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MDPs and Stochastic Games
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Abstract

One-counter MDPs (OC-MDPs) and one-counter simple stochastic games (OC-
SSGs) are 1-player, and 2-player turn-based zero-sum, stochastic games played
on the transition graph of classic one-counter automata (equivalently, pushdown
automata with a 1-letter stack alphabet). A key objective for the analysis and
verification of these games is the termination objective, where the players aim
to maximize (minimize, respectively) the probability of hitting counter value 0,
starting at a given control state and given counter value.

Recently, we studied qualitative decision problems (“is the optimal termina-
tion value equal to 1?”) for OC-MDPs (and OC-SSGs) and showed them to be
decidable in polynomial time (in NP ∩ coNP, respectively). However, quantita-
tive decision and approximation problems (“is the optimal termination value at
least p”, or “approximate the termination value within ε”) are far more challeng-
ing. This is so in part because optimal strategies may not exist, and because even
when they do exist they can have a highly non-trivial structure. It thus remained
open even whether any of these quantitative termination problems are computable.

In this paper we show that all quantitative approximation problems for the ter-
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mination value for OC-MDPs and OC-SSGs are computable. Specifically, given a
OC-SSG, and given ε > 0, we can compute a value v that approximates the value
of the OC-SSG termination game within additive error ε, and furthermore we can
compute ε-optimal strategies for both players in the game.

A key ingredient in our proofs is a subtle martingale, derived from solving
certain linear programs that we can associate with a maximizing OC-MDP. An
application of Azuma’s inequality on these martingales yields a computable bound
for the “wealth” at which a “rich person’s strategy” becomes ε-optimal for OC-
MDPs.

1. Introduction

In recent years, there has been substantial research done to understand
the computational complexity of analysis and verification problems for classes
of finitely-presented but infinite-state stochastic models, MDPs, and stochastic
games, whose transition graphs arise from basic infinite-state automata-theoretic
models, including: context-free processes, one-counter processes, and pushdown
processes. It turns out these models are intimately related to important stochastic
processes studied extensively in applied probability theory. In particular, one-
counter probabilistic automata are basically equivalent to (discrete-time) quasi-
birth-death processes (QBDs) (see [9]), which are heavily studied in queuing the-
ory and performance evaluation as a basic model of an unbounded queue with
multiple states (phases). It is very natural to extend these purely probabilistic
models to MDPs and games, to model adversarial queuing scenarios.

In this paper we continue this work by studying quantitative approximation
problems for one-counter MDPs (OC-MDPs) and one-counter simple stochastic
games (OC-SSGs), which are 1-player, and turn-based zero-sum 2-player, stochas-
tic games on transition graphs of classic one-counter automata. In more detail, an
OC-SSG has a finite set of control states, which are partitioned into three types:
a set of random states, from where the next transition is chosen according to a
given probability distribution, and states belonging to one of two players: Max or
Min, from where the respective player chooses the next transition. Transitions can
change the state and can also change the value of the (unbounded) counter by at
most 1. If there are no control states belonging to Max (Min, respectively), then
we call the resulting 1-player OC-SSG a minimizing (maximizing, respectively)
OC-MDP. Fixing strategies for the two players yields a countable state Markov
chain and thus a probability space of infinite runs (trajectories).
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A central objective for the analysis and verification of OC-SSGs, is the termi-
nation objective: starting at a given control state and a given counter value j > 0,
player Max (Min) wishes to maximize (minimize) the probability of eventually
hitting the counter value 0 (in any control state). From well know fact, it follows
that these games are determined, meaning they have a value, ν, such that for every
ε > 0, player Max (Min) has a strategy that ensures the objective is satisfied with
probability at least ν − ε (at most ν + ε, respectively), regardless of what the other
player does. This value can be irrational even when the input data contains only
rational probabilities, and this is so even in the purely stochastic case of QBDs
without players ([9]).

A special subclass of OC-MDPs, called solvency games, was studied in [1] as a
simple model of risk-averse investment. Solvency games correspond to OC-MDPs
where there is only one control state, but there are multiple actions that change
the counter value (“wealth”), possibly by more than 1 per transition, according
to a finite support probability distribution on the integers associated with each
action. The goal is to minimize the probability of going bankrupt, starting with a
given positive wealth. It is not hard to see that these are subsumed by minimizing
OC-MDPs (see [3]). It was shown in [1] that if the solvency game satisfies a
number of restrictive assumptions (in particular, on the eigenvalues of a matrix
associated with the game), then an optimal “rich person’s” strategy (which does
the same action whenever the wealth is large enough) can be computed for it (in
exponential time). They showed such strategies are not optimal for unrestricted
solvency games and left the unrestricted case unresolved in [1].

We can classify analysis problems for OC-MDPs and OC-SSGs into two
kinds. Quantitative analyses, which include: “is the game value at least/at most
p” for a given p ∈ [0, 1]; or “approximate the game value” to within a desired
additive error ε > 0. We can also restrict ourselves to qualitative analyses, which
asks “is the game value = 1? = 0?”.2 We are also interested in strategies (e.g.,
memoryless, etc.) that achieve these.

In recent work [2, 3], we have studied qualitative termination problems for
OC-SSGs. For both maximizing and minimizing OC-MDPs, we showed that these
problems are decidable in P-time, using linear programming, connections to the
theory of random walks on integers, and other MDP objectives. For OC-SSGs, we
showed the qualitative termination problem “is the termination value = 1?” is in

2The problem “is the termination value = 0?” is easier, and can be solved in polynomial time
without even looking at the probabilities labeling the transitions of the OC-SSG.
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NP ∩ coNP. This problem is already as hard as Condon’s quantitative termination
problem for finite-state SSGs. However we left open, as the main open question,
the computability of quantitative termination problems for OC-MDPs and OC-
SSGs.

Our contribution. In this paper, we resolve positively the computability of all
quantitative approximation problems associated with OC-MDPs and OC-SSGs.
Note that, in some sense, approximation of the termination value in the setting
of OC-MDPs and OC-SSGs can not be avoided. This is so not only because the
value can be irrational, but because (see Example A.1 in Section A.1) for max-
imizing OC-MDPs there need not exist any optimal strategy for maximizing the
termination probability, only ε-optimal ones (whereas Min does have an optimal
strategy in OC-SSGs). Moreover, even for minimizing OC-MDPs, where optimal
strategies do exist, they can have a very complicated structure. In particular, as
already mentioned for solvency games, there need not exist any “rich person’s”
strategy that can ignore the counter value when it is larger than some finite N ≥ 0.

Nevertheless, we show all these difficulties can be overcome when the goal
is to approximate the termination value of OC-SSGs and to compute ε-optimal
strategies. Our main result (Theorem 3.1) is the following:

There is an algorithm that, given as input: a OC-SSG, G, an initial control state
s, an initial counter value j > 0, and a (rational) approximation threshold ε > 0,

• computes a rational number, v′, such that |v′ − v∗| < ε, where v∗ is the value
of the OC-SSG termination game on G, starting in configuration (s, j), and

• computes ε-optimal strategies for both players in the OC-SSG termination
game.

