model is mostly used in computer graphics and rarely used for
real-world examples. Since all the three primary colour components are equally important
to represent a colour, the storage requirement for an RGB colour frame is three times that of
a monochrome frame.

YCbCr (or equivalently, YUV) is an efficient alternative colour space model for a video
data. It is known that the human visual system (HVS) is highly sensitive to luminance
(intensity) than colour [4]. Hence, a colour video can be stored efficiently by extracting
luminance and representing it with higher resolution than the colour components. In
YCbCr, Y represents luminance while Cb and Cr represent red and blue colour differences,
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(a) (b)

(c) (d)

Figure 1.2: RGB colour components of Soccer video frame: (a) original, (b) red component,
(c) green component and (d) blue component

respectively. Figure 1.3 shows YCbCr components for a video frame. In Figure 1.3(c) and
Figure 1.3(d), the colour differences Cb and Cr are shown with dark to light from negative
differences to positive differences. For general purpose, 4:2:0 sampling format is used for
YCbCr video data [3, 5, 6]. In 4:2:0 sampling format, Y will be of full resolution while Cb
and Cr will have half horizontal and half vertical resolutions compared to Y component. In
other words, there will be only one component of Cb and Cr for 2× 2 Y components. This
reduces the storage and processing requirement of video data considerably as compared to
RGB colour space without losing significant visual quality. The colour space conversion [7]
from RGB to YCbCr and vice versa are given by:

Y = 0.299R + 0.587G+ 0.114B (1.1)

Cb = 0.564 (B − Y )

Cr = 0.713 (R− Y )
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(a) (b)

(c) (d)

Figure 1.3: YCbCr colour components of Soccer video frame: (a) original, (b)
Y-component, (c) Cb-component and (d) Cr-component

R = Y + 1.402Cr (1.2)

G = Y − 0.344Cb− 0.714Cr

B = Y + 1.772Cb

In the present research work, YCbCr video sequences are taken as input source. The
fundamentals of video compression schemes are discussed in the following section.

1.2 Fundamentals of Video Compression

1.2.1 Background

In the modern world, the demand of video data has increased manifold due to massive
internet application like social networking, e-governance, security and surveillance, video
telephony. Hence, the network bandwidth has become a major bottleneck for efficient
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Figure 1.4: Typical video coding system

transmission of these vast amount of video data in real-time even if the present technology
offers quite large bandwidths. Most probably, this problem will continue for ever since the
modern human civilization will demand more and more for video transmission applications
in future. Therefore, a well designed and efficient video compression system is always
required to reduce transmission bit-rate for a video data content without degrading the
visual quality significantly. In a heterogeneous network, where medium to low data rates
are supported, transmission of video data is even a more challenging task. The data rates
available within a network vary across the channels according to the characteristics of a
network, i.e. the types of the transmission channel and the receiving data terminal as well
as the network traffic congestion. Consequently, video data must be transmitted at a variety
of bit-rates to have efficient transmission. Some efficient and adaptive video compression
schemes are required to solve these issues [8–10]. A typical video coding system is shown
in Figure 1.4. A video data generated at the source is encoded with low bit-rate by a video
encoder. The compressed video data is either sent to storage devices or transmitted through
a communication channel. At the receiving end, the compressed video data is decoded by a
video decoder and reconstructed video frames are displayed to users.

There are two types of compression schemes: lossless and lossy. In a lossless
compression scheme, the video data is represented by less number of bits without any loss
of information. Hence, lossless compression scheme achieves a perfect reconstruction of
an original information after decompression. However, a lossy compression scheme yields
higher compression performance as compared to its counterpart but at the cost of some loss
of information up to an acceptable limit [2]. The compression ratio of an encoder is defined
as:

Compresson ratio =
Number of bits in uncompressed data
Number of bits in compressed data

(1.3)

Various video coding schemes have been developed and standardized by two
international study groups in the last two decades. One is video coding expert group (VCEG)
of international telecommunication union-telecommunication (ITU-T) [11] and another is
moving picture expert group (MPEG) of international organization for standardization
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(ISO) and the international electrotechnical commission (IEC) [12]. In 1990, the ITU-T
has adopted H.261 video standard with the aim of transmitting a video data over
integrated services digital network (ISDN) for video conferencing and video telephony
applications [13]. Later, in 1993, ISO/IEC has adopted MPEG-1 video standard for storage
devices with a target bit-rate of 1.5Mbps for compact disc [14]. In 1995, VCEG and
MPEG groups jointly finalized a video standard, known as MPEG-2 by ISO/IEC [15] and
recommendation H.262 by ITU-T H.262 1995 [16]. The MPEG-2 has been developed for
storage on digital versatile disc (DVD) or for video on demand (VOD) standard definition
(SD) and high-definition (HD) digital television broadcasting with target bit-rates of 4− 15

Mbps. H.263 has been finalized by ITU-T in 1996 for video telephony application over
circuit and packet switched network from low bit-rates to higher bit-rates [17]. For a wide
range of applications like object-based coding [18], encoding of natural and/or synthesized
video objects [19], MPEG-4 part 2 is adopted in 1998 by ISO [20].

In 2005, the joint video team (JVT), a combined team of VCEG and MPEG, has
introduced advanced video coding (AVC) which is also known as H.264 by ITU-T
and MPEG-4 part 10 by ISO [6]. H.264/AVC yields higher compression performance,
approximately 50% more than MPEG-2 with the cost of higher computational complexity.
Recently, high efficiency video coding (HEVC) has been adopted by ITU-T and ISO, which
is developed by the joint collaborative team on video coding (JCT-VC) of VCEG andMPEG
experts [21]. HEVC yields highest compression performance, but at the expense of very
high computational complexity as compared to H.264/AVC. Presently, H.264/AVC is being
widely used in streaming internet resources, web application software, video telephony,
high-definition television (HDTV) broadcasting, digital cinema format and many more.
However, the HEVC performs better in high-resolution videos than in low-resolution videos
meeting its design goals. It is observed that HEVC is best for low bit-rate applications but it
is not suitable for low delay broadcasting applications due to its higher complexity [22–24].
Many services, with real-time applications in today’s video communication run on battery
operated mobile devices and employ the H.264/AVC in their video related applications than
HEVC as they can not tolerate a significant amount of delay and complexity in coding due
to limited resources. Hence, we have given more emphasis on H.264/AVC than HEVC.
In the present research work, we have chosen H.264/AVC as video coding platform for
analysing the performance of our proposed schemes. The detailed discussion on H.264/AVC
architecture is given in the next section.

1.2.2 Architecture of H.264/AVC

H.264, also known as advanced video coding, (ISO designates it MPEG-4 part 10) is an
efficient video compression scheme. It provides higher compression performance and robust
transmission than its predecessors. There are many profiles of H.264, which define a set of
tools that target a specific class of applications ranging from video conferencing and mobile
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video applications to blu-ray disc storage and HDTV broadcasting over fixed and wireless
networks with different transport protocols [25]. The encoder and decoder of H.264/AVC are
shown in Figure 1.5 and Figure 1.6 respectively. In Figure 1.5, gray blocks represent in-built
H.264/AVC video decoder. The various functional elements which make H.264/AVC an
efficient video compression schemes are discussed below.

Slices and macroblocks

In H.264/AVC, a video sequence consists of many video pictures. A picture can be a frame
or a field. A video picture is divided into macroblocks. Each macroblock consists of one
16 × 16 samples of Y component and two blocks of Cb and Cr components. H.264/AVC
supports slice architecture, where each video picture is encoded as one or more slices [26].
Each slice contains an integral number ofmacroblocks. It may vary from a singlemacroblock
to the whole picture. The slice can be encoded and decoded independently. There are five
types of slices supported in H.264/AVC, which are I-, P-, B-, SI-, and SP-slices [8]. In an
I-slice, all macroblocks are encoded without any reference to other frames whereas in P-slice
and B-slice macroblocks other than intra macroblocks are encoded with the help reference
frames. The SI- and SP-slices are switching slices and used for switching between two
bit-streams [5].

Intra-prediction

In intra-coding, the macorblocks are predicted from the current frame only and errors are
encoded. This improves intra-coding compression performance significantly. H.264/AVC

7



Chapter 1 Introduction

supports nine intra-prediction modes for 8×8 and 4×4 each and four intra-prediction modes
for 16× 16 luma component and 8× 8 chorma components [6].

Inter-prediction

The H.264 supports 7 types of blocks with dimension of 16×16, 16×8, 8×16, 8×8 , 8×4,
4×8 and 4×4 pixels for inter-prediction [5]. Smaller the block size, better is the prediction.
Hence, smaller blocks are preferred for a high detail area. Each block is predicted from a
reference picture and displacement is given by motion vectors. The precision of a motion
vector is of quarter-pixel for luma components and 1/8-pixel for chroma components [6].
The H.264/AVC also supports multiple reference motion compensation with up to 16

reference frames in contrast to previous video coding standards which supported only one
reference frame [25].

Transform and quantization

The H.264/AVC supports multiple block size multiplier-free integer transforms for
prediction residuals. The 4 × 4 Hadamard transform is applied to luma DC-coefficient
block if intra 16 × 16 mode is selected. Similarly, a 2 × 2 Hadamard transform is used
for chroma DC-coefficients blocks and for other residual blocks 4 × 4 integer transform,
8× 8 integer transform or both are applied depending on the selected transform mode [25].
The H.264/AVC uses scaler quantizer for all transform coefficients. The quantizer value is
selected using quantization parameter (QP) which can have 52 values [26].

Entropy coding

The H.264/AVC supports two types of entropy coding schemes: context adaptive variable
length coding (CAVLC) and context adaptive binary arithmetic coding (CABAC) [5]. For
low complexity, CAVLC is selected whereas for higher compression, a more complex
encoding scheme, CABAC is employed. CABAC assigns a non-integer number of bits for
each variable rather than integer number of bits by variable-length coding [27].

In-loop deblocking filter

The basic limitation of a block transform based video coding scheme is blocking artefacts.
Since the block edges are less accurately reconstructed than the inner pixels of a block, the
blocking artefacts are visible at boundary edges [1]. The H.264/AVC applies an adaptive
deblocking filter to mitigate these blocking artefacts. In previous video coding standards,
the deblocking filter is used as post-processing filter; but in H.264/AVC, the deblocking
filtering is carried out in encoding loop for achieving higher visual quality when video frames
are reconstructed at the decoder end [25].
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1.3 Performance Metrics

The performance of a video coding scheme is evaluated based on subjective and objective
qualities. In the subjective quality evaluation, the visual quality of a reconstructed video
frame is observed by a human expert [28]. The difficulty of this method is the perceptibility
about visual quality not only varies from person to person, but alsowith targeted applications.
However, the objective quality evaluations are based on distortion or error related parameters
derived mathematically [29]. The objective quality evaluations are more accurate and
repeatable. Performance metrics are defined for video compression schemes and saliency
detection schemes in the subsequent sections.

1.3.1 Performance metrics for video compression schemes

The primary goal of a video compression scheme is to represent a video data in a compact
form while preserving the visual quality as far as possible. Compression ratio is one of the
principal parameter of a compression scheme and it is calculated by (1.3), but it does not
give sufficient information regarding the compression scheme. An efficient low bit-rate
compression scheme not only achieves higher compression ratio, but also yields lower
distortion in visual quality. Therefore, various distortion based performance metrics are
present in literature to evaluate the performance of a video coding such as sum of absolute
difference (SAD), sum of squared difference (SSD), peak signal to noise ratio (PSNR),
structural similarity index (SSIM). Among these distortion metrics, some are used to find
the performance of the proposed video compression schemes. They are described in detail
in the following section.

Let an original video frame and the reconstructed video frame are represented by f(i, j)
and f̃(i, j) respectively. Here, i and j represent the spatial co-ordinates of the digital video
frame. The video frame size be H × W pixels, i.e i = 1, 2, · · · , H and j = 1, 2, · · · ,W .
The SAD and SSD are defined as:

SAD =
H∑
i=1

W∑
j=1

∣∣f̃(i, j)− f(i, j)
∣∣ (1.4)

SSD =
H∑
i=1

W∑
j=1

(
f̃(i, j)− f(i, j)

)2 (1.5)

Higher value of SAD represents lower visual quality. It is the same for SSD. But, SAD is
simple and fast computed distortion metric than SSD [1]. PSNR is the ratio of peak signal
power to peak noise power and it is defined using logarithmic scale in dB. If a pixel of a video
frame is represent by 8-bit value, then the maximum value of a pixel is 255 [30]. Hence the
PSNR is defined as:
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PSNR = 10log10

( 2552

MSE

)
(1.6)

where MSE (mean of absolute error) is calculated as:

MSE =
1

W ×H

H∑
i=1

W∑
j=1

(
f̃(i, j)− f(i, j)

)2 (1.7)

For normal to high quality video, the PSNR varies around 30 dB to 50 dB [31]. For a colour
video frame that has three colour components Y, Cb and Cr, another metric, composite peak
signal to noise ratio (CPSNR) in dB is used [32]. It is defined as:

CPSNR = 10log10

( 2552

1
3
(MSEY +MSECb +MSECr)

)
(1.8)

whereMSEY ,MSECb andMSECr represent the MSE values of Y, Cb and Cr components
respectively.

Though these performance metrics based on PSNR are widely popular for evaluating the
efficiency of video compression schemes, they do not give true indication of the distortion
introduced by compression schemes to achieve higher compression efficiency. In addition to
these performance metrics, structural similarity index measure (SSIM) is used as distortion
measure to evaluate the distortions in reconstructed video frames due to compression. The
SSIM is based on HVS characteristics. It is known that the HVS is more adaptive to
extract structural information from a visual scene than error between two pixels. Therefore
distortion in structural information is a good measure of finding the similarity between two
video frames [33]. The SSIM is a window based approach i.e. SSIM is calculated for each
block typically of 8 × 8 pixels size. Though SSIM lies in the range of [−1, 1], it is mostly
given in the interval of [0, 1]. The closer value towards 0 indicates lower visual quality while
higher picture quality yields SSIM value nearer to 1. The SSIM is a combination of three
factors: local luminance difference, local contrast difference and local structure difference.
Moreover, these factors are relatively independent and do not affect each other [34]. The
SSIM is calculated as:

SSIM =
M∑
i=1

N∑
j=1

( 2µfµf̃ + C1

µ2
f + µ2

f̃
+ C1

2σfσf̃ + C2

σ2
f + σ2

f̃
+ C2

σff̃ + C3

σfσf̃ + C3

)
(1.9)

whereM andN are the number of rows and columns of pixels in a block, µf and µf̃ are the
respective local pixels mean of f(i, j) and f̃(i, j), σf and σf̃ are the respective local pixel
standard deviations of f(i, j) and f̃(i, j) and σff̃ is the covariance of f(i, j) and f̃(i, j) after
removing their means. The coefficientsC1, C2 andC3 are small positive constants employed
to numerical instability [35].

Since the SSIM index is defined for a block, the overall SSIM value for a single video
frame is measured by mean SSIM (MSSIM) value that is defined as:
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MSSIM =
1

r × c

r∑
i=1

c∑
j=1

SSIM(i, j) (1.10)

where r and c are number of rows and columns of blocks in a single video frame.
Recently, the Bjontegaard metrics, Bjontegaard delta bit-rate (BD-bitrate) and

Bjontegaard delta PSNR (BD-PSNR) are gaining much popularity as benchmark metrics to
evaluate coding efficiency of a schemewith respect to another. Bjontegaardmetrics calculate
the average bit-rate or PSNR difference between two encoders’ rate-distortion (R-D) curves
which represent the relations between PSNR obtained by encoding the video data with
different bit-rates [36]. The BD-PSNR represents the average PSNR difference in dB for
the same bit-rate and BD-bitrate corresponds to average bit-rate difference in percentage for
the same PSNR. In Bjontegaardmetric, positive numbers in BD-PSNR represent PSNR gain,
while negative numbers in BD-bitrate show reduction in bit-rate and vice-versa. In addition,
we have also included BD-SSIMwhich represents the average SSIM difference of two video
encoders for the same bit-rate.

1.3.2 Performance metrics for saliency detection techniques

Let an original video frame and the saliency map of that video frame are represented by
f(i, j) and SM(i, j) respectively. Here, i and j represent the spatial co-ordinates of the
video frame. The video frame size be H × W pixels. An object map (ob ) is generated by
appropriate thresholding of the saliency map SM(i, j) of size H × W pixels for a binary
map outcome. gb is the ground truth of saliency map, which is already in binary form.

Precision represents a fraction amount of correctly detected salient objects, while recall
measures a fraction of ground truth detected as salient objects. F-measure corresponds to
a weighted harmonic mean of precision and recall with a non-negative value of α. The
precision, recall and F-measure are mathematically calculated as:

Precision =

W∑
i=1

H∑
j=1

gb(i, j)ob(i, j)

W∑
i=1

H∑
j=1

ob(i, j)

(1.11)

Recall =

W∑
i=1

H∑
j=1

gb(i, j)ob(i, j)

W∑
i=1

H∑
j=1

gb(i, j)

(1.12)

F −measure =
(1 + α)× Precision×Recall

α× Precision+Recall
, α = 0.5 (1.13)

11



Chapter 1 Introduction

In special case of precision= 0 and recall= 0 then F-measure= 0.

The precision, recall and F-measure reach maximum value of 1 if and only if ob equals
to gb.

Receiver operating characteristics (ROC) is another benchmark metric for performance
evaluation of a decision system. It represents the trade-off between true hit rate and false
alarm rate of a decision system. In case of saliency detection, the ROC curve measures
accuracy of predictions of fixation and non-fixation regions based on bottom-up saliency
detection methods [37]. The ROC curve is defined as a plot between true positive rate (TPR)
or true hit rate in the y-axis versus false positive rate (FPR) or false alarm rate in the x-axis
for different threshold values. So, each point on curve represents values of TPR and FPR at
various decision thresholds. TPR (also known as recall or sensitivity) is defined as a fraction
of true fixation points that comes into fixation points obtained by a saliency map as a result.
However, FPR (also known as (1−specificity)) is defined as a fraction of true non-fixation
points comes into fixation points obtained by a saliency map. The values of TPR and FPR
are calculated by following equations:

TPR =

H∑
i=1

W∑
j=1

gb(i, j)ob(i, j)

H∑
i=1

W∑
j=1

gb(i, j)

(1.14)

FPR =

H∑
i=1

W∑
j=1

g̃b(i, j)ob(i, j)

H∑
i=1

W∑
j=1

g̃b(i, j)

(1.15)

where gb depicts ground truth, ob shows object map and g̃b represents complement of gb
depicting background points.

A measure of overall performance of ROC curve is area under the curve (AUC). The
AUC is a combined measure of sensitivity and specificity. As both the axis have value from
0 to 1, the value of AUC also lies between 0 to 1. A perfect accurate system has AUC equal
to 1. In other words, a system performance will be considered as superior, if it has AUC
value closer to 1 [38]. In saliency detection, the AUC measures the prediction of fixation
points of a human eye by saliency maps. The chance performance system has ambiguity in
decision accuracy for fixation points and has AUC equal to 0.5 which is a practical lower
limit for performance.
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1.4 Problem Statement

Avideo data contents huge amount of information and storing or transmitting these enormous
data is a very challenging task, specifically at heterogeneous network. Hence, the video
coding is a prominent area of research due to its vast applications inwired orwireless network
and low cost handheld devices with less storage and computing capacity. Researchers have
developed many compression schemes for low-bit rate applications [39–41]. But these
schemes yield poor visual quality for high compression and vice-versa. In addition, foveated
video coding scheme that achieves non-uniform resolution of video coding by prioritizing the
visual scene according to the characteristics of HVS, improves the compression efficiency
considerably. Based on thorough investigation, it is observed that there exists a scope for
further improvement in video compression scheme to yield higher compression efficiency
and higher visual quality as well. The video compression schemes to be developedmust have
low computational complexity, so that they will be easily accommodated to existing video
coding standards for real-time applications. Recently, foveated video compression schemes
are widely used in low to medium bit-rate applications [42–44].

Hence, the following research problem has been taken.

Problem Statement:

To develop efficient foveated video compression schemes, for H.264/AVC platform, that
yield higher compression ratio and better visual quality but with lower computational
complexities for low and medium resolution applications like mobile based video telephony
and conferencing, standard-definition TV broadcasting andweb based video related services.

1.5 Chapter-wise Organization of Thesis

The chapter-wise organization of thesis is presented here.

Chapter 1 Introduction

Chapter 2 Literature Review

2.1 Foveated video compression

2.2 Directional transform

2.3 Motion estimation

2.4 Conclusion

Chapter 3 Development of Foveated Video Compression Schemes

3.1 Introduction
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3.2 Fundamentals of FVC and saliency map

3.3 Development of saliency detection techniques

3.4 Development of foveated video compression algorithms: FVC-FTPBSD and
FVC-SDCTPBSD

3.5 Experimental results and discussion

3.6 Conclusion

Chapter 4 Development of Efficient Directional Transform Schemes

4.1 Introduction

4.2 Fundamentals of Directional Transform

4.3 Development of direction-adaptive fixed length discrete cosine transform
(DAFL-DCT)

4.4 Implementation of DAFL-DCT in H.264/ AVC platform

4.5 Experimental results and discussion

4.6 Conclusion

Chapter 5 Development of Fast Motion Estimation Schemes

5.1 Introduction

5.2 Fundamentals of motion estimation

5.3 Development of direction-adaptive motion estimation (DAME) scheme

5.4 Development of pattern-based modified particle swarm optimization motion
estimation (PMPSO-ME) scheme

5.5 Experimental results and discussion

5.6 Conclusion

Chapter 6 Development Hybrid Foveated Video Compression Schemes

6.1 Introduction

6.2 Development of hybrid foveated video compression schemes

6.3 Comparative analysis

6.4 Conclusion

Chapter 7 Conclusion

7.1 Performance analysis

7.2 Conclusion

7.3 Scope for future work
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1.6 Conclusion

This chapter provides a brief introduction on video compression scheme. The fundamental of
digital video is discussed. The background of video compression schemes and architecture
of H.264/AVC video coding standard are briefly analysed. The performance metrics for
evaluating the efficiency of saliency detection techniques and video compression schemes
are also described. Observing the shortcomings of existing schemes in the literature, a
research problem is formulated and stated explicitly. Finally, chapter-wise organization of
the dissertation is presented.
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Chapter 2

Literature Review

Preview

A space-variant non-uniform resolution image can be generated by various foveation
filtering schemes. The encoding of oblique featured video data is a challenging task.
Different directional transform schemes are available in literature, which efficiently encode
these oblique featured video data. Motion estimation is one of the very important tools
of a hybrid video compression schemes. Various motion estimation schemes are present
in literature to find out the best matched block in a reference frame and enhance the
compression efficiency with minimum computation cost. In this chapter, some well-known,
efficient, standard and benchmark schemes related to different tools of efficient foveated
video compression schemes, are studied. The proposed schemes, developed and designed in
this doctoral research work, are compared against these in subsequent chapters. Therefore,
attempts are made here for a detailed and critical analysis of these schemes.

The following topics are covered in this chapter.

• Foveated video compression

• Directional transform

• Motion estimation

• Conclusion

The literature review is categorized into three domains of the proposed foveated video
compression schemes as shown in Figure 2.1. The detailed discussion of each category is
given below.

2.1 Foveated Video Compression

Recently, foveated video compression (FVC) schemes have gain major interest by many
researchers in the field of video coding. Since FVC schemes exploit non-uniformity in
the resolution of the retina by allocating more number of bits to visual fixation points and
reducing resolution drastically away from the fixation points, it delivers perceptually high
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Foveated video compression

Foveated video coding Directional Transform Motion Estimation (ME)

Saliency Detection
Uni-modal error 

surface based ME

Multi-modal error 

surface based ME

Figure 2.1: Categorisation of literature review

quality at greatly reduced bandwidths. There are several efficient foveated video processing
schemes available in literature, for example, foveation filtering (local bandwidth reduction)
[45], saliency detection based foveating [46–48] and wavelet based foveated compression
[43]. In 1993, Silsbee et al. have introduced the image coding based on the properties
of human visual system (HVS) [49]. The video is encoded by dividing the frame into a
number of spatio-temporal patterns which are based on spatio-temporal properties of HVS.
The adaptation of foveated processing to various video coding standards is demonstrated by
[45, 50–52].

Broadly, foveation method can be classified into three categories:

1. geometry based foveation (GBF),

2. filtering based foveation (FBF) and

3. multi-resolution based foveation (MBF).

In GBF schemes, uniformly sampled image coordinates are transformed into spatial
variant coordinates by logmap transform, also known as foveation coordinate transform,
which exploits the retina sampling geometry [53–57]. Wallace et al. [53] and Kortum and
Geisler [54] have shown geometric transformation of uniform sampled image to non-uniform
space variant sampled image using superpixel. The superpixels are generated to match
the retinal sampling distribution by grouping and averaging the uniform pixels. Lee and
Bovik have shown that foveation is a coordinate transformation from cartesian coordinates
to curvilinear coordinates and a local bandwidth is uniformly distributed over curvilinear
coordinates for a foveated image [55]. Similarly, Azizi et al. have proposed region
selective image compression based on warping the desired non-uniform sampling to uniform
lattice using circular spatial warping algorithm [56]. Major issues with GBF are shifting
from integer position to non-integer and blocking effects in superpixel boundaries. Hence,
additional computations are required to overcome these constraints but at the cost of higher
computational complexity.
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Table 2.1: Summary of literature survey related to foveated video compression

Year Authors Approach Ref.

1993 Silsbee et al. Spatio-temporal patterns properties of HVS [49]

1994 Wallace et al. Logmap transformation [53]

1996 Kortum and Geisler Geometric transformation using super-pixel [54]

1998 Geisler and Perry Multi-resolution based foveatation [58]

1999 Lee et al. DCT based low-pass filtering [59]

2000 Lee and Bovik Geometric transformation using curvilinear coordinates [55]

2000 Azizi et al. Geometric transformation [56]

2001 Lee et al. DCT based low-pass filtering [52]

2003 Wang et al. Wavelet based low-pass filtering [60]

2003 Lee and Bovik Wavelet based low-pass filtering [45]

2007 Rosenbaum and Schumann Wavelet based multi-resolution [42]

2010 Galan et al. Wavelet based low-pass filtering [43]

2013 Shang et al. DCT based low-pass filtering [61]

2015 Chessa and Solari Log-polar transformation [57]

In FBF methods, foveation is achieved by removing high frequencies of the image with
low-pass filter where the cut-off frequency depends on local retinal sampling density. Since
retinal sampling is space-variant in nature, a filter bank of low-pass filter is required to
generate a foveated image [43, 45, 52, 59, 60]. The FBF is implemented either by discrete
cosine transform (DCT) [52, 59], or wavelet transform [43, 45, 60]. In DCT domain,
FBF may be combined to transform and quantization module of a video coding scheme.
But, wavelet transform generates frequency subbands and therefore FBF is employed as a
preprocessing task to standard video codecs.

The MBF schemes are technically a hybrid approach of geometric transformation and
filtering process. In MBF, a pyramid structure is generated by down-sampling the uniform
sampled image with different scales. Gaussian pyramid or Laplacian pyramid method can
be used to generate a multi-resolution structure [62]. Subsequently, filtering process is
employed at each scale of the uniformly sampled image to achieve foveation. Geisler
and Perry have demonstrated applications of MBF system for real-time image and video
coding [58]. The wavelet transform is also used to create multi-resolution images and
feature maps are extracted from these multi-scale maps to generate foveated image in image
compression scheme such as JPEG2000 [42].

The summarized literature survey related to FVC is given in Table 2.1.
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2.1.1 Saliency detection

In human visual system (HVS), resolution varies spatially across the scene with higher
resolution towards fovea, which is centre of the eye’s retina and decreases rapidly towards the
periphery of eyes. Therefore, selective visual attention is governed by saccadic movement
of eyes towards fovea [63]. Visual selection decides the fixation and non-fixation points in
a scene. Another approach is based on processing visual information selectively. In this
approach, the visual selection is based on some attributes or features of a scene, which
include intensity, colour, orientation, motion direction, velocity, shape and some other
properties. A region or object which is different from its surrounding gets higher attention
and is known as salient region or object. In FVC schemes, salient regions are the foveated
points which will have higher visual quality than non-salient regions.

There have been many saliency detection methods available in the literature. However,
the first biological plausible architecture is proposed by Itti et al.[64]. In Itti’s model (IM),
a hierarchical nine sub-scaled Gaussian pyramid model combines various low level features
computed by ‘centre-surround’ operations similar to receptive field operations of HVS. A set
of feature maps, based upon intensity, colour and orientation, are determined and all fed to
a master saliency map. However, highly parametric approach and intensive computational
cost are the major bottlenecks of this model. A system called Neuromorphic Vision C++
Toolkit (NVT) is developed based on Itti’s proposed model. Later, based on Rensink‘s
theory of change blindness [65], Walther has created the most useful commercial product
SaliencyToolBox (STB), for determining the fixation points for visual attention [66].

Ma et al. have used contrast based (CB) feature map to determine saliency [67]. They
have shown that contrast is the most important feature which directs the human visual
attention more than by any other feature like colour, texture or orientation. Liu et al. have
constructed a scale-invariant saliency map for an image through a multi-scale block-level
pixel based contrast localization [68]. They have proposed to divide the image into regions
for enhancing the saliency map with the region based information. But, it is found that the
proposed method may mislead the outcome for high contrast edges.

Bruce et al. have proposed a model of bottom-up saliency based on the principle of
maximizing information sampled from a scene, computed as Shannon’s self-information
[37]. Harel et al. have determined the saliency map based on graph theory (GB) [69].
They have formed the activation map based on Itti’s feature maps and normalize it using
graph theory, but the method is highly computation intensive. Gao et al. have shown
saliency detection model based on discriminant centre-surround hypothesis using mutual
information both for static images and video sequences [70]. The saliency map is computed
by determining the discrimination power of intensity, colour and orientation which are low
level features between the centre location and its surrounding.

The frequency domain processing for saliency detection is well exploited by various
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Table 2.2: Summary of literature survey related to saliency detection schemes

Year Authors Approach Spatial Temporal Ref.

1998 Itti et al. Centre-surround framework
√

× [64]

2003 Ma and Zhang Contrast based using fuzzy region growing
√

× [67]

2005 Bruce and tsotsos Maximizing information framework
√

× [37]

2005 Itti and Baldi Centre-surround framework
√ √

[71]

2006 Liu and Gleicher Contrast based using region growing framework
√

× [68]

2006 Harel et al. Graph theory
√

× [69]

2007 Gao et al. Centre-surround framework
√

× [70]

2007 Hou and Zhang Fourier -transform based spectral residual
√

× [72]

2008 Guo et al. Phase spectrum of Fourier transform
√ √

[73]

2009 Achanta et al. Frequency-tuned framework
√

× [74]

2009 Yu et al. Pulse discrete cosine transform
√ √

[75]

2009 Cui et al. Temporal spectral residual
√ √

[76]

2010 Goferman et al. Context aware saliency
√

× [77]

2010 Mahadevan et al. Centre-surround framework
√ √

[78]

2010 Hua at al. Phase spectrum of Fourier transform
√ √

[79]

2012 Feng et al. Amplitude spectrum of Fourier transform
√

× [80]

2013 Imamoglu et al. Centre-surround framework
√

× [81]

2014 Lu et al. Co-occurrence histograms framework
√

× [82]

2015 Imamoglu et al. Space-based framework
√

× [83]

researchers [72–75]. In Fourier transform, the amplitude spectrum represents the magnitude
of each frequency component present in the image, whereas the phase spectrum represents
the positional information of these frequencies[84]. So, either the amplitude spectrum [72]
or the phase spectrum [73] has been chosen as major component to decide saliency in a
scene. Hou et al. have proposed a model which is purely computational, Fourier transform
based and independent of any biological features [72]. It determines the saliency map with
spectral residue (SR) of the log spectrum using the Fourier transform of an input image.
However later, Guo et al. have shown that the amplitude spectrum is irrelevant for saliency
computation, while the phase spectrum of the Fourier transform (PFT) is only sufficient for
the task [73]. But they have calculated saliency only for one scale of resolution (64× 64) of
image and that leads saliency detection outcomes to be scale dependent.

