69,847 research outputs found

    A New Proof Rule for Almost-Sure Termination

    Get PDF
    An important question for a probabilistic program is whether the probability mass of all its diverging runs is zero, that is that it terminates "almost surely". Proving that can be hard, and this paper presents a new method for doing so; it is expressed in a program logic, and so applies directly to source code. The programs may contain both probabilistic- and demonic choice, and the probabilistic choices may depend on the current state. As do other researchers, we use variant functions (a.k.a. "super-martingales") that are real-valued and probabilistically might decrease on each loop iteration; but our key innovation is that the amount as well as the probability of the decrease are parametric. We prove the soundness of the new rule, indicate where its applicability goes beyond existing rules, and explain its connection to classical results on denumerable (non-demonic) Markov chains.Comment: V1 to appear in PoPL18. This version collects some existing text into new example subsection 5.5 and adds a new example 5.6 and makes further remarks about uncountable branching. The new example 5.6 relates to work on lexicographic termination methods, also to appear in PoPL18 [Agrawal et al, 2018

    On the Termination Problem for Probabilistic Higher-Order Recursive Programs

    Get PDF
    In the last two decades, there has been much progress on model checking of both probabilistic systems and higher-order programs. In spite of the emergence of higher-order probabilistic programming languages, not much has been done to combine those two approaches. In this paper, we initiate a study on the probabilistic higher-order model checking problem, by giving some first theoretical and experimental results. As a first step towards our goal, we introduce PHORS, a probabilistic extension of higher-order recursion schemes (HORS), as a model of probabilistic higher-order programs. The model of PHORS may alternatively be viewed as a higher-order extension of recursive Markov chains. We then investigate the probabilistic termination problem -- or, equivalently, the probabilistic reachability problem. We prove that almost sure termination of order-2 PHORS is undecidable. We also provide a fixpoint characterization of the termination probability of PHORS, and develop a sound (but possibly incomplete) procedure for approximately computing the termination probability. We have implemented the procedure for order-2 PHORSs, and confirmed that the procedure works well through preliminary experiments that are reported at the end of the article

    Exact Methods for Multistage Estimation of a Binomial Proportion

    Full text link
    We first review existing sequential methods for estimating a binomial proportion. Afterward, we propose a new family of group sequential sampling schemes for estimating a binomial proportion with prescribed margin of error and confidence level. In particular, we establish the uniform controllability of coverage probability and the asymptotic optimality for such a family of sampling schemes. Our theoretical results establish the possibility that the parameters of this family of sampling schemes can be determined so that the prescribed level of confidence is guaranteed with little waste of samples. Analytic bounds for the cumulative distribution functions and expectations of sample numbers are derived. Moreover, we discuss the inherent connection of various sampling schemes. Numerical issues are addressed for improving the accuracy and efficiency of computation. Computational experiments are conducted for comparing sampling schemes. Illustrative examples are given for applications in clinical trials.Comment: 38 pages, 9 figure

    How long, O Bayesian network, will I sample thee? A program analysis perspective on expected sampling times

    Get PDF
    Bayesian networks (BNs) are probabilistic graphical models for describing complex joint probability distributions. The main problem for BNs is inference: Determine the probability of an event given observed evidence. Since exact inference is often infeasible for large BNs, popular approximate inference methods rely on sampling. We study the problem of determining the expected time to obtain a single valid sample from a BN. To this end, we translate the BN together with observations into a probabilistic program. We provide proof rules that yield the exact expected runtime of this program in a fully automated fashion. We implemented our approach and successfully analyzed various real-world BNs taken from the Bayesian network repository

    Inductive types in the Calculus of Algebraic Constructions

    Get PDF
    In a previous work, we proved that an important part of the Calculus of Inductive Constructions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higher-order rewrite rules. In this paper, we prove that almost all CIC can be seen as a CAC, and that it can be further extended with non-strictly positive types and inductive-recursive types together with non-free constructors and pattern-matching on defined symbols.Comment: Journal version of TLCA'0

    Approximating the Termination Value of One-Counter MDPs and Stochastic Games

    Get PDF
    One-counter MDPs (OC-MDPs) and one-counter simple stochastic games (OC-SSGs) are 1-player, and 2-player turn-based zero-sum, stochastic games played on the transition graph of classic one-counter automata (equivalently, pushdown automata with a 1-letter stack alphabet). A key objective for the analysis and verification of these games is the termination objective, where the players aim to maximize (minimize, respectively) the probability of hitting counter value 0, starting at a given control state and given counter value. Recently, we studied qualitative decision problems ("is the optimal termination value = 1?") for OC-MDPs (and OC-SSGs) and showed them to be decidable in P-time (in NP and coNP, respectively). However, quantitative decision and approximation problems ("is the optimal termination value ? p", or "approximate the termination value within epsilon") are far more challenging. This is so in part because optimal strategies may not exist, and because even when they do exist they can have a highly non-trivial structure. It thus remained open even whether any of these quantitative termination problems are computable. In this paper we show that all quantitative approximation problems for the termination value for OC-MDPs and OC-SSGs are computable. Specifically, given a OC-SSG, and given epsilon > 0, we can compute a value v that approximates the value of the OC-SSG termination game within additive error epsilon, and furthermore we can compute epsilon-optimal strategies for both players in the game. A key ingredient in our proofs is a subtle martingale, derived from solving certain LPs that we can associate with a maximizing OC-MDP. An application of Azuma's inequality on these martingales yields a computable bound for the "wealth" at which a "rich person's strategy" becomes epsilon-optimal for OC-MDPs.Comment: 35 pages, 1 figure, full version of a paper presented at ICALP 2011, invited for submission to Information and Computatio

    Breaking Up a Research Consortium

    Get PDF
    Inter-firm R&D collaborations through contractual arrangements have become increasingly popular, but in many cases they are broken up without any joint discovery. We provide a rationale for the breakup date in R&D collaboration agreements. More specifically, we consider a research consortium initiated by a firm A with a firm B. B has private information about whether it is committed to the project or a free-rider. We show that under fairly general conditions, a breakup date in the contract is a (secondbest) optimal screening device for firm A to screen out free-riders. With the additional constraint of renegotiation proofness, A can only partially screen out free-riders: entry by some free-riders makes sure that A does not have an incentive to renegotiate the contract ex post. We also propose empirical strategies for identifying the three likely causes of a breakup date: adverse selection, moral hazard, and project non-viability
    corecore