For OC-MDPs, i.e., 1-player OC-SSGs, the algorithm runs in exponential time in
the encoding size of the OC-MDP, and in polynomial time in log(1/ε) and log( j).
For 2-player OC-SSGs, the algorithm runs in nondeterministic exponential time
in the encoding size of the OC-SSG.3

We now outline our basic strategy for proving this theorem. Consider the case
of maximizing OC-MDPs, and suppose we would like to approximate the optimal

3We shall explain after the statement of Theorem 3.1, in footnote 4, p precisely what we mean
by computing something in nondeterministic exponential time. It amounts to the standard notion
of nondeterministic computation used in the setting of total search problems.
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termination probability, starting at state q and counter value i. Intuitively, it is not
hard to believe that as the counter value goes to infinity, the optimal probability
of termination starting at a state q begins to approach the optimal probability, vq,
of forcing the counter to have a lim inf value = −∞. We prove that this is indeed
the case. But we can compute the optimal value vq and an optimal strategy for
achieving it, based on results in our prior work [2, 3]. For a given ε > 0, we
need to compute a bound N on the counter value, such that for any state q, and
all counter values N′ > N, the optimal termination probability starting at (q,N′)
is at most ε away from the optimal probability for the counter to have lim inf
value = −∞. A priori it is not clear whether such a bound N is computable, al-
though it is clear that N exists. To show that it is computable, we employ a subtle
(sub)martingale, derived from solving a certain linear programming problem asso-
ciated with a given OC-MDP. By applying Azuma’s inequality on this martingale,
we are able to show there are computable values c < 1, and h ≥ 0, such that
for all i > h, starting from a state q and counter value i, the optimal probability of
both terminating and not encountering any state from which with probability 1 the
player can force the lim inf counter value to go to −∞, is at most ci/(1 − c). Thus,
the optimal termination probability approaches from above the optimal probabil-
ity of forcing the lim inf counter value to be −∞, and the difference between these
two values is exponentially small in i, with a computable base c. This martingale
argument extends to OC-MDPs an argument recently used in [6] for analyzing
purely probabilistic one-counter automata (i.e., QBDs).

These bounds allow us to reduce the problem of approximating the termina-
tion value to the reachability problem for an exponentially larger finite-state MDP,
which we can solve (in exponential time) using linear programming. The case for
general OC-SSGs and minimizing OC-MDPs turns out to follow a similar line of
argument, reducing the essential problem to the case of maximizing OC-MDPs.
In terms of complexity, the OC-SSG case requires “guessing” an appropriate (al-
beit, exponential-sized) strategy, whereas the relevant exponential-sized strategy
can be computed in deterministic exponential time for OC-MDPs. So our approx-
imation algorithms run in exponential time for OC-MDPs and nondeterministic
exponential time for OC-SSGs.

Related work. As noted, one-counter automata with a non-negative counter
are equivalent to pushdown automata restricted to a 1-letter stack alphabet (see
[9]), and thus OC-SSGs with the termination objective form a subclass of
pushdown stochastic games, or equivalently, Recursive simple stochastic games
(RSSGs). These more general stochastic games were studied in [10], where it was
shown that many interesting computational problems, including any nontrivial
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approximation of the termination value for general RSSGs and RMDPs is unde-
cidable, as are qualitative termination problems. It was also shown in [10] that
for stochastic context-free games (1-exit RSSGs), which correspond to pushdown
stochastic games with only one state, both qualitative and quantitative termination
problems are decidable, and in fact qualitative termination problems are decid-
able in NP∩coNP ([11]), while quantitative termination problems are decidable in
PSPACE. Solving termination objectives is a key ingredient for many more gen-
eral analyses and model checking problems for such stochastic games (see, e.g.,
[4, 5]). OC-SSGs are incompatible with stochastic context-free games. Specifi-
cally, for OC-SSGs, the number of stack symbols is bounded by 1, instead of the
number of control states.

MDP variants of QBDs, essentially equivalent to OC-MDPs, have been con-
sidered in the queueing theory and stochastic modeling literature, see [14, 17].
However, in order to keep their analyses tractable, these works perform a naive
finite-state “approximation” by cutting off the value of the counter at an arbitrary
finite value N, and adding dead-end absorbing states for counter values higher
than N. Doing this can radically alter the behavior of the model, even for purely
probabilistic QBDs, and these authors establish no rigorous approximation bounds
for their models. In a sense, our work can be seen as a much more careful and
rigorous approach to finite approximation, employing at the boundary other objec-
tives like maximizing the probability that the lim inf counter value = −∞. Unlike
the prior work we establish rigorous bounds on how well our finite-state model
approximates the original infinite OC-MDP.

2. Preliminaries

We assume familiarity with basic notions from probability theory. We call a
probability distribution f over a discrete set, A, positive if f (a) > 0 for all a ∈ A.

Definition 2.1. A One-Counter Simple Stochastic Game (OC-SSG) is given as
A = (Q,Δ, P), where

• Q is a finite non-empty set of control states, partitioned into the states Q�
of player Max, Q⊥ of player Min, and stochastic states QP;

• a set Δ ⊆ Q × {−1, 0,+1} × Q of transition rules, such that for all q ∈ Q
there is some (q, a, r) ∈ δ;

• a map P taking each tuple (q, a, r) ∈ Δ with q ∈ QP to a positive rational
number P((q, a, r)), so that for every q ∈ QP:

∑
(q,a,r)∈δ P((q, a, r)) = 1.
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A configuration is a pair (q, c) of a control state, q, and an integer counter value
c ∈ Z. The set of all configurations is Q×Z. An OC-SSG where Q⊥ = ∅ is called a
maximizing One-Counter Markov Decision Process (maximizing OC-MDP), sim-
ilarly Q� = ∅ defines a minimizing OC-MDP. Finally, if Q� = Q⊥ = ∅ we have a
One-Counter Markov Chain (OC-MC).

Let us fix a OC-SSG, A = (Q,Δ, P). A run in A is an infinite sequence of
configurations ω = (q0, c0)(q1, c1) · · · such that for all i ≥ 1 we have that (qi−1, ci −

ci−1, qi) ∈ Δ. We define for every n ≥ 0 the following functions:

• State(n) : Run→ Q returns the n-th control state: State(n)(ω) = qn.

• C(n) : Run→ Z returns the n-th counter value: C(n)(ω) = cn.

A finite prefix, w = (q0, c0) · · · (qk, ck), of a run is called a finite path, and
len(w) � k is its length. We denote by Run the set of all runs, and by Run(w)
the set of all runs starting with a finite path w. Closing the set {Run(w) |
w is a finite path} under complements and countable unions generates the stan-
dard Borel σ-algebra of measurable sets of runs. Note that the functions State(n)

and C(n) have measurable pre-images.
A strategy for player Max is a function, σ, which to each finite path w =

(q0, c0) · · · (qk, ck), also called history in this context, where qk ∈ Q�, assigns a
probability distribution on the set of rules of the form (qk, a, r) ∈ Δ. It is called
pure if σ(w) assigns probability 1 to some transition, for each history w. We call
σ counterless if σ(w) depends only on the last control state, qk. Strategies for Min
are defined similarly, just by substituting Q� with Q⊥.

Assume that a pair (σ, π) of strategies for Max and Min, respectively, is fixed.
Consider a finite path w = (q0, c0) · · · (qk, ck) and a rule (qi−1, ci − ci−1, qi) ∈ Δ,
1 ≤ i ≤ k. We assign to this rule a weight, xi, as follows: If qi−1 ∈ QP then
xi = Prob((qi−1, ci − ci−1, qi)). If qi−1 ∈ Q� then xi is equal to the probability of
(qi−1, ci−ci−1, qi) assigned by σ((q0, c0) · · · (qi−1, ci−1)), and similarly for qi−1 ∈ Q⊥
and π. The weight of w is then xw =

∏len(w)−1
i=1 xi, where the empty product is equal

to 1. Once we also fix an initial configuration, (q, c), we obtain a probability
measure Pσ,π(q,c). This is defined by setting Pσ,π(q,c)(Run(w)) = 0 if w does not start with
(q, c), and Pσ,π(q,c)(Run(w)) = xw if w starts with (q, c). This and the requirement of
countable additivity of a measure already uniquely describes Pσ,π(q,c) (see, e.g., [16,
p. 30] for the case of MDPs. The extension of this to SSGs is straightforward.)
IfA is a maximizing OC-MDP, a minimizing OC-MDP, or a OC-MC, we denote
the probability measure by Pσ(q,c), P

π
(q,c), or P(q,c), respectively.
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Objectives. In this paper, an objective for an OC-SSG is a measurable set of runs.
Player Max tries to maximize the probability of this set, whereas player Min tries
to minimize it. Given an objective, O, for a OC-SSG, A, and a configuration,
s = (q, c), we define the value in s as

ValA(O, s) � sup
σ

inf
π
Pσ,πs (O) = inf

π
sup
σ

Pσ,πs (O) .