Achanta et al. have generated the full resolution saliency map unlike Itti [64] and Y.F.
Ma [67]. They have used bandpass filter to preserve more frequency content by frequency
tuning (FT) compared to other methods and extract features of colour and luminance using
difference of Gaussian pyramid [74]. Ying Yu et al. [75] and recently, Hou et al. [85]
have proposed pulse DCT based saliency map detection. The pulse DCT is derived from
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retaining sign information of the DCT coefficients, which is the phase component of the
DCT coefficients. Hence, in pulse DCT, the saliency map is generated by reconstructing the
image by applying inverse DCT operation over phase information generating pulse sequence
of +1 and −1. The pulse sequence resembles firing pulses of neurons and the pulse DCT
simulates the iso-suppression properties of similar feature tuned neurons; thereby yielding
amplified intensity at a discontinuity. Similar to PFT [73], pulseDCT also resizes the image
into 64−pixels wide to reduce the homogeneity. The real-world objects may be of different
shapes and sizes. In addition, the proximities of objects and viewing angle of the viewer or
camera may differ and hence the information varies by significant amount over the different
scales [86]. If we consider only one fixed scale of input for saliency detection, it may give the
limited information in the saliency map. A new type of saliency feature known as context
aware saliency is proposed by Goferman et al. They have extracted salient region rather
than fixation points from the scene. To determine the salient regions, low level features
along with high level factors such as face are used [77]. Recently, Fang et al. have proposed
saliency detection method based on amplitude spectrum of quaternion Fourier transform
(QFT) [87] and also considering human visual sensitivity for deciding conspicuous location
in the scene [80]. Imamoglu et al. have proposed saliency detection scheme using wavelet
transform[81]. They have employed wavelet transform to generate multi-scale low level
features such as texture and edges. New saliency detection models are proposed recently
with different approaches from its predecessors such as 2D co-occurrence histograms based
saliency detection [82] and space-based saliency detection [83]. However, these techniques
are highly parametric.

Recently, spatio-temporal saliency detection schemes are also gaining popularity. In a
video surveillance application, detection of moving objects or capturing surprising events
in a complex background scenario have both kinds of motion; interesting and uninteresting.
This leads to another dimension of research for saliency detection [71, 88]. Itti and Baldi
have proposed modified model of their previous saliency detection model [64] for extracting
the surprise or sudden change in information in a dynamic environment [71]. They have
included motion saliency and flicker saliency as additional low level features along-with
intensity, colour and orientation. And subsequently, a sudden change, also known as a
surprise is detected at some pixel locations in every feature map using information theory.

Cui et al. have proposed temporal spectral residual (TSR) based on motion saliency
detection for video data [76]. The TSR motion saliency detection method is a modified
version of SR saliency detection method proposed by [72]. The Fourier spectrum analysis
is done on video data without having any prior information. In addition, motion saliency
is calculated using global threshold selection and a saliency majority voting operation on
spectral video data. Similarly, Mahadevan and Vasconcelos have also extended their work
of spatial domain saliency detection [70] to spatio-temporal saliency detection [78]. In
this approach, features are spatio-temporal in nature and discrimination between centre and
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surrounding window is measured to determine spatio-temporal saliency. Hua et al. have
proposed spatio-temporal saliency in scale-space for tracking and video re-targeting [79].
They have employed phase spectrum of Fourier transform proposed by [73] in coarse to fine
search at each time instant.

The summarized literature survey related to saliency detection is given in Table 2.2.
However, many of these saliency detection schemes have restricted use in real-world

applications. Some of the difficulties are like highly parametric approach, unbalanced
weights for different features, uneven detection of saliency regions such as failing to
determine the entire salient region or loosing salient object boundaries or bias towards edges
or corners. Even some global statics based saliency detection methods fail for low contrast
images.

2.2 Directional Transforms

The recent developments in video acquisition and display systems and exponential growth
in transmission bandwidths have increased the demand of superior quality video contents
in multimedia applications with resolutions ranging from 176 × 144 pixels (QCIF) to
3840 × 2160 pixels (UHD). With widespread adoption of emerging applications like video
streaming, video surveillance, blue-ray disk video, etc. video compression has become
an integral component of such multimedia applications. However, a video data in an
uncompressed format demands a huge amount of storage space and transmission bandwidth.
To surpass these physical constraints, an efficient video compression scheme is always
required. Various video coding methods have been developed in literature to accomplish
video compression such as entropy coding [89], predictive coding [90], block transform
coding [6], wavelet/sub-band coding [91]. Block transform coding is the one which is highly
exploited in image and video coding by reducing the inherent spatial redundancies between
neighbouring pixels. Easy implementation, higher coding gain and unitary transforms are
some of the features which have made block transform coding as a prime candidate for video
compression systems.

The Karhunen-Loeve transform (KLT) is an optimal transform in block transform based
coding as it fully decorrelates the block in the transform domain [92]. However, higher
implementation complexity and extra overhead bits are the reasons for the restricted use
of KLT in most of the video coding standards. The discrete cosine transform (DCT) is a
good approximation of KLT in terms of coding gain. The DCT is widely accepted as an
alternative of KLT. Fast implementation techniques, superior compression gain and hardware
adaptability are some of the favourable characteristics of DCT that make it most popular
transform for video coding [93, 94]. Many image and video compression systems such as
JPEG [95], H.26X [6, 13, 16, 17] andMPEG-1/2/4 [14, 15, 20] employ DCT. In H.264/AVC,
a multiplication free integer version of 2D-DCT is used for intra-predicted (IP) residuals

23



Chapter 2 Literature Review

(intra-frame coding) or motion-compensated (MC) residuals (inter-frame coding). Recently,
high efficiency video coding (HEVC) [21] is proposed to achieve higher compression gain
than H.264/AVC. HEVC contains various advanced coding tools such as coding tree block
architecture, 33 directional intra-prediction modes, multiple size (4× 4, 8× 8, 16× 16 and
32× 32) integer transform support and many more [96].

Since the conventional 2D-DCT is a separable transform, it is implemented by applying
two 1D-DCTs horizontally and vertically. This characteristics of 2D-DCT makes it a
well preferred transform for blocks containing vertical and horizontal directional features.
However, the performance of DCT is dubious for other direction-dominant blocks. For
diagonal featured blocks, the DCT generates a large number of non-zero coefficients that
deteriorates compression gain. Intra-frames of H.264/AVC applies intra-prediction, newer
coding tool, to exploit directional correlation among neighbouring pixels in spatial domain
[6]. It uses various directional IP-modes (4 modes for 16× 16 macroblock and 9 modes for
4×4 or 8×8 block) to mitigate the directional features dominance and improve compression
performance. Yet, the IP-residuals show strong directional correlation.

Another area of major concern is coding ofMC-residuals in inter-frames. InMC, smooth
areas or regions of moving objects with non-translational motions are well predicted due to
spatial correlations among neighbouring pixels. Further, the textured backgrounds, object
boundaries or edges are high prediction error regions. As in MC-residual frames, these
high prediction error regions form 1D-structures with various orientations and encoding
of MC-residuals with conventional 2D-DCT lead to lesser compression gain. Therefore,
MC-residuals should not be encoded in the same manner as IP-residuals which have
2D-structures. It is proposed by Kamisli and Lim [97] that 1D-DCTwould be a better choice
to encode such directional 1D-structures rather than conventional 2D-DCT.

In transform based video coding, the coding performance strongly depends on a
transform kernel. For a directional block, an appropriately selected transform not only
efficiently decorrelates block data, but also improves compression ratio by representing
the block with fewer coefficients. As the performance of conventional 2D-DCT for a
directional block is sub-optimal, several related works have been reported in literature to find
a suitable transform scheme for such directional featured blocks by including directionality
into the block transform. There are two approaches to incorporate directionality. The
first approach prefers conventional DCT only, but includes some pre-processing operation
such as rearrangement of block data to a particular direction [97–105]. For instance,
Zeng et al. have proposed directional DCT (DDCT) framework for directional image
and video coding [98]. In this framework, eight directional modes are defined, similar to
H.264 prediction modes excluding the dc mode. The primary transform selects a particular
directional mode and the resultant coefficients are rearranged in such a way that secondary
transform exploits the correlation between coefficients. The proposed framework has shown
significant improvement in coding performance for directional dominant blocks as compared
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Table 2.3: Summary of literature survey related to directional transform

Year Authors Approach Intra-coding Inter-coding Ref.

2008 Zeng and Fu Directional DCT (DDCT)
√ √

[98]

2008 Ye and Karczewicz Bi-intra prediction and multiple directional transforms
√

× [106]

2010 Cohen et al. Direction adaptive transform (DART)
√ √

[99]

2010 Chang et al. Direction-adaptive partitioned block transform (DA-PBT)
√ √

[100]

2010 Peng et al. Directional filtering transform
√

× [101]

2011 Kamisli and Lim 1-D transform for MCP-residuals ×
√

[97]

2012 Yeo et al. Mode-dependent DCT and DST
√

× [108]

2012 Wang et al. Pixel-wise directional intra prediction
√

× [102]

2012 Han et al. Jointly optimized spatial prediction and asymmetric DST
√

× [109]

2012 Gu et al. Rotated orthogonal transform (ROT) ×
√

[110]

2013 Gabriellini et al. Adaptive transform skipping ×
√

[103]

2013 Saxena and Fernandes DCT/DST based transform
√

× [111]

2013 Cai and Lim Multiple transform selection
√ √

[112]

2014 Wang et al. Content adaptive transform framework (CAT)
√ √

[104]

2015 Zhang et al. All phase bi-orthogonal transform (APBT)
√

× [105]

to conventional 2D-DCT. However, multiple directional transforms and scanning patterns
and extensive use of variable length DCTs are a major bottleneck of this framework.
Similarly, Chang et al. have proposed to exploit the directional featured blocks by one
of eight directional modes transforms along-with non-directional 2D-DCT [100]. Each
directional mode has it own directional transform basis, block partitions and scanning order.
In this scheme, 1-D DCT length is limited upto block-size by using block partitioning.
However, multiple length 1-D DCTs still exist.

Another approach derives new directional transform kernels by exploiting directional
block information or use more than one transforms; a separate transform for each block to
improve coding performance [106–111]. A combination of even type-II DCT (EDCT-2)
and odd type-III DST (ODST-3) is used according to dominant directional edges in the
block [106–109, 111]. However, many of these transform schemes decide the direction
of the transforms through training data. But, they require more memory storage for
transforms. Multiple transform modes increase the implementation complexity significantly
for both encoder and decoder. A further alternative scheme such as pixel-wise directional
intra-prediction (PDIP) method utilizes the adjacent reconstructed pixels of different
orientation to predict the current pixels keeping the transformmodule unaltered. It has shown
the improvement in bit-rate by 2.5% for intra-coding [102].

As aforementioned, the MC-residuals have different characteristics than image/ intra
residuals blocks and applying the same transform to such blocks leads to inefficient
compression performance. In [97], Kamisli and Lim have shown that MC-residuals form
directional 1D-structures and performing traditional 2D-DCT transform on such blocks
would unnecessarily generate more number of coefficients. A set of transforms and
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corresponding scanning patterns are used to encode each directional block with most suitable
transform mode. But, it increases computational complexity for an encoder. Gu et al.
have shown that rotated orthogonal transform (ROT) is a better alternative of DCT for
MC-residuals coding [110]. The MC-residual frame is divided into transform region and
separate ROT is generated for each transform region by convex function constraints. Since
ROT kernel is modified DCT basis by minimizing the orthogonal-constrained L1 norm, it
inherits all the merits of DCT’s orthogonal kernel and adds directionality in it using rotation
matrices.

A suitably designed directional transform yields uncorrelated coefficients and enhances
compression gain. Most of the directional transforms available in literature favour
rate-distortion optimization (RDO) method for the selection of an optimum directional
transform mode [97–99]. RDO is a brute-force approach. It increases encoder complexity
by manifold and restricts its use in real-time applications. Recently, Cai at el. [112] have
proposed two new algorithms to determine a best suitable transform for each block when
multiple transforms are available based on selection of best transform and best number
of coefficients to preserve maximum energy compaction. But it is observed that most
of these directional transforms face several issues and their practical implementations are
restricted inmost of the video coding applications. For instance, use of different length DCTs
cause ‘mean weighting defect’ which generates unnecessary non-zero coefficients [97–100].
Further, use of too many directional DCTs also increases number of DC coefficients that
require large number of bits to represent by entropy coding as compared to its counter part
lower valued AC coefficients. Moreover, introducing of a number of scanning patterns to
coincide with the characteristics of each transform mode, leads to higher encoding bit-rate
due to extra overhead as side information and increases encoder complexity as well. Finally,
our major concern is the computational complexity for selecting an optimum directional
transform mode for each directional block. The literature survey related to directional
transform is summarized in Table 2.3.

Though we find many directional transforms and associated methodologies in the
literature, we strongly feel that there is sufficient scope of future investigation for finding an
optimal set of directional transforms that will yield quite high compression ratio.

2.3 Motion Estimation

In video coding, inter-coding exploits temporal redundancy between successive frames and
yields superior compression performance. Motion estimation (ME) is an essential tool
of inter-coding that determines motions of blocks/ pixels with respect to reference frame/
frames. All video coding standards such as H.261 [13], MPEG-1 [14], MPEG-2 [15], H.263
[17], MPEG-4 part 2 [20],H.264 (MPEG-4 part 10) [6] and high efficiency video coding
(HEVC) [21], use ME schemes to exploit temporal redundancy between successive video
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frames to achieve higher compression ratio. ME is also used in various video processing
applications such as frame interpolation or frame rate up-conversion [113], object tracking
and video surveillance [114].

There are various ME methods such as global motion estimation model (GMC) [115],
block matching motion estimation algorithm (BMME) [116, 117], phase correlation based
ME [118], optical flow [119], pel-recursive approach [120] and parametric-based MEmodel
[121]. Among these methods, the BMME is widely used in most of the video coding
standards due to its ease in implementation and repeatability. These properties of BMME are
readily exploited in soft-core and VLSI implementation [122, 123]. Technically, BMME is
used to determine the displacement of the current block by searching the best matched block
in the reference frame/ frames. The displacement is given in terms of motion vector (MV)
with respect to the co-located block. The MCP-residuals are the difference between the
current block and a reference block, are transformed, quantized and then entropy encoded.
Encoding residuals and MVD, the difference between MV and its prediction, significantly
reduce the number of bits required to represent a block and MV respectively rather than
encoding original content. An efficient ME scheme reduces energy in MCP-residual frames
and improves compression ratio. But, ME is computational intensive and consumes almost
60% to 80% of overall encoder complexity in H.264 [124]. Therefore, a fast ME scheme
plays an important role in real-time video applications.

There are two types of error modal based BMME schemes: (a) uni-modal error surface
based BMME schemes and (b) multi-modal error surface based BMME schemes. These
scheme are described below.

2.3.1 Uni-modal error surface based BMME schemes

The uni-modal error surface based BMME schemes are based on following assumptions.

1. For a 2-D translational motion (in x-y plane), pixel intensity remains constant.

2. Error surface is uni-modal i.e. block matching error increases monotonically as the
distance from the global minimum increases.

In BMME, full search (FS) also known as exhaustive search [125] is a brute-force
approach that yields optimal solution by finding the global minimum. For each block, if the
search window of sizeWs, then the total number of search points for FS are (2Ws+1)2. As it
checks all the search points within the search window, complexity of FS is very high, which
restricts its use in real-time video applications. A number of fast BMME algorithms have
been proposed in literature that reduce computation complexity significantly as compared to
FS and alsomaintain an acceptable visual quality. These BMME algorithms can be classified
into three categories:

1. fixed pattern based BMME (FP-BMME),
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2. reduced search points based BMME (RSP-BMME) and

3. lower complexity based BMME (LC-BMME).

In FP-BMME algorithms, fixed patterns are used to check only a few search points
within the search window rather than all search points. This includes three-step search
(TSS) [126], new three-step search (NTSS) [127], four-step search (FSS) [128], unrestricted
centre-biased diamond search (UCBDS) [129], diamond search (DS) [130], hexagon-based
search (HEXBS) [131] and octagonal search algorithm[132]. It is observed that these
FP-BMME algorithms are easy to implement. But, they may get trapped into a local
minimum specifically for fast-motion videos. This results in inaccurate MV leading to
high MCP-residuals and eventually degrading compression performance. In RSP-BMME
algorithms, the number of search points are limited by successive minimization of the
prediction error in a search window. These algorithms exploit spatio-temporal MV
correlation of neighbouring blocks of current and/or reference video frames to predict the
global minimum using motion vector prediction (MVP). This predicted global minimum
search point is considered as initial search centre and true global minimum is searched
around its surroundings. The use of MVP greatly reduces the search space due to
spatio-temporal correlation of neighbouring blocks. This also reduces the chance of it
getting trapped into local minimum. Among RSP-BMME algorithms, few extensively
used algorithms are cross-diamond search (CDS) [133], adaptive rood pattern search
(ARPS) [134], enhanced predictive zonal search (EPZS) [117], hybrid unsymmetrical-cross
multi-hexagon-grid search (UMHexagonS/UMH) [116], diamond and hexagon search
(DHS) [135], content-adaptive fast ME [136] and optimized predictive zonal search (OPZS)
[137] . The EPZS is an efficient BMME algorithm in terms of computational complexity
and compression performance. The EPZS uses various spatio-temporal MVPs and threshold
based multiple stopping criteria. It employs simple and efficient diamond and square search
patterns to find the global minimum of a block. EPZS yields visual quality as good as FS
while significantly reducing the number of search points. UMHexagonS/UMH is another
very successful BMME algorithm present in literature. It also uses MVP based initial search
centre alongwith unsymmetrical cross andmulti-level hexagon search patterns and threshold
based early termination techniques. It is observed that hexagon search pattern checks less
number of points compared to diamond search pattern to find same MV. These BMME
algorithms (EPZS and UMH) are adopted by H.264 joint model (JM) along with FS due
to their superior performances [138]. The LC-BMME algorithms have mainly focused on
reducing the computational complexity for each search. Some of the popular methods are
based on pixel sub-sampling [139], partial or simple cost estimation [140], histogram [141],
successive elimination [142] and multi-layer approaches [143].
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Table 2.4: Summary of literature survey related to motion estimation

Year Authors Approach Ref.

Uni-modal error surface based

1981 Jain and Jain Full Search or exahaustive search [125]

1981 Koga et al. Three-step search (TSS) [126]

1994 Li et al. New three-step search (NTSS) [127]

1995 Nam et al. Pixels sub-sampling [139]

1996 Po and Ma Four-step search (FSS) [128]

1996 Lin and Tai Partial or simple cost estimation [140]

1998 Than et al. Unrestricted centre-biased diamond search (UCBDS) [129]

2000 Zhu and Ma Diamond search (DS) [130]

2001 Zhu et al. Hexagon-based search (HEXBS) [131]

2002 Cheung and Po Cross-diamond search (CDS) [133]

2002 Nie and Ma Adaptive rood pattern search (ARPS) [134]

2002 A. M. Tourapis Enhanced predictive zonal search (EPZS) [117]

2002 Chen et al. Hybrid unsymmetrical-cross multi-hexagon-grid search (UMH) [116]

2009 Cui et al. Octagonal search [132]

2009 Cheng etal. Diamond and hexagon search (DHS) [135]

2012 Nisar et al. Content adaptive fast motion estimation [136]

2012 Park et al. Histogram [141]

2013 C.-S. Park Successive elimination [142]

2014 Paramkusam and Reddy Multi-layer approaches [143]

2015 Abdoli et al. Optimized Predictive Zonal Search (OPZS) [137]

Multi-modal error surface based

1995 J. Kennedy Conventional PSO [144]

1998 Y. Shi Advanced PSO [145]

1998 Y. Shi linearly decreasing weighted PSO (LDWPSO) [146]

2003 Gong and Ding Genetic algorithm (GA) [147]

2004 Ratnaweera et al. Time-varying acceleration coefficient - PSO (TVAC-PSO) [148]

2006 Ren et al. PSO - zero-motion prejudgement (PSO-ZMP) [149]

2008 Yuan and Shen Improved PSO (IPSO) [150]

2012 Erik Cuevas Harmony search (HS) [151]

2012 Cai and Pan Modified time-varying acceleration coefficient variant of PSO [152]

2013 Cuevas et al. Artificial bee colony (ABC) [153]

2013 Pandian et al. Pattern based BMME scheme based on PSO (PBPSO) [154]

2014 Fei et al. Artificial fish-swarm [155]

2015 Jalloul and Al-Alaoui Cooperative ME based on multi-swarm PSO [156]

2.3.2 Multi-modal error surface based BMME schemes

It is observed that all video sequences do not follow uni-modal error surface assumption. In
fact, an error surface may have many minima in a block. Therefore, employing uni-modal
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error surface based BMME schemes may lead to getting trapped to a local minimum. The
popular approach for multi-modal error surface based ME is evolutionary methods such as
genetic algorithm (GA) [147], particle swarm optimization (PSO) [152, 154, 156], harmony
search (HS) [151], artificial bee colony (ABC) [153] and artificial fish-swarm[155]. In
general, the evolutionary algorithms ensure global minimum solution but at the cost of
high execution time, since accurate determination of MV is accomplished only after a large
number of iterations. PSO is population-based stochastic search technique and is found to
be more effective to solve local minima problem [144]. Since the PSO algorithm is designed
for global solution, it is not optimized for higher speed. The computational complexity of
conventional PSO is very high and hence its use is limited in real-time video encoding.
Actually, in conventional PSO, the accuracy of true MV depends not only on the population
size, but also on number of iterations [144]. However, in many PSO based encoding
schemes, the number of iterations are reduced by enforcing early termination techniques
and the accuracy of MV is compromised [152, 154].

In literature, various PSO based BMME schemes are available that improve the encoding
time. Ren et al. have proposed particle swarm optimization - zero-motion prejudgement
(PSO-ZMP) BMME scheme [149]. The algorithm initially checks the zero motion vector
(ZMV) of a block. If a block is static in nature, then no need to perform the remaining
search. Otherwise, neighbouring blocks are used to predict the global minimum and PSO is
used over predefined fixed search patterns. Yuan and Shen have proposed improved PSO
(IPSO) by modifying the conventional PSO for fast BMME by employing centre-biased
search pattern and predictive global minimum centre position based on neighbouring blocks
MV [150]. Cai and Pan [152] have proposed advanced PSO (APSO) BMME scheme based
on a modified PSO approach along-with some stopping strategies. They have modified
time-varying acceleration coefficient variant of PSO (TVAC-PSO) [148] for fixed initial
positions of particles and close to global minimum based on neighbouring blocks MV.
Similarly, a pattern based BMME scheme based on PSO (PBPSO) is proposed by Pandian
et. al. [154]. Since the initial particle positions are randomly chosen in conventional PSO,
the proposed algorithm uses centre biased fixed diamond or square search pattern with nine
particles for initial particle positions. The summarized literature survey related to motion
estimation is given in Table 2.4.

Based on extensive literature survey, we observe that there exists a scope for
improvement in performance of ME through efficient directional search pattens for
uni-modal error surface and PSO based schemes that reduce number of iterations for
multi-modal error surface.
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2.4 Conclusion

This chapter aims to provide a complete scenario of some existing schemes related to
foveated video coding, directional transform andmotion estimation. Due to space constraint,
only a few important schemes are presented in this chapter. It is observed that the use
of these scheme are restricted in real-world applications. Either they do not exhibit
any promising results or they are highly parametric or computational intensive. Hence,
there is sufficient scope to develop more efficient foveated video compression schemes
to improve the compression performance. We hope that improving other tools of video
compression scheme such as directional transforms andmotion estimationwill lead to further
improvement in compression performance.

Some efficient foveated video compression schemes are developed in the next chapter.
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Chapter 3

Development of Foveated Video
Compression Schemes

Preview

In the field of image and video compression, the trade-off between visual quality of a pictorial
representation and its compression ratio has been often optimized by exploiting non-uniform
sampling property of human visual system (HVS). The important or salient regions are
compressed with higher visual quality, while the non-salient regions are compressed with
higher compression ratio. To determine the salient regions in a scene, two saliency detection
techniques; multi-scale phase spectrum based saliency detection (FTPBSD) and sign-DCT
multi-scale pseudo-phase spectrum based saliency detection (SDCTPBSD) are proposed in
this chapter. Based on these saliency detection techniques, foveated video compression
(FVC) schemes are developed to improve the compression performance further. The
proposed FVC schemes are analysed on JM 18.6 of H.264/AVC platform.

The following topics are covered in this chapter:

• Introduction

• Fundamentals of foveated video coding

• Development of saliency detection techniques

• Development of foveated video compression algorithms: FVC-FTPBSD and
FVC-SDCTPBSD

• Experimental results and discussion

• Conclusion

3.1 Introduction

Recently, foveated imaging based image or video compression schemes are in high demand
since they not only match with the perception of human visual system (HVS), but also yield
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higher compression ratio. The foveated imaging selects interesting regions in each frame
and encodes them in priority basis. In the retina of our human eye, only a small region of
2◦ − 5◦ of visual angle (the fovea) around the centre of gaze is captured with high spatial
and colour resolutions, with the resolution falling off logarithmically towards corner end of
view due to non-uniform distribution of photoreceptors [157, 158]. Saliency detection is a
technique to determine the visually significant regions within a scene, which are different
from their surroundings. The feature elements like contrast, colour and orientation are used
to specify the relative importance of various regions in a scene [159, 160]. Thus, in principle
it may not be necessary or useful to encode each video frame with uniform visual quality
[45]. Foveated imaging is a form of lossy compression. The higher the roll off in resolution
from the direction of gaze, the greater will be the compression. A conceptual diagram of the
proposed foveated video compression (FVC) scheme is shown in Figure 3.1.

Figure 3.1: Conceptual diagram of the proposed foveated video compression scheme

Based on these observations, we propose two multi-scale saliency detection techniques:
(1) multi-scale phase spectrum based saliency detection (FTPBSD) and (2) sign-DCT
multi-scale pseudo-phase spectrum based saliency detection (SDCTPBSD). The novel
contribution of the proposed FTPBSD technique is determination of saliency map with
multi-scale analysis employing phase spectrum obtained from Fourier transform. On the
other hand, the proposed SDCTPBSD technique adopts sign-DCT (SDCT) to extract feature
maps from multi-scale images. The FTPBSD is a spatial saliency detection technique,
whereas SDCTPBSD is a spatio-temporal saliency detection technique. In addition, we have
also investigated various fusion methods to combine multi-scale saliency maps for optimum
objective performance.

Finally, foveated video compression (FVC) schemes based on these saliency detection
techniques are proposed. An object map (binary image) is obtained by threshold based
segmentation of a saliency map for each video frame. In subsequent stages, a foveated video
is encoded by spatially varying the resolution of a frame based on the Euclidean distance
between fixation (salient) and non-fixation points. The proposed foveated video schemes
are compared against the conventional non-foveated video coding for H.264/AVC platform.
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(a) (b)

Figure 3.2: Example of foveated imaging for News sequence : (a) original frame, (b)
reconstructed foveated frame

3.2 Fundamentals of FVC and Saliency Map

A conventional video coding scheme encodes video data with uniform resolution, whereas
an FVC scheme yields higher compression ratio by varying the resolution of video data
similar to fall-off resolution of HVS [43, 45, 50, 53, 58, 59]. There are a number
of industry related applications of foveated imaging such as image watermarking [161],
scalable video coding [60], video coding [48], advertisement evaluation [162] and 3-D
object recognition [163]. An example of foveated imaging is shown in Figure 3.2 for News
sequence. In Figure 3.2(a) an original frame is shown and Figure 3.2(b) is the reconstructed
foveated frame. It can be observed that in the reconstructed foveated News frame, visual
quality is high at fixation point that is at the dancing girl in the background and visual quality
degrades rapidly moving away from the fixation point towards corners of the frame.

In an FVC scheme, visual attention is determined by tracking the eye positions in
real-time that yield fixation points or foveated points in a scene. The hardware based
eye tracking devices are commercially available that record movement of the eyes. Major
drawbacks of these devices are higher cost and inconvenient designs which give strain to
the eyes. Therefore, determination of a visual saliency map is considered as a prospective
candidate for foveated imaging.

In the emerging field of computer vision, saliency detection has become one of the keen
areas of intense research. A salient region is the most important region in a visual scene.
The primates move their fovea towards salient object or regions to get highest resolution
to these objects. In the field of image and video compression, a good trade-off can be
achieved between the visual quality and compression ratio by exploiting the properties of
HVS [60]. According to Koch and Ullman, conspicuous locations of a visual scene is guided
by the intensity level of activity of receptors for different features (such as intensity, colour,
orientations and direction of movements) and thus feature maps are extracted at pre-attentive
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(a) (b)

(c) (d)

Figure 3.3: Examples of saliency map: (a) Input pattern with dash and plus, (b) Input pattern
with cross and circle, (c)-(d) Saliency maps of (a) and (b), respectively

stage [164]. Each feature map registers individual conspicuous locations in primary visual
cortex [165]. At later stage, these separable feature maps are combined to generate a global
conspicuous location map known as ‘saliency map’ or ‘activation map’ for the visual scene.
Thus, a saliency map represents the prominence of each and every location of a visual
scene [157, 166].

Some examples of saliency maps are shown in Figure 3.3. In Figure 3.3(a), a single plus
sign is surrounded by many dash signs. Since plus sign is different from its surrounding
in shape, it is observed that plus sign pops out in saliency map as shown in Figure 3.3(c).
Similarly, in Figure 3.3(b) red coloured cross and black coloured circle, surrounded by black
coloured cross, are different from their surrounding in colour and shape, hence they pop out
as salient objects as shown in Figure 3.3(d).

3.3 Development of Saliency Detection Techniques

Saliency detection is a technique which predicts significantly important regions in a scene.
Despite much research being done in the field of saliency detection, it is still a challenging
task to achieve high accuracy in detecting salient objects in real-time. It is understood that
an efficient saliency detection scheme should have the following properties [74].

• Scale-space invariance;

• High discrimination capability to detect salient regions;

• Low computational complexity for its suitability in real-time applications;

36



Chapter 3 Development of Foveated Video Compression Schemes

(a) (b) (c) (d)

Figure 3.4: Example of multi-scale saliency maps: (a) Original image, (b)-(d) represent
saliency maps at different level of Gaussian pyramid ranging from level 0 to level 2

• Independence from tuning parameters and a priori information;

• Uniform emphasis on the whole salient areas and capability to maintain well-defined
salient object boundaries.

In a real world, a scene contains various objects of different shapes and sizes. It
is possible that the proximities of objects may differ from the direction of a person’s
viewing angle. These irregularities between objects, in distances, orientations and viewer’s
gaze angles, are the major bottlenecks for developing an algorithm to extract features for
vision analysis, because analysis of one scale may not have information at another scale or
resolution [167]. For instance, as shown in Figure 3.4, in level 0 which is base level, all
giraffes are appearing as salient objects. However, in saliency maps of coarser levels, the
first two giraffes have higher degree of saliency. Overall, the second giraffe region represents
highest prominence. Hence, to achieve scale invariant properties and accurate measurement
of saliency maps, it is proposed to have multi-scale salient object analysis.

For an input image f of size H ×W pixels, output saliency map SM is represented as:

SM = R : [0, 1] (3.1)

where SM(i, j) indicates level of conspicuousness for a pixel at spatial-coordinate (i, j) of
a scene. Salient region pixels will have higher values as compared to non salient regions.

The proposed schemes take an input f , a colour image of dimensionH×W ×Ck, where
H ,W andCk represents number of rows, columns and colour channels of image respectively.
If the image is RGB then Ck = 3, while for gray image Ck = 1. If the input is a video data,
f will be a video frame at time instant ‘tk’. The input image f is initially converted to
CIE L*a*b* colour space [168]. The CIE L*a*b* colour space is based on colour opponent
characteristics of a human visual field, so it shows perceptually uniform colour distribution
and component L closely resembles human perception of intensity [4]. The input image f is
subjected to a Gaussian filter (g) to blur the image so that unwanted noise will be removed.
The blurred image f̄ is obtained as:
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f̄(i, j, ck) =
1∑

k=−1

1∑
l=−1

g(k, l)f(i+ k, j + l, ck) (3.2)

where i and j represent image coordinates as i = 0, 1, 2, . . . , H − 1, j = 0, 1, 2, . . . ,W − 1

respectively and ck depicts colour channels.
To generate multi-scale structure, an image is decomposed by lowpass filtering in the

form of pyramids which is known as Gaussian pyramid. The Gaussian pyramid is obtained
by smoothing or blurring the image by a Gaussian smoothing filter ‘kernel’ to overcome
the aliasing effect and subsequently sub-sampling the smoothed image by a factor of half in
both horizontal and vertical directions. The same process iteratively repeats for successive
levels [62]. For multi-scale analysis, the number of levels (NL) of pyramid structure is a
very crucial parameter. If NL is very high, the computational complexity and storage space
increases exponentially withNL. However, ifNL is very low, it fails to yield scale invariant
feature. The NL levels multi-scale images (f̄0, . . . , f̄NL−1) from coarse to fine levels are
obtained by convolving f̄ with Gaussian kernel h as [62]:

f̄0 = f̄(i, j, ck), base level n = 0 (3.3)

f̄n =
2∑

k=−2

2∑
l=−2

h(k, l)f̄n−1(2i+ k, 2j + l, ck), 1 ≤ n ≤ NL − 1 (3.4)

where h is 5-tap filter defined as:

h =
[ 1
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,
1

4
,
3

8
,
1

4
,
1

16

]
(3.5)

The spatial saliency maps of L*, a* and b* channels are denoted as S̄L, S̄a and
S̄b respectively. Nearly all multi-scale saliency detection methods, present in literature,
generate final saliency map by taking average of all saliency maps generated at each scale.
The same fusion operation is repeatedly opted on saliency maps generated by different
features or channels; for instance intensity and colours. In this chapter, various unification
methods are also investigated for combining inter-scale saliency maps, as well as for channel
saliency maps, so that an optimal fusion method can be selected for saliency detection.

Both the proposed schemes (FTPBSD and SDCTPBSD) are bottom-up, scale-invariant
saliency detection techniques that automatically detect salient objects in a scene and
essentially require no prior knowledge of visual stimuli. A spatial saliency map is a
unification of saliencymaps generated using low level features (such as intensity and colour).
On the other hand, a spatio-temporal saliency map is a weighted sum of spatial saliency
map and a motion saliency map computed by motion detection low level feature. The
proposed saliency detection schemes (FTPBSD and SDCTPBSD) are discussed in details
in the following sections.
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Figure 3.5: Flowchart of proposed FTPBSD method

3.3.1 Multi-scale phase spectrum based saliency detection (FTPBSD)

In this section, we propose multi-scale phase spectrum based saliency detection scheme. In
this scheme, the foremost step is to build a Gaussian pyramid structure of input image forNL

levels. In the proposed scheme, we have set NL = 3. In subsequent steps, saliency maps of
Gaussian filtered images are computed at each level using Fourier transform. Finally, master
saliency map is determined by fusion of all interim saliency maps considering all levels of
Gaussian pyramid and for individual colour channels. The schematic representation of our
proposed scheme is shown in Figure 3.5.

Determination of Saliency Map

In the proposed scheme, a saliency map is determined by phase spectrum of Fourier
transform. Fourier transform converts the spatial domain input image into frequency domain.
An image in frequency domain can be expressed as amplitude spectrum and phase spectrum.
The two dimensional discrete Fourier transform (DFT) of an image f(i, j) of resolution
H ×W pixels is obtained as:

F (u, v) =
1

W ×H

H−1∑
i=0

W−1∑
i=0

f(i, j)e−jm2π( ui
W

+ vj
H

) (3.6)

where u = 0, 1, 2, 3, . . . , H − 1, v = 0, 1, 2, 3, . . . ,W − 1 and jm =
√
−1.

Since F (u, v), in general, is complex-valued, it is represented by:

F (u, v) = ℜ(F (u, v)) + jmℑ(F (u, v)) (3.7)

where ℜ(F (u, v)) and ℑ(F (u, v)) represent the real and imaginary parts, respectively.

The Fourier amplitude spectrum |F (u, v)| and phase spectrum θ(u, v) are defined as:

|F (u, v)| =
√

{ℜ(F (u, v))}2 + {ℑ(F (u, v))}2 (3.8)
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(a) (b) (c)

Figure 3.6: Examples of reconstructed images after performing inverse Fourier transform
operations on amplitude and phase spectrum individually: (a) Input original image, (b)
Reconstructed with amplitude spectrum and (c) Reconstructed with phase spectrum

θ(u, v) = arctan
[ℑ(F (u, v))

ℜ(F (u, v))

]
(3.9)

F (u, v) can also be represented in polar form as:

F (u, v) = |F (u, v)|ejmθ(u,v) (3.10)

An amplitude spectrum represents the magnitude of each frequency component present
in an image, while phase spectrum shows where these frequency components are present.
The positional information is contained in the phase spectrum [84, 169]. Therefore, if
we reconstruct an image f̃(i, j), by taking inverse Fourier transform using phase spectrum
ejmθ(u,v) alone (|F (u, v)| = 1), the homogeneous or similar regions get suppressed as there
is no change in phase while non-homogeneous regions different from their surroundings will
pop out automatically and yield saliency map of the input image [73]. In Figure 3.6, some of
examples are shown for comparison of reconstructed images using only amplitude spectrum
and only phase spectrum, respectively.

Therefore, to determine saliencymap (Sn), Fourier transform is applied to all levels (NL)

of images (f̄n(i, j, ck)) individually, where n varies from 0 toNL−1. For nth level, we have:
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F̄n = F (f̄n(i, j, ck)) (3.11)

where F represents the Fourier transform.
Now, inverse Fourier transform is applied to phase spectrum ejmθ(u,v) keeping the

amplitude spectrum as unity. Subsequently, Gaussian filter (g) is applied before generating
saliency map (Sn) at each level. Gaussian filter is employed to diminish the effect of
scattered salient pixels and to smoothen the salient regions. The mathematical realization
is as follows:

Sn(i, j, ck) = g(i, j) ∗
(

F−1
[
ejmθ(u,v)

])2

(3.12)

where F−1 represents the inverse Fourier transform.

Generation of master saliency map and fusion algorithm

In the previous section, we have determined saliency maps for each colour channel
comprised of all levels Sn = S0, S1, . . . SNL−1 where Sn ∈ R. To generate interim saliency
map for each colour channels (S̄L, S̄a and S̄b), each saliency map (Sn) is up-sampled to
the size of input image (f ) using bi-cubic interpolation and combined together by applying
fusion techniques. Finally, master saliency maps SM is computed by unifying all channels
saliency maps.

In this chapter, we have also investigated various fusionmethod to determine an optimum
method which will yield higher objective performance. We have analysed four different
fusion methods to combine multi-scale saliency maps as well as colour channels saliency
maps. The most widely used and simple method is averaging. The drawback of averaging is
degree of saliency at particular pixel coordinates in one level may reduce due to co-located
non-salient pixel in saliency map of another level. Therefore, overall contrast of salient
regions get subdued. Maximum selection preserves salient regions and neglects others, which
makes it more suitable for the task of saliency detection, but it has a tendency to incline
towards edges which may not be salient regions in final saliency map. Two other advanced
methods, local maximum selection and local maximum variance were also considered for
fusion rules. Hence, following four fusion techniques are investigated:

• averaging takes average of all components at every locations,

• maximum selection selects the component which has higher degree of saliency,

• local maximum selection keeps the component that has largest sum of the absolute
value in a window and

• local maximum variance selects the component that has largest local variance around
a window.
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Algorithm 3.1Multi-scale phase spectrum based saliency detection (FTPBSD)
Input: Image/Video frame, f of dimensions H ×W × Ck

Output: SM saliency map of dimensions H ×W
Method:
1. Input RGB image, f(i, j, ck).
2. Convert colour space from RGB to L*a*b*.
3. Apply Gaussian filter to blur the image and obtain f̄(i, j, ck).
4. Define number of levels (NL) for Gaussian pyramid structure. Set NL = 3.
5. Generate Gaussian pyramid structure f̄n(i, j, ck) for 0 ≤ n ≤ NL − 1.
6. Compute saliency map Sn(i, j, ck) by phase spectrum of 2D-FFT to each level of
images for each colour channel using (3.12).
7. Calculate interim saliency maps by applying image fusion algorithm to all saliency
maps of each level after up-sampling to size of f :

S̄ck = Image_Fusion(S0, · · · , SNL−1)
8. Determine final master saliency map (SM ) by applying image fusion algorithm to all
colour channel saliency maps.

SM = Image_Fusion(S̄L, S̄a, S̄b)
9. Normalize SM to [0, 1] by min-max normalization using (3.13).

These fusion methods are applied to all multi-scale saliency maps and to three colour
channel saliency maps chronologically. So there are 42 = 16 combinations of fusion
methods for the generation of final saliencymap. Out of these 16methods, themethod, which
demonstrates significantly higher objective performance, is considered for our proposed
method. A detailed comparative analysis of best eight combination of fusion methods is
discussed in experimental results.

Finally, output saliency map SM is linearly normalized to [0, 1] by min-max
normalization as:

SM(i, j) =
SM(i, j)−min(SM)

max(SM)−min(SM)
(3.13)

The algorithm for the proposed FTPBSD scheme is presented as Algorithm 3.1.

3.3.2 Sign-DCT multi-scale pseudo-phase spectrum based saliency
detection (SDCTPBSD)

In principle, the proposed SDCTPBSD scheme uses sign information of discrete cosine
transform (DCT) also known as sign-DCT (SDCT) [170]. It resembles the response of
receptive field neurons of HVS. The SDCT is applied over multi-scale Gaussian pyramid
of an input image to determine the spatial saliency. The final spatial saliency map is
generated by enforcing biological approach over intensity and colour feature channels.
To determine temporal saliency map, motion of objects between frames is detected using
displaced frame differencing method. Subsequently, SDCT is employed to motion data to
extract salient regions similar to spatial saliency detection approach. Finally, the bottom-up
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Figure 3.7: Illustration of the proposed SDCTPBSD scheme

spatio-temporal saliency map is obtained by linear weighted sum of these two saliency maps.
An illustration of the SDCTPBSD scheme is given in Figure 3.7.

In proposed SDCTPBSD, NL number of levels of multi-scale images (f̄0, . . . , f̄NL−1)
are produced. In any multi-scale analysis, determination of number of levels for Gaussian
pyramidal structure is the toughest task. In the proposed SDCTPBSD scheme, an optimum
number of levels NL is adaptively calculated based on number of rows (H) and columns
(W ) of the input image. The NL is calculated as:

NL =

⌈
Log2(max(W,H) + 1

2

⌉
(3.14)

where ⌈ ⌉ is the ceil operator.
To validate the value of NL, average F-measures are calculated for images of different

resolutions, shown in Figure 3.8. Three groups of different dimensions of same images
(300 × 400, 150 × 200 and 75 × 100), obtained by sub-sampling original images of 300 ×
400 dimension, are chosen for saliency detection by the proposed scheme and F-measure
values are compared for different numbers of levels. It is observed from Figure 3.8 that
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Figure 3.8: Variation in F-measure for different numbers of levels selected for Gaussian
pyramid architecture with respect to different resolutions of images. The calculated number
of levels (NL) by the proposed scheme for each resolution images are shown in brackets

F-measures have higher values close to the number of levels those are calculated by NL for
each dimension individually.

The algorithm for the proposed SDPBSD scheme is presented as Algorithm 3.2.
Saliency maps are computed on multi-scale images for all channels for each scale denotes
as S̄L

n , S̄
a
n and S̄b

n for L∗, a∗ and b∗ channels, respectively. For saliency detection, SDCT is
computed by initially applying DCT to all multi-scale images of the input image and then
extract binary valued +1 and −1 sign information of DCT coefficients. These pulses are
SDCT coefficients and represent firing responses of neurons for visual stimuli. The proposed
scheme simulates the saliency detection functionality of HVS, as saliency is the response
of intra-cortical iso-feature suppression activities of primary visual cortex neurons [171].
An illustration of the proposed saliency detection phenomenon for 1-D signal is shown in
Figure 3.9 for better comprehension.

To computemotion saliency (Smotion) for a video input, the proposed scheme is employed
to difference framewhich is computed by taking difference between ofL∗ channels of current
video frame at time instant tk and previous video frame sampled at time instant tk−1 at
multiple scales. Hence, there are 4NL number of saliency maps available collectively from
L∗, a∗, b∗ and motion channels. It is proposed to use harmonic mean for combining these
multi-scale saliency maps for each individual channels. The objective of this combination
process is to reduce the impact of extreme outliers in both ends (high and low). The
harmonic mean works well for skewed distribution of data as compared to arithmetic mean
or geometric mean. Therefore, a pixel will get privilege for positioning on saliency map
only when it is salient in all scales. However, the proposed scheme is also evaluated and
compared for arithmetic and geometric mean against harmonic mean outcomes as shown in
Table 3.2.
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Figure 3.9: Step by step illustration of SDCT based saliency detection on 1-D signal. a)
original image representation of 1-D input signal f(t) and its line plot shown below (in all
plots x-axis represents samples and y axis depicts amplitude), signal shows periodicity for
first two cycles but discontinuity occurred at third cycle; b) image representation and signal
plot after applying SDCT and subsequently IDCT over SDCT coefficients, c) final saliency
map image representation and signal plot

A median filtering is performed on the resulting four saliency maps (S̄L, S̄a S̄b and
Smotion) to remove stand alone pixel noise and subsequently, output saliency maps are
normalized to the interval [0, 1] by min-max normalization. As the saliency depends on
the responses of most active cells of different feature-tuned cells of V1 and there is no
discrimination for any preferred feature [172], max filter is applied at every location of
S̄L, S̄a and S̄b to generate spatial saliency map Sspatial.

Finally, a spatio-temporal saliency map SM of the proposed scheme is obtained by
taking weighted addition of the spatial saliency map Sspatial and Smotion. The weighting
factor ω ∈ [0, 1] balances the impact of these two saliency maps on final spatio-temporal
saliency map. For instance, ω > 0.5 will give more weight to spatial saliency and ω < 0.5

will emphasize the motion saliency map, whereas ω = 0.5 will provide perfect balance
between these two maps. However, it is observed that motion feature has more impact
on selective visual attention than the other low level features such as contrast, colour, etc.
[173]. Hence, in the proposed method ω value is set to 0.3 to give more emphasis to motion
saliency. Finally, spatio-temporal saliency map SM is normalized to [0, 1] using min-max
normalization.
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Algorithm 3.2 Sign-DCT multi-scale pseudo-phase spectrum based saliency detection
(SDCTPBSD)
Input: Video frame, f of dimensions H ×W × Ck

Output: SM spatio-temporal saliency map of dimensions H ×W
Method:
1. Input RGB image/ frame, f(i, j, ck).
2. Convert colour space from RGB to L*a*b*.
3. Apply Gaussian filter to blur the image/ frame and obtain f̄(i, j, ck).
4. Compute difference frame by L∗ channel diffL = f̄t(i, j, L

∗)− ¯ft−1(i, j, L
∗)

5. Define number of levels (NL) for Gaussian pyramid structure using (3.14).
6. Generate Gaussian pyramid structure f̄n(i, j, ck) and diffL for 0 ≤ n ≤ NL − 1.
7. Compute saliency map Sn(i, j, ck) and Smotion

n by applying SDCT to each level of
images for each channel including motion channel.

An(u, v) = sign(DCT (f̄n(i, j))

Sn(i, j, ck) = g(i, j) ∗
(
IDCT

[
Anu, v

])2

8. Calculate interim saliency maps by applying image fusion algorithm to all saliency
maps of each level after up-sampling by bi-cubic interpolation to size of f :

S̄ck = Image_Fusion(S0, · · · , SNL−1)
9. Employ median filter to interim saliency maps (S̄L, S̄a, S̄b and Smotion) to remove
standalone pixel noise and normalize it to [0, 1] by min-max normalization.
10. Determine final spatial saliencymap (Sspatial) by applyingmax filter at every location
of all color channel saliency maps.

Sspatial = max(S̄L, S̄a, S̄b)
11. Evaluate the spatio-temporal saliency map.

SM = ω × Sspatial + (1− ω)× Smotion ω set to 0.3
12. Normalize SM to [0, 1]

3.4 Development of Foveated Video Compression
Algorithms: FVC-FTPBSD and FVC-SDCTPBSD

The foveated video compression (FVC) scheme achieves higher compression ratio by
spatially varying the resolution of a video data. The fixation (salient) points have the highest
resolution and there is steep roll-off away from the fixation points. The FTPBSD and
SDCTPBSD schemes produce saliency maps which represent the prominence of each pixel
in a frame based on intensity, colour and movement of the objects. Technically, the FVC
scheme yields a compressed video bit-stream where the salient regions have higher visual
quality as compared to non-salient regions. In fact, the visual quality of the non-salient
regions degrade exponentially with proximities from salient regions.

The proposed FVC scheme in H.264/AVC platform is shown in Figure 3.10. The
algorithm for the proposed FVC scheme is presented as Algorithm 3.3. The detailed
implementation process is given below.

Step 1:
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Figure 3.10: Block diagram of Foveated video compression scheme in H.264/AVC platform

Algorithm 3.3 Foveated video compression scheme in H.264/AVC platform
Input: Video frame, f of dimensions H ×W × Ck

Output: Foveated video encoded output
Method:
1. Determine fixation points for a given video frame of size H ×W pixels using one of
the proposed saliency detection techniques (FTPBSD or SDCTPBSD).
2. Generate binary object map O by thresholding using fuzzy c-means clustering.
3. Evaluate Euclidean distance, DE(i, j) between the current pixel f(i, j) location to
nearest non-zero pixel f(k, l) location using (3.15).
4. Normalize DE(i, j) to [0, 6].
5. Determine a new foveated QP value (QPfov) for a macroblock using (3.16).
6. Encode the current macroblock with QPfov.
7. Repeat the process for each macroblock in a frame.

Firstly, the fixation points are determined for a given video frame of sizeH×W pixels
using one of the proposed saliency detection schemes (FTPBSD and SDCTPBSD).
The generated saliency map is converted to a binary object map O by thresholding
using fuzzy c-means clustering. In the object mapO, the salient points are represented
as 1 and non-salient points as 0.

Step 2:

Since visual quality will fall exponentially away from fixation points, distances of
each pixel from the fixation points are determined. The Euclidean distance, DE(i, j)

is calculated between the current pixel f(i, j) location to nearest non-zero pixel f(k, l)
location. The DE(i, j) is mathematical expressed as:

DE(i, j) =
√

(i− k)2 + (j − l)2 (3.15)

Step 3:

Since H.264/AVC is a block based encoding scheme, the quantization parameter
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(QP ) may change at macroblock (16 × 16 pixels) level. Hence, an average value
of DE for all 16× 16 locations are considered to determine a new foveated QP value
(QPfov) for a macroblock. In a macroblock, if all points are fixation points, then it
will have lower DE value. Hence, the macroblock will be encoded with minimum
QPfov value and will yield higher visual quality. On the other hand, the QPfov will
increase exponentially with increase in DE value and will yield higher compression
ratio for non salient regions. Since H.264/AVC has only 52 values of QP, theDE(i, j)

is normalized to [0, 6], so that QPfov will not saturate for smaller initial QP value
and QPfov will not have sudden huge change which may exhibit blocking artefacts in
reconstructed video frames. The QPfov is mathematically calculated as:

QPfov = QP + e(DE/2) (3.16)

An example for FVC scheme is shown in Figure 3.11 for Soccer sequence. Figure 3.11(a)
is the original 002 frame, Figure 3.11(b) is the saliency map generated using SDCTPBSD
scheme, Figure 3.11(c) is the object map, Figure 3.11(d) is the normalize DE map,
Figure 3.11(e) is the distribution of QPfov, where QPfov is ranging from 26 to 38

values depending upon the DE calculated for each macroblock and Figure 3.11(f) is the
reconstructed output foveated video frame of encoded original frame with QPfov. It can be
observed from the reconstructed frame in Figure 3.11(f) that the salient regions such as part
of players are of high resolutions than other non-salient regions. It can be also observed
that the background scene of the frame has lower visual quality as it belongs to non-salient
region, yet the moving object such as dog is represented with high visual quality due to
motion saliency.

3.5 Experimental Results and Discussion

3.5.1 Experimental results of saliency detection techniques

Experimental Set-up

Various experiments have been carried out to verify the performance of proposed saliency
detection schemes. Microsoft Research Asia, Beijing, China (MSRA) image database
that contains 1000 real world natural scenes are chosen as test images for different
experiments [174].

All experiments are performed using MATLAB version 8.3.0.532 (R2014a) on an
Intel(R)Core(TM)i5-2400 CPU@3.10GHz. Performance of the proposed algorithms are
compared against 7 state-of-the-art techniques (IM[64], CB[67], SR[72], FT[74], GB[69],
PFT[73] and Pulse-DCT[75]) of saliency detection. All results are compared against ground
truth [175] and proposed methods.
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Figure 3.11: Example of proposed foveated video compression for Soccer sequence: (a)
original frame, (b) saliency map, (c) object map, (d) normalize DE map, (e) distribution of
QPfov (QP values increases from gray to black) and (f) reconstructed foveated video frame

For objective evaluation, a saliency map is converted to a binary object map O which is
generated by thresholding saliency map. In the object map white pixels correspond to salient
object pixels, while black pixels correspond to the background or non-salient regions. We
have proposed to use fuzzy c-means clustering (FCM) [176] to obtain adaptive threshold. In
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fuzzy clustering methods, FCM algorithm is the most popular method in image segmentation
applications, since it has robust characteristics for ambiguity and can retain much more
information than hard segmentation methods [176]. The FCM attempts iteratively to find
optimum cluster by minimizing the objective function which is the weighted sum of squared
error within group. As SM = RW×H : [0, 1], c is the number of clusters, uij is the degree
of membership in ith cluster, m is the fuzzifier set to 2, vi is the prototype of the centre of
cluster i and d2(SM j, vi) is a distance function. The objective function is defined as:

J =
W×H∑
j=1

c∑
t=1

(uij)
md2(SM j, vi) (3.17)

Precision, Recall and F-measure, calculated by (1.11), (1.12) and (1.13), respectively,
are chosen as performance metrics to evaluate quantitative performance for salient object
detection schemes as preferred by [74, 80]. The receiver operating characteristics (ROC)
curve is another benchmark metric for performance evaluation of a decision system,
recommended by various salient object techniques [37, 69, 70, 73, 77]. It validates the
performance of saliency detection schemes for eye-gaze prediction by measuring accuracy
of predictions for fixation and non-fixation regions.

Performance of fusion methods

Various experiments have been performed in order to select an optimum fusion method for
maximum performance in saliency detection. Based on four fundamental fusion methods,
we have explored best eight combinations of fusion methods. Firstly, a fusion method is
applied to inter-scale saliency maps Sn to generate interim saliency map for each colour
channel (S̄L, S̄a and S̄b). At a later stage, another fusion method is employed on S̄L, S̄a

and S̄b to determine master saliency map SM . The eight combinations of fusion methods
are: (1) average- average, (2) maximum selection- average, (3) average- local maximum
variance, (4) average- maximum selection, (5) maximum selection- maximum selection,
(6) maximum selection- local maximum variance, (7) local maximum selection- maximum
selection and (8) local maximum selection- local maximum variance.

Figure 3.12 shows the master saliency maps detected by these eight combinations of
fusion methods for subjective evaluation. It is clearly visible that fusion methods play major
role in determining saliency map in multi-scale analysis. It is observed that contrast of
saliency map generated by averaging fusion method is less as compared to other saliency
maps. Some noise is also visible in background regions. Local maximum variance results
dark patches around salient objects. On the other hand, local maximum selection results
lighter patches around prominent areas. It is observed that the combinations of fusion
methods: average- average and average- maximum selection yield results fairly close to
ground truth.

Figure 3.13 presents comparative analysis of eight combinations of fusion methods in
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Figure 3.12: Subjective evaluation of saliency maps obtained by applying 8 combinations of
fusion methods on inter-scale saliency maps and colour channel saliency maps, respectively

Figure 3.13: Performance comparison of different fusion method combinations based on
precision, recall and F-measure for saliency detection with 95% confidence interval

terms of precision, recall and F-measure with 95% confidence interval. It is observed from
Figure 3.13 that the precision values of all fusion methods are maintained nearly at the same
level but average- maximum selection has higher recall value that leads to higher F-measure
value.

In order to assess eye-fixation measure, ROC plots are evaluated for above mentioned
fusion methods. Figure 3.14 depicts the comparative performance of ROC-curves and AUC
values of these ROC-curves are summarized in Table 3.1. It can be seen that again average-
maximum selection fusion method has outperformed other methods with AUC value of
0.7971.
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(a)

(b)

Figure 3.14: (a) Comparative performance of receiver operating characteristics (ROC) of
fusion methods for saliency map generation, (b) zoomed version of (a)

The subjective evaluation, from Figure 3.12 as well as the objective evaluations, from
Figure 3.13 and Figure 3.14, signify the superior performance of average-maximum selection
fusion method compared to any other methods. Therefore, we propose that the average-
maximum selection combination of fusion method is the best choice for multi-scale analysis
of saliency detection. Henceforth, when we compare our proposed FTPBSD scheme,
against other state-of-the-art schemes for saliency detection, average- maximum selection
combination of fusion method is considered. The mathematical realization of determining
saliency map SM using proposed combination of fusion methods would be given as:
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Table 3.1: Comparative performance of fusion methods based on AUC metric

Fusion methods AUC
(Inter-scale/ colour channels)
average- average 0.7782
maximum selection- average 0.7512
average- local maximum variance 0.7463
average- maximum selection 0.7971
maximum selection- maximum selection 0.7870
maximum selection- local maximum variance 0.7783
local maximum selection- maximum selection 0.7872
local maximum selection- local maximum variance 0.7784

Table 3.2: Performance comparison of the proposed SDCTPBSD scheme for different
averaging methods

Method Precision Recall F-measure AUC
Arithmetic 0.680 0.526 0.607 0.9032
Geometric 0.726 0.638 0.694 0.9131
Harmonic 0.761 0.702 0.739 0.9192

SM = max(S̄L, S̄a, S̄b) (3.18)

where S̄L, S̄a, and S̄b are determined as:

S̄c =

∑N−1
n=0 Sn

N
(3.19)

where c represents L∗, a∗ and b∗ colour channels.

Performance evaluation on static images

In FTPBSD, with the help of performance analysis of fusion methods, inter-scale saliency
maps are combined using average or mean operation and max operation is performed on
colour channel saliency maps to generate master saliency map. In SDCTPBSD, we have
explored further and have determined an optimum mean method out of arithmetic mean,
geometric mean and harmonic mean. Harmonic mean does not get affected much due to
fluctuation in sampling values and unlike arithmetic mean, it gives less weight to high valued
outliers and yields true average. Therefore, it is proposed to use harmonic mean to combine
inter-scale saliency maps in SDCTPBSD. A summarized performance analysis is given in
Table 3.2.

Table 3.3 summarizes the performance of saliency detection schemes in terms of
precision, recall and F-measure onMSRA image database. Figure 3.15 exhibits performance
comparison of the proposed method against other saliency detection methods in terms of
precision, recall and F-measure with 95% confidence interval. It is observed that FT[74],
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Table 3.3: Average precision, average recall, average F-measure and average area under the
curve (AUC) values of proposed schemes and other existing schemes

Schemes Precision Recall F-measure AUC
FT[74] 0.721 0.554 0.596 0.8281
GB[69] 0.606 0.568 0.538 0.8439
IM[64] 0.679 0.113 0.237 0.6394
CB[67] 0.501 0.427 0.445 0.7595
SR[72] 0.473 0.222 0.310 0.6580
PFT[73] 0.489 0.490 0.453 0.7792
Pulse-DCT[75] 0.515 0.517 0.479 0.7843
FTPBSD 0.508 0.570 0.496 0.7971
SDCTPBSD 0.761 0.702 0.739 0.9192

Figure 3.15: Performance comparison of different schemes based on precision, recall and
F-measure for saliency detection against the proposedmethods with 95% confidence interval

GB[69] and IM[64] have good precision values than the other state-of-the-art methods.
It indicates that these methods are better suited for saliency detection, but IM[64] exhibit
very poor recall value and hence result in poor F-measure value. Only FT[74] and GB[69]
present better performance in terms of precision, recall and F-measure. However, Table 3.3
demonstrates that the proposed schemes outperform other existing salient detection schemes
in all aspects.