The latter equality follows from Martin’s Blackwell determinacy theorem [15].
We write just Val(O, s) if A is understood. For an ε ≥ 0, a strategy σ for Max is
called ε-optimal in s if Pσ,πs (O) ≥ Val(O, s) − ε for every π. Similarly a strategy
π for Min is ε-optimal in s if Pσ,πs (O) ≤ Val(O, s) + ε for every σ. A 0-optimal
strategy is called optimal. Note that by determinacy both players have ε-optimal
strategies for every ε > 0.

The key objective is the termination objective:

Term � {ω ∈ Run | ∃n : C(n)(ω) ≤ 0}.

The name “termination” stems from the connection to one-counter automata.
Such automata also have a finite number of control states and a non-negative
counter, and a run can be considered to “terminate” upon hitting counter value
0. OC-SSGs do not necessarily halt when the counter is 0, and allow negative
counter values. However, this difference is irrelevant from the perspective of the
termination objective, for which only the part of runs with non-negative counter
values matter.

Games without a Counter. In our arguments we also use the notion of Simple
Stochastic Games (SSGs) of Condon [7], which are similar to OC-SSGs. The
main difference is the lack of a counter, and the focus on the objective of reaching
a distinguished sink state.

Definition 2.2. A simple stochastic game (SSG) is a tuple G = (S , � , Prob),
where

• S is a finite set of states, partitioned into the states S � of player Max, S ⊥ of
player Min, and stochastic states S P;

• � ⊆ S × S is a transition relation such that for every state s ∈ S there is at
least one state r ∈ S such that s� r;

8



• Prob is a probability assignment which to each s ∈ S P assigns a rational
probability distribution on its set of successors, where for a state s ∈ S P its
successors are defined to be the set {r | s� r}.

If S ⊥ = ∅ we call G a maximizing Markov decision process (maximizing MDP). If
S � = ∅ we call it a minimizing MDP. If S � = S ⊥ = ∅ we call G a Markov chain.

The SSG also comes with a distinguished sink state s0 ∈ S , and this implicitly
defines the reachability objective “reach s0” defined by runs ω which visit s0.

Runs, strategies, probability measures and values with respect to objectives
are defined analogously to those for OC-SSGs, just by removing references to the
counter. In particular, runs are sequences of states. The following is well known.

Fact 2.3. (See, e.g., [7, 8, 16].) For both maximizing and minimizing MDPs,
optimal pure memoryless strategies for reachability exist and can be computed,
together with the optimal reachability value, in polynomial time.

3. Main Result

Theorem 3.1 (Main). There is an algorithm that, given an OC-SSG,A, a configu-
ration, (q, i), i ≥ 0, and a rational ε > 0, computes a rational number, ν, such that
|Val(Term, (q, i)) − ν| ≤ ε, and computes strategies σ and π for the Max and Min
player, respectively, such that both σ and π are ε-optimal starting in (q, i) with
respect to the termination objective. The algorithm runs in nondeterministic time
exponential in ||A|| and polynomial in log(i) and log(1/ε). If A is an OC-MDP,
then the algorithm runs in deterministic time exponential in ||A|| and polynomial
in log(i) and log(1/ε).4

4 To make precise the meaning of this theorem, we have to spell out precisely what we mean
by a nondeterministic algorithm that computes ν, σ and τ within given resource bounds. This is
a standard notion for total search problems. We will say a nondeterministic algorithm (i.e., non-
deterministic Turing machine) computes ν, σ and τ within the specified resource bounds (namely,
exponential time) if given any input the algorithms halts in exponential time on all computation
paths, and furthermore, if the input is not well-formed the algorithm “rejects” it on all computation
paths, but if the input is well-formed (i.e., if it is given a well formed OC-SSG,A, initial configu-
ration (q, i), and ε > 0) the nondeterministic algorithm: (a) has at least one accepting computation
path; and (b) on every accepting computation path it outputs values ν, σ, and π which satisfy
that |Val(Term, (q, i)) − ν| ≤ ε and such that σ and π are ε-optimal strategies for Max and Min,
respectively, for the given input OC-SSG A and initial configuration (q, i). On rejecting compu-
tation paths the algorithm need not output anything. Note that the outputs on different accepting
executions may be different, but they must all satisfy the required specification.
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Let us first briefly sketch the main ideas in the proof of Theorem 3.1.
First, observe that for all q ∈ Q and i ≤ j we have that Val(Term, (q, i)) ≥
Val(Term, (q, j)) ≥ 0. Let

μq � lim
i→∞

Val(Term, (q, i)).

Since μq ≤ Val(Term, (q, i)) for an arbitrarily large i, Player Max should be able to
decrease the counter by an arbitrary value with probability at least μq, no matter
what Player Min does. The objective of “decreasing the counter by an arbitrary
value” can be formalized directly as the following “limit” objective, which has
useful connections to termination [3]:

LimInf (= −∞) � {ω ∈ Run | lim inf
n→∞

C(n)(ω) = −∞}.

OC-SSG with this objective are determined, which means that the following value
is defined for every q ∈ Q:

νq � Val(LimInf (= −∞), (q, n)), where n = 0. (1)

Remark 3.1. Observe that due to the nature of LimInf (= −∞) we would obtain the
same value νq if we used any other value of n. It will be often the case that we will
measure the (optimal) probability of some events, where the resulting number will
not depend on the initial counter value. From now on, in such cases we will spec-
ify only the initial state, so, e.g., (1) would become νq � Val(LimInf (= −∞), q).

One intuitively expects that μq = νq, and we show that this is indeed the case
(see Corollary 3.13). Further, by [2, Theorem 2], νq is rational and computable in
non-deterministic time polynomial in ||A||. Moreover, both players have optimal
pure counterless strategies (σ∗, π∗) computable in non-deterministic polynomial
time. For OC-MDPs, both the value νq and the optimal strategies can be computed
in deterministic time polynomial in ||A||.

Obviously, there must be a (sufficiently large) N such that Val(Term, (q, i)) −
μq ≤ ε for all q ∈ Q and i ≥ N. We show that an upper bound on N is computable,
and is at most exponential in ||A|| and polynomial in log(1/ε), in Section 3.1. As
we shall see, this part is highly non-trivial. For all configurations (q, i), where
i ≥ N, the value Val(Term, (q, i)) can be approximated by μq (= νq), and both
players can use the optimal strategies (σ∗, π∗) for the LimInf (= −∞) objective. For
the remaining configurations (q, i), where i < N, we consider a (finite-state) SSG
G obtained by restricting ourselves to configurations with counter between 0 and
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N, extended by two fresh stochastic states s0, s1 with self-loops. All configurations
of the form (q, 0) have only one outgoing edge leading to s0, and all configurations
of the form (q,N) can enter either s0 with probability νq, or s1 with probability
1−νq. In this SSG, we compute the values and optimal strategies for the objective
of reaching s0. This can be done in nondeterministic time polynomial in the size
of G (i.e., exponential in ||A||). If A is an OC-MDP, then G is a MDP, and the
values and optimal strategies can be computed in deterministic polynomial time
in the size of G (i.e., exponential in ||A||) by linear programming (this applies
both to the “maximizing” and the “minimizing” OC-MDPs). Thus, we obtain
the required approximations of Val(Term, (q, i)) for i < N, and the associated ε-
optimal strategies.

Proof of Theorem 3.1. The algorithm is given an OC-SSG A = (Q,Δ, P), an ini-
tial configuration (q, i), and a rational number ε > 0, as input. Recall that for
r ∈ Q we set νr � Val(LimInf (= −∞), r). The algorithm does the following:

1. Compute a pair (σ∗, π∗) of pure counterless strategies, for players Max and
Min, respectively, which are optimal for LimInf (= −∞) starting at every
state r ∈ Q. Compute νr, for every r ∈ Q.