ROC curves of the proposed schemes (FTPBSD and SDCTPBSD) and other seven
state-of-the-art methods are shown in Figure 3.16. It is observed that FT[74], GB[69] are
leading with AUC value of 0.8281 and 0.8439, respectively. However, it is pointed out
that the proposed method SDCTPBSD has higher AUC values than all others. On the other
hand, FTPBSD outperforms IM, CB, SR, PFT and Pulse-DCT. The proposed FTPBSD and
SDCTPBSD methods have AUC of 0.7971 and 0.9192, respectively as shown in Table 3.3.
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(a)

(b)

Figure 3.16: Comparative graphical analysis of receiver characteristics (ROC) : (a) the
proposedmethods against FT [74], GB [69] and IM [64] and (b) the proposedmethod against
CB [67], SR [72], PFT [73] and Pulse-DCT [75]

For comparative analysis in terms of subjective evaluation, visual results are shown in
Figure 3.17. It is observed that FT [74] detects more non-salient regions such as shown in
third and fourth columns. GB [69] yields good performance, but sometimes does not detect
the complete salient objects as shown in third column. IM [64] also fails to detect complete
salient regions and helps in directing visual attentions only. CB [67] and SR [72] highlight
minimum details and suppress salient regions due to their biasing towards edges. PFT [73]
and Pulse-DCT [75] suffer from ill-shaped boundaries for salient regions. However, it is
observed that the proposed schemes not only highlight salient regions almost uniformly,
but also are consistent with attentions. For example, the proposed SDCTPBSD scheme

55



Chapter 3 Development of Foveated Video Compression Schemes

a) Images

b) GroundTruth

c) IM [64]

d) CB [67]

e) SR [72]

f) FT [74]

g) GB [69]

h) PFT [73]

i) Pulse-DCT [75]

j) FTPBSD

k) SDCTPBSD

Figure 3.17: Some examples for subjective analysis of saliency detection techniques. The
first row contains the test images, second row contains ground truths and all the results
of seven state-of-the-arts for saliency detection methods ( IM [64], CB [67], SR [72],
FT [74], GB [69], PFT [73] and Pulse-DCT [75]) against the proposed methods (FTPBSD
and SDCTPBSD) are shown in top to bottom order, respectively

detects the kid and bicycle and have excluded remaining background in first column of
Figure 3.17, while others detect kid or bicycle partly and even some background pixels
are also considered as salient ones. It is found that the proposed schemes produce more
uniform and consistent saliency values inside the objects rather than other existing schemes.
However, in case of low contrast images such as shown in fifth column, the performance
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Table 3.4: Performance comparison of the proposed SDCTPBSD method against TSR[76]
and Pulse-DCT[75] for motion saliency detection on video dataset

Video Sequences TSR[76] Pulse-DCT[75] Proposed Method
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Birds 0.067 0.783 0.096 0.080 0.892 0.109 0.090 0.792 0.125
Boats 0.028 0.868 0.042 0.038 0.976 0.057 0.210 0.705 0.274
Bottle 0.087 0.78 0.124 0.100 0.803 0.142 0.679 0.670 0.676
Cyclists 0.068 0.743 0.097 0.077 0.928 0.112 0.203 0.774 0.269
Freeway 0.008 0.014 0.012 0.008 0.124 0.013 0.306 0.260 0.288
Hockey 0.125 0.709 0.172 0.195 0.788 0.257 0.376 0.405 0.352
Jump 0.198 0.894 0.267 0.228 0.941 0.296 0.375 0.730 0.354
Ocean 0.077 0.536 0.108 0.087 0.616 0.122 0.100 0.913 0.141
Peds 0.191 0.556 0.245 0.221 0.607 0.280 0.389 0.429 0.390
Surfers 0.028 0.830 0.041 0.038 0.996 0.057 0.314 0.846 0.374
Chopper 0.140 0.530 0.186 0.180 0.740 0.220 0.117 0.934 0.163
Flock 0.236 0.676 0.301 0.286 0.763 0.359 0.145 0.644 0.194
Skiing 0.057 0.830 0.082 0.072 0.953 0.104 0.107 0.980 0.151
Surf 0.004 0.909 0.006 0.008 0.887 0.013 0.015 1.000 0.023

of the proposed schemes are not highly promising. The low contrast boundary between
salient objects and the surrounding background regions make detection of salient objects
very difficult. By and large, from subjective and objective analysis, it is observed that
proposed schemes outperform the other existing schemes and they are promising candidates
for saliency detection as well as eye-gaze fixation.

Performance evaluation on video sequences

The performance of the proposed SDCTPBSD scheme is evaluated with a dataset of 14
video sequences obtained from [78]. The performance of the SDCTPBSD is compared
against Pulse-DCT [75] and temporal spectral residual (TSR) [76]. Precision, recall and
F-measure (α = 0.5) are computed and tabulated in Table 3.4 for quantitative analysis. It
is observed by bottle sequence in Figure 3.18(a) that Pulse-DCT [75] mostly detects the
motion saliency points and guides the visual attention but fails to capture whole moving
objects and it misses the significant details of moving cars for the freeway sequence as
shown in Figure 3.18(b). The proposed SDCTPBSD scheme not only detects true motion
saliency, but also yields complete contour of salient objects. Since the proposed SDCTPBSD
scheme generates finally saliency map from multi-scale architecture and considers all scales
information equally important, the scale-invariant property of the proposed scheme produces
finer information. On the other hand, Pulse-DCT [75] and TSR [76] resize an input frame
to 64−pixels wide and yields a much coarser information in saliency map.

The complete spatio-temporal saliency generation results are shown in Figure 3.19 for the
News video sequence of CIF (288×352) pixels resolution. An original frame of News video
sequence is shown in Figure 3.19(a). Figure 3.19(b) shows computed spatial saliency map
by the SDCTPBSD scheme, covering all the salient regions (two persons are reading news
in foreground, one lady is dancing inside background screen and logos present in foreground
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(a)

(b)

Figure 3.18: Motion saliency in video sequences: (a) bottle and (b) freeway. Performance of
the proposedmethod results (fourth column) are compared against TSR[76] (second column)
and Pulse-DCT [75] (third column) outcomes

as well as inside the blue screen of the tv in the background) based on intensity and colour
channels. Figure 3.19(c) depicts extracted motion saliency map, it can be observed that
motion of dancing lady inside the background screen is detected. Finally, the spatio-temporal
saliency map is shown in Figure 3.19(d).

3.5.2 Experimental results of foveated video compression in
H.264/AVC

To analyse the performance of the proposed FVC schemes, various experiments have been
conducted on H.264/AVC joint model reference software (version JM18.6) [138]. For
experiments, two versions of FVC schemes are considered due to two proposed saliency
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(a) (b)

(c) (d)

Figure 3.19: Spatio-temporal saliency map in News video sequence : (a) input frame, (b)
result of spatial saliency map (Sspatial) of the proposed method, (c) motion saliency map
(Smotion) generated by the proposed method and (d) finally spatio-temporal saliency map
(SM ) generated by weighted summation of both spatial and motion saliency maps

Table 3.5: Characteristics of test video sequences

Video Sequence Foreman Highway Mobile Bus Crew Soccer Old town cross Park joy
Resolution 144× 176 144× 176 288× 352 288× 352 576× 704 576× 704 720× 1280 720× 1280

(QCIF) (QCIF) (CIF) (CIF) (4CIF) (4CIF) (HD-720p) (HD-720p)
Total Frames 300 2000 300 150 600 600 500 500
Frames per second 30 30 30 30 60 60 60 60
Motion Type Medium Fast Medium Fast Slow Fast Slow Medium

detection schemes. One is FVC-FTPBSD based on FTPBSD scheme, while another is
FVC-SDCTPBSD based on SDCTPBSD scheme. Both of these FVC schemes are compared
against conventional uniformly sampled video encoding scheme. All experiments are
carried out on standard video sequences like Foreman, Highway, etc. Video sequences are
categorized in terms of their resolutions as QCIF, CIF, 4CIF and HD 720p. The details of
the test video sequences are listed in Table 3.5.

A set of four quantization parameter (QP) values 20, 26, 32 and 38 are used to encode the
video sequences. Entropy encoding mode is set to context adaptive variable length coding
(CAVLC). To measure visual quality, the cumulative peak signal to noise ratio (CPSNR)
is used in our experiments. The detailed encoder configuration for JM 18.6 is listed on
Table 3.6.
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Table 3.6: Encoder configuration in JM 18.6 reference software of H.264/AVC

Common Parameters Inter-Coding

FrameRate = 30.0 FramesToBeEncoded = 100
DisableIntra16x16 = 1 IntraPeriod = 0
EnableIPCM = 0 IDRPeriod = 30
NumberBFrames = 0 QPISlice = 26
PicInterlace = 0 QPPSlice = {20, 26, 32, 38}
MbInterlace = 0 DisableSubpelME = 0
RDOptimization = 1 SearchRange = 32
NumberBFrames = 0 ChromaMEEnable = 0
YUVFormat = 1 PSliceSearch4x4 = 1
SourceBitDepthLuma = 8 PSliceSearch8x8 = 1
SourceBitDepthChroma = 8 NumberReferenceFrames = 1
Transform8x8Mode = 1 DisableIntraInInter = 1
SymbolMode = 0

Figure 3.20: Rate-distortion curves for Foreman sequence

Figure 3.21: Rate-distortion curves forMobile sequence
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Figure 3.22: Rate-distortion curves for Crew sequence

Figure 3.23: Rate-distortion curves for Old Town Cross sequence

Experiment 1: Bjontegaard delta bit-rate and Bjontegaard delta PSNR results

In this experiment, both proposed FVC schemes are compared with respect to BD-PSNR and
BD-bitrate against the conventional video encoder. The comparative analysis is tabulated
in Table 3.7. In Bjontegaard metric positive numbers in BD-PSNR represent gain, while
negative numbers in BD-bitrate show reduction in bit-rate. The performance comparisons
between conventional video encoder and the proposed FVC schemes in terms of R-D curves
of Foreman, Mobile, Crew and Old Town Cross video sequences are shown in Figure 3.20
through Figure 3.23, respectively.

It may be observed from Table 3.7 that visual quality is compromised to achieve
higher compression ratio. The foveated video will have lower visual quality compared to
conventional non-fovated uniform sampling video due to non-uniform resolution encoding.
However, this non-uniform sampling helps both FVC schemes to exhibit higher compression
performance as compared to conventional encoder. The proposed FVC-FTPBSD shows
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Table 3.7: Bjontegaard metric[36] performance in H.264/AVC platform

Sequence FVC-FTPBSD FVC-SDCTPBSD
Foreman -1.21 -1.43
Highway -1.12 -1.13

BD-PSNR Mobile -1.08 -1.09
(dB) Bus -0.91 -1.20

Crew -0.69 -0.89
Soccer -1.54 -1.51
Old town cross -1.32 -1.18
Park joy -0.80 -0.76
Average -1.08 -1.15
Foreman 30.01 33.47
Highway 51.82 54.43

BD-bitrate Mobile 39.40 37.74
(%) Bus 28.24 41.23

Crew 15.92 21.69
Soccer 49.88 52.79
Old town cross 32.80 50.12
Park joy 33.19 26.53
Average 35.16 39.75

degradation in BD-PSNR of 1.08 dB on average as compared to conventional encoder
for same bit-rate (or equivalently 35.16% increment in BD-bitrate on average for same
PSNR). While, the proposed FVC-SDCTPBSD demonstrates degradation in BD-PSNR of
1.15 dB on average as compared to conventional encoder for same bit-rate (or equivalently
39.75% increment in BD-bitrate on average for same PSNR). It is also noticed that for
Highway sequence both of the proposed FVC schemes have shown significant outcome.
For Highway sequence, the proposed FVC-FTPBSD shows degradation in BD-PSNR of
1.12 dB for same bit-rate (or equivalently 51.82% increment in BD-bitrate for equal PSNR),
similarly FVC-SDCTPBSD presents degradation in BD-PSNR of 1.13 dB for same bit-rate
(or equivalently 54.43% increment in BD-bitrate for equal PSNR).

Experiment 2: Analysis of encoding time complexity

In FVC scheme, QPfov is used to encode each frame with spatially varying resolution. The
QPfov may change for each macroblock depends upon the DE value, therefore, on average
QPfov will have higher value than conventional encoding average QP . Consequently, less
number of coefficients will be generated and encoded and that lead to reduced encoding
complexity. Hence, the FVC schemewill have less encoding time than its counterpart. In this
experiment, in order to compare the encoding time complexity, we have calculated encoding
time for each candidate encoder: conventional, FVC-FTPBSD and FVC-SDCTPBSD. The
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Figure 3.24: Performance comparison of the proposed FVC schemes in terms of ∆coding
time with respect to conventional video encoder

relative change in coding time (∆T) is evaluated as :

∆T =
Tproposed − Treference

Treference

(3.20)

where encoding time for the conventional encoder is considered as reference. The positive
numbers represent increase in coding time with respect to conventional encoding and
vice-versa. As ∆T represents the relative change in encoding time, so 1.0 represents
increment in encoding time by 100%. In other words, it represents 200% encoder run-time
ratio. Figure 3.24 demonstrates the relative change in coding time (∆T ) of proposed FVC
schemes for various video sequences with respect to conventional video encoder. It is
observed that both FVC-FTPBSD and FVC-SDCTPBSD have same average ∆T of −0.35

or encoder time ratio of 65% with respect to conventional video encoder. Therefore, it may
be stated that the proposed FVC-FTPBSD and FVC-SDCTPBSD not only achieve higher
compression ratio but also take less time to encode the foveated video data.

Experiment 3: Subjective evaluation

To perform the subjective evaluation of the proposed FVC schemes (FVC-FTPBSD and
FVC-SDCTPBSD), the results of the proposed schemes are shown against uniformly
sampled conventional encoder for Soccer sequence in Figure 3.25. The original 63th frame
is shown in Figure 3.25(a). Figure 3.25(b) and Figure 3.25(c) show the object maps
which are binary saliency maps of proposed FTPBSD and SDCTPBSD saliency detection
schemes, respectively. For QP values of 32 and 38, reconstructed frames of conventional,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.25: Subjective evaluation of proposed FVC schemes for QP = 32, 38 for Soccer
sequence: (a) Original frame, (b) FTPBSD object map, (c) SDCTPBSD object map, (d)-(i)
Reconstructed frames:
(d): conventional encoder (209.93 kbps, 40.48 dB),
(e): FVC-FTPBSD encoder (133.77 kbps, 37.69 dB),
(f): FVC-SDCTPBSD encoder (137.89 kbps, 37.87 dB),
(g): conventional encoder (153.5 kbps, 39.08 dB),
(h): FVC-FTPBSD encoder (113.86 kbps, 36.73 dB),
(i): FVC-SDCTPBSD encoder (115.9 kbps, 36.96 dB)

FVC-FTPBSD and FVC-SDCTPBSD encoders are compared. It may be observed that the
jacket of the player, soccer and walking woman along-with a dog are salient objects in the
scene. The jacket of the player has pop-out because of high colour channel saliency and
for other salient objects motion saliency plays a major role. These objects have higher
resolutions compared to other objects such as grass in the playground, fencing poles, trees
in the background.
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It may be observed that reconstructed frames of the proposed schemes (FVC-FTPBSD
and FVC-SDCTPBSD) have considerable lower bit-rates with a marginal quality
degradation, in terms of PSNR, but with almost similiar visual quality for salient regions and
a slight loss in quality for non-salient regions in comparison with a conventional encoder.

In other words, our HVS will appreciate the results yielded by the proposed schemes
since we have higher perception for the salient regions compared to non-salient regions.
Hence, this figure clearly demonstrates that the proposed schemes yield good visual quaity
with better bit-rates (lower bpp). Thus, higher compression performance is achieved with
good visual quality.

3.6 Conclusion

In this chapter, we have discussed the non-uniform space-variant resolution property of HVS.
Various features, which control the movement of eyes for foveation, are also studied. We
have proposed two saliency detection techniques (FTPBSD and SDCTPBSD) to determine
the most important object in a scene. Both of these schemes calculate saliency maps in
frequency domain with multi-scale analysis. The proposed saliency detection techniques
outperform other existing algorithms. The SDCTPBSD yields much higher precision, recall
and AUC than FTPBSD. Based on these two saliency detection techniques we have also
proposed two FVC schemes known as FVC-FTPBSD and FVC-SDCTPBSD. The proposed
FVC schemes greatly reduce the bit-rate of a video data while retaining high visual quality
to its salient regions.
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Chapter 4

Development of Efficient Directional
Transform Schemes

Preview

The 2D-discrete cosine transform (2D-DCT) is widely used in various video coding
standards for block based transformation of spatial data. However, for directional
featured blocks, 2D-DCT offers sub-optimal performance and may not able to efficiently
represent video data with fewer coefficients. To improve the compression ratio further
for such directional featured video data, this chapter presents a directional transform
scheme based on direction-adaptive fixed length discrete cosine transform (DAFL-DCT)
for intra-, and inter-frame. The proposed scheme selects the best suitable transform
mode out of eight proposed directional transform modes for each block. In intra-frame
coding, 2D-DAFL-DCTs are used whereas conventional 2D-DCT and 1D-DAFL-DCTs are
adaptively chosen in inter-frame encoding for each block. In addition, a new modified
zigzag scanning pattern is proposed, for 1D-DAFL-DCTs in inter-frame coding, to rearrange
these transformed coefficients into a 1D-array, suitable for entropy encoding. The
proposed scheme is analysed on JM 18.6 reference software of H.264/AVC platform. The
experimental results show that the proposed scheme achieves significant improvement over
conventional 2D-DCT and other existing directional transform schemes.

The following topics are covered in this chapter.

• Introduction

• Fundamentals of directional transform

• Direction-adaptive fixed length discrete cosine transform (DAFL-DCT)

• Implementation of DAFL-DCT in H.264/AVC platform

• Experimental results and discussion

• Conclusion
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Figure 4.1: Directional angles and corresponding transform modes of DAFL-DCT

4.1 Introduction

DCT based block transform coding is the most popular approach used in image and video
coding [6, 13, 15, 21, 95]. It exploits inherent spatial correlation among neighbouring pixels.
A superior compression performance is accomplished by efficiently encoding uncorrelated
coefficients of highly correlated video data. However, for directional featured block, DCT
yields sub-optimal performance and generates a large number of non-zero coefficients that
deteriorates compression ratio [98]. Various directional transform schemes are proposed in
literature for efficiently encoding such directional blocks [97–100, 103, 104]. However, it
is observed that these directional transform schemes suffer from many issues like ‘mean
weighting defect’, use of a large number of DCTs, use of a number of scanning patterns and
so on. In this chapter, we address these issues by presenting an novel direction-adaptive fixed
length discrete cosine transform (DAFL-DCT) scheme to enhance compression performance
of directional block. Two new sets of eight DAFL-DCT directional transform modes are
proposed; each for 4×4 and 8×8 block. The orientation angles and corresponding directional
transform modes (in brackets) are shown in Figure 4.1.

4.2 Fundamentals of Directional Transform

This section presents a brief discussion on sub-optimal performance of conventional DCT
for directional blocks followed by a detailed analysis over shortcomings of other existing
directional transform schemes available in literature.

4.2.1 Transform coding with correlation model

For a transform coding, a video frame or image is partitioned to non-overlapping finite
stationary blocks. Suppose si,j represents a pixel of ith row and jth column and assumed
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si,j

sk,l
c

Figure 4.2: Directional image generalized correlation based model for pixels si,j and sk,l,
pixels are highly correlated at directional angle θ

to have zero mean and unit variance. Then, the first-order Markov process model [177, 178]
is characterized by:

si,j = ρ1si−1,j + ρ2si,j−1 − ρ1ρ2si−1,j−1, 0 < ρ1, ρ2 < 1 (4.1)

where ρ1 and ρ2 are vertical and horizontal directional correlation coefficients of
neighbouring pixels. The inter-pixel correlation matrix of the model is defined by:

Ev[si,jsk,l] = ρ
|i−k|
1 ρ

|j−l|
2 , i, j, k, l ∈ {0, 1, · · · , N − 1} (4.2)

TheKarhunen-Loeve transform (KLT) uses covariancematrix of the given block and thus
yields uncorrelated coefficients [178]. The KLT offers optimum performance by packaging
most of the energy of the given block to a few coefficients. However, a separate KLT
matrix, for each block, limits its practical implementation in various applications [178, 179].
Ahmed et al. [179] have shown that DCT is a close alternative of KLT for a block with high
correlation coefficients and its basis functions are independent of the given data. An N-point
DCT is defined [179]:

F (u) = C(u)
N−1∑
i=0

f(i) cos
[uπ
N

(i+ 0.5)
]
, u ∈ {0, . . . , N − 1} (4.3)

where C(u) is a weighting factor given by:

C(u) =


√

1
N
, u = 0 or N√

2
N
, otherwise.

(4.4)

Similarly, a 2D-DCT is, an extension of 1D-DCT in two-dimensions, defined by:
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a) c) d)

Figure 4.3: Directional orientation of 8× 8 blocks for Foreman video sequence: a) original
frame, b) red lines represent orientation of 8× 8 blocks except 0 deg and 90 deg, c) applied
DAFL-DCT transform modes and d) zoomed version of c)

F (u, v) = C(u)C(v)
N−1∑
i=0

N−1∑
j=0

f(i, j) cos
[uπ
N

(i+ 0.5)
]

cos
[vπ
N

(j + 0.5)
]
, u, v ∈ {0, . . . , N − 1}

(4.5)
Introducing a weighting factor C(u) converts DCT into unitary matrix and therefore,

the same DCT kernel is used both in forward and inverse transform. In addition, as
2D-DCT is a separable transform, it can be computed with the row-column decomposition
by consequently applying 1D-DCTs row-wise and then column-wise. The order of these two
operations does not have influence on final outcome. This makes 2D-DCT as an optimum
block transform for horizontal and/or vertical dominant edges or orientated blocks.

4.2.2 Directional features and sub- optimal performance of
conventional DCT

Let us consider a 4 × 4 block illustrated in Figure 4.2. Let us also assume the pixels to
be highly correlated along the direction of an angle, θ from the vertical axis. By using
generalized correlation based model [178], the inter-pixel correlation matrix between pixels
si,j and sk,l is given by :

Ev[si,jsk,l]θ = ρ

∣∣|i−k| cos θ+|j−l| sin θ

∣∣
1 ρ

∣∣−|i−k| sin θ+|j−l| cos θ
∣∣

2 , i, j, k, l ∈ {0, 1, · · · , N − 1}
(4.6)

It is observed from (4.6) that correlation matrix is restricted by a directional angle, θ
leading to degraded transformation performance. In practice, video frames may contain
blocks with directional features. Further, 2D-DCT, due to its natural characteristic, does not
perform well for such blocks and produces more number of transformed AC coefficients
than it would have produced for vertical or horizontal oriented blocks. Figure 4.3 depicts
dominant block orientations of first frame of Foreman video sequence. It is noticed that a
lot of blocks belong to directional textured regions. So, to achieve higher compression ratio
these directional blocks must be efficiently encoded.

H.264/AVC supports various intra-predicted (IP) directional modes (excluding DC
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4.4: Comparison between conventional 2D-DCT and proposed DAFL-DCT for
energy compaction: (a) Original frame 002, (b) IP-residual frame 002, (c)MC-residual frame
002, (d) IP-residual block and its 2D-DCT and DAFL-DCT (transform mode 2) transform
coefficients, (e) MC-residual block and its 2D-DCT and DAFL-DCT (transform mode 2)
transform coefficients, (f) and (g) depict retained energy of transform coefficients for the
blocks (d) and (e), respectively

mode) to reduce directional correlation among neighbouring pixels of directional blocks [6].
But, it is found that directionality still exists in IP-residual blocks and that lead to sub-optimal
compression performance. A rectangle marked block of a IP-residual frame is shown in
Figure 4.4(b). Similarly, another marked block of a a motion-compensated (MC)-residual
frame is shown in Figure 4.4(c) forMobile sequence. It is clearly observed fromFigure 4.4(d)
and Figure 4.4(e) that the blocks still exhibit directional dominance even after being
processed either by IP or MC. The resultant transformed coefficients, of both residual blocks
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after employing 2D-DCT and proposed DAFL-DCT, are compared for energy compaction in
Figure 4.4(f) and Figure 4.4(g). It is found that energy is more concentrated in transformed
coefficients of the proposed DAFL-DCT. It is observed that almost 90% of energy is
concentrated in the first four or five coefficients of proposed DAFL-DCT, whereas energy
is dispersed widely between DC and AC coefficients of conventional 2D-DCT. Hence,
these residual blocks can be effectively represented by less number of coefficients using
the proposed DAFL-DCT rather than conventional 2D-DCT.

4.2.3 Deficiency of other directional transforms

Recently, many new directional transforms have been developed for video coding that take
advantage of directional correlation among pixels to achieve higher coding gain [97–100,
110, 180]. These directional transforms have demonstrated fair coding gain compared to
conventional 2D-DCT. Nevertheless, their use in real-time applications are limited and are
hard to adopt by various existing video coding standards. The key issues are:

• Mean weighting defect ―Most of the transforms [98–100] rearrange block along
various directional lines and then perform 1D-DCT. But, the resultant DC coefficients
of all directional lines are differently weighted, and hence, they would produce
unnecessary non-zero AC coefficients when secondary DCT would be performed. It
is known as ‘mean weighting defect’ and is caused by different weighting factorsC(u)

[refer (4.4)] as each directional line has different lengthN -point DCTs. To tackle this
problem, DC separation and∆DC correction modules are required [181], which mean
an extra overhead to implementation complexity.

• Multiple length DCTs:

– Usage of a large number of multiple length directional 1D-DCTs are common.
Sometimes, the lengths are even more than the block size N and sometimes too
short, for instance, just 1-or 2 [98, 100].

– Moreover, many directional DCTs do not have transform lengths of integer
powers of 2, which limit implementation of a number of fast algorithms for
N-point DCT.

– Extensive use of variable length directional DCTs not only increases computation
time, but also produces a large number of DC coefficients that degrades
compression ratio. For instance, DDCT uses 15 primary DCTs for 8 × 8 block
in diagonal down-left transform mode [98].

• Computational complexity ―Introducing a number of new directional scanning
patterns that coincide with the characteristics of directional transform mode for
efficient entropy encoding [99, 100] leads to higher implementation cost with more
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.5: DAFL-DCTs for 8× 8 blocks

storage capacity and higher computational complexity for selecting these scanning
patterns and eventually increases the encoding time.

4.3 Development of Direction-Adaptive Fixed Length
Discrete Cosine Transform (DAFL-DCT)

For a directional block, correlation matrix given by (4.6), is restricted by a directional angle
θ. To maximize the performance of the correlation matrix (4.6), we counter-rotate a given
block by a angle θc and hence, the effective rotation angle becomes θ− θc. If θ equals to θc,
the correlation matrix will be in the form of (4.2) and the resultant transform will yield near
optimal performance of KLT. In this section, we develop a new direction-adaptive fixed
length transform (DAFL-DCT) to achieve higher compression ratio in case of directional
featured blocks. There are two sets of eight directional transform modes, specifically
designed for 8 × 8 blocks and 4 × 4 blocks. The proposed 8 × 8 DAFL-DCTs and 4 × 4

DAFL-DCTs are shown in Figure 4.5 and Figure 4.6, respectively. In each DAFL-DCT
transform mode, the directional lines are almost unidirectional and represent dominant
orientation of a block. The orientation angles and corresponding transform modes ranging
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: DAFL-DCTs for 4× 4 blocks

from 0 through 7 for DAFL-DCT are shown in Figure 4.1.

It is observed that the proposed work is closely related to other existing directional
transforms that include Directional Discrete Cosine Transform (DDCT) proposed by Zeng
et al. [98], Direction-Adaptive Residual Transform (DART) proposed by Cohen et al.
[99], and 1D-Transform proposed by Kamisli et al. [97]. Both DDCT and DART
have eight directional transform modes similar to 2D-DAFL-DCT and are used in both
intra-, and inter-coding. Unlike other methods, 1D-Transform consists of sixteen 1D-DCT
directional transform modes and additionally includes conventional 2D-DCT. The proposed
work uses only eight 1D-DAFL-DCT transform modes and conventional 2D-DCT for
non-directional blocks in inter-coding. There exists three major differences between the
proposed DAFL-DCT and other existing directional transforms.

The very first difference lies in the length of the transforms used. If the given block size
is N × N , then the proposed DAFL-DCT offers transforms of fixed length N , whereas
DDCT, DART and 1-D Transform have multiple transforms of variable length ranging
from 1 to 2N − 1, N/2 to 2N − 1 and 2 to N , respectively. Secondly, the proposed
DAFL-DCT rearranges the pixels according to the selected transformmodes and then applies
2D-DAFL-DCT for intra-coding or 1D-DAFL-DCT for inter-coding. The other directional
transforms DDCT, DART and 1D-Transform apply directional DCTs to block data directly.
The third difference lies in choosing the directional paths of DAFL-DCT transform modes.
The directional paths are heuristically designed for fixed length transforms and those paths
are different from other existing directional transforms except DAFL-DCT transform modes
0 and 1.

Instead of discussing some specific block sizes like 8 × 8 or 4 × 4, let us consider a
general block fb(r, c) of size N × N . The detailed implementation process is discussed as
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follows.

Step 1 Directional transpose:

First, out of all available directional DAFL-DCT transform modes (ϖ), where ϖ =

0, 1, · · · , 7 for intra-frame coding and for inter-frame coding additionally include
2D-DCT mode, an optimum directional DAFL-DCT mode is selected for the current
block. The selection process of transform modes will be discussed in detail later.
After the DAFL-DCT mode is selected, the N ×N block data are rearranged into N
1D-vectors by traversing N directional paths (shown with red lines in Figure 4.5 and
Figure 4.6) and arrange them row-wise according to circled row numbers. The length
of each directional pattern isN -points. The directional transposed block is a group of
row vectors P and expressed as:

f̄b(r, c) = [Pk]
′ , k = 0, 1, · · · , N − 1 (4.7)

Step 2 Horizontal 1D-DCT:

The directional transpose has converted a directional block into a horizontally
orientated one. Now, N -point 1D-DCT is performed to the reordered block f̄b(r, c)

along the horizontal direction to all rows individually. The horizontal 1D-DCT
exploits spatial correlation among directionally oriented block data. The horizontally
transformed coefficients are represented as:

Fb(u) = [P (u)]′ , u = 0, 1, · · · , N − 1 (4.8)

Step 3 Vertical 1D-DCT:

The horizontal 1D-DCTs have placed the DC coefficients to first column of each row
and then AC coefficients in subsequent columns. Now, secondary N -point 1D-DCT
along the vertical direction is performed to each column. This process yields one DC
coefficient in top-left corner and AC coefficients in remaining N2 − 1 indices. The
transformed coefficients are expressed as:

Fb(u, v) = [pu,v]N×N , u, v = 0, 1, · · · , N − 1 (4.9)

These coefficients, after quantization, are rearranged from 2D-block into 1D-vector
using scanning pattern, so that they can be efficiently encoded by entropy encoder.

Step 4 Directional transform mode selection:

Finally, a rate-distortion optimization (RDO) [182] is employed to select the best
suitable DAFL-DCT transformmode. In RDO, each block is transformed and encoded
individually by all available transform modes followed by RD cost (also known
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as Lagrangian cost function) calculation. The DAFL-DCT transform mode with
minimum RD cost is considered to be an optimum transform mode. The RDO is
evaluated by optimizing the cost function, J as given below:

J(X,ϖ) = arg min
ϖ

{Ds(X,ϖ) + λ ·R(X,ϖ)} (4.10)

where X depicts the current block, ϖ represents DAFL-DCT transform mode, J is
RD cost, Ds corresponds to distortion, λ is Lagrangian multiplier and R stands for
bit-rate.

The fundamental concept in designing of DAFL-DCT transform modes is that the
directional paths should not have unequal lengths and efficacy of DCT should be optimally
utilised as well. In DAFL-DCT, equal lengthN point 1D-DCTs are used and the length (N )
is also integral multiple of 2. Hence, it is free from aforementioned ‘mean weighting defect’
and adaptive to fast algorithms on VLSI architecture.

4.3.1 Residual coding

Intra-frame coding

In H.264/AVC intra-frame coding, blocks are initially predicted by available directional
IP-modes to reduce directional spatial correlation between pixels [25]. However, it is
observed that the directional features are still present in IP-residuals and exercise of
conventional 2D-DCT to these residuals lead to sub-optimal compression performance. We
propose to use DAFL-DCT with eight transform modes for such IP-direction dominant
residual blocks. The best DAFL-DCT transform mode is selected using RDO. The proposed
DAFL-DCT yields a few coefficients to represent these directional blocks and thus, improves
the compression ratio.

Inter-frame coding

In video coding, the temporal redundancy between frames are reduced by inter-frame coding.
In inter-frame, prediction errors or MC-residuals are significantly high along the moving
object boundaries or edges as against smooth regions, therefore, they form unidimensional
structures aligned to various directions [97]. The conventional 2D-DCT is not a suitable
candidate for these directional 1D-structures. We propose to use 1D-DAFL-DCT to
transform MC-residuals, unlike proposed 2D-DAFL-DCT for IP-residuals. However,
MC-residual frames, in practice may contain several blocks with no dominant directional
features, these blocks are encoded well by conventional 2D-DCT. Therefore, in the
proposed scheme, inter-frame coding uses eight directional 1D-DAFL-DCT modes and one
conventional 2D-DCT.
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Figure 4.7: Illustration of steps for implementation of DAFL-DCT transform mode 3 for
4 × 4 block. The dotted block depicts as optional block for MC-residual coding whereas
mandatory for intra-frame residual coding

The stepwise implementation of DAFL-DCT for N × N block is shown in Figure 4.7.
Here 4×4 block is considered for illustration. The last stage, shown in dotted line, represents
an optional module for inter-frame coding.

An appropriate transform produces less number of coefficients and yields high energy
compaction. But, selection of the best suitable DAFL-DCT mode for each block is a
challenging task. To resolve this problem, we propose two encoding modes of DAFL-DCT:
(a) DAFL-HE and (b) DAFL-LC. The DAFL-DCT encoding modes are discussed in detail
below.

4.3.2 DAFL-DCT encoding modes

Direction-adaptive fixed length-high efficiency (DAFL-HE)

The DAFL-HE is a high efficiency mode that selects an optimum DAFL-DCT transform
mode for each block. The DAFL-HE is a computational intensive mode, as it uses RDO
to choose the best transform mode from all available DAFL-DCT transform modes. In
RDO, for every candidate transform mode, the current block is transformed, quantized and
entropy encoded to evaluate bit-rate (R) and thereafter, decoding operations are performed to
measure distortion (D) of the reconstructed block so that RD-cost can be measured. Finally,
a transform mode with minimum RD-cost is selected as an optimum transform mode for the
given block.

Direction-adaptive fixed length-low complexity (DAFL-LC)

It is observed that DAFL-HE yields superior compression performance for directional
featured blocks, since it selects an optimum DAFL-DCT transform mode at the cost of
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Figure 4.8: Illustration of applied DAFL-DCT transform modes on frame 001 of Foreman
sequence

Figure 4.9: Neighbouring blocks

higher complexity. In a low complexity video encoding system, such as a hand-held device
that has limited resources, DAFL-HE may become a bottleneck for real-time encoding.
Therefore, for resource-constrained systems, we propose a low complexity mode called
DAFL-LC. DAFL-LC selects the best transform mode from a local set of transform modes
made by current block information. The experimental outcomes have shown that DAFL-LC
outperforms conventional 2D-DCT in compression ratio with a negligible increase in
encoding time and at a marginal compression loss compared to DAFL-HE. In DAFL-LC,
the block orientation is assessed by gradient based approach [183]. To select an optimum
transform mode, gradient magnitudes and directions of each block data are evaluated
and predominant orientation of the block is determined based on orientation histogram.
DAFL-DCT transform modes corresponding to dominant directions are taken as candidate
transform modes. There are many blocks which do not exhibit governing orientations and
selection of appropriate DAFL-DCT modes for such blocks is extremely hard. To mitigate
any ambiguity in choosing particular directional transform mode, conventional 2D-DCT is
always selected as one of the potential options.

In our experiments, we have also observed that neighbouring blocks tend to opt similar
DAFL-DCT transform modes due to high spatial correlation between them. For instance,
as shown in Figure 4.8 the neighbouring blocks inside the marked collar area of Foreman
video sequence have selected the same transformmodes. So, unless there is sudden change in
orientation or occurrence of edge boundaries, there is high probability that the current block
would choose the same transform mode as one of its neighbours. The proposed DAFL-LC
exploits spatial correlation among neighbouring blocks to select an optimum transformmode
for the current block. The current block E and its neighbours are shown in Figure 4.9. The
selection procedure of transform mode for the proposed DAFL-LC is given below.
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Step 1: Gradients’ magnitude and orientation are evaluated for each sample si,j of current
block E as:

Magnitudei,j = |Ghi,j
|+ |Gvi,j |, (4.11)

Orientationi,j =
180◦

π
arctan

(Gvi,j

Ghi,j

)
(4.12)

where Ghi,j
and Gvi,j represent horizontal and vertical directional gradients,

respectively. The gradients are calculate as:

Ghi,j
= si+1,j − si−1,j, (4.13)

Gvi,j = si,j+1 − si,j−1 (4.14)

Step 2: A histogram is formed for orientation angles covering 0◦ to 180◦ by adding
block samples weighted by gradient magnitudes. Orientation angles corresponding
to highest peak and the next highest are considered as prominent directions of the
current block. The DAFL-DCT transform modes corresponding to those directions
are chosen as primary candidates (Tϖ1 and Tϖ2).

Step 3: Conventional 2D-DCT (Tϖ2D-DCT
) is a default candidate transform mode in

inter-frame coding, whereas the transform mode 0 is employed in intra-frame coding.

Step 4: Transform modes TϖA
of adjacent left block (A) and TϖB

of top block (B)
are also considered as candidate transform modes due to spatial correlation among
neighbouring blocks.

Step 5: Finally, RDO is evaluated using (4.10) on a small set of transform candidates
determined by local features of current block. The total available transform modes
are:

ϖ = {Tϖ1 , Tϖ2 , Tϖ2D-DCT
, TϖA

, TϖB
} (4.15)

It is clearly observed form the (4.15) that the complexity of the DAFL-LC mode is
considerably reduced by generating local data dependent set of limited transformmodes. The
worst performance of DAFL-LC is observed when an optimum transform mode is chosen
such that all the transform modes from set ϖ, as mentioned in (4.15), assumes mutually
different values viz. Tϖ1 ̸= Tϖ2 ̸= Tϖ2D-DCT

̸= TϖA
̸= TϖB

. However, at its worst
performance, DAFL-LC requires to evaluate 37.5% less transform modes than DAFL-HE,
which reduces the transform evaluation part of encoding time by 37.5%. The experimental
results reveal that in real-world video sequences, more than 50% blocks opt same transform
modes as their neighbours which effectively reduces the local set of candidate transform
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Figure 4.10: Schematic representation of implementation of DAFL-DCT in H.264/AVC
video encoder

modes. Hence, unlike DAFL-HE, the number of available transform modes in DAFL-LC
would vary from 1 to 5, which significantly reduces DAFL-LC encoding time.

4.4 Implementation of DAFL-DCT in H.264/ AVC
platform

H.264/AVC is a leading video coding standard in the current commercial market due to
its superior compression performance. To integrate DAFL-DCT in H.264/AVC encoding
platform, the conventional two-dimensional integer transform and its inverse is replaced
by proposed DAFL-DCT and its inverse, respectively. In addition, there are some other
encodingmodules that demandmeticulous considerations such as entropy coding and coding
of side information. The proposed DAFL-DCT integrated into H.264/AVC platform is
shown in Figure 4.10.

4.4.1 Entropy coding

H.264/AVC opts either context adaptive variable length coding (CAVLC) or context adaptive
binary arithmetic coding (CABAC) to encode transformed and quantized coefficients
depending on selected entropy coding mode [6]. The residual blocks are transformed by
integer transform, quantized and then entropy encoded. Before applying entropy encoding,
the quantized coefficients are first converted from a 2D-block to a 1D-vector using zigzag
scanning pattern as shown in Figure 4.11(a). The zigzag scanning pattern exploits the
characteristics of 2D-DCT and places higher valued coefficients at the beginning of the
vector and keeps lower or zero valued coefficients at the end [27]. Since DAFL-DCT,
in intra-frame coding, rearranges residual blocks using directional transpose and then
conventional separable 2D-DCT is employed on reordered block, the same conventional
zigzag scanning pattern is used.

In inter-frame coding, as discussed in Section 4.3.1, DAFL-DCT uses eight
1D-DAFL-DCT transform modes and one conventional 2D-DCT. The residual blocks that
do not exhibit dominant orientations opt conventional 2D-DCT and use the same zigzag
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Figure 4.11: Scanning patterns for entropy coding:(a) Conventional zigzag pattern and (b)
Modified zigzag pattern

scanning pattern. On the other hand, directional featured residual blocks are transformed
by one of the proposed 1D-DAFL-DCT transform modes. The 1D-DAFL-DCT applies
horizontal DCT to each row. The DC coefficient of each horizontal DCT are placed in first
column of transformed block and remaining AC coefficients are kept in subsequent columns.
The conventional zigzag scanning pattern fails to arrange them in expected decreasing order
of amplitudes and leads to higher output bit-rate. Therefore, we propose a new modified
zigzag scanning pattern, as shown in Figure 4.11(b), for 1D-DAFL-DCT transform modes.
The modified scanning order is designed in order to keep high valued DC and low-frequency
coefficients at the beginning of the 1D-array and low valued or zero valued high-frequency
coefficients at the end.

Let us assume a motion-compensated (MC) residual block of sizeN×N in inter-coding.
The block data is represented as:

X(x, y) = [pi,j]N×N , i, j = 0, 1, · · ·N − 1 (4.16)

Suppose 1D-DAFL-DCT transform mode 3 is selected for encoding. The given N ×N

block pixels are rearranged into N 1D-arrays by traversing N directional lines of the given
transformmode as shown in Figure 4.12(a). This vector-set comprises vectors of equal length
N arranged row-wise as shown in Figure 4.12(b). The rearranged block is a group of row
vectors P , expressed as:

X̄(x, y) = [Pk]
′ , k = 0, 1, · · · , N − 1. (4.17)

To exploit spatial correlation between pixels pi,j ,N -point 1D-DCT is performed to each
row individually as shown in Figure 4.12(c). The horizontally transformed coefficients are
represented as:

X(u) = [P (u)]′ , u = 0, 1, · · · , N − 1 (4.18)
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Figure 4.12: Illustration of steps for implementation of DAFL-DCT with modified scanning
order for entropy encoding. DAFL-DCT Transform mode 3 is considered for MC-residual
block. (a) Original block, (b) Reordered block, c) Transform coefficients after applying
horizontal 1D-DCT to each rows, and (d) Reordered coefficients after applying modified
zigzag scan (For simplicity, we have omitted quantization step)

.

Figure 4.13: Analysis of output bits per frame for inter-frame coding using DAFL-DCT

where P00, P01, P02 and P03 represent DC coefficients and Piu, (u = 1, 2, · · · , N − 1)
depict high frequency AC coefficients with increasing ‘i’ index corresponding to ‘u’ index.

Since 1D-DAFL-DCT transform mode 3 is selected for given MC-residual block, the
proposed new modified zigzag scan is applied on transformed and quantized block before
entropy encoding. For efficient entropy encoding, the coefficients are arranged in scanning
order as shown in Figure 4.12(d). The modified scanning order is designed in order to keep
high valued quantized DC and low-frequency coefficients at the beginning of the 1D-array
and low valued or zero valued high-frequency coefficients at the end with increasing order
of ‘i’ index of transform coefficients for each row vector.

A comparative analysis of output encoded bits using conventional zigzag scan and
modified zigzag scan is shown in Figure 4.13. It is observed that DAFL-DCT coefficients
are efficiently encoded and therefore, it yields reduced bit-rate for modified zigzag scanning
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Algorithm 4.1 Proposed DAFL-DCT transform mode side information coding
Input: (1) TxModeX : DAFL-DCT transform mode of current block X

(2) TxModeA : DAFL-DCT transform mode block A
(3) TxModeB : DAFL-DCT transform mode block B

Output: (1) infoPredTxModeFlag : 1-bit codeword
(2) infoTransformMode : 3-bit codeword

Method:

PredTxMode =


0 if blocks A & B are not available,
TxModeA if block B is not available,
TxModeB if block A is not available,
min(TxModeA, TxModeB) otherwise

diffTxMode = TxModeX − PredTxMode
if diffTxMode == 0 then

infoPredTxModeF lag = 1 ◃ 1− bit codeword
else

infoPredTxModeF lag = 0
end if
if infoPredTxModeF lag == 0 then

if TxModeX < PredTxMode then
infoTransformMode = TxModeX ◃ 3− bit codeword

else
infoTransformMode = TxModeX − 1

end if
end if

pattern than conventional zigzag scan. The most important feature of newmodified scanning
order is its suitability to all 1-D DAFL-DCT transform modes. This is an additional
difference between the proposed DAFL-DCT and other existing directional transforms.
The proposed directional transform scheme uses the same conventional zigzag scanning
pattern for intra-coding and for conventional 2D-DCT in inter-coding and a modified
zigzag scanning pattern is proposed for all 1D-DAFL-DCT transformmodes in inter-coding,
whereas DDCT [98], DART [99] and 1D-Transform [97] use different scanning patterns for
each directional transform mode.

4.4.2 Coding of side information

In H.264/AVC video coding, along with quantized coefficients, a lot of side information data
such as macroblock type, intra-predication mode, motion vectors, etc., are also encoded and
a decoder uses this information, in order to perform exact inverse operations and reconstruct
video frames. Conventionally, H.264/AVC employs one of the two block transforms of
size 4 × 4 and 8 × 8 and conveys to the decoder by 1-bit codeword. But, the DAFL-DCT
chooses an optimum transform mode from the two sets of transform modes; one for each
block transform size (4×4 and 8×8). Therefore, additional overhead bits as side information
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for each transform mode are sent to decoder for proper reconstruction of encoded blocks. In
this section, we propose an efficient way to encode this side information with minimum
overhead bit-rate.

As discussed earlier, neighbouring blocks tend to select same transform modes unless
there is a sudden change in the region. Based on this observation, we have proposed a
new approach for side information coding by exploiting spatial correlation of neighbouring
blocks. In our proposed scheme, all selected transform modes are categorized into two
groups; ‘predicted’ and ‘non-predicted’. If a block chooses the same DAFL-DCT mode
as its one/ both neighbours (A and B as shown in Figure 4.9), the transform mode is denoted
as ‘predicted’ and represented by 1-bit codeword (infoPredTxModeFlag) only. However, if
a block opts DAFL-DCT mode dissimilar to its neighbours, it falls into into ‘non-predicted’
group and requires additional 3-bits for codeword (infoTransformMode) to represent the
selected transform mode in encoder output. The detailed algorithm of the proposed
DAFL-DCT transform mode side information coding is described as Algorithm 4.1.

In the proposed DAFL-DCT, if 4 × 4 block transform is used in intra-coding, then all
16 blocks will be individually encoded by different DAFL-DCT transform modes and 16

codewords will be generated. However, in inter-coding, MC-residual 4 × 4 blocks, inside
a 8 × 8 block, are forced to choose the same transform mode and represented by only one
codeword similar to 1D-Transform [97]. It is observed that many low valued MC-residual
4×4 blocks contain no coefficients after transform and quantization. Therefore, transmitting
one codeword as side information for each of these 4 × 4 blocks in a 8 × 8 block would
increase the average side information bit-rate that degrades the compression performance.
So, the restriction in selecting different DAFL-DCT transform mode is compromised for
the improvement in compression performance. If a macroblock opts 8× 8-block transform,
then only 4 codewords are required as side information. The proposed scheme efficiently
categories the selected transform modes in ‘predicted’ and ‘non-predicted’ groups and
encode them quite efficiently with very less overhead bits.

4.5 Experimental results and discussion

In order to investigate the efficacy of the proposed DAFL-DCT scheme, various experiments
have been conducted on H.264/AVC joint model reference software (version JM18.6).
For experiments, the conventional 2D-DCT based encoder is represented by DCT, while
DAFL-DCT with high efficiency is denoted as DAFL-HE and DAFL-DCT low complexity
version is portrayed as DAFL-LC. However, the default encoding mode of DAFL-DCT is
DAFL-HE. In addition, there are two block transform modes according to transform block
size of 4×4 or 8×8. An encoder with particular block transform mode is denoted by adding
transform block size as postfix to encoder; for example, DAFL-HE_4×4, DAFL-HE_8×8,
etc. If no postfix is used, it indicates the encoder performance is obtained from all transform
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Table 4.1: Encoder configuration in JM 18.6 reference software of H.264/AVC

Common Parameters Intra-Coding Inter-Coding
FrameRate = 30.0 FramesToBeEncoded = 50 FramesToBeEncoded = 100
DisableIntra16x16 = 1 IntraPeriod = 1 IntraPeriod = 0
EnableIPCM = 0 IDRPeriod = 15 IDRPeriod = 0
NumberBFrames = 0 QPISlice = {20, 26, 32, 38} QPISlice = 26
SymbolMode = 0 QPPSlice = {20, 26, 32, 38}
PicInterlace = 0 DisableSubpelME = 0
MbInterlace = 0 SearchRange = 32
RDOptimization = 1 NumberReferenceFrames = 1
YUVFormat = 1 DisableIntraInInter = 1
SourceBitDepthLuma = 8
SourceBitDepthChroma = 8
Transform8x8Mode = {0, 2}

modes.

4.5.1 Experimental set-up

All experiments are carried out on standard video sequences like Foreman, Highway and
Mobile. Video sequences are categorized in terms of their resolutions as QCIF, CIF, 4CIF
and HD 720p. Table 3.5 lists the details of the test video sequences. All sequences have
complex motions and are rich in directional featured blocks.

We have considered the following two modes to encode video frames.

• Intra-coding with all intra frames (intra-frame only)

• Inter-coding with frame pattern IPPP· · · (first I-frame and remaining all P-frames)

In intra-coding, all frames are IP-frames and encoded by DAFL-DCT. In inter-coding,
in our experiments we do not encode first I-frame with DAFL-DCT, so that performance
of DAFL-DCT can be measured only for inter-frame encoding. For simplicity and to avoid
any kind of ambiguity in performance comparison, in intra-coding, available block sizes are
4 × 4 and/ or 8 × 8 and similarly, in inter-coding, available block sizes are 8 × 8, 8 × 4,
4 × 8 and 4 × 4. The video sequences are encoded by a set of four quantization parameter
(QP) values 20, 26, 32 and 38. Entropy encoding mode is set to CAVLC mode. The detailed
encoder configuration for JM18.6 is listed on Table 4.1.

4.5.2 Experiment 1: Bjontegaard metrics performance

We have considered Bjontegaard delta bit-rate (BD-bitrate), Bjontegaard delta PSNR
(BD-PSNR) and Bjontegaard delta SSIM (BD-SSIM) as benchmark metrics to evaluate
efficacy of the proposed scheme. Bjontegaard metrics calculate average change in bit-rate or
PSNR difference between two encoders’ R-D curves [36]. In Bjontegaard metric, positive
numbers in BD-PSNR and BD-SSIM represent gain, while negative numbers in BD-bitrate
show reduction in bit-rate. The BD-PSNR, BD-SSIM and BD-bitrate comparisons are
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Table 4.2: Bjontegaard metric[36] performance for 4× 4 block transform in H.264/AVC in
CAVLC platform

Intra-Coding Inter-Coding
Sequence DAFL-HE DAFL-LC DAFL-HE DAFL-LC
Foreman 0.37 0.27 0.31 0.05
Highway 0.29 0.21 0.16 0.06
Mobile 0.58 0.41 0.47 0.22

BD-PSNR Bus 0.42 0.29 0.31 0.13
(in dB) Crew 0.23 0.19 0.20 -0.01

Soccer 0.31 0.23 0.27 0.13
Old town cross 0.27 0.20 -0.08 -0.05
Park joy 0.48 0.33 0.33 0.20
Average 0.37 0.27 0.25 0.09
Foreman 0.0027 0.0020 0.0019 0.0003
Highway 0.0036 0.0028 0.0014 0.0004
Mobile 0.0055 0.0039 0.0048 0.0022

BD-SSIM Bus 0.0048 0.0033 0.0021 0.0003
Crew 0.0018 0.0015 0.0011 -0.0007
Soccer 0.0035 0.0024 0.0006 -0.0002
Old town cross 0.0033 0.0023 -0.0022 -0.0012
Park joy 0.0059 0.0041 0.0027 0.0000
Average 0.0039 0.0028 0.0015 0.0001
Foreman -6.21 -4.54 -5.87 -1.14
Highway -7.31 -5.26 -7.46 -3.01
Mobile -6.60 -4.70 -8.05 -3.89

BD-bitrate Bus -6.63 -4.76 -5.27 -2.02
(%) Crew -4.65 -3.95 -6.01 -0.29

Soccer -6.10 -4.58 -7.52 -3.72
Old town cross -6.70 -4.89 -13.51 -5.81
Park joy -7.53 -5.29 -5.32 -3.11
Average -6.47 -4.75 -7.38 -2.88

summarised in Table 4.2 and Table 4.3 for 4 × 4 and 8 × 8 block transform, respectively.
The R-D curves of Mobile and Park joy video sequences are shown in Figure 4.14 and
Figure 4.15 that exhibit performance comparisons between conventional 2D-DCT and
proposed DAFL-DCT for intra-coding and inter-coding, respectively. In general, following
observations are made.

1. In intra-coding, significant reductions in BD-bitrate are observed for the proposed
DAFL-HE and DAFL-LC. DAFL-HE achieves improvement in BD-PSNR of 0.37
dB (or equivalently 6.47% reduction in BD-bitrate) and 0.26 dB (or equivalently
5.30% reduction in BD-bitrate) on average for 4 × 4 and 8 × 8 block transforms,
respectively. It is also noticed that the proposed DAFL-HE with 4×4 block transform
achieves BD-PSNR of 0.58 dB (or equivalently 6.60% reduction in BD-bitrate) for
Mobile and 0.48 dB (or equivalently 7.53% reduction in BD-bitrate) for Park joy
video sequences. It is observed that video sequences having less directional featured
blocks yield lower improvements in BD-PSNR (or equivalently in BD-bitrate savings)
as these non-oriented blocks prefer 2D-DCT for encoding and give a little space
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Table 4.3: Bjontegaard metric[36] performance for 8× 8 block transform in H.264/AVC in
CAVLC platform

Intra-Coding Inter-Coding
Sequence DAFL-HE DAFL-LC DAFL-HE DAFL-LC
Foreman 0.32 0.21 0.53 0.16
Highway 0.22 0.16 0.35 0.25
Mobile 0.38 0.25 0.74 0.41

BD-PSNR Bus 0.29 0.21 0.40 0.23
(in dB) Crew 0.21 0.16 0.34 0.06

Soccer 0.23 0.17 0.44 0.23
Old town cross 0.19 0.14 0.22 0.10
Park joy 0.28 0.21 0.49 0.29
Average 0.26 0.19 0.44 0.22
Foreman 0.0029 0.0019 0.0037 0.0009
Highway 0.0032 0.0024 0.0034 0.0022
Mobile 0.0043 0.0031 0.0075 0.0040

BD-SSIM Bus 0.0039 0.0027 0.0031 0.0014
Crew 0.0020 0.0014 0.0019 -0.0010
Soccer 0.0030 0.0021 0.0020 0.0005
Old town cross 0.0025 0.0018 0.0019 0.0007
Park joy 0.0040 0.0030 0.0067 0.0023
Average 0.0032 0.0023 0.0038 0.0014
Foreman -5.88 -3.84 -9.94 -3.02
Highway -7.08 -5.32 -13.75 -10.03
Mobile -4.47 -3.02 -11.65 -6.73

BD-bitrate Bus -4.82 -3.47 -5.66 -3.32
(%) Crew -5.21 -3.98 -9.67 -2.12

Soccer -5.01 -3.82 -10.86 -5.68
Old town cross -5.15 -3.75 -16.24 -7.29
Park joy -4.79 -3.70 -7.43 -4.62
Average -5.30 -3.86 -10.65 -5.35

for improvement by the proposed scheme. Moreover, positive values of BD-SSIM
indicate superior visual quality of the proposed DAFL-DCT scheme.

2. In inter-coding, DAFL-HE shows improvement in BD-PSNR of 0.25 dB (or
equivalently 7.38% reduction in BD-bitrate) and 0.44 dB (or equivalently 10.65%
reduction in BD-bitrate) on average for 4×4 and 8×8 block transforms, respectively.
It is also found that the proposed DAFL-HEwith 8×8 block transform achieves a quite
noticeable BD-PSNR of 0.74 dB (or equivalently 11.65% reduction in BD-bitrate) for
Mobile and 0.49 dB (or equivalently 7.43% reduction in BD-bitrate) for Park joy video
sequences. For high and complex motion video sequences (Highway, Mobile, Bus,
Soccer and Park joy) it gives superior compression performance as compared to low
and simple motion video sequences like Foreman and Crew.
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(a) (b)

(c) (d)

Figure 4.14: Rate-distortion curves for intra coding forMobile and Park joy sequences

(a) (b)

(c) (d)

Figure 4.15: Rate-distortion curves for inter coding forMobile and Park joy sequences
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Figure 4.16: Overall percentage distribution of DAFL-DCT transform modes for intra-, and
inter-coding

4.5.3 Experiment 2: Transform mode selection

In this experiment, we have investigated that how many number of times each transform
mode is selected at various coding modes. The overall percentage distribution of intra-,
and inter-coding is shown in Figure 4.16. The percentages are obtained from all video
sequences for all block transform modes and for all QP values. The percentage distribution
reflects that 2D-DCT (inter-frame coding) and DAFL-DCT transform mode 1 (intra-frame
coding) are most preferred transform modes (around 60%) than the other transform modes.
In a typical video frame, 40% directional featured blocks are reasonable numbers, as all
blocks do not have governing directional features. It is also worth mentioning that at higher
bit-rates (lower QP value), the percentage of directional transform mode selection is high at
around 45.10% than approximately 33.13% at lower bit-rates. In Figure 4.17, the average
percentage distribution of transform modes in inter-coding of Foreman video sequence at
lower resolution and of Park joy video sequence at higher resolution are shown along-with
overall average percentage distribution. It is observed that at lower resolution 2D-DCT is
opted more frequently; whereas at higher resolutions, 1D-DAFL-DCT modes are mostly
preferred.

4.5.4 Experiment 3: Side information

In the proposed DAFL-DCT scheme, side information represents the overhead bits needed to
transmit to a decoder to inform the selected transform mode out of all available directional
transform modes. In our proposed scheme, we have introduced an efficient technique to
generate side information with minimum bit-rate overhead. As discussed earlier, transform
modes of all blocks are categorised in two groups: predicted and non-predicted. Further,
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(a) (b) (c)

Figure 4.17: Percentage distribution of DAFL-DCT transform modes in inter-coding. (a)
average, (b) Foreman and (c) Park joy

(a)

(b)

Figure 4.18: Side information distribution: (a) distribution of ‘predicted’ and
‘non-predicted’ transform blocks, (b) percentage of total bit-rate used in side information

due to spatial redundancy, neighbours have tendency to opt similar transform modes. This
characteristic is exploited to minimize side information bit-rate. Each predicted block needs
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1-bit codeword and every non-predicted block requires 4-bit codeword to inform selected
transform.

The percentage distribution of predicted and non-predicted transform blocks for each
video sequence in inter-coding is shown in Figure 4.18(a). The average numbers are obtained
from all encoding options. The average percentage of predicted and non-predicted blocks
are 62.64% and 37.36%, respectively. The high motion and complex video sequences
(Mobile, Bus and Park joy) have less predicted transform blocks as compared to low motion
and simple video sequences. Figure 4.18(b) presents percentage of total bit-rates used in
side information on average and for higher bit-rate (QP=26) considering all available block
transform modes for all video sequences in inter-coding. The average percentage of bit-rate
used for side information is 8.50%, while for QP at 26, the average percentage is only 5.29%.

4.5.5 Experiment 4: Analysis of encoding time complexity

In the proposed DAFL-DCT scheme, an optimum transform mode is selected for each
block from all available transform modes (8 for intra-, and 9 for inter-coding) using RDO.
RDO based selection process not only achieves higher compression performance, but also
increases computational overhead. In RDO, each block has to go through various encoding
modules such as transformation, quantization, entropy encoding and then inverse operations
for every available directional transform mode in sequential order. Moreover, DAFL-DCT
uses directional transpose and its inverse to rearrange block data that costs as extra encoding
time. Hence, encoding time increases considerably with number of available transform
modes. The proposed DAFL-HE chooses an optimum transform mode from globally
available transform modes. On the other hand, DAFL-LC selects from a variable length
local set of transform modes that reduces its encoding time significantly.

In this experiment, in order to compute the encoding time complexity, we have calculated
encoding time for each candidate encoder: conventional 2D-DCT, DAFL-HE and DAFL-LC
for intra-, and inter-coding. The relative change in encoding time∆T is calculated by (3.20) ,
where encoding time for the conventional 2D-DCT is considered as reference. The positive
numbers represent increase in coding time with respect to conventional 2D-DCT and
vice-versa. Figure 4.19(a) and 4.19(b) represent∆T for intra-, and inter-coding, respectively.
It is observed from Figure 4.19(a) that encoding time varies significantly for different block
transforms. The average ∆T of DAFL-HE for 4 × 4 block transform mode is equal to 3.6

whereas it is 4.0 for 8×8 block transform. In addition,∆T performance of DAFL-LC is also
quite promising. The average ∆T of DAFL-LC is equal to 1.3 and 1.4 for 4 × 4 and 8 × 8

block transforms, respectively. In inter-coding, as shown in Figure 4.19(b), the encoding
complexity is almost negligible, as it employs 1D-DAFL-DCTs that require considerably
less time than 2D-DAFL-DCT. The ∆T is equal to 1.0 for 4 × 4 block transform whereas
0.4 only for 8 × 8 block transform in DAFL-HE. In DAFL-LC, the ∆T is equal to 0.3 for
4× 4 block transform whereas 0.1 only for 8× 8 block transform on average by considering
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(a)

(b)

Figure 4.19: ∆ Coding time: (a) intra-coding, (b) inter-coding

all QP values of all video sequences. Hence, it may be concluded that the proposed scheme
has introduced marginal increment in encoding time-complexity but has achieved superior
compression performance for directional featured blocks.