2. Compute N such that Val(Term, (r, j)) − νr ≤ ε for all r ∈ Q and j ≥ N.
3. If i ≥ N then return νq, σ∗, π∗.
4. Otherwise apply the algorithm from Lemma 3.14 toA, ε, (νr)r∈Q, N, σ∗, π∗

and return ν(q,i), σ̄, π̄ from its output.

A key step is obviously step 4, which is not described here. We shall describe
and prove the correctness and complexity of that step in Lemma 3.14. If we can
carry out the computations as specified in Steps 1 and 2, then the correctness of
the output in Step 3 holds by definition. Let us now evaluate the complexity of
the first two steps (using some of our earlier results, and some results that will be
established in Section 3.1):

• (Step 1.) The values νr, r ∈ Q, which have polynomially big encoding
by [2, Proposition 9], can be guessed and verified in polynomial time by [2,
Theorem 2]. Strategies exist that are optimal with respect to LimInf (= −∞)
and are pure and counterless by [2, Proposition 7]. We can guess such
a strategy σ∗ and verify, using the numbers νr, that it is LimInf (= −∞)-
optimal for Max; similarly for π∗ and Min. If A is an OC-MDP, all the
above can be computed deterministically in time polynomial in ||A||.
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• (Step 2.) Fixing π∗ inA we obtain a maximizing OC-MDPA∗. Lemma 3.9
applied to A∗ allows us to compute deterministically a bound N ∈

exp(||A′||O(1)) · O(log(1/ε)) such that in A∗, Val(Term, (r, j)) − νr ≤ ε for
all r ∈ Q and j ≥ N. By Lemma 3.12 this N satisfies the requirements of
step 2.

�

3.1. Bounding counter value N for maximizing OC-MDPs
Consider a maximizing OC-MDP A = (Q,Δ, P). Recall the definition of νq

from (1) and the notational convention introduced in Remark 3.1. Specifically,
we have νq = supσ Pσq (LimInf (= −∞)) for all q ∈ Q. Given ε > 0, we show
here how to obtain a computable (exponential) bound on a number N such that∣∣∣Val(Term, (q, i)) − νq

∣∣∣ < ε for all i ≥ N. We denote by T the set of all states q
with νq = 1, and we define the objective of reaching T as follows:

ReachT � {ω ∈ Run | State(i)(ω) ∈ T for some i ≥ 0}.

Further, we define the objective ¬ReachT � Run � ReachT .

Fact 3.2 (cf. [3, Proposition 3.2]). The number νq is the maximal probability of
reaching T from q (see Remark 3.1), i.e.,

νq = Val(ReachT , q) = sup
σ

Pσq (ReachT ) .

Lemma 3.3. For all q ∈ Q and i ≥ 0

νq ≤ Val(Term, (q, i)) ≤ sup
σ

Pσ(q,i)(Term ∩ ¬ReachT ) + νq. (2)

Proof. The first inequality is obvious. Because LimInf (= −∞) ∩ Run((q, i)) ⊆
Term ∩ Run((q, i)), we have Val(Term, (q, i)) = 1 for all q ∈ T , i ≥ 0, from
which the second inequality follows by an easy application of the union bound.
Namely, for under strategyσ, the event of termination can be split into the event of
terminating and not reaching T unioned with the event of terminating and reaching
T . The probability of the latter event is clearly upper bounded by vq. �

To provide the promised bound on N we will prove an upper bound on
supσ Pσ(q,i)(Term ∩ ¬ReachT ) which decreases toward 0 exponentially fast in i. We
will first define a suitably restricted class of OC-MDPs (we call them “rising”
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OC-MDPs) and find such a bound using martingale theory (Lemma 3.8) for that
restricted class. We then extend the results to all OC-MDPs (Lemma 3.9) by show-
ing that for every OC-MDP,A, there is a polynomially bigger “rising” OC-MDP,
Ā, which “embedds” in it the states of the original OC-MDP, and preserves the
rate with which supσ Pσ(q,i)(Term ∩ ¬ReachT ) reaches 0 from those corresponding
states. We will make this precise later.

To be able to use the martingale theory methods for rising OC-MDPs we need
to guarantee that in each rising OC-MDP, under every pure counterless strat-
egy, lim infi→∞ C(i)/i is almost surely positive. This value is sometimes called
the mean-payoff, see also [3]. We now state the definition of a rising OC-MDP
using two simple properties, and show that these two properties guarantee that the
mean-payoff is almost surely positive.

Definition 3.4. A pure counterless strategy, σ, is idling, if there is a state
q ∈ Q, such that Pσ(q,0)

(
∃i > 0 : State(i) = q

)
= 1 and for all i ≥ 0:

Pσ(q,0)

(
State(i) = q =⇒ C(i) = 0

)
= 1.

A maximizing OC-MDP is called rising if T = {q ∈ Q | νq = 1} = ∅ and no
pure counterless strategy is idling.

Lemma 3.5. Let A = (Q,Δ, P) be a rising OC-MDP. Then for every pure coun-
terless strategy, σ, and every q ∈ Q we have Pσq

(
lim infi→∞ C(i)/i > 0

)
= 1.

Proof. Let us fix a pure counterless strategy σ. Because σ is counterless, there
is a collection of disjoint subsets of Q, called ergodic sets, or bottom strongly
connected components (BSCCs), in the standard theory of Markov chains, such
that almost all runs end up visiting infinitely often exactly the states of some of
the BSCCs. Let us focus, for a while, on a single BSCC C ⊆ Q. By standard
results, for each pair of states r, s ∈ C the play from r almost surely visits s,
and the expected time to visit s from r is finite. As a consequence, there is
a unique constant p such that Pσr

(
lim infi→∞ C(i)/i > 0

)
= p for all r ∈ C, be-

cause lim infi→∞ C(i)/i > 0 is a prefix-independent property. Moreover, we can
use the result from [12, Theorem 3.2] which says that in a presence of r ∈ C
such that Pσr

(
lim infi→∞ C(i)/i > 0

)
> 0 there must also be some s ∈ C such that

Pσs

(
lim infi→∞ C(i)/i > 0

)
= 1. Thus either p = 0 or p = 1. Let us first prove by

contradiction that p = 1, and then we shall consider the more general case where
rather than assuming r ∈ C for a BSCC C, we consider an arbitrary start state in
the entire OC-MDP.
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Assume that p = 0. By Fact 3.2, T = ∅ implies that
Pσr

(
lim infi→∞ C(i) = −∞

)
= 0 for all r ∈ C. It is easy to see that this im-

plies that Pσr
(
lim infi→∞ C(i)/i ≥ 0

)
= 1 for all r ∈ C and all strategies σ.

Due to our assumption of p = 0, Pσr
(
lim infi→∞ C(i)/i = 0

)
= 1 for all r ∈

C. Now Lemma 3.3 from [3] says: “For all q, the pure counterless strate-
gies τ which satisfy Pτq

(
lim infi→∞ C(i) = −∞

)
= 1 are exactly those which sat-

isfy Pτq
(
lim infi→∞ C(i)/i ≤ 0

)
= 1 and Pτ(q,0)

(
∃i : C(i) < 0

)
> 0.” But we do

not have any strategies of the first kind, so there is a state r ∈ C such that
Pσ(r,0)

(
∀i : C(i) ≥ 0

)
= 1. If Pσ(r,0)

(
∃i > 0 : State(i) = r ∧ C(i) > 0

)
> 0 then because

the expected time between two visits to r is finite, it can fairly easily be estab-
lished that Pσr

(
lim infi→∞ C(i)/i > 0

)
> 0, which would contradict the assumption

p = 0. Thus Pσ(r,0)

(
∀i > 0 : State(i) = r =⇒ C(i) = 0

)
= 1 and σ is thus idling. But

this is not possible because by assumptionA is rising, so the assumption of p = 0
cannot be satisfied, and we have proved that p = 1.

Now consider an arbitrary state q ∈ Q. Because lim infi→∞ C(i)/i > 0 is
prefix-independent, and almost every run from q reaches some BSCC, where
lim infi→∞ C(i)/i > 0 is satisfied almost surely, we have Pσq

(
lim infi→∞ C(i)/i > 0

)
=

1. �

Now we define a suitable submartingale for a given rising OC-MDP, and use
Azuma’s inequality to show that supσ Pσ(q,i)(Term ∩ ¬ReachT ) decreases to 0 expo-
nentially fast in i. Recall that a stochastic process m(0),m(1), . . . is a submartingale
if, for all i ≥ 0, E

[
|m(i)|

]
< ∞, and E

[
m(i+1) | m(1), . . . ,m(i)

]
≥ m(i) almost surely. If

we further assume that |m(i+1) − m(i)| ≤ c almost surely for all i ≥ 0, we can apply
the Azuma-Hoeffding inequality5, which says that the following holds for all t > 0
and n ≥ 0:

P
(
m(n) − m(0) ≤ t

)
≤ exp

(
−t2

2nc2

)
(3)

Let A = (Q,Δ, P) be a rising OC-MDP. Since A is rising, the mean-payoff
(i.e., the average change of the counter per transition) is almost surely positive for
all pure counterless strategies. Since there are only finitely many pure counterless

5In the literature (see, e.g. [13]), the Azuma-Hoeffding inequality is usually stated for martin-
gales and supermartingales where is takes the form P

(
m(n) − m(0) ≥ t

)
≤ exp(−t2/2nc2). Inequal-

ity (3) is obtained just by realizing that if m(0),m(1), . . . is a submartingale, then −m(0),−m(1), . . .

is a supermartingale.
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strategies, there is even a fixed bound x > 0 such that the mean payoff is larger
than x almost surely. This means that after performing i transitions, the counter
should increase at least by i · x on average. Hence, one might be tempted to define

m(i)
�

⎧⎪⎪⎨⎪⎪⎩
C(i) − i · x if C( j) > 0 for all j, 0 ≤ j < i,
m(i−1) otherwise.

and try to prove that m(0),m(1), . . . is a submartingale. Unfortunately, this does
not work, because some control states may not allow to increase the counter by x
or more. A similar problem was encountered previously in [6] in the context of
purely probabilistic OC automata, and the difficulty was overcome by employing
“artificial” additive constants that compensate the difference among the individual
control states. We show that a similar trick works also in our setting. That is, we
aim at designing a submartingale of the following form:

m(i)
�

⎧⎪⎪⎨⎪⎪⎩
C(i) + zState(i) − i · x if C( j) > 0 for all j, 0 ≤ j < i,
m(i−1) otherwise.

Here zq is a suitable constant that depends only on q. However, it is not clear
whether the constants zq can be chosen so that m(0),m(1), . . . becomes a submartin-
gale, and what is the size of these constants if they exist. This problem is solved
simply by observing that the defining property of a submartingale (see above) im-
mediately gives a system of linear inequality constraints that should be satisfied
by zq. For example, suppose that C(i) = j and State(i) = q where q ∈ QP. For
every Max strategy, we would like to have that E

[
m(i+1) | m(i)

]
≥ m(i). This means

to ensure that this inequality is satisfied for every outgoing transition of (q, j), i.e.,
for every (q, k, r) ∈ Δ we wish to have

E
[
m(i+1) | m(i)

]
= ( j + k) + zr − (i + 1) · x̄ ≥ m(i) = j + zq − i · x̄.

This yields zq ≤ −x + k + zr. Note that if q is stochastic, we need to consider the
“weighted sum” of the outgoing transition of (q, j) instead. Thus, we obtain the
system of linear inequalities of Figure 1.

Now we show that the linear system of inequalities given in Figure 1 has a
non-negative rational solution, and derive a bound on its size. Then, we take
this solution, define the associated submartingale, and use Azuma’s inequality to
derive the desired result.

Lemma 3.6. LetA = (Q,Δ, P) be a rising OC-MDP. Then there is a non-negative
rational solution (x̄, (z̄q)q∈Q) ∈ Q|Q|+1 to L, such that x̄ > 0. (The binary encoding
size of the solution is polynomial in ||A||.)
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zq ≤ −x + k + zr for all q ∈ Q� and (q, k, r) ∈ Δ,
zq ≤ −x +

∑
(q,k,r)∈Δ P((q, k, r)) · (k + zr) for all q ∈ QP,

x > 0.

Figure 1: The system L of linear inequalities over x and zq, q ∈ Q.

Proof. We first prove that there is some non-negative solution to L with x̄ > 0.
The bound on size then follows by standard facts about linear programming. To
find a solution, we will use optimal values for minimizing discounted total reward
in A. For every discount factor, λ, 0 < λ < 1, and a strategy, τ, we denote the
discounted total reward, starting under τ, by DTRλq(τ) �

∑
i≥0 λ

i · Eτq

[
C(i+1) − C(i)

]
,

and set DTRλq(∗) � infτDTRλq(τ). We prove that there is some λ, such that setting
z̄q � DTRλq(∗) and

x̄ � min
(
{k + DTRλr (∗) − DTRλq(∗) | q ∈ Q�, (q, k, r) ∈ Δ}

∪ {P((q, k, r)) ·
(
k + DTRλr (∗) − DTRλq(∗)

)
| q ∈ QP, (q, k, r) ∈ Δ}

)
forms a non-negative solution to L with x̄ > 0.

Now we proceed in more detail. First we choose the right λ. Lemma 3.5
and our assumptions guarantee that Pτq

(
lim infi→∞ C(i)/i > 0

)
= 1 for every pure

counterless strategy τ. Thus
∑

i≥0 ·E
τ
q

[
C(i+1) − C(i)

]
= ∞, and hence for every such

τ there is a Λτ < 1 such that DTRλq(τ) > 0 for all q ∈ Q and λ ≥ Λτ. There
are only finitely many pure counterless strategies, and we choose our λ to be
λ � maxτΛτ < 1.

Having fixed the λ above, we now prove that there is a pure counterless strat-
egy σ, such that DTRλq(∗) = DTRλq(σ) for all q. By standard results (e.g., [16]),
translated from the terminology of MDPs with rewards to that of OC-MDPs,
for a fixed state, q, there is always a pure counterless strategy σq such that
DTRλq(σq) = DTRλq(∗). Moreover, this strategy has to play optimally in succes-
sors of q as well, thus there is in fact a single pure counterless strategy σ such that
for all q: DTRλq(σ) = DTRλq(∗).
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Finally, x̄ > 0, because for all q ∈ QP

DTRλq(σ) =
∑
i≥0

λi · Eσq

[
C(i+1) − C(i)

]

=
∑

(q,k,r)∈Δ

P((q, k, r)) ·
⎛⎜⎜⎜⎜⎜⎝k + λ ·

∑
i≥0

λi · Eσr

[
C(i+1) − C(i)

]⎞⎟⎟⎟⎟⎟⎠
=

∑
(q,k,r)∈Δ

P((q, k, r)) ·
(
k + λ · DTRλr (σ)

)

<
∑

(q,k,r)∈Δ

P((q, k, r)) ·
(
k + DTRλr (σ)

)
,

the last inequality following from DTRλr (σ) > 0 for all r ∈ Q; and similarly for all
q ∈ Q� and (q, k, r) ∈ Δ

DTRλq(σ) =
∑
i≥0

λi · Eσq

[
C(i+1) − C(i)

]

≤ k + λ ·
∑
i≥0

λi · Eσr

[
C(i+1) − C(i)

]
= k + λ · DTRλr (σ) < k + DTRλr (σ).