4.5.6 Experiment 5: Subjective performance

The subjective performance comparisons of DAFL-DCT against conventional 2D-DCT are
shown in Figure 4.20 for enlarged version of a portion ofMobile sequence. It is clearly seen
that the spokes of wheel, the leaves and the object boundaries are visually more appealing as
compared to those produced by its competitive scheme. It is noticed that directional edges
are more sharp and clean in case of DAFL-DCT.
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(a) (b)

(c) (d)

Figure 4.20: Subjective performance of DAFL-DCT and conventional 2D-DCT for Mobile
sequence coded with 8 × 8 block transform mode (only a portion a shown here). a)
reconstructed 10th I-frame (1777.82 kbps, 28.31 dB) by DCT, b) reconstructed 10th I-frame
(1745.24 kbps, 28.78 dB) by DAFL-DCT, c) reconstructed 45th P-frame (764.11.50 kbps,
30.01 dB) by DCT and d) reconstructed 45th P-frame (760.4 kbps, 30.85 dB) by DAFL-DCT

4.5.7 Experiment 6: Comparison with other directional transforms

To further analyse the performance of the proposed DAFL-DCT scheme, it has been
compared against other existing directional transforms for context adaptive binary arithmetic
coding (CABAC) entropy coding mode. The other directional transforms include
DDCT [98], DART [99] and 1D-Transform [97]. In these directional transforms, both DDCT
and DART are proposed for both intra-, and inter-coding, whereas 1D-Transform is proposed
for inter-coding only. All directional transformmodes of DDCT and DART are implemented
for 4 × 4 and 8 × 8 blocks. In 1D-Transform, all transform modes for 4 × 4 blocks are
applied, but only eight directional transformmodes which appear similar to transformmodes
of DAFL-DCT have been implemented for 8×8 blocks out of sixteen transformmodes. The
BD-PSNR and BD-bitrate comparisons of these transforms against conventional 2D-DCT
are summarized on Tables 4.4 and 4.5 for 4× 4 and 8× 8 block transforms, respectively.

In intra-coding as observed, DDCT yields improvement in BD-PSNR of 0.62 dB (or
equivalently 8.38% reduction in BD-bitrate) and BD-PSNR of 0.20 dB (or equivalently
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Table 4.4: Bjontegaard metric[36] performance comparison of other directional transforms
for 4× 4 block transform in H.264/AVC in CABAC platform

Intra-Coding Inter-Coding
Sequence DAFL-DCT DDCT DART DAFL-DCT 1D-Transform DDCT DART

[98] [99] [97] [98] [99]
Foreman 0.65 0.69 0.52 0.21 0.04 0.18 -0.03
Highway 0.47 0.49 0.58 0.26 0.20 0.15 0.10

BD-PSNR Mobile 0.91 0.88 0.84 0.68 0.37 0.45 0.41
(dB) Bus 0.83 0.75 0.48 0.43 0.17 0.24 0.03

Crew 0.46 0.38 0.26 0.10 0.03 0.07 0.05
Soccer 0.45 0.36 0.15 0.19 0.05 0.12 0.04
Old town cross 0.67 0.58 0.48 0.21 0.09 0.07 0.08
Park joy 0.90 0.84 0.65 0.43 0.13 0.30 0.14
Average 0.67 0.62 0.49 0.31 0.13 0.20 0.10
Foreman -8.37 -8.93 -6.71 -3.10 -0.49 -2.87 0.50
Highway -8.46 -8.66 -10.20 -7.74 -6.79 -4.22 -3.43

BD-bitrate Mobile -8.00 -7.82 -7.22 -8.85 -4.50 -6.09 -5.44
(%) Bus -9.22 -8.37 -5.47 -6.11 -2.53 -3.80 -0.44

Crew -9.27 -7.75 -5.26 -2.11 -1.04 -1.47 -1.20
Soccer -6.78 -5.52 -2.39 -3.86 -1.03 -2.68 -0.98
Old town cross -11.84 -10.38 -8.39 -8.49 -4.64 -1.91 -4.40
Park joy -10.21 -9.57 -7.32 -5.79 -1.95 -4.09 -1.75
Average -9.02 -8.38 -6.62 -5.76 -2.87 -3.39 -2.14

Table 4.5: Bjontegaard metric[36] performance comparison of other directional transforms
for 8× 8 block transform in H.264/AVC in CABAC platform

Intra-Coding Inter-Coding
Sequence DAFL-DCT DDCT DART DAFL-DCT 1D-Transform DDCT DART

[98] [99] [97] [98] [99]
Foreman 0.35 0.38 0.00 0.45 0.39 0.38 0.03
Highway 0.29 0.30 0.30 0.73 0.66 0.35 0.54

BD-PSNR Mobile 0.37 0.21 0.32 0.99 0.81 0.51 0.59
(dB) Bus 0.34 0.15 -0.03 0.69 0.56 0.45 0.05

Crew 0.25 0.15 0.01 0.20 0.06 0.14 0.00
Soccer 0.20 0.02 0.04 0.37 0.27 0.29 0.11
Old town cross 0.26 0.15 0.09 0.50 0.33 0.39 0.26
Park joy 0.34 0.25 0.11 0.66 0.53 0.25 0.26
Average 0.30 0.20 0.10 0.57 0.45 0.35 0.23
Foreman -5.13 -5.89 -0.10 -6.91 -6.04 -6.17 -0.29
Highway -5.88 -6.13 -6.12 -18.08 -16.66 -9.41 -13.83

BD-bitrate Mobile -3.41 -2.00 -2.79 -12.90 -10.57 -6.87 -7.80
(%) Bus -4.07 -1.82 0.35 -9.19 -7.49 -6.26 -0.60

Crew -5.77 -3.60 -0.18 -4.26 -1.50 -3.14 -0.12
Soccer -3.31 -0.43 -0.53 -7.36 -5.39 -5.99 -1.96
Old town cross -5.24 -3.10 -1.61 -17.90 -12.56 -14.94 -9.67
Park joy -4.17 -3.18 -1.42 -7.61 -6.40 -3.66 -2.90
Average -4.62 -3.27 -1.55 -10.53 -8.33 -7.06 -4.65

3.27% reduction in BD-bitrate) on average; the DART results in improvement in BD-PSNR
of 0.49 dB (or equivalently 6.62% reduction in BD-bitrate) and BD-PSNR of 0.10 dB (or
equivalently 1.55% reduction in BD-bitrate) on average; whereas, the proposed DAFL-DCT
achieves superior performance, improvement in BD-PSNR of 0.67 dB (or equivalently
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(a)

,
(b)

Figure 4.21: Comparison of ∆ coding time of the proposed DAFL-DCT against existing
directional transforms for 4× 4 block transform: a) intra-coding, b) inter-coding

9.02% reduction in BD-bitrate) and BD-PSNR of 0.30 dB (or equivalently 4.62% reduction
in BD-bitrate) on average for 4× 4 and 8× 8 block transforms, respectively.

In inter-coding as observed, improvement in BD-PSNR in 1D-Transform of 0.13 dB (or
equivalently 2.87% reduction in BD-bitrate) and 0.45 dB (or equivalently 8.33% reduction in
BD-bitrate), DDCT of 0.20 dB (or equivalently 3.39% reduction in BD-bitrate) and 0.35 dB
(or equivalently 7.06% reduction in BD-bitrate), DART of 0.10 dB (or equivalently 2.14%
reduction in BD-bitrate) and 0.23 dB (or equivalently 4.65% reduction in BD-bitrate) and
the proposed DAFL-DCT of 0.31 dB (or equivalently 5.76% reduction in BD-bitrate) and
0.57 dB (or equivalently 10.53% reduction in BD-bitrate) on average for 4 × 4 and 8 × 8

block transforms, respectively.

Here, we have also presented a comparative analysis of∆T for theses existing directional
transforms along with the proposed DAFL-DCT (DAFL-DCT’s default mode is DAFL-HE)
against conventional DCT. The ∆T for intra-, and inter-coding for 4 × 4 block are shown
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.22: Subjective performance of DAFL-DCT and other existing state-of-the-art
directional transforms for Bus sequence 13th-frame coded with 8× 8 block transform mode
(only a portion a shown here). a) Original frame b) reconstructed I-frame (1994.78 kbps,
31.32 dB) by DAFL-DCT, c) reconstructed I-frame (1995.24 kbps, 30.57 dB) by DDCT
and d) reconstructed I-frame (2036.58 kbps, 29.54 dB) by DART, e)reconstructed P-frame
(933.18 kbps, 31.91 dB) by 1D-Transform, f) reconstructed P-frame (915.19 kbps, 32.19
dB) by DAFL-DCT, g) reconstructed P-frame (920.24 kbps, 32.01 dB) by DDCT and h)
reconstructed P-frame (946.25 kbps, 31.78 dB) by DART

in Figure 4.21, respectively. It can be observed that in intra-coding, ∆T of DAFL-DCT is
slightly higher as compared to other directional transforms. However, it is also observed
that ∆T of DAFL-DCT is almost same as for other directional transforms for inter-coding.
Unlike the other existing directional transforms where DCT is directly applied to the pixels,
in our proposed DAFL-DCT, pixels are first rearranged and then DCT is applied to those
blocks. This adds up to the additional time complexity of the DAFL-DCT encoder, whereas
the compression efficiency of the proposed DAFL-DCT is improved. So, the increase in
encoding time complexity is compromised to some extent for the improvement in efficiency
of the DAFL-DCT encoder.

The subjective performance of the proposed DAFL-DCT is also compared against these
directional transforms as shown in Figure 4.22 for a cropped version of Bus sequence. It
can be seen that lines on walls, leaves and curves of the statue are visually prominent in
reconstructed frames by DAFL-DCT than other directional transforms for both intra-, and
inter-coding.
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4.6 Conclusion

In this chapter, we have proposed an efficient direction-adaptive fixed length discrete
cosine transform (DAFL-DCT) for directional featured blocks. The DAFL-DCT proposes
two sets of directional transform modes for 4 × 4 and 8 × 8 blocks, one for each. The
proposed scheme takes 4 × 4 or 8 × 8 blocks and rearrange to new coordinates based
on selected directional transform mode. Later, DCT is performed on these directionally
transposed blocks to exploit directional spatial correlation among pixels. Fixed length
directional DCTs, having easy implementation and less computational cost, make the
proposed DAFL-DCT a suitable candidate for directional featured block transform in
real-time applications. In this chapter, we have also proposed a low complexity mode of
DAFL-DCT, a new modified zigzag scanning pattern for 1D-DAFL-DCTs in inter-frame
coding and an efficient side information coding scheme for DAFL-DCT transform modes.
These features have significantly improved the performance of the proposed DAFL-DCT.
The proposed DAFL-DCT is shown to have superior performance than the conventional
2D-DCT and other existing directional transforms in terms of both the quantitative and
qualitative analysis. The proposed directional transform scheme with the introduction of
new efficient motion estimation schemes, to remove temporal redundancy, is expect to lead
to further improvement in compression performance in rich media applications.
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Chapter 5

Development of Fast Motion Estimation
Schemes

Preview

Motion estimation (ME) is employed in video compression schemes to reduce temporal
correlation among video frames and yield significant improvement in compression ratio.
Among various ME schemes, block-matching motion estimation (BMME) is the most
popular approach due to its simplicity and efficiency. The real-world video sequences may
contain slow, medium and/ or fast motion activities. Further, a single search pattern does not
prove efficient in finding best matched block for all motion types. In this chapter, an efficient
direction-adaptive motion estimation (DAME) scheme is proposed which adaptively selects
shape and size of the patterns based on motion content. In addition, it is observed that
most of the BMME schemes are based on uni-modal error surface. Nevertheless, real-world
video sequences may have many local minima available within a search window and thus
possess multi-modal error surface. To resolve the local minima problem, we also propose
a pattern-based modified particle swarm optimization motion estimation (PMPSO-ME)
scheme. Performance analysis of DAME and PMPSO-ME schemes on JM 18.6 of
H.264/AVC platform reveals that the proposed schemes outperform other existing BMME
schemes by yielding lower computational complexity without degrading visual quality.

The following topics are covered in this chapter.

• Introduction

• Fundamentals of motion estimation

• Development of direction-adaptive motion estimation (DAME) scheme

• Development of pattern-based modified particle swarm optimization motion
estimation (PMPSO-ME) scheme

• Experimental results and discussion

• Conclusion
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5.1 Introduction

Motion estimation (ME) exploits temporal correlation among video frames and yields
significant improvement in compression ratio while sustaining high visual quality in video
coding. Block-matching motion estimation (BMME) scheme determines the best match for
the current block in a reference frame and yields displacement of the block in terms of motion
vector (MV).

ME is based on two error surface modes: (1) uni-modal error surface (UES) and (2)
multi-modal error surface (MES). In this chapter, we propose two efficient and fast BMME
schemes: direction-adaptivemotion estimation (DAME) scheme and pattern-basedmodified
particle swarm optimization motion estimation (PMPSO-ME) scheme, one for each error
surface model. In DAME scheme, we categorize motion types present on various video
sequences into broadly three different types: slow, medium and fast. Since a single search
pattern cannotmatchmultiplemotion types present in a video sequence, the proposed scheme
uses different combinations of search patterns based on motion classification of a block.
The search patterns include small diamond search pattern (SDSP), kite search pattern (KSP),
cross search pattern (CSP) and hexagonal search pattern. Hexagonal search pattern is further
modified and divided into two types of directional hexagonal search patterns: horizontal
hexagonal search pattern (HHSP) and vertical hexagonal search pattern (VHSP). With the
help of KSP and directional hexagonal search patterns, the proposed scheme achieves
directionality and significantly reduces the number of search points and thus speeds up the
matching process by successive minimization in UES.

For MES, we have proposed a fast BMME scheme based on modified particle swarm
optimization (PSO). PSO is a population-based evolutionary method [144]. It minimizes
the chance of getting trapped into local minima. It is observed that PSO based ME
schemes are either very slow due to high computational cost or accuracy of estimating
MV is compromised to achieve lower complexity [152, 154]. In this chapter, we have
proposed pattern-based modified PSO motion estimation (PMPSO-ME) scheme. The
PMPSO-ME is low in computational complexity, as it reduces the number of search points
significantly without compromising visual quality. Actually, in conventional PSO (CPSO),
the accuracy of true MV depends not only on the population size, but also on number of
iterations [144]. On the other hand, PMPSO-ME uses some efficient early termination
techniques along-with number of iterations to reduce the computational cost. The proposed
PMPSO-ME outperforms other existing PSO based ME schemes present in literature and
yields superior compression performance.
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Figure 5.1: Block diagram of H.264/AVC video encoder

5.2 Fundamentals of Motion Estimation

A video sequence consists of video frames. Each frame is encoded either by intra-coding or
inter-coding. In intra-coding, each frame is encoded without any reference to other frames.
But, a video sequence also contains temporal correlation among its frames. Inter-coding
exploits temporal redundancy among frames and yields higher compression performance.
In inter-coding, ME finds the best matched block and the motion compensation module
generates motion compensated (MC)-residual blocks. The MC-residual blocks are encoded
and sent to output bit-stream. The block diagram of H.264/AVC video encoder is illustrated
in Figure 5.1.

The detail of BMME process is shown in Figure 5.2. The BMME process searches the
best matched block in reference frame (ft−δ) corresponds to the current block (E) present
in current frame (ft) where δ represents time index in temporal domain. The parameter,
δ may take on any value from {1, 2, · · · , 16} in H.264/AVC. The displacement of the best
matched block from the co-located block is given by MV. For each block of current frame,
best matched block is searched in the reference frame inside the search window of sizeWs,
centred to co-located block. The search window is decided by the maximum displacement

Figure 5.2: Motion estimation (ME) technique

101



Chapter 5 Development of Fast Motion Estimation Schemes

range. MV (−→mv) is expressed as:

−→mv = {∆i,∆j}′ (5.1)

where ∆i and ∆j represent vertical and horizontal component of −→mv, respectively.
In process of searching the best matched block, the prediction error is minimized and

measured by estimation criteria or distortion metric. Commonly used estimation criteria are
sum of absolute difference (SAD), sum of absolute transformed difference (SATD) andmean
of squared error (MSE). Among these, SAD is mostly used because it is computationally
simple [125, 126, 130]. The proposed DAME scheme also uses SAD as estimation criteria.
In general, BMME process can be mathematically expressed as:

−−→mvi = arg min
−−→mvs∈Ws

{SAD(−−→mvs)} (5.2)

where −→i = {i, j}′ represents current block co-ordinates, Ws is the size of search window
to which −−→mvi belongs and −−→mvs depicts all MVs within the search range of ±Ws.

SAD is calculated as:

SAD(−−→mvi) =
∑
−→k ∈Bi

| ft(
−→k )− ft−δ(

−→k −−−→mvi) | (5.3)

where B represents current block of sizeM ×N and
−→k is defined as:

−→k =
{
{k, l}′ : 0 ≤ k ≤ M − 1, 0 ≤ l ≤ N − 1

}
(5.4)

5.3 Development of Direction-AdaptiveMotionEstimation
(DAME) Scheme

The proposed DAME scheme can be classified under reduced search points based BMME
(RSP-BMME), as it checks less number of search points that lead to less number of
SAD computations. The proposed DAME scheme exploits spatio-temporal neighbouring
blocks’ MV correlation characteristics among video frames to predict motion type (slow,
medium and fast) of a block. According to the MV distribution of Foreman and Mobile,
shown in Figure 5.3, almost 80% to 90% MVs are of stationary or slow motion type
and come inside the central 3 × 3 area. The detailed MV distribution of different video
sequences is presented in Table 5.1.It is observed that, in most of the video sequences, MV
distributions are centrally biased. Hence, with the objective of exploiting the characteristics
of centre-biased MV distribution, the proposed DAME uses centre-biased search patterns
such as SDSP, CSP, KSP, HHSP and VHSP. Most of the search patterns used in literature
[130–132, 135, 184, 185] are regular and symmetrical in shape. These search patterns are
omnidirectional, i.e., they explore the search points in all directions to determine the trueMV
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Figure 5.3: Motion vector distribution with full search method within a search range of±16
pixels for 100 frames

and hence are computational intensive. The typical example of UES is illustrated in Figure
5.4 with search window size of 16. Therefore, we propose DAME scheme that employs
directional search patterns to improve the searching process. The detailed flowchart of the
proposed DAME scheme is shown in the Figure 5.5. Various stages of the proposed scheme
are explained below.

Table 5.1: MV distribution based on maximum displacement using FS for search range±32

Ψ (in Pixels) 0 1 2 3 4 5 6 7 8 or more
Foreman 76.44 13.71 3.76 1.88 1.28 0.79 0.45 0.28 1.11
Highway 90.95 5.09 1.66 0.96 0.59 0.31 0.20 0.08 0.14
Mobile 68.85 20.10 2.97 1.57 0.96 0.45 0.31 0.15 4.49
Bus 65.81 2.87 2.61 2.90 4.39 4.74 3.47 3.61 9.45
Crew 68.74 8.49 4.86 2.71 1.28 0.50 0.33 0.23 12.74
Soccer 73.63 4.07 2.54 4.18 3.51 3.13 2.80 1.98 4.09
Park Joy 56.35 5.33 7.56 3.22 1.40 0.77 0.42 0.17 24.78
Old Town Cross 75.89 12.33 3.50 1.00 0.83 0.61 0.31 0.25 5.29
Average 72.08 9.00 3.68 2.30 1.78 1.41 1.03 0.84 7.76
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Figure 5.4: Example of uni-modal error surface

Figure 5.5: Flowchart of the proposed directional-adaptive motion estimation (DAME)
scheme
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5.3.1 Zero motion vector (ZMV) prejudgement

In video sequences, there are many regions in a frame which are stationary such as static
object and backgrounds. For these blocks, displacement of the current block is zero. In
other words, the co-located blocks in the reference frame are the best matched block and
hence, these blocks have zero motion vector (ZMV). ZMV (−−→zmv) is defined as:

−−→zmv = {0, 0}′ (5.5)

Applying search patterns to such blocks increase number of SAD computations
unnecessarily and in consequence, a frame encoding time increases. To avoid such instances,
the proposed DAME introduces threshold based ZMV detection. If the SAD value of
co-located block is less than a threshold value (ΥSAD), then the DAME algorithm terminates
immediately; otherwise, it continues.

5.3.2 Selection of motion vector prediction (MVP)

It is observed that MV distribution with respect to MVP has more symmetric shape than
ZMV [186]. Here, MVP is predicted by considering spatial neighbouring blocks, left (A),
upper (B) and upper right (C) of current frame. In DAME algorithm, spatio-temporal
neighbours are used to predict the MV. Therefore, left (X) and upper right (Y ) neighbouring
blocks and co-located block (Z) of the reference frame are also taken into account. These
spatio-temporal neighbouring blocks are illustrated in Figure 5.6. Hence, the DAME uses a
total of seven spatio-temporal neighbouring blocks’ MV to predict the current MV or MVP.
The MVP is calculated as the MV with smallest SAD value. It is expressed as:

−−→mvp = arg min
−→mv

{SAD(−−−→mvp1), SAD(−−−→mvp2), SAD(−−→zmv)} (5.6)

where the −−−→mvp1 and −−−→mvp2 are defined as:

−−−→mvp1 = median(−−→mvA,
−−→mvB,

−−→mvC) (5.7)

−−−→mvp2 = median(−−→mvX,
−−→mvY,

−−→mvZ) (5.8)

Figure 5.6: Spatio-temporal neighbouring blocks
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It is also shown for real-world video sequences that MV distributions are zero-biased or
centre-biased with respect to MVP [186]. Hence, the proposed DAME algorithm uses SDSP
to check whether the current block is centre-biased or not. If minimum SAD value is at the
centre search point of SDSP, then the DAME is terminated immediately; else it continues.

5.3.3 Motion type classification

MV of a block has high correlation to its spatio-temporal neighbours’ MV. If the current
block and its spatial neighbouring blocks are of same region, then their MV have similar
characteristics. However, if the spatial neighbouring blocks belong to different regions
or objects, then these blocks have different motion content and hence lead to inaccurate
determination of MVP for current block. In such a case, temporal neighbouring blocks play
vital role due to temporal correlation unless an abrupt change occurs in the scene.

In the DAME, a motion type (slow/medium/fast) of the current block is defined based
on MVP. An appropriate search pattern is selected based on the motion type classification,
which not only increases the probability of finding best matched block, but also reduces
the encoding time by checking fewer search points. The proposed scheme classifies motion
types on the basis of maximum displacement (Ψ) which is defined as the magnitude of the
largest component (x- and y-component) of MV. Since the true MV of the current block
is unknown, MVP is used to predict the motion type for the current block. The maximum
displacement (Ψ) is mathematically expressed as:

Ψ = max(|mvpx|, |mvpy|) (5.9)

and motion type is classified as:

MotionType =


Slow, Ψ < 2

Medium, 2 ≤ Ψ < 4

Fast, Ψ ≥ 4

(5.10)

The motion type classification for average MV distribution of all video sequences using
(5.10) is illustrated in Figure 5.7. The MV distribution is already mentioned in the Table 5.1.

5.3.4 Selection of search patterns

Search patterns play a very important role in BMME [125, 126, 130]. A search pattern is
responsible not only for speeding-up or checking fewer points, but also affecting the visual
quality. A search pattern is selected on the basis of its shape and step-size. The shape of
a search pattern should be so compact such that all possible directions are considered. A
small step-size search pattern is frequently trapped in a local minimum for medium and
fast motion content. It leads to inaccurate determination of MV and endures large number
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Figure 5.7: Motion vector distribution using full search (FS) with search range of ±32

of SAD computations [116]. On the other hand, a large step-size search pattern, usually
employed for slow/mediummotion content, leads to excessive undesired SAD computations
that increases encoding time and may even miss the global minimum [135]. Hence, a search
pattern of one shape and a fixed step-size cannot handle all kinds of motion content. The
proposed DAME algorithm adaptively selects the shape and step-size of different search
patterns based on the motion type of video contents. This helps in evading local minimum
and minimizing the number of SAD computations. Initially, the proposed DAME algorithm
checks points in all directions with SDSP and CSP to avoid getting trapped in local minimum
in a particular direction. After an initial omnidirectional search, it selects a directional search
pattern like KSP, VHSP or HHSP to speed-up the search process and avoid unnecessary SAD
computations. The search patterns employed in the proposed DAME scheme are shown in
Figure 5.8. The searching process of each of the search pattern will stop at the occurrence
of the early termination criteria which are defined as:

Early termination criteria:

(i) Minimum SAD value located at the centre of the pattern;

(ii) End of search window.

The selection of search patterns in the proposed DAME scheme, based on motion types,
are explained below.

Slow motion

For slow motion type video content, the proposed DAME scheme uses asymmetric shaped
KSP, which checks fewer points than other small search patterns such as cross, square or

107



Chapter 5 Development of Fast Motion Estimation Schemes

diamond and yields better visual quality [187]. The search process is described below.
Step 1: If Ψ < 2, then motion type of the current block is slow and apply KSP and

continue the search until the occurrence of early termination criteria. Otherwise, go to
SectionMedium motion.

The proposed DAME search process for slow motion content is shown in the Figure
5.9(a) and the repositioning of KSP towards vertical or horizontal directions are shown in
the Figure 5.10(a).

Step 2: Apply SDSP at the new search centre that is obtained from previous step. The
search point which yields minimum SAD value is the best matched location for the current
block.

Medium motion

For medium motion type, the proposed DAME scheme uses hybrid search patterns with
larger step-size. The larger step-size improves the matching speed and also avoids getting
trapped in local minimum. The DAME uses CSP and directional hexagonal search patterns
(HHSP and VHSP) in this category. It is proposed to use CSP as initial search pattern to
improve the search speed; and at subsequent stages, directional hexagonal search patterns
are used. Hexagonal search patterns are more compact in shape and check fewer points as
compared to DS [131]. The search process is described as follows:

Step 1: If 2 ≤ Ψ < 4 then motion type of the current block is medium and apply CSP
(step-size = 2). Otherwise, go to Section Fast motion.

(a) SDSP (b) CSP Stepsize =2 (c) CSP Stepsize =3

(d) KSP (e) HHSP (f) VHSP

Figure 5.8: Search patterns employed in the proposed DAME scheme
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SDSP

KSP

(a)

SDSP

CSP

HHSP

VHSP

(b)

Figure 5.9: Motion vector estimation using DAME scheme: (a) MVP’s Ψ < 2 (b) MVP’s
Ψ > 2

(a) (b) (c)

Figure 5.10: Search pattern repositioning and directional transitions: (a) KSP (b) HHSP to
HHSP (c) HHSP to VHSP

Step 2: If the minimum SAD value is at the centre of CSP go to Step 4. Otherwise, go
to Step 3.

Step 3: Directional hexagonal search pattern is employed to new search centre obtained
from step 2. If the new centre is at horizontal axis, HHSP is used, otherwise, VHSP is
considered as starting search pattern. If theminimumSAD value is located at far ends (points
a and d as shown in the Figure 5.8(e) and Figure 5.8(f)) of directional hexagonal search
patterns, the same pattern continues, otherwise, the pattern switches to another directional
hexagonal search pattern i.e., transition from HHSP to VHSP or vice-versa.

The searching process continues until the occurrence of aforementioned early termination
criteria.

The DAME search process for medium motion content is shown in the Figure 5.9(b)
and the transitions of directional hexagonal search patterns towards vertical or horizontal
directions (HHSP to HHSP and HHSP to VHSP) are shown in the Figure 5.10(b) and Figure
5.10(c), respectively.

Step 4: Apply SDSP at the new search centre that is obtained from previous step. The
search point which yields minimum SAD value is the best matched location for the current
block.
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Fast motion

For fast motion type, the proposed DAME scheme applies similar procedure as used
in medium motion type, already discussed in Section Medium motion. However, to
accommodate fast motion content, the DAME algorithm uses CSP with step-size (= 3) as a
initial search pattern.

5.4 Development of Pattern-based Modified Particle
Swarm Optimization Motion Estimation (PMPSO-
ME) Scheme

UES based fast BMME techniques assume that the block distortion metric such as SAD,
decreases monotonically as the search moves towards global minima. These fast BMME
techniques search a small subset of available set of candidate blocks and estimate a MV
for the current block. However, in real-world video sequences, a large number of local
minima may be present within a search window. In such a case, due to MES characteristics
of distortion minimization function, these fast BMME techniques can easily be trapped to
these local minima and yield poor accuracy in estimating MV. A typical example of MES
characteristics is shown in Figure 5.11 for search window size of 16. To resolve the local
minima problem, various population based evolutionary schemes [147, 153] are analysed
to ensure the global minimum. It is found that PSO is one of most efficient techniques for
BMME [150, 152].
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Figure 5.11: Example ofMulti-modal error surface with multiple local minimum error points

5.4.1 Fundamentals of PSO based BMME

PSO is a population based, robust stochastic optimization algorithm which is inspired by the
social behaviour of swarm. The scheme iteratively updates the velocities and positions of
the member of swarm based on the past experience and target to achieve [144, 188].

In BMME, PSO uses the swarm intelligence to achieve the global minimum. However,
since PSO is a population based optimization algorithm, accurate determination of the MV
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depends on the large population of the particles, i.e., candidate block positions. Moreover,
the number of iterations also plays a major role in PSO to ensure global minimum solution.
In conventional PSO (CPSO), a large number of candidate search positions (also called
particle)s with their initial positions and velocities are randomly chosen. Each particle has
its fitness function which is SAD value for BMME. In each iteration, these particles “fly”
thorough a multidimensional space of search window. The position and velocity of each
particle is adaptively modified individually based on experience of its own and neighbours
i.e., swarm. Each particle remembers its individual best position pbest which has the best
fitness function (Lowest SAD value) it has observed so far. The position of a particle which
has achieved the global best fitness function in the swarm so far, is considered as global
best position gbest. CPSO requires a large number of iterations for accomplishing a global
solution [144].

Let us assume, a d-dimensional search window of sizeWs and let a swarm consist of N
particles X = (−→x1 ,

−→x2 , · · · ,−→xn). The position of nth particle is defined as:

−→xn = {xn
1, xn

2, · · · , xn
d}′ ∈ Ws (5.11)

The velocity of nth particle is defined as:

−→vn = {vn1, vn2, · · · , vnd}′ (5.12)

The previous best position pbest of nth particle is given as:

pbestn = {pn1, pn2, · · · , pnd}′ (5.13)

In each iteration itr, these particles “fly” and change their positions and velocities towards
their pbest and gbest. Acceleration of each moving particle, controlled by random numbers
c1 and c2, is evaluated individually to accelerate towards individual best position pbest and
towards swarm’s global best position gbest. The velocity −→vn and position −→xn of nth particle
for itrth iteration are updated as [189]:

vn
d(itr + 1) = vn

d(itr) + c1 × randn1

d × (pbestn
d − xn

d(itr))

+c2 × randn2

d × (gbestd − xn
d(itr))

(5.14)

xi
d(itr + 1) = xi

d(itr) + vi
d(itr) (5.15)

where c1 and c2 are the positive acceleration coefficients, randn1 and randn2 are the random
numbers which are uniformly distributed within [0, 1] and itr is the number of iterations
itr = 1, 2, · · · , itrmax.

It is found that the CPSO does not have velocity control mechanism [190]. Shi and
Eberhart have introduced the concept of inertia weight (Iw) [145, 189]. The parameter, Iw
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restricts the influence of present velocity to next velocity for a particle in a swarm. A large
value of Iw helps in global search, whereas smaller value helps in local search and hence
(5.14) is modified to accommodate Iw as:

vn
d(itr + 1) = Iw × vn

d(itr) + c1 × randn1

d × (pbestn
d − xn

d(itr))

+c2 × randn2

d × (gbestd − xn
d(itr))

(5.16)

Although it is observed that at initial stage more global exploration is advantageous and
that can be achieved with higher value of Iw, but at later stages, Iw with lower value is
more helpful for local search. Hence, the linear decreasing time variant inertia weight is
incorporated in conventional PSO [191, 192]. The linearly decreasing time weighted PSO
(LDWPSO) uses (5.16) where Iw is defined as:

Iw = (Iw2 − Iw1)×
( itrmax − itr

itrmax

)
+ Iw2 (5.17)

However, it is observed that the acceleration coefficients, c1 and c2 have primary
control over velocity of a particle. c1 is cognitive acceleration coefficient and c2 is social
acceleration coefficient. c1 with higher value increases the movement of a particle within
a search space while c2 with higher value converges rapidly to present global best. Hence,
time varying acceleration coefficients based PSO model (TVACPSO) is introduced [148].
The TVACPSO updates the velocity of a particle as:

vn
d(itr + 1) = Iw × vn

d(itr) + c1(t)× rn1

d × (pbestn
d − xn

d(itr))

+c2(t)× rn2

d × (gbestd − xn
d(itr))

(5.18)

where c1(t) and c2(t) are defined as:

c1(t) = (c1min
− c1max)×

itr

itrmax

+ c1max (5.19)

c2(t) = (c2max − c2min
)× itr

itrmax

+ c2min
(5.20)

5.4.2 Details of PMPSO-ME

In CPSO, there is a chance that the particles may fly out of the search window and result in
invalid global minimum. To restrict the particles within the search window, the velocities
and positions are limited to [vmin, vmax]

d and [xmin, xmax]
d, respectively. In general, the

velocities are set to vmin = xmin and vmax = xmax, where xmin = −Ws and xmax =

Ws for BMME schemes. There are various schemes available in literature to resolve this
fly out issue [193–195]. However, these variants of PSO either fall on modifying velocity
updating equation or restricting the position within search space and hence lead to higher
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Figure 5.12: Initial particle positions in a swarm of PMPSO-ME

computational complexity.

In this chapter, we have introduced an efficient pattern-based modified PSO-ME
(PMPSO-ME) scheme. The supervisor-student PSO model proposed by Liu and Qin is
adopted for the proposed scheme [196].

In the proposed PMPSO-ME scheme, two fixed patterns: cross search pattern (CSP) and
square search pattern (SSP) are combined to form a hybrid pattern. The locations of the
hybrid pattern are initial positions of particles in swarm of PMPSO-ME scheme as shown
in Figure 5.12. The swarm of particles fly in each iteration within two-dimensional search
window of size Ws. The positions of the particles are best matched candidate blocks and
indexed by horizontal and vertical components. We also suggest a set of early termination
strategies to speed up the search process while maintaining high accuracy in estimating
MV. The algorithm for implementing the proposed PMPSO-ME scheme is presented as
Algorithm 5.1.

In PMPSO-ME, velocities of the particles are calculated by (5.14), but the positions are
modulated as:

xi
d(itr + 1) = (1− κ)× xi

d(itr) + κ× vi
d(itr) (5.21)

where κ is momentum factor κ = (0, 1) = {κ ∈ R | 0 < κ < 1}. The velocities are set to
vmin = xmin and vmax = xmax. Since the velocities are restricted within a search window
and virtually considered as a position, the new position of a particle is a point in the linear
equation between former position and velocity. Since the former velocity is in the range, the
new position will also be in the range according to (5.21). Thus, the proposed PMPSO-ME
limits the particles to fly out of search window without checking the boundary position at
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Algorithm 5.1 Proposed pattern-based modified particle swarm optimization − motion
estimation (PMPSO-ME) algorithm
Step 1: Initialization
Initialize the positions of all particles X = (−→x1 ,

−→x2 , · · · ,−→xn) with a hybrid pattern (as
shown in Figure 5.12).
Initialize the velocities of all particles V = (−→v1 ,

−→v2 , · · · ,−→vn).
Evaluate the fitness (SAD) values, Φ = (Φ1,Φ2, · · · ,Φn) of X .
Set X to be pbest = (pbest1, pbest2, · · · , pbestn) for each particle.
Set the particle with best fitness to be gbest.
Set iteration itr = 0.
Step 2: Updating Loop
for i = 1 to n do

Evaluate the fitness value Φi of a particle xi.
if Fitness value of −→xi is worse than previous iteration then

Update the velocity vi of particle xi using (5.14).
end if
Update the position of particle xi using (5.21).
if Fitness value of xi is better than pbesti then

Set xi to be pbesti.
end if
if Fitness value of xi is better than gbest then

Set xi to be gbest.
end if

end for
Set iteration itr = itr + 1.
Step 3: If termination condition is not met, GOTO Step 2, otherwise end PMPSO

every iteration.

In PMPSO-ME, the velocity (5.14) works as guiding right direction, but does not provide
exact solution similar to a supervisor role. Hence, the velocity should not change at every
iteration unless the direction is right. However, position described by (5.21) fine tunes itself
in the given direction to determine the optimum solution. On the other hand, in other variants
of PSO, the velocity is updated at every iteration. In PMPSO-ME, the velocity of each
particle is updated only if the fitness of a particle in current iteration is worse than previous
iteration, otherwise the velocity will be unchanged. Therefore, the proposed PMPSO-ME
reduces the computational cost by obviating frequent update of velocity.

In CPSO,more number of iterations are allowed to refine the optimal solution, which lead
to high computational complexity. In BMME, the number of iterations should be limited.
Therefore, in the proposed PMPSO-ME, various early termination strategies are introduced
to speed up the matching process. The PMPSO-ME process will stop at the occurrence of
any of these early termination criteria. The early termination strategies used in this proposed
PMPSO-ME scheme are as follows.

Early termination strategies:
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Table 5.2: Encoder configuration in JM 18.6 reference software of H.264/AVC

Common Parameters Inter-Coding

FrameRate = 30.0 FramesToBeEncoded = 100
DisableIntra16x16 = 1 IntraPeriod = 0
EnableIPCM = 0 IDRPeriod = 0
NumberBFrames = 0 QPISlice = 26
PicInterlace = 0 QPPSlice = {20, 26, 32, 38}
MbInterlace = 0 DisableSubpelME = 0
RDOptimization = 1 SearchRange = 32
NumberBFrames = 0 ChromaMEEnable = 0
YUVFormat = 1 PSliceSearch4x4 = 1
SourceBitDepthLuma = 8 NumberReferenceFrames = 1
SourceBitDepthChroma = 8 DisableIntraInInter = 1
Transform8x8Mode = 0
SymbolMode = 0

• When the total number of iterations (itr) reaches maximum value (itrmax).

• When SAD cost value is less than ΥSAD at gbest.

• When gbest remains same for 3 iterations successively.

5.5 Experimental Results and Discussion

With the objective of measuring the performance of the proposed DAME scheme, various
experiments have been performed on H.264/AVC joint model reference software (version
18.6) [138]. For DAME algorithm, different benchmark measures are computed and
compared against integral BMME schemes (FS [125], FFS [197], UMH [116], SUMH [198]
and EPZS [117]) on JM reference software. Similarly, the proposed PMPSO-ME scheme is
also compared with other existing PSO based BMME schemes (IPSO [150], APSO [152],
PBPSO [154]) along-with FS [125] on JM reference software.

5.5.1 Experimental set-up

All experiments are carried out on standard video sequences like Foreman, Highway, and
Mobile. Video sequences are categorized in terms of their resolutions as QCIF, CIF, 4CIF
and HD 720p. The details of the test video sequences are listed in Table 3.5. These video
sequences provide a combination of all kinds of motion contents (slow/medium/fast).

In inter-coding, all video sequences are encodedwith frame pattern IPPP· · · (first I-frame
and remaining all p-frames). The video sequences are encoded by a set of four quantization
parameter (QP) values 20, 26, 32 and 38. The results are shown as average of four
different QP values (20, 26, 32 and 38). Entropy encoding mode is set to context adaptive
variable length coding (CAVLC) mode. For video visual quality, the CPSNR is used in our
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Table 5.3: Bjontegaard metric[36] performance in H.264/AVC platform

Schemes
Sequence FFS UMH SUMH EPZS DAME

[197] [116] [198] [117]
Foreman 0.06 0.54 -0.76 0.83 0.85
Highway -0.01 -0.06 -0.10 -0.02 0.41
Mobile 0.20 0.98 0.83 1.28 1.40

BD-PSNR Bus 0.27 -0.36 -1.55 1.35 0.35
(in dB) Crew 0.06 0.82 0.68 1.01 1.56

Soccer 0.10 -0.31 -0.53 0.40 0.20
Old town cross 0.38 -0.26 1.40 -1.61 0.49
Park joy 1.40 1.19 1.50 2.60 1.26
Average 0.31 0.32 0.18 0.73 0.81
Foreman 0.0004 0.0021 -0.0057 0.0030 0.0053
Highway -0.0008 -0.0012 0.0025 -0.0014 0.0078
Mobile 0.0022 0.0101 0.0083 0.0129 0.0141

BD-SSIM Bus 0.0023 -0.0082 -0.0218 0.0131 0.0011
Crew 0.0004 0.0076 0.0054 0.0077 0.0145
Soccer 0.0011 -0.0143 -0.0083 -0.0021 -0.0033
Old town cross 0.0070 -0.0117 0.0254 -0.0425 -0.0044
Park joy 0.0260 0.0220 0.0259 0.0476 0.0195
Average 0.0048 0.0008 0.0040 0.0048 0.0068
Foreman -0.37 -6.52 12.48 -10.37 -10.39
Highway 0.18 1.33 14.00 -0.45 -4.38
Mobile -3.83 -15.28 -13.11 -19.24 -21.05

BD-bitrate Bus -4.74 6.50 29.26 -20.38 -6.14
(%) Crew -0.43 -14.69 -12.47 -17.97 -25.31

Soccer -0.33 -3.92 13.22 -8.81 -3.17
Old town cross -0.89 -8.32 7.82 -11.29 -11.50
Park joy -19.78 -17.97 -22.24 -35.50 -19.93
Average -3.77 -7.36 3.62 -15.50 -12.73

experiments. The detailed encoder configuration for JM18.6 is listed on Table 5.2. In our
experiment, value of ΥSAD is set to 256.

5.5.2 Experimental results of DAME algorithm

Experiment 1: Bjontegaard metrics performance

In this experiment, other existing BMME schemes are compared with the proposed DAME
scheme with respect to BD-PSNR, BD-SSIM and BD-bitrate with respect to FS. The
comparative analysis is tabulated in Table 5.3. In Bjontegaard metric, positive numbers
in BD-PSNR and BD-SSIM represent gain, while negative numbers in BD-bitrate show
reduction in bit-rate. The R-D curves of Foreman, Mobile, Crew and Old Town Cross
sequences, shown in Figures 5.13, 5.14, 5.15 and 5.16, respectively, exhibit performance
comparisons between state-of-the-art techniques and the proposed algorithm.

It may be observed formTable 5.3 that DAMEoutperforms other BMME techniques with

116



Chapter 5 Development of Fast Motion Estimation Schemes

Figure 5.13: Rate-distortion curves for Foreman sequence

Figure 5.14: Rate-distortion curves forMobile sequence

respect to BD-PSNR (or equivalently BD-bitrate). The proposed DAME algorithm achieves
improvement in BD-PSNR of 0.81 dB (or equivalently 12.73% reduction in BD-bitrate)
on average. It is also noticed that DAME achieves highest BD-PSNR gain of 1.56 dB (or
equivalently 25.31% reduction in BD-bitrate) for Crew sequence.

Experiment 2: Performance analysis of number of search points

Table 5.4 shows the comparison between the proposed DAME with respect to number of
search points and other existing fast BMME schemes. It is observed that the proposed
DAME scheme outperforms other schemes. UMH (666.39%), SUMH (117.90%) and EPZS

117



Chapter 5 Development of Fast Motion Estimation Schemes

Figure 5.15: Rate-distortion curves for Crew sequence

Figure 5.16: Rate-distortion curves for Old Town Cross sequence

(271.19%) perform more number of search points than the proposed DAME scheme. The
comparison of average number of search points per macroblock per frame is also shown in
Figure 5.17 for Mobile and Old Town Cross sequences.

Experiment 3: Analysis of threshold (ΥSAD) values

As mentioned earlier,ΥSAD value is set to 256 in our experiment. Table 5.5 shows a detailed
performance comparison for different threshold values at QP equals to 26. It can be observed
that the proposed DAME scheme with ΥSAD equal to 256 yields best performance than
for any other threshold values. Lowering threshold value below 256 leads to significant
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(a)

(b)

Figure 5.17: Comparison of average number of search points per macroblock per frame for
Mobile and Old Town Cross sequences at QP=26

increment in number of SAD computations whereas increasing the threshold results lesser
SAD computation. However, in both the cases, output bit-rates are increased considerably.

Experiment 4: MV distribution

To study the characteristics of MV distribution, the comparative analysis of average MV
distribution of all video sequences for FS and the proposed DAME is given in Figure 5.18.
Also, Table 5.6 presents MV distribution achieved by the proposed DAME scheme which
is almost similar to MV distribution of FS. One reason for the small difference in MV
distribution against FS is the early termination techniques that reduce number of SAD
computations considerably.
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Table 5.4: Performance comparison in terms of number of search points per macroblock

Schemes
Sequence FS FFS UMH SUMH EPZS DAME

[125] [197] [116] [198] [117]
Foreman 67600.00 67600.00 358.25 90.50 165.00 25.25
Highway 67600.00 67600.00 323.25 82.00 104.50 17.25

Search points Mobile 67600.00 67600.00 363.50 103.50 212.75 36.50
Bus 67600.00 67600.00 396.75 119.50 205.00 81.75
Crew 67600.00 67600.00 343.00 96.75 165.00 24.00
Soccer 67600.00 67600.00 353.50 96.00 159.00 30.75
Old Town Cross 67600.00 67600.00 278.25 86.75 120.75 26.75
Park Joy 67600.00 67600.00 377.00 118.50 221.00 122.25
Average 67600.00 67600.00 349.19 99.19 169.13 45.56
Foreman 267622.77 267622.77 1318.81 258.42 553.47 0.00
Highway 391784.06 391784.06 1773.91 375.36 505.80 0.00

∆Search points Mobile 185105.48 185105.48 895.89 183.56 482.88 0.00
(in %) Bus 82591.13 82591.13 385.32 46.18 150.76 0.00

Crew 281566.67 281566.67 1329.17 303.13 587.50 0.00
Soccer 219737.40 219737.40 1049.59 212.20 417.07 0.00
Old Town Cross 252610.28 252610.28 940.19 224.30 351.40 0.00
Park Joy 55196.52 55196.52 208.38 -3.07 80.78 0.00
Average 148267.63 148267.63 666.39 117.70 271.19 0.00

Table 5.5: Performance comparison of DAME scheme for different threshold (ΥSAD) values
at QP = 26

Sequence
Threshold Foreman Highway Mobile Bus Crew Soccer Old

Town
Cross

Park Joy Average

128 38.16 39.17 36.37 36.81 38.91 38.06 37.28 36.73 37.69
PSNR-Y 256 38.10 39.16 36.36 36.77 38.93 38.05 37.29 36.72 37.67

384 38.08 39.14 36.37 36.78 38.93 38.05 37.28 36.73 37.67
128 372.06 313.99 3434.74 3259.34 6529.89 6586.52 9917.93 46116.59 9566.38

Bitrate 256 355.65 303.15 3247.75 2972.98 6197.95 6004.77 9304.77 36365.70 8094.09
384 379.27 323.15 3426.48 3444.10 6484.77 6868.78 9787.03 47912.84 9828.30
128 36.00 21.00 49.00 112.00 35.00 46.00 25.00 162.00 60.75

Search points 256 21.00 17.00 31.00 77.00 22.00 25.00 16.00 125.00 41.75
384 17.00 16.00 23.00 69.00 18.00 20.00 16.00 104.00 35.38

Experiment 5: Analysis of encoding time complexity

The proposed DAME scheme performs less number of SAD computations and results in
reduction in encoding time. Table 5.7 shows the comparative encoding time analysis of
DAME with different BMME scheme for various video sequences with respect to FS. It
is observed that the proposed DAME outperforms other existing BMME schemes. The
average ∆T of DAME is −0.42, i.e., the proposed DAME yields encoder time ratio of
58% with respect to FS encoding time, whereas the average ∆T equals to 0.72, −0.39 ,
−0.34 and −0.40 for FFS, UMH, SUMH and EPZS, respectively. Therefore, it may be
concluded that the proposed DAME scheme requires less encoding time and less number of
SAD computation without degrading visual quality.
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Table 5.6: MV distribution based on maximum displacement categories using proposed
DAME scheme for search range of ±32

Ψ (in Pixels) 0 1 2 or 3 4 or more
Foreman 89.70 6.44 3.03 0.80
Highway 94.21 3.62 2.13 0.03
Mobile 80.07 16.19 2.91 0.82
Bus 74.60 5.22 7.39 12.11
Crew 90.21 3.70 2.76 3.20
Soccer 84.42 8.08 4.33 3.18
Park Joy 68.93 2.51 2.67 26.69
Old Town Cross 84.28 5.55 3.76 6.41
Average 83.30 6.41 3.62 6.65

Figure 5.18: Comparison of overall motion vector distribution of Full search and the
proposed DAME scheme

To analyse the efficacy of the proposed scheme thoroughly, comparison of ME time
(Tme) is also given in Table 5.8. It can be observed that the proposed DAME scheme
significantly reduces the ME time as compared to FS and FFS schemes and also outperforms
EPZS scheme. It can be observed that SUMH scheme outperforms the proposed DAME
scheme and yields 1.98 second average ME time as compared to 3.79 second average ME
time required by the proposed DAME scheme. However, it can be observed from the other
experimental results that the SUMH scheme has compromised with the PSNR, SSIM and
RD-curves for the improvement in ME time performance. In other words, this scheme is
fast but not an accurate motion estimation algorithm.

121



Chapter 5 Development of Fast Motion Estimation Schemes

Table 5.7: Performance comparison in terms of encoding time

Schemes
Sequence FS FFS UMH SUMH EPZS DAME

[125] [197] [116] [198] [117]
Foreman 8.86 16.07 5.51 6.28 5.50 5.17
Highway 7.90 17.69 5.44 5.84 5.48 5.34
Mobile 65.08 88.77 38.59 39.48 38.17 35.05

T Bus 52.51 79.65 33.83 38.73 29.84 33.20
(in Sec.) Crew 166.47 299.47 99.58 103.22 100.06 93.33

Soccer 153.49 292.55 94.45 103.75 93.89 92.97
Old Town Cross 354.89 673.61 204.95 229.16 206.77 189.96
Park Joy 655.67 818.39 373.27 373.11 340.18 351.70
Average 183.11 285.78 106.95 112.44 102.49 100.84
Foreman 0.00 0.81 -0.38 -0.29 -0.38 -0.42
Highway 0.00 1.24 -0.31 -0.26 -0.31 -0.32
Mobile 0.00 0.36 -0.41 -0.39 -0.41 -0.46

∆T Bus 0.00 0.52 -0.36 -0.26 -0.43 -0.37
Crew 0.00 0.80 -0.40 -0.38 -0.40 -0.44
Soccer 0.00 0.91 -0.38 -0.32 -0.39 -0.39
Old Town Cross 0.00 0.90 -0.42 -0.35 -0.42 -0.46
Park Joy 0.00 0.25 -0.43 -0.43 -0.48 -0.46
Average 0.00 0.72 -0.39 -0.34 -0.40 -0.42

Table 5.8: Performance comparison in terms of motion estimation time Tme

Sequence FS FFS UMH f SUMH EPZS DAME
[125] [197] [116] [198] [117]

Foreman 3.59 12.55 0.27 0.11 0.35 0.25
Highway 2.67 12.51 0.22 0.07 0.26 0.19

Tme Mobile 25.21 50.41 1.19 0.58 1.52 1.12
(in Sec.) Bus 22.10 49.89 1.08 0.65 1.54 1.12

Crew 67.77 203.28 4.03 2.00 5.40 3.93
Soccer 60.98 204.05 3.87 2.01 5.46 4.07
Old Town Cross 150.47 466.75 7.89 4.30 10.91 8.66
Park Joy 268.31 470.55 10.43 6.13 14.03 10.99
Average 75.14 183.75 3.62 1.98 4.93 3.79
Foreman 0.00 -2.50 0.93 0.97 0.90 0.93
Highway 0.00 -3.68 0.92 0.98 0.90 0.93

∆Tme Mobile 0.00 -1.00 0.95 0.98 0.94 0.96
Bus 0.00 -1.26 0.95 0.97 0.93 0.95
Crew 0.00 -2.00 0.94 0.97 0.92 0.94
Soccer 0.00 -2.35 0.94 0.97 0.91 0.93
Old Town Cross 0.00 -2.10 0.95 0.97 0.93 0.94
Park Joy 0.00 -0.75 0.96 0.98 0.95 0.96
Average 0.00 -1.95 0.94 0.97 0.92 0.94

Experiment 6: Subjective performance

The subjective performance comparison of DAME scheme against existing competitive
schemes is shown in Figure 5.19 for Foreman sequence. It is clearly seen that the finger tips,
eyes and collar boundaries are visually more prominent as compared to those reconstructed

122



Chapter 5 Development of Fast Motion Estimation Schemes

(a) (b)

(c) (d)

(e) (f)

Figure 5.19: Subjective performance reconstructed frame using DAME and other existing
competitive schemes in Foreman sequence: a) Original frame, b) FS (144.14 kbps, 38.23
dB), c) HEX (134.07 kbps, 37.62 dB), d) SHEX (130.44 kbps, 37.63 dB), e) EPZS (134.14
kbps, 38.15 dB) and f) DAME (133.18 kbps, 38.53 dB)

by its competitive schemes. Only EPZS exhibits somewhat similar visual performance.

5.5.3 Experimental results of PMPSO-ME

To determine the efficiency of the proposed PMPSO-ME scheme, different experiments are
conducted and outputs are compared with the other existing schemes. The total number of
iterations (itrmax) is set to 20. In our experiment, value of ΥSAD is set to 256; Iw equals
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Figure 5.20: Comparison of overall motion vector distribution of Full search and the
proposed PMPSO-ME scheme

to 0.5; c1min
, c1max , c2min

and c2max are set to 0.5, 2.5, 0.5 and 2.5, respectively. The MSE
threshold value ΥMSE for PBPSO is set to 7. It can be observed from Figure 5.20 that the
MV distribution for PMPSO-ME scheme is almost similar to that for FS on average for all
video sequences.

Experiment 1: Bjontegaard metrics performance

The BD-PSNR and BD-SSIM (or equivalent BD-bitrate %), with respect to FS, is computed
to determine the compression performance of the proposed PMPSO-ME. The BD-PSNR (or
equivalent BD-bitrate %) is summarized for all video sequences (as mentioned in Table 3.5)
in Table 5.9. Further, R-D curves for the video sequence Foreman, Mobile, Crew and Old
Town Cross are shown in Figures 5.21, 5.22, 5.23 and 5.24, respectively. It can be observed
that the proposed PMPSO-ME outperformed other schemes and yields a BD-PSNR of 0.49
dB (or equivalently BD-bitrate −7.98%). However, other comparative schemes show loss
in BD-PSNR upto −0.09 dB (or equivalently BD-bitrate −3.50%). The R-D curves exhibit
that the gap between the proposed PMPSO is more at higher bit-rate than lower bit-rates. For
Crew sequence, PMPSO achieves significant improvement of 1.06 dB gain in BD-PSNR (or
equivalently BD-bitrate −18.60%).

Experiment 2: Performance analysis of number of search points

The number of search points to find the best matched block is a very important parameter in
BMME. If the number of search points increases, then it leads to more SAD computations
which consequently reduces the encoding time. The comparative analysis of number of
search points per macroblock is tabulated in Table 5.10. As discussed earlier, apart from
total number of iterations, the proposed early termination techniques are also employed on
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Table 5.9: Bjontegaard metric[36] performance in H.264/AVC platform

Schemes
Sequence IPSO APSO PBPBO PMPSO

[150] [152] [154]
Foreman 0.30 0.32 0.34 0.34
Highway -0.04 -0.01 -0.03 0.18
Mobile 0.75 0.89 0.78 1.07

BD-PSNR Bus 0.18 0.20 0.11 0.32
(in dB) Crew 0.42 0.44 0.44 1.06

Soccer -0.02 -0.08 -0.11 0.21
Old town cross -1.43 -1.82 -1.61 0.36

Park joy -0.53 -0.63 -0.18 0.34
Average -0.05 -0.09 -0.03 0.49
Foreman 0.0009 0.0011 0.0015 0.0011
Highway 0.0008 0.0010 0.0010 0.0045
Mobile 0.0075 0.0088 0.0079 0.0111

BD-SSIM Bus -0.0003 -0.0007 -0.0010 0.0006
Crew 0.0038 0.0039 0.0037 0.0105
Soccer -0.0038 -0.0043 -0.0046 0.0017

Old town cross -0.0324 -0.0394 -0.0353 -0.0058
Park joy -0.0269 -0.0314 -0.0211 -0.0059
Average -0.0063 -0.0076 -0.0060 0.0022
Foreman -3.07 -3.34 -3.67 -3.73
Highway 3.92 3.66 3.62 1.23
Mobile -11.89 -14.01 -12.61 -16.51

BD-bitrate Bus -3.48 -4.04 -2.47 -5.86
(%) Crew -7.55 -8.65 -8.87 -18.60

Soccer 2.63 3.78 4.11 1.72
Old town cross -8.20 -7.63 -7.85 -8.42

Park joy -5.53 2.21 -7.19 -13.67
Average -4.15 -3.50 -4.36 -7.98

comparative schemes. It can be noticed that the proposed PMPSO outperforms other existing
schemes. For instance, IPSO [150] checks 9.30% more search points than the proposed
PMPSO. Similarly, APSO [152] and PBPSO [154]) match 12.25% and 11.40%more number
of search points to determine the best matched block. The comparisons of average number
of search points forMobile and Old Town Cross video sequences for all frames at QP equals
to 26 are shown in Figure 5.25. It is found that the number of search points overshoot
for multiple frames of Mobile sequence for other existing schemes, whereas the proposed
PMPSO checks less number of search points for all frames. Similarly, for Old Town Cross
sequence, the number of search point is considerably less for proposed PMPSO than other
existing schemes.
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Figure 5.21: Rate-distortion curves for Foreman sequence

Figure 5.22: Rate-distortion curves forMobile sequence

Experiment 3: Analysis of threshold (ΥSAD) values

For the proposed PMPSO-ME scheme, ΥSAD value is set to 256. A comparative analysis
is performed for different threshold values and summarized in Table 5.11. It is observed
that the proposed PMPSO-ME scheme outperforms with ΥSAD equals to 256 than other
threshold values. It can be seen that by increasing the threshold value, the number of search
points reduces. But, unfortunately, the bit-rate increases which degrades the compression
performance. If the threshold value is reduced below 256, the number of search points is
increased considerably and bit-rate also increases which reduces the compression efficiency.

Experiment 4: Analysis of encoding time complexity

The proposed PMPSO-ME uses various early termination techniques and leads to check less
number of search points for the best matched block. The less computational complexity
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Figure 5.23: Rate-distortion curves for Crew sequence

Figure 5.24: Rate-distortion curves for Old Town Cross sequence

results in reduced encoding time. The comparative performance analysis of the proposed
PMPSO-ME with other existing schemes is presented in Table 5.12 and Table 5.13. It can
be observed that the proposed PMPSO-ME takes considerably less encoding time than other
schemes. The average ∆T for PMPSO-ME is equal to −0.40 whereas it is −0.33,−0.33

and −0.34 for IPSO, APSO and PBPSO, respectively. Hence, the proposed PMPSO-ME
encodes a video at 40% faster rate compared to the FS scheme.

Experiment 5: Subjective performance

The subjective performance of PMPSO-ME and other existing competitive schemes is shown
in Figure 5.26 for Foreman sequence. It is clearly seen that the proposd PMPSO-ME yields
better visual performance and hence, outperforms other schemes.
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(a)

(b)

Figure 5.25: Comparison of average number of search points per macroblock per frame for
Mobile and Old Town Cross sequences at QP=26.