Here the first inequality follows from the fact that σ minimizes the discounted
total reward. �

Given the solution (x̄, (z̄q)q∈Q) ∈ Q|Q|+1 from Lemma 3.6, we define a sequence
of random variables {m(i)}i≥0 by setting

m(i)
�

⎧⎪⎪⎨⎪⎪⎩
C(i) + z̄State(i) − i · x̄ if C( j) > 0 for all j, 0 ≤ j < i,
m(i−1) otherwise.

We shall now show that m(i) defines a submartingale.

Lemma 3.7. Let A = (Q,Δ, P) be a rising OC-MDP and {m(i)}i≥0 defined as
above. Under an arbitrary strategy τ and with an arbitrary initial configuration
(q, n), the process {m(i)}i≥0 is a submartingale.

Proof. Consider a fixed path, u, of length i ≥ 0. For all j, 0 ≤ j ≤ i the values
C( j)(ω) are the same for all ω ∈ Run(u). We denote these common values by
C( j)(u), and similarly for State( j)(u) and m( j)(u). If C( j)(u) = 0 for some j ≤ i,
then m(i+1)(ω) = m(i)(ω) for every ω ∈ Run(u). Thus Eτ(q,n)

[
m(i+1) | Run(u)

]
=
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m(i)(u). Otherwise, consider the last configuration, (r, l), of u. For every possible
successor, (r′, l′), set

p(r′,l′) �

⎧⎪⎪⎨⎪⎪⎩
τ(u)((r, l)→ (r′, l′)) if r ∈ Q�,
Prob((r, l)→ (r′, l′)) if r ∈ QP.

Then

Eτ(q,n)

[
C(i+1) − C(i) + z̄State(i+1) − x̄ | Run(u)

]
= −x̄+

∑
(r,k,r′)∈Δ

p(r′,l+k)·(k+z̄r′) ≥ z̄r.

This allows us to derive the following:

Eτ(q,n)

[
m(i+1) | Run(u)

]
= Eτ(q,n)

[
C(i+1) + z̄State(i+1) − (i + 1) · x̄ | Run(u)

]
= C(i)(u) + Eτ(q,n)

[
C(i+1) − C(i) + z̄State(i+1) − x̄ | Run(u)

]
− i · x̄

≥ C(i)(u) + z̄State(i)(u) − i · x̄ = m(i)(u).

�

Now we have prepared all that we need to bound supσ Pσ(q,i)(Term) for rising
OC-MDPs.

Lemma 3.8. Given a rising OC-MDP, A, one can compute a rational constant
c < 1, and an integer h ≥ 0 such that for all i ≥ h and q ∈ Q

sup
σ

Pσ(q,i)(Term) ≤
ci

1 − c
.

Moreover, c ∈ exp(1/2||A||O(1) ) and h ∈ exp(||A||O(1)).

Proof. Denote by Termj the event of terminating after exactly j steps. Further set
z̄max � maxq∈Q z̄q − minq∈Q z̄q, and assume that C(0) ≥ z̄max. Then the event Termj
implies that m( j) − m(0) = z̄State( j) − j · x̄ − C(0) − z̄State(0) ≤ − j · x̄. Finally, observe
that we can bound the one-step change of the submartingale value by z̄max + x̄+ 1.
Using the Azuma-Hoeffding inequality for the submartingale {m(n)}n≥0 (see, e.g.,
Theorem 12.2.3 in [13]), we thus obtain the following bound for every strategy σ
and initial configuration (q, i) with i ≥ z̄max:

Pσ(q,i)

(
Termj

)
≤ Pσ(q,i)

(
m( j) − m(0) ≤ − j · x̄

)
≤ exp

(
−x̄2 · j2

2 j · (z̄max + x̄ + 1)

)
.
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We choose c � exp
(

−x̄2

2·(z̄max+x̄+1)

)
< 1 and h � �z̄max�, and observe that for all

q ∈ Q, i ≥ h:

Pσ(q,i)(Term) =
∑
j≥i

Pσ(q,i)

(
Termj

)
≤

∑
j≥i

c j =
ci

1 − c
.

The given bounds on c and h are easy to check, and the detailed computation can
be found in Section A.3. �

As a final step, we extend the results to the general case of (not necessarily
rising) OC-MDPs.

Lemma 3.9. Given a maximizing OC-MDP,A′ = (Q′,Δ′, P′), one can compute a
rational constant c < 1, and an integer h ≥ 0 such that for all i ≥ h and q ∈ Q

sup
σ

Pσ(q,i)(Term ∩ ¬ReachT ) ≤
ci

1 − c
.

Moreover, c ∈ exp(1/2||A′||O(1) ) and h ∈ exp(||A′||O(1)). As a consequence, a number
N such that

∣∣∣Val(Term, (q, i)) − supσ Pσq (LimInf (= −∞))
∣∣∣ < ε for all q ∈ Q′ and

i ≥ N satisfies N ≤ max{h, �logc(ε · (1 − c))�} ∈ exp(||A′||O(1)) · O(log(1/ε)).

Proof. The heart of the proof is a reduction which computes a polynomially big-
ger rising OC-MDP Ā = (Q̄, Δ̄, P̄) from A′, uses the algorithm from Lemma 3.8
to compute the bounds c and h for Ā, and returns the very same numbers for A′.
The reduction itself is in two steps, first computing an OC-MDP A = (Q,Δ, P)
fromA′ such that Val(LimInf (= −∞), q) < 1 for all q ∈ Q inA, and then Ā from
A.

The first step, from A′ to A is easier. Recall that we called T = T (Q)
the set of all q ∈ Q such that Val(LimInf (= −∞), q) = 1. Here we use it
also to denote the analogous subset T (Q′) of Q′ of all states q ∈ Q′ such that
Val(LimInf (= −∞), q) = 1 in A′. Theorem 3.1 from [3] guarantees that we
can compute the set T (Q′) in time polynomial in ||A′||. Then we set Q �

(Q′ \ T (Q′)) ∪ {trap}, with QP = Q′P \ T (Q′). The state trap has a unique out-
going rule in Δ: (trap,+1, trap). The rest of the rules in Δ are derived from Δ′
by redirecting all rules ending in T (Q′) to trap. P′ is derived from P̄ accordingly.
It is easy to see that T (Q) = ∅, because T (Q′) ∩ Q = ∅ and by construction,
T (Q) ⊆ T (Q′).

A technique to achieve the second step was already partially developed in
our previous work [3], where we used the term “decreasing” for rising strategies.
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There we gave a construction which preserves the property of optimal termination
probability being = 1. We in fact can establish that a similar construction pre-
serves the exact termination value. Because the idea is not new, we leave details
to Section A.2. The important properties of Ā are stated in the following lemma,
the proof of which can be found in Section A.2, along with the formal definition
of Ā.

Lemma 3.10. There is a deterministic polynomial-time algorithm which given a
maximizing OC-MDP, A = (Q,Δ, P), computes another maximizing OC-MDP,
Ā = (Q̄, Δ̄, P̄), and a map f : Q→ Q̄ satisfying:
• ||Ā|| ∈ O(||A||4).

• There are no idling pure counterless strategies in Ā.

• Val(Term, (q, i)) = Val(Term, ( f (q), i)) for all q ∈ Q and i ≥ 0.

• If Val(LimInf (= −∞), q) < 1 for all q ∈ Q inA, then Ā is rising.
In particular, note that Ā obtained from our A is rising. Now let q ∈ Q′ be a

state ofA′, such that q � T (Q′). We know that supσ Pσ(q,i)(Term ∩ ¬ReachT ) inA′

equals supσ Pσ(q,i)(Term) in A, which in turn equals supσ Pσ( f (q),i)(Term) in Ā. Note
that ||Ā|| ∈ ||A′O(1)||. Applying Lemma 3.8 to Ā finishes the proof of the first part
of Lemma 3.9.

In the second part the inequality N ≤ max{h, �logc(ε · (1 − c))�} is an easy
computation. Verifying that �logc(ε · (1− c))� ∈ exp(||A′||O(1)) is also easy and can
be found in Section A.3. �

Also, as an immediate consequence of Lemma 3.3 and Lemma 3.9 we obtain
the following:

Corollary 3.11. For every q ∈ Q, νq = limi→∞Val(Term, (q, i)).

3.2. Bounding N for general SSGs
By [2, Proposition 7], player Min always has an optimal pure counterless strat-

egy, π∗, such that

Val(LimInf (= −∞), q) = sup
σ

Pσ,π
∗

q (LimInf (= −∞)) .

By fixing the choices of π∗ in A we obtain a maximizing OC-MDP, A∗ =
(Q∗, δ∗, P∗), where Q∗P = QP ∪ Q⊥, Q∗� = Q�, δ∗ � {(q, k, r) ∈ δ | q ∈
QP ∪ Q� ∨ π∗(q) = r}, and P∗ is the unique (for A∗) extension of P to states
from Q⊥.
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Lemma 3.12. Let A = (Q,Δ, P) be an OC-SSG, π∗ a LimInf (= −∞)-optimal
strategy for Min, and A∗ the minimizing OC-MDP given by fixing π∗ in A as
described above. Then for all q ∈ Q:

∀i ≥ 0 : lim
j→∞

ValA(Term, (q, j)) ≤ ValA(Term, (q, i)) ≤ ValA∗(Term, (q, i)). (4)

lim
j→∞

ValA(Term, (q, j)) = lim
j→∞

ValA∗(Term, (q, j)). (5)

Proof. Since for all j we have ValA(Term, (q, j + 1)) ≤ ValA(Term, (q, j)),, we
obtain the first inequality in (4). The second inequality in (4) follows from the
fact that in A∗ we restricted the possible moves of Min. The “≤” direction in (5)
follows directly from (4), and the other direction is obtained as follows:

limi→∞ValA(Term, (q, i)) ≥ ValA(LimInf (= −∞), q) (immediate)
= ValA∗(LimInf (= −∞), q) (immediate)
= limi→∞ValA∗(Term, (q, i)) (by Corollary 3.11)

�

Corollary 3.13. For every control state q of an OC-SSGA we have that

lim
i→∞

ValA(Term, (q, i)) = ValA(LimInf (= −∞), q).

3.3. Analyzing a Finite Segment of Configurations
Lemma 3.14. There is a nondeterministic algorithm6 that given an OC-SSG,A =
(Q,Δ, P), and a rational ε > 0 as input, and, in addition, given the following
precomputed values:

• νq = Val(LimInf (= −∞), q) for every q ∈ Q

• an integer N ≥ 0 such that 0 ≤ Val(Term, (q, i)) − νq ≤ ε for all q ∈ Q and
i ≥ N,

• and a pair of strategies (σ∗, π∗) for Max and Min which are optimal for
LimInf (= −∞) in all q ∈ Q;

computes the following output:

6Again, see footnote 4 for a precise explanation of what we mean by a nondeterministic algo-
rithm in this context.
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• a number ν(q,i) for each q ∈ Q and i ≤ N such that 0 ≤ Val(Term, (q, i)) −
ν(q,i) ≤ ε,

• and a pair of strategies (σ̄, π̄) for Max and Min, respectively, which are
ε-optimal for termination in all configurations.

The algorithm runs in time polynomial in N·||A||. Furthermore, if A is an OC-
MDP then the algorithm is deterministic.

Proof. The first idea is to analyze the following SSG, G, which is essentially A
restricted to configurations with counter value between 0 and N. The set of states
of G is {(q, i) | q ∈ Q, 0 ≤ i ≤ N} ∪ {s0, s1}. The ownership of the states of the
form (q, i), 0 < i < N is the same as in A, the states s0, s1 and (q, i) for q ∈ Q,
i ∈ {0,N} are stochastic. For 0 < i < N, there is a transition (q, i)� (r, j) iff
(q, j − i, r) ∈ δ. Probabilities of these transitions, where applicable, are derived
from P. Vertices of the form (q, 0), and the state s0 have only one transition, to
s0. Vertices of the form (q,N) have transitions to both s0 and s1, and the state s1
has only the self-loop transition. The probability of a transition (q,N)� s0 equals
Val(Term, (q,N)) for all q.

Clearly we have supσ infπ Pσ,π(q,i)(reach s0) = Val(Term, (q, i)) for all q ∈ Q and
i ≤ N. The problem is that the transition probabilities from (q,N) in G are un-
known (and may even be irrational). We will not actually constructG. To use such
reachability analysis for approximating the termination values we have to switch
to a slightly perturbed SSG, G′.
G′ is almost identical to G: it has the same sets of states and transitions. The

only difference is that in G′ the probability of a transition (q,N)� s0 equals νq for
every q (and the probability of (q,N)� s1 changes appropriately to make the sum
1). Observe that since νq ≤ Val(Term, (q,N)), for every (q, i) where i ≤ N:

sup
σ

inf
π
P
σ,π

(q,i)
(
reach s0 in G′

)
≤ sup

σ

inf
π
P
σ,π

(q,i)(reach s0 in G) = Val(Term, (q, i)).

On the other hand, by our assumption on the values νq and N,

sup
σ

inf
π
P
σ,π

(q,i)(reach s0 in G) − ε ≤ sup
σ

inf
π
P
σ,π

(q,i)
(
reach s0 in G′

)
.

Thus Val(Term, (q, i)) − supσ infπ Pσ,π(q,i)(reach s0 in G′) ≤ ε, and we may output
ν(q,i) � supσ infπ Pσ,π(q,i)(reach s0 in G′) . By standard results, see, e.g., [7], such
reachability values have a binary encoding polynomial in ||G′||, and after a mem-
oryless optimal strategy (having size polynomial in ||G′||) is guessed, the values
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can be computed in time polynomial in ||G′||. If A is an OC-MDP, then G′ is an
MDP, and for MDPs the reachability values, and optimal strategies, can be com-
puted in deterministic polynomial time. Let us suppose we have computed the
optimal strategies σR, πR for reachability in G′. The resulting strategy σ̄ for the
given OC-SSG A is defined as follows: In configurations with counter value be-
tween 0 and N it plays according to the optimal reachability strategy of Max in
G′. Once a configuration with a counter value above N is visited it switches to
playing as σ∗ forever, where σ∗ is the optimal stategy we assume we are given for
LimInf (= −∞). Now for all configurations (q, i), 0 ≤ i < N, and strategies π for
Min, the number ν(q,i) gives a lower bound on the probability that under (σ̄, π) a
run either terminates without exceeding counter value N, or hits some (r,N) and
then satisfies LimInf (= −∞). This probability itself is a lower bound for the prob-
ability that a run either terminates without exceeding counter value N, or hits some
(r,N) and then terminates, which is in other words the probability of termination.
This means that σ̄ is ε-optimal, because Val(Term, (q, i)) − ν(q,i) ≤ ε.

Analogously we define the strategy π̄. Consider again some (q, i), 0 ≤ i < N,
and σ for Max. The number ν(q,i) gives now an upper bound on the probability
that under (σ, π̄) a run either terminates without exceeding counter value N, or
hits some (r,N) and then satisfies LimInf (= −∞). From the properties of N, this
probability is by at most ε lower than the probability of termination. Because
ν(q,i) ≤ Val(Term, (q, i)) we obtain that also π̄ is ε-optimal. �

4. Conclusions

We have shown that one can ε-approximate the termination value for OC-MDP
(and for OC-SSG) termination games, and compute ε-optimal strategies for them,
in exponential time (and in nondeterministic exponential time, respectively).

Our results leave open several intriguing problems. An obvious remaining
open problem is to obtain better complexity bounds. In particular, we know of
no non-trivial lower bounds for OC-MDP approximation problems, and it re-
mains possible that approximation of the value for OC-MDPs can be computed
in polynomial time. Our results also leave open the decidability of the quantita-
tive termination decision problem for OC-MDPs and OC-SSGs, which asks: “is
the termination value ≥ p?” for a given rational probability p. Furthermore, our
results leave open the computability of approximating the value of selective ter-
mination objectives for OC-MDPs, where the goal is to terminate (reach counter
value 0) in a specific subset of the control states. Qualitative versions of selective
termination problems were studied in [2, 3].
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Figure 2: An OC-MDP where Player Max does not have optimal strategies for termination. Signed
numbers represent counter increments, unsigned are probabilities of transitions.

A. Appendix

A.1. Non-existence of Optimal Strategies for Termination
In the following example we show that even in the special case of OC-MDPs

there may not be any optimal strategies for maximizing the termination values.
More precisely, there is a maximizing OC-MDP, A, and (infinitely many) config-
urations (s, i) such that for all strategies σ: Pσ(s,i)(Term) < Val(Term, (q, i)).

Example A.1. Consider the maximizing OC-MDP, A, given in Figure 2. In the
graph, round nodes represent stochastic states, the only square node is a state of
Player Max, s. The arrows represent the rules, with signed numbers representing
the increments, and non-signed the probabilities. For example the arrow from s
to r represents the rule (s, 0, r), whereas the right arrow from r to s represents the
rule (r,+1, s), which has probability P(r, 1, s) = 2/3.

Claim 1. If the rule (s, 0, t) is removed then Val(Term, (s, i)) = 2−i.

Proof. Observe that there is only one strategy when the rule above is removed. We
will omit writing its name. Clearly P(s,0)(Term) = 1 = 20. Further, the assignment
x � P(s,1)(Term) is the least non-negative solution of the equation x = 1

3 +
2x2

3 ,
which is 1

2 . Finally, P(s,i)(Term) = 1
3 · P(s,i−1)(Term) + 2

3 · P(s,i+1)(Term) . Given the
initial conditions for i = 0, 1, we obtain P(s,i)(Term) = 2−i as a unique solution of
this recurrence. �

Claim 2. Val(Term, (s, 1)) = 3
4 .
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Proof. First we prove that Val(Term, (s, 1)) ≥ 3
4 . For any n consider the pure

strategy, σn, given for all histories ending in (s, i) by σn(u)((s, i)→ (r, i)) = 1 if
i < n and σn(u)((s, i)→ (t, i)) = 1 if i ≥ n. Set

pi � P
σi
(s,1)(reach (s, i)) .

Observe that pi stays the same number if we define it using any σn with n ≥ i,
and that 1 − pi = P

σi
(s,1)

(
terminate before reaching (s, i)

)
. Moreover, p1 = 1 and

pi+1 �
2
3 · (pi + (1 − pi) · pi+1) . This uniquely determines that pi =

2i−1

2i−1 . Note that
limi→∞ pi =

1
2 . Finally, observe that

P
σn
(s,1)(Term) = (1 − pn) + pn ·

1
2
.

Thus, as n→ ∞ the probability of termination under σn approaches 3
4 .

Now we prove that Val(Term, (s, 1)) ≤ 3
4 by proving that Pσ(s,1)(terminate) ≤ 3

4
for every σ. Consider the following probabilities:

pa � P
σ
(s,1)

(
terminate without visiting t

)
,

pb � P
σ
(s,1)

(
terminate after visiting t

)
,

pc � P
σ
(s,1)(visit t) .

Clearly pb =
pc
2 . Due to the first Claim, applied to i = 1, we also have that pa ≤

1
2 .

Finally, pa + pc ≤ 1 since the events are disjoint. We conclude that

Pσ(s,1)(Term) = pa + pb ≤ pa +
1
2
· (1 − pa) =

1
2
· pa +

1
2
≤

3
4
.

�

Claim 3. For all i ≥ 0, Val(Term, (s, i)) = 2i+1
2i+1 .

Proof. The case i = 0 is trivial, and i = 1 is by the previous Claim. Observe that
Val(Term, (s, i)) ≥ 1

2 for all i, because there is always the transition to (t, i) from
where the system terminates with probability 1

2 . Consequently, Val(Term, (r, i)) ≥
1
2 for all i as well.

Thus, for a fixed i, either Val(Term, (s, i)) = 1
2 . or Val(Term, (s, i)) > 1

2
In the first case, taking the transition (s, i)→ (r, i) is still value-optimal, i.e.,
Val(Term, (s, i)) = 1

2 ≤ Val(Term, (r, i)). In the second case the transition
(s, i)→ (t, i) is not value-optimal, and thus the transition (s, i)→ (r, i) has to be
value optimal.
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Thus we know that (s, i)→ (r, i) always preserves the termination value, and
we may unfold two steps of the Bellman-style equations satisfied by the value to
obtain

Val(Term, (s, i)) =
1
3
· Val(Term, (s, i − 1)) +

2
3
· Val(Term, (s, i + 1)).

Given the initial conditions for i = 0, 1, we obtain Val(Term, (s, i)) = 2i+1
2i+1 as a

unique solution of this recurrence. �

Thus for all n ≥ 1 we have Val(Term, (s, n)) = 2−(n+1) · (2n + 1), and
also, obviously, Val(Term, (t, n)) = 1/2. As a conclusion, Val(Term, (s, n)) >
Val(Term, (t, n)). Thus no termination-optimal strategy may choose a transition
generated by the rule (s, 0, t). On the other hand, as shown in the first Claim,
without the rule (s, 0, t) we would have Val(Term, (s, n)) = 2−n < 2−(n+1) · (2n + 1).
Consequently, there are no termination-optimal strategies in (s, n).

A.2. Reduction to Rising OC-MDPs
Recall from Definition 3.4 that a pure counterless strategy, σ, is called idling

if there is a state q ∈ Q, such that Pσ(q,0)

(
∃i > 0 : State(i) = q

)
= 1 and for all i ≥ 0:

Pσ(q,0)

(
State(i) = q =⇒ C(i) = 0

)
= 1.Also recall that a maximizing OC-MDPA is

rising if there is no idling strategy forA and, moreover, Val(LimInf (= −∞), q) < 1
for all states q ofA. Before we start proving Lemma 3.10 let us prove an auxiliary
result.

Lemma A.2. Let w be a finite path of length n such that for all ω ∈ Run(w):

• C(i)(ω) > C(0)(ω) for all i < n, and

• if 0 ≤ t < t′ ≤ n and State(t)(ω) = State(t′)(ω) then C(t)(ω) > C(t′)(ω).

Then n ≤ |Q|2 and max0≤i≤n C(i)(ω) − C(0)(ω) ≤ |Q| for all ω ∈ Run(w).

Proof. From the fact that the maximal positive counter change is +1 and the sec-
ond property of w, we have that C(i)(ω) − C(0)(ω) < |Q| for all i < n. Again by
the second property, every control state is thus visited at most |Q| times before the
counter drops below C(0). By the first property we now have n ≤ |Q|2 . �

Proof of Lemma 3.10. We first intuitively explain the idea for the construction of
Ā: Using some added information in the control states, the OC-MDP will offer
the following possibilities as long as a counterless strategy is chosen: either the
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chosen counterless strategy somehow makes sure that after any state s is reached
with positive probability the counter will thereafter either be decreased by at least
one in at most |Q|2 steps with positive probability, or else after s is reached the
play will be forced to enter the “trap” state with positive probability. The “trap”
state is an extra absorbing state that keeps increasing the counter value forever
thereafter.

This, firstly, ensures that given a OC-MDP, A, the newly constructed OC-
MDP, Ā that is derived from it has no idling strategies. Secondly, the construction
ensures the following: for every state q of the original OC-MDP, A, there is a
corresponding state q̄ of the newly constructed OC-MDP, Ā, such that the optimal
termination probability starting at configuration (q, i) inA is equal to the optimal
terimation probability starting at configuration (q̄, i) in Ā.

In more detail, the set Q̄ of control states of Ā will consist of one special state
“trap”, and of multiple copies of states Q enhanced with two counters. These
enhanced states are 3- and 5-tuples of the form 〈q, n,m〉, [q, n,m, k, r], where q ∈
Q, (q