5.6 Conclusion

In this chapter, we have proposed two efficient BMME schemes to reduce temporal
redundancy among video frames. One is UES based DAME and another, PMPSO-ME
based on MES. The DAME uses hybrid search patterns that comprises SDSP, KSP, CSP,
HHSP and VHSP. It proposes to select different search pattern based on motion content
which is predicted by MVP. The proposed DAME scheme significantly reduces the search
points and minimizes the computational cost while maintaining visual quality. Moreover, it
yields superior performance in comparison to other state-of-the-art BMME approaches. The
PMPSO-ME is an evolutionary method based on PSO. Various early termination techniques
are applied to achieve lower computational complexity without degrading the visual quality.
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Table 5.10: Performance comparison in terms of number of search points per macroblock

Schemes
Sequence FS IPSO APSO PBPSO PMPSO

[125] [150] [152] [154]
Foreman 67600.00 55.00 53.50 54.25 49.25
Highway 67600.00 23.50 27.50 27.25 24.00

Search Mobile 67600.00 148.00 145.25 148.25 137.25
points Bus 67600.00 152.50 154.00 153.75 140.50

Crew 67600.00 68.00 68.50 66.00 56.00
Soccer 67600.00 46.75 47.75 48.00 43.25
Old Town Cross 67600.00 35.50 37.00 36.00 34.50
Park Joy 67600.00 368.00 378.75 370.75 317.25
Average 67600.00 112.16 114.03 113.03 100.25
Foreman 137158.88 11.68 8.63 10.15 0.00
Highway 281566.67 -2.08 14.58 13.54 0.00

∆Search Mobile 49153.19 7.83 5.83 8.01 0.00
points Bus 48013.88 8.54 9.61 9.43 0.00
(%) Crew 120614.29 21.43 22.32 17.86 0.00

Soccer 156200.58 8.09 10.40 10.98 0.00
Old Town Cross 195842.03 2.90 7.25 4.35 0.00
Park Joy 21208.12 16.00 19.39 16.86 0.00
Average 126219.70 9.30 12.25 11.40 0.00

Table 5.11: Performance comparison of PMPSO-ME for different threshold (ΥSAD) values
at QP = 26

Sequence
Threshold Foreman Highway Mobile Bus Crew Soccer Old

Town
Cross

Park Joy Average

128 38.07 39.19 36.38 36.8 38.9 38.08 37.29 36.72 37.68
PSNR 256 38.11 39.16 36.38 36.79 38.90 38.07 37.29 36.71 37.68

384 38.08 39.16 36.37 36.75 38.90 38.04 37.28 36.71 37.66

128 380.82 370.52 3479.68 3685.79 7432 6294.18 15888.1 38466.04 9499.64
Bitrate 256 373.43 363.85 3101.17 3172.62 7352.21 6669.85 14566.44 34388.69 8748.53

384 456.98 397.26 3826.07 4503.59 7455.10 6997.33 15787.30 39443.69 9858.42

128 75.00 37.00 203.00 185.00 62.00 61.00 55.00 275.00 119.13
Search points 256 35.00 22.00 115.00 120.00 56.00 29.00 20.00 317.00 89.25

384 21.00 18.00 60.00 84.00 27.00 21.00 16.00 173.00 52.50

The proposed DAME or PMPSO-ME and efficient transform schemes are expected to lead
to further improvement in compression performance and reduction in encoding time in rich
video content based applications like HDTV broadcasting, security and surveillance.
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Table 5.12: Performance comparison in terms of encoding time

Schemes
Sequence FS IPSO APSO PBPSO PMPSO

[125] [150] [152] [154]
Foreman 8.86 5.61 5.56 5.54 5.11
Highway 7.90 5.51 5.47 5.45 5.00

T Mobile 65.08 39.51 38.98 39.29 33.93
(in Sec.) Bus 52.51 36.56 36.39 36.40 31.71

Crew 166.47 103.91 103.16 102.52 93.72
Soccer 153.49 97.18 96.85 96.71 92.78
Old Town Cross 354.89 212.81 213.50 211.88 201.55
Park Joy 655.67 559.98 562.25 558.60 498.69
Average 183.11 132.63 132.77 132.05 121.56
Foreman 0.00 -0.37 -0.37 -0.37 -0.42
Highway 0.00 -0.30 -0.31 -0.31 -0.37

∆T Mobile 0.00 -0.39 -0.40 -0.40 -0.48
Bus 0.00 -0.30 -0.31 -0.31 -0.40
Crew 0.00 -0.38 -0.38 -0.38 -0.44
Soccer 0.00 -0.37 -0.37 -0.37 -0.40
Old Town Cross 0.00 -0.40 -0.40 -0.40 -0.43
Park Joy 0.00 -0.14 -0.15 -0.14 -0.24
Average 0.00 -0.33 -0.33 -0.34 -0.40

Table 5.13: Performance comparison in terms of motion estimation time (Tme)

Schemes
Sequence FS IPSO APSO PBPSO PMPSO

[125] [150] [152] [154]
Foreman 3.59 0.25 0.25 0.33 0.31
Highway 2.67 0.23 0.23 0.21 0.21
Mobile 25.21 1.95 1.80 1.90 1.79

Tme Bus 22.10 1.91 1.93 2.03 1.77
(in Sec.) Crew 67.77 5.21 5.38 5.29 4.53

Soccer 60.98 4.36 4.69 4.84 4.82
Old Town Cross 150.47 9.87 9.76 9.49 9.51
Park Joy 268.31 34.85 36.09 35.99 22.63
Average 75.14 7.33 7.52 7.51 5.69
Foreman 0.00 -0.93 -0.91 -0.93 -0.91
Highway 0.00 -0.91 -0.92 -0.91 -0.92
Mobile 0.00 -0.92 -0.92 -0.93 -0.93

∆Tme Bus 0.00 -0.91 -0.91 -0.91 -0.92
Crew 0.00 -0.92 -0.92 -0.92 -0.93
Soccer 0.00 -0.93 -0.92 -0.92 -0.92
Old Town Cross 0.00 -0.93 -0.94 -0.94 -0.94
Park Joy 0.00 -0.87 -0.87 -0.87 -0.92
Average 0.00 -0.92 -0.91 -0.92 -0.92
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(a) (b)

(c) (d)

(e) (f)

Figure 5.26: Subjective performance of PMPSO-ME and other existing competitive schemes
in Foreman sequence: a) Original frame, b) FS (144.14 kbps, 38.23 dB), c) IPSO (143.75
kbps, 37.67 dB), d) APSO (143.97 kbps, 37.66 dB), e) PBPSO (143.12 kbps, 37.68 dB) and
f) PMPSO (145.51 kbps, 38.39 dB)
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Chapter 6

Development of Hybrid Foveated Video
Compression Schemes

Preview

Now-a-days, various modes of network (wired or wireless) are existing together that support
multiple data rates. The transmission of a video data with low bit-rate having good visual
quality in this heterogeneous network necessitates a highly efficient video encoder. Keeping
this in mind, in this chapter, we have proposed various efficient and novel encoding
schemes to incorporate in existing H.264/AVC video encoder for optimizing its compression
performance while maintaining high visual quality to salient regions. The comparative
analysis of all proposed schemes in this thesis is presented.

The following topics are covered in this chapter.

• Introduction

• Development of hybrid foveated video compression schemes

• Comparative analysis

• Conclusion

6.1 Introduction

In a heterogeneous network, transmission of video data with uniform resolution using low
data rates degrades the visual quality significantly. Therefore, to attain good visual quality,
bit-rate must be increased. But, in a video frame, all regions are not equally important and
hence, maintaining good visual quality to unimportant or non-salient regions comes with
the cost of higher bit-rates. Based on this observation, we have proposed some foveated
video compression (FVC) schemes in this doctoral research work. In a FVC, video is
encoded with non-uniform resolution similar to HVS i.e., important or salient regions are
encoded with sufficiently higher visual quality than their complements. To further improve
the compression performance and to reduce video encoding time, we have also proposed
directional transform and fast motion estimation techniques. The schemes are as follows.
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1. Efficient foveated video coding scheme: Here, a video data is non-uniformly
encoded to achieve higher compression ratio. The salient regions, obtained by
either multi-scale phase spectrum based saliency detection (FTPBSD) or sign-DCT
multi-scale pseudo-phase spectrum based saliency detection (SDCTPBSD), are
encoded with higher visual quality (Chapter 3).

2. Direction-adaptive fixed length directional transform scheme: A directional
transform scheme based on direction-adaptive fixed length discrete cosine transform
(DAFL-DCT) for intra-, and inter-frame to achieve higher coding performance in case
of directional featured blocks. Two encoding modes of DAFL-DCT are proposed.
One is high efficiency mode DAFL-HE and other is low complexity mode DAFL-LC
(Chapter 4).

3. Fast motion estimation schemes: To improve the compression gain of inter-coding
and to reduce the encoding time, we have also proposed uni-modal error surface
(UES) based direction-adaptive motion estimation (DAME) scheme and pattern-based
modified particle swarm optimization motion estimation (PMPSO-ME) scheme based
on multi-modal error surface (MES) (Chapter 5).

These schemes are designed, developed and analysed independently in earlier chapters.
The performance comparisons with their competitive existing schemes have been carried out
with respect to various benchmark metrics along-with subjective analysis.

Now, some hybrid schemes are proposed, which are based on these schemes, to enhance
the compression performance.

6.2 Development of Hybrid Foveated Video Compression
Schemes

We have endeavoured to hybridize our proposed schemes, presented in Chapter-3, Chapter-4
and Chapter-5, to yield much better compression performance while retaining sufficiently
high visual quality. In this regard, we have taken up three different paradigms. First, we
have combined FVC algorithm with conventional DCT of H.264/AVC platform which is
depicted in Figure 6.1. The second paradigm talks of associating FVC with DALF-DCT
to improve the compression performance for directional featured blocks as well as to yield
high visual quality promised by an FVC algorithm. This is shown in Figure 6.2. Thirdly,
incorporating a fast motion estimation algorithm to the second paradigm yields a totally
different platform, which is depicted in Figure 6.3. The paradigm is expected to yield the
best performance, in terms of compression performance and visual quality as well, since all
three independent modules of our research are fused together.

These three paradigms will produce various algorithms. From intuition, it is understood
that all the three paradigms will not yield the same quality. In fact, they are not expected to.
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Accordingly, following hybrid schemes are proposed .

(1) Paradigm-I

(i) FVC-FTPBSD-DCT scheme: ―a combination of FTPBSD based FVC and
conventional DCT schemes;

(ii) FVC-SDCTPBSD-DCT scheme: ―a combination of SDCTPBSDbased FVC
and conventional DCT schemes.

(2) Paradigm-II

(i) FVC-FTPBSD-DAFL-HE scheme: ―a combination of FTPBSD based FVC
and DAFL-HE schemes;

(ii) FVC-FTPBSD-DAFL-LC scheme: ―a combination of FTPBSD based FVC
and DAFL-LC schemes;

(iii) FVC-SDCTPBSD-DAFL-HE scheme: ―a combination of SDCTPBSD
based FVC and DAFL-HE schemes;

(iv) FVC-SDCTPBSD-DAFL-LC scheme: ―a combination of SDCTPBSD
based FVC and DAFL-LC schemes;

(3) Paradigm-III

(i) FVC-FTPBSD-DAFL-HE-DAME scheme: ―a combination of FTPBSD
based FVC, DAFL-HE and DAME schemes;

(ii) FVC-FTPBSD-DAFL-HE-PMPSO scheme: ―a combination of FTPBSD
based FVC, DAFL-HE and PMPSO-ME schemes;

(iii) FVC-FTPBSD-DAFL-LC-DAME scheme: ―a combination of FTPBSD
based FVC, DAFL-LC and DAME schemes;

(iv) FVC-FTPBSD-DAFL-HE-PMPSO scheme: ―a combination of FTPBSD
based FVC, DAFL-LC and PMPSO-ME schemes.

(v) FVC-SDCTPBSD-DAFL-HE-DAME scheme: ―a combination of
SDCTPBSD based FVC, DAFL-HE and DAME schemes;

(vi) FVC-SDCTPBSD-DAFL-HE-PMPSO scheme: ―a combination of
SDCTPBSD based FVC, DAFL-HE and PMPSO-ME schemes;

(vii) FVC-SDCTPBSD-DAFL-LC-DAME scheme: ―a combination of
SDCTPBSD based FVC, DAFL-LC and DAME schemes;

(viii) FVC-SDCTPBSD-DAFL-HE-PMPSO scheme: ―a combination of
SDCTPBSD based FVC, DAFL-LC and PMPSO-ME schemes.
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Figure 6.1: Block diagram of Paradigm-I (FVC with conventional DCT of H.264/AVC)
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Figure 6.2: Block diagram of Paradigm-II (FVC with DAFL-DCT)
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Figure 6.3: Block diagram of Paradigm-III (FVC alongwith DAFL-DCT and ME schemes)

6.3 Comparative Analysis

The hybrid schemes are incorporated into H.264/AVC platform and experiments have been
carried out on standard video sequences: Foreman, Highway, Mobile, Bus, Crew, Soccer,
Old Town Cross and Park Joy. The performance analysis with respect to BD-PSNR,
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Table 6.1: Comparative Bjontegaard metric[36] performance analysis of FTPBSD based
FVC schemes in H.264/AVC platform

Sequence
Schemes Foreman Highway Mobile Bus Crew Soccer Old

Town
Cross

Park Joy Average

FVC-FTPBSD-DCT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FVC-FTPBSD-DAFL-HE 0.34 0.27 0.47 0.41 0.25 0.26 0.08 0.54 0.33
FVC-FTPBSD-DAFL-LC 0.19 0.19 0.33 0.20 0.17 0.16 0.09 0.23 0.20

BD-PSNR FVC-FTPBSD-DAFL-HE-DAME 0.35 0.18 0.65 -0.07 1.39 -0.18 -0.01 0.00 0.29
(in dB) FVC-FTPBSD-DAFL-HE-PMPSO 0.47 0.16 0.55 -0.03 1.13 -0.10 -0.03 -0.43 0.22

FVC-FTPBSD-DAFL-LC-DAME 0.14 0.10 0.51 -0.22 1.02 -0.26 0.06 0.10 0.18
FVC-FTPBSD-DAFL-LC-PMPSO 0.29 0.08 0.40 0.04 0.83 -0.09 0.03 -0.17 0.18

FVC-FTPBSD-DCT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FVC-FTPBSD-DAFL-HE 0.0034 0.0038 0.0090 0.0060 0.0027 0.0010 -0.0024 0.0137 0.0046
FVC-FTPBSD-DAFL-LC 0.0016 0.0022 0.0067 0.0025 0.0012 0.0003 -0.0010 0.0067 0.0025

BD-SSIM FVC-FTPBSD-DAFL-HE-DAME 0.0030 0.0029 0.0116 -0.0285 0.0293 -0.0172 -0.0065 -0.0085 -0.0017
FVC-FTPBSD-DAFL-HE-PMPSO 0.0052 0.0024 0.0099 -0.0143 0.0230 -0.0078 -0.0058 -0.0203 -0.0010
FVC-FTPBSD-DAFL-LC-DAME -0.0001 0.0012 0.0092 -0.0311 0.0221 -0.0188 -0.0032 -0.0121 -0.0041
FVC-FTPBSD-DAFL-LC-PMPSO 0.0025 0.0008 0.0076 -0.0175 0.0176 -0.0106 -0.0028 -0.0188 -0.0026

FVC-FTPBSD-DCT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FVC-FTPBSD-DAFL-HE -8.41 -16.31 -14.55 -11.17 -6.42 -9.85 -13.46 -13.57 -11.72
FVC-FTPBSD-DAFL-LC -4.87 -11.52 -10.46 -5.22 -3.99 -5.81 -9.28 -4.47 -6.95

BD-bitrate FVC-FTPBSD-DAFL-HE-DAME -8.63 -11.83 -19.33 1.12 -26.44 3.86 -19.20 -0.96 -10.18
(in %) FVC-FTPBSD-DAFL-HE-PMPSO -11.35 -11.32 -16.50 0.08 -22.81 1.34 -15.76 2.65 -9.21

FVC-FTPBSD-DAFL-LC-DAME -3.67 -6.73 -15.52 4.33 -21.39 3.93 -14.61 -1.28 -6.87
FVC-FTPBSD-DAFL-LC-PMPSO -7.21 -5.82 -12.46 -0.94 -18.17 2.43 -11.06 6.32 -5.87

Table 6.2: Comparative Bjontegaard metric[36] performance analysis of SDCTPBSD based
FVC schemes in H.264/AVC platform

Sequence
Schemes Foreman Highway Mobile Bus Crew Soccer Old

Town
Cross

Park Joy Average

FVC-SDCTPBSD-DCT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FVC-SDCTPBSD-DAFL-HE 0.39 0.23 0.52 0.30 0.20 0.27 0.17 0.27 0.30
FVC-SDCTPBSD-DAFL-LC 0.18 0.16 0.39 0.12 -0.03 0.20 0.12 0.27 0.18

BD-PSNR FVC-SDCTPBSD-DAFL-HE-DAME 0.46 0.13 0.77 -0.02 1.03 -0.09 0.24 0.16 0.34
(in dB) FVC-SDCTPBSD-DAFL-HE-PMPSO 0.62 0.11 0.67 0.10 0.88 -0.05 0.18 -0.04 0.31

FVC-SDCTPBSD-DAFL-LC-DAME 0.26 0.04 0.61 -0.13 0.80 -0.08 0.21 0.14 0.23
FVC-SDCTPBSD-DAFL-LC-PMPSO 0.39 0.03 0.51 0.02 0.60 -0.02 0.14 -0.05 0.20

FVC-SDCTPBSD-DCT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FVC-SDCTPBSD-DAFL-HE 0.0050 0.0032 0.0104 0.0031 0.0011 0.0014 0.0015 0.0046 0.0038
FVC-SDCTPBSD-DAFL-LC 0.0021 0.0018 0.0085 0.0000 -0.0019 0.0007 0.0011 0.0049 0.0022

BD-SSIM FVC-SDCTPBSD-DAFL-HE-DAME 0.0055 0.0019 0.0153 -0.0301 0.0179 -0.0161 0.0023 -0.0173 -0.0026
FVC-SDCTPBSD-DAFL-HE-PMPSO 0.0075 0.0017 0.0137 -0.0184 0.0145 -0.0077 0.0016 -0.0230 -0.0013
FVC-SDCTPBSD-DAFL-LC-DAME 0.0024 0.0001 0.0123 -0.0333 0.0137 -0.0168 0.0022 -0.0180 -0.0047
FVC-SDCTPBSD-DAFL-LC-PMPSO 0.0044 0.0000 0.0106 -0.0217 0.0100 -0.0098 0.0014 -0.0259 -0.0039

FVC-SDCTPBSD-DCT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FVC-SDCTPBSD-DAFL-HE -8.78 -11.58 -18.55 -8.71 -5.35 -8.13 -10.07 -5.97 -9.64
FVC-SDCTPBSD-DAFL-LC -4.22 -8.27 -13.45 -3.24 0.40 -6.14 -6.61 -7.89 -6.18

BD-bitrate FVC-SDCTPBSD-DAFL-HE-DAME -10.27 -7.17 -24.39 -0.90 -23.13 2.43 -15.77 -2.77 -10.24
(in %) FVC-SDCTPBSD-DAFL-HE-PMPSO -13.16 -6.66 -21.47 -1.65 -20.06 1.13 -12.36 3.17 -8.88

FVC-SDCTPBSD-DAFL-LC-DAME -5.84 -2.45 -19.74 1.67 -18.37 2.75 -12.34 -3.52 -7.23
FVC-SDCTPBSD-DAFL-LC-PMPSO -8.76 -2.18 -17.06 1.46 -14.41 0.69 -8.78 1.72 -5.92

BD-SSIM and BD-bitrate [36], rate-distortion (R-D) curves, encoding time complexity and
subjective quality have been made to derive an overall conclusion.

6.3.1 Experiment 1: Bjontegaard metrics performance

In this experiment, each set of the proposed hybrid FVC schemes are compared with
proposed conventional FVC schemes (FVC-FTPBSD-DCT and FVC-SDCTPBSD-DCT)
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(a)

(b)

Figure 6.4: Rate-distortion curves for FTPBSD based hybrid schemes

respectively. The performance values in terms of BD-PSNR, BD-SSIM and BD-bitrate are
summarized in Table 6.1 and Table 6.2. In Bjontegaardmetric positive numbers in BD-PSNR
and BD-SSIM represent gain, while negative numbers in BD-bitrate show reduction in
bit-rate. The R-D curves for Mobile and Crew sequences are presented in Figure 6.4
and Figure 6.5 for FTPBSD based FVC schemes and SDCTPBSD based FVC schemes
respectively.

From Table 6.1, it is observed that FVC-FTPBSD-DAFL-HE yields improvement
in BD-PSNR of 0.33 dB (or equivalently improvement in BD-SSIM of 0.0046 or
11.72% reduction in BD-bitrate) on average with respect to FVC-FTPBSD-DCT. It means
FVC-FTPBSD-DAFL-HE outperforms other hybrid schemes and yields better PSNR gain
and visual quality for lower bit-rate. It is also found that FVC-FTPBSD-DAFL-HE-DAME
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(a)

(b)

Figure 6.5: Rate-distortion curves for SDCTPBSD based hybrid schemes

achieves a quite noticeable improvement in BD-PSNR of 1.39 dB (or equivalently
improvement in BD-SSIM of 0.0293 or 26.44% reduction in BD-bitrate) for Crew video
sequence.

From Table 6.2, it is observed that FVC-SDCTPBSD-DAFL-HE-DAME yields
improvement in BD-PSNR of 0.34 dB (or equivalently reduction in BD-SSIM of 0.0026
or 10.24% reduction in BD-bitrate) on average with respect to FVC-SDCTPBSD-DCT. It
means FVC-SDCTPBSD-DAFL-HE-DAME outperforms other hybrid schemes and yields
better PSNR gain for lower bit-rate but marginally reduced visual quality. It is also found that
FVC-FTPBSD-DAFL-HE-DAME achieves a quite noticeable improvement in BD-PSNR
of 1.03 dB (or equivalently improvement in BD-SSIM of 0.0179 or 23.13% reduction in
BD-bitrate) for Crew video sequence.

The R-D curves, from Figure 6.4 and Figure 6.5 as well as Bjontegaard
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Table 6.3: Comparative ∆T encoding time analysis of proposed hybrid FVC schemes in
H.264/AVC platform

Sequence
Schemes Foreman Highway Mobile Bus Crew Soccer Old Town Cross Park Joy Average
FVC-FTPBSD-DCT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FVC-FTPBSD-DAFL-HE -0.37 -0.34 -0.34 -0.37 -0.44 -0.39 -0.36 -0.36 -0.37
FVC-FTPBSD-DAFL-LC -0.63 -0.57 -0.60 -0.61 -0.65 -0.62 -0.61 -0.58 -0.61
FVC-FTPBSD-DAFL-HE-DAME -0.43 -0.39 -0.42 -0.32 -0.50 -0.40 -0.44 -0.35 -0.41
FVC-FTPBSD-DAFL-HE-PMPSO -0.43 -0.40 -0.42 -0.37 -0.50 -0.44 -0.44 -0.38 -0.42
FVC-FTPBSD-DAFL-LC-DAME -0.69 -0.63 -0.68 -0.61 -0.72 -0.66 -0.68 -0.62 -0.66
FVC-FTPBSD-DAFL-LC-PMPSO -0.70 -0.63 -0.68 -0.65 -0.73 -0.67 -0.68 -0.63 -0.67

FVC-SDCTPBSD-DCT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FVC-SDCTPBSD-DAFL-HE -0.37 -0.33 -0.34 -0.36 -0.43 -0.39 -0.35 -0.35 -0.37
FVC-SDCTPBSD-DAFL-LC -0.62 -0.56 -0.60 -0.61 -0.65 -0.62 -0.60 -0.59 -0.61
FVC-SDCTPBSD-DAFL-HE-DAME -0.42 -0.37 -0.42 -0.31 -0.49 -0.42 -0.42 -0.34 -0.40
FVC-SDCTPBSD-DAFL-HE-PMPSO -0.43 -0.38 -0.43 -0.37 -0.50 -0.44 -0.42 -0.37 -0.42
FVC-SDCTPBSD-DAFL-LC-DAME -0.69 -0.61 -0.68 -0.61 -0.72 -0.66 -0.67 -0.61 -0.66
FVC-SDCTPBSD-DAFL-LC-PMPSO -0.69 -0.61 -0.68 -0.64 -0.72 -0.68 -0.67 -0.63 -0.67

metrics, from Table 6.1 and Table 6.2, signify the superior performance of
FVC-FTPBSD-DAFL-HE-DAME and FVC-SDCTPBSD-DAFL-HE-DAME hybrid
schemes compared to other hybrid schemes.

6.3.2 Experiment 2: Analysis of encoding time complexity

The encoding time complexity in terms of ∆T , defined in (3.20), is specified in Table 6.3.
The ∆T represents relative change in encoding time and hence positive value indicates
increase in encoding time and vice-versa. From Table 6.3, it is observed that DAFL-LC
based hybrid schemes outperform DAFL-HE based hybrid schemes meeting its design goal.
Similarly, PMPSO-ME based hybrid schemes are faster than DAME based hybrid schemes
but with a compromise with the objective performance.

6.3.3 Experiment 3: Subjective evaluation

The comparative analysis in terms of subjective evaluation of FTPBSD based hybrid FVC
schemes are shown in Figure 6.6 for Soccer sequence along-with the FTPBSD object map
for the corresponding frame. Similarly, SDCTPBSD based hybrid FVC schemes are shown
in Figure 6.7. It is clearly seen that in FVC schemes salient regions are encoded with higher
bit-rate as compared to non-salient regions.

6.4 Conclusion

Various hybrid foveated video compression schemes are generated from different
combinations of proposed FVC schemes (FTPBSD based FVC scheme and SDCTPBSD
based FVC scheme), directional transform and motion estimation schemes. The proposed
schemes are meticulously evaluated through various experiments. Among all hybrid
schemes, FVC-SDCT-DAFL-HE-DAME shows a superior performance in terms of
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Comparative subjective evaluation of reconstructed frame for FTPBSD
based hybrid FVC schemes with QP = 32 in Soccer sequence: a) Conventional
encoder, b) FTPBSD object map, c) FVC-FTPBSD-DCT, d) FVC-FTPBSD-DAFL-HE, e)
FVC-FTPBSD-DAFL-HE-DAME and f) FVC-FTPBSD-DAFL-HE-PMPSO

objective and subjective evaluations. The proposed schemes are suitable for various
H.264/AVC platform based low bit-rate applications like mobile based video telephony
and conferencing as well as medium bit-rate applications such as standard-definition TV
broadcasting and web based video related services.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Comparative subjective evaluation of reconstructed frame for SDCTPBSD
based hybrid FVC schemes with QP = 32 in Soccer sequence: a) Conventional encoder,
b) SDCTPBSD object map, c) FVC-SDCTPBSD-DCT, d) FVC-SDCTPBSD-DAFL-HE, e)
FVC-SDCTPBSD-DAFL-HE-DAME and f) FVC-SDCTPBSD-DAFL-HE-PMPSO
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Chapter 7

Conclusion

Preview

The schemes, proposed in this thesis, have been developed for providing fast and
efficient foveated video compression that yield higher compression performance with
lower computational cost and sufficiently higher visual quality at salient regions as well
for H.264/AVC platform. In this chapter, the overall conclusions are presented and the
contributions are summarised.

The following topics are covered in this chapter.

• Performance analysis

• Conclusion

• Scope for future work

7.1 Performance Analysis

The efficient foveated video compression schemes using saliency map (FVC-FTPBSD and
FVC-SDCTPBSD) for H.264/AVC platform are proposed in Chapter 3. The saliency maps
are evaluated using proposed FTPBSD and SDCTPBSD saliency detection techniques. The
SDCTPBSD yields much higher precision, recall and AUC than FTPBSD. It has been
observed with experimental results that the proposed FVC schemes (FVC-FTPBSD and
FVC-SDCTPBSD) greatly reduce the bit-rate of a video data while retaining high visual
quality to its salient regions.

To further optimize the performance of H.264/AVC video coding, an efficient
direction-adaptive fixed length discrete cosine transform (DAFL-DCT) for directional
featured blocks is proposed in Chapter 4. The DAFL-DCT proposes two sets of eight
directional transform modes for 4 × 4 and 8 × 8 blocks, one for each. In intra-frame
coding, 2D-DAFL-DCTs are used, whereas conventional 2D-DCT and 1D-DAFL-DCTs
are adaptively chosen in inter-frame encoding for each block. Two encoding modes of
DAFL-DCT: DAFL-HE and DAFL-LC are proposed. The DAFL-HE is a high efficiency
mode that selects an optimumDAFL-DCT transformmode for each block and yields superior
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Table 7.1: Comparative compression performance of the proposed hybrid foveated video
compression schemes forOld town cross (HD720p) video sequence for H.264/AVC platform

Schemes CPSNR MSSIM Bit-Rate Encoding Time
(dB) (kbps) (Seconds)

H.264-DCT 39.25 0.9275 17872.26 1490.96
FVC-FTPBSD-DCT 37.16 0.9039 5647.09 900.44
FVC-FTPBSD-DAFL-HE 37.09 0.9027 4729.93 572.88
FVC-FTPBSD-DAFL-LC 37.11 0.9030 5076.22 355.11
FVC-FTPBSD-DAFL-HE-DAME 37.04 0.9024 4380.54 506.02
FVC-FTPBSD-DAFL-HE-PMPSO 37.06 0.9027 4572.08 504.30
FVC-FTPBSD-DAFL-LC-DAME 37.06 0.9024 4692.13 284.50
FVC-FTPBSD-DAFL-LC-PMPSO 37.08 0.9028 4891.89 284.20

H.264-DCT 39.25 0.9275 17872.26 1490.96
FVC-SDCTPBSD-DCT 37.29 0.9060 6071.88 882.65
FVC-SDCTPBSD-DAFL-HE 37.22 0.9049 5286.67 575.96
FVC-SDCTPBSD-DAFL-LC 37.24 0.9052 5585.09 355.84
FVC-SDCTPBSD-DAFL-HE-DAME 37.18 0.9047 4895.12 510.01
FVC-SDCTPBSD-DAFL-HE-PMPSO 37.19 0.9049 5109.91 508.33
FVC-SDCTPBSD-DAFL-LC-DAME 37.20 0.9048 5182.95 287.03
FVC-SDCTPBSD-DAFL-LC-PMPSO 37.22 0.9051 5408.69 287.17

compression performance at the cost of higher complexity as compared to low complexity
mode represented as DAFL-LC. The proposed DAFL-DCT is shown to have superior
performance than the conventional 2D-DCT and other existing directional transforms in
terms of both objective and subjective analysis.

In Chapter 5, two fast and efficient BMME schemes are proposed to exploit temporal
correlation between video frames. One is UES based direction-adaptive motion estimation
(DAME) scheme and another is pattern-based modified particle swarm optimization motion
estimation (PMPSO-ME) based on MES. The DAME provides slightly better results as
compared to PMPSO-ME.

To have a bird’s eye view on performance of all the proposed hybrid FVC schemes, their
results, in terms of CPSNR, MSSIM, bit-rate and encoding time, are presented in Table 7.1
for Old town cross (HD720p) test video sequence for H.264/AVC platform.

From Table 7.1, it is observed that FVC-FTPBSD and FVC-SDCTPBSD yield reduction
in CPSNRby 2.09 dB and 1.96 dB on average and also exhibit reduction in bit-rate by 68.40%
and 66.03% on average as compared to conventional H.264-DCT scheme, respectively. Of
course, visual quality of FVC-SDCTPBSD is superior to that of FVC-FTPBSD as indicated
by MSSIM value.The proposed DAFL-HE further reduces the bit-rate while maintaining
the visual quality and outperforms DAFL-LC. The proposed scheme, PMPSO-ME reduces
encoding time and shows better performance in terms of CPSNR and MSSIM as compared
to DAME scheme but yields higher bit-rate. Thus, for a similar bit-rate, CPSNR and
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MSSIM value of PMPSO-ME will be less than that provided by DAME. Hence, it can be
concluded that DAME outperforms PMPSO-ME. A combination of DAFL-HE and DAME
with FVC schemes improves the compression performance and retains visual quality than
other combinations.

7.2 Conclusion

The analysis, presented in the previous section, leads us to draw the following conclusion.

• SDCTPBSD based FVC schemes exhibit better CPSNR and similar MSSIM value to
FTPBSD based FVC schemes, but provide a slightly less compression ratio.

• The DAFL-HE yields promising results, maintaining the quality in terms of objective
metrics with slightly extra encoding time as compared to DAFL-LC.

• The DAME scheme gives better CPSNR, MSSIM value and reduction in bit-rate
compared to PMPSO-ME, but marginally slower in encoding.

• The FVC-SDCTPBSD-DAFL-HE-DAME scheme outperforms competitive FVC-
SDCTPBSD-DAFL-HE-PMPSO-ME scheme and yields better CPSNR, MSSIM
value and reduction in bit-rate.

Finally, it may be concluded that among the hybrid schemes, FVC-SDCTPBSD-DAFL-
HE-DAME has a superior performance in all benchmark metrics. In general, it is observed
that each proposed scheme shows superior performance as compared to competitive schemes
existing in literature. The proposed schemes are suitable for various H.264/AVC platform
based low bit-rate applications like mobile based video telephony and conferencing as well
as medium bit-rate applications such as standard-definition TV broadcasting and web based
video related services.

7.3 Scope For Future Work

There is sufficient scope to carry out further research in developing efficient video
compression schemes employing the following techniques.

(a) Neural network (NN) and fuzzy inference system (FIS) are very good adaptive
systems. Much more research is expected to fine tune the transform and motion
estimation modules using on-line or off-line training modules.

(b) Efficient hardware, for video codec, may be designed employing pipelined VLSI
architecture.
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(c) Intra-prediction, loop filter and entropy encoding modules play important roles in
improving compression ratio and visual quality in H.264/AVC.Many fast and efficient
techniques for these modules are expected in near future.

(d) A challenging task may be taken up to modify the proposed schemes for making them
compatible with the latest coding standard, H.265/HEVC.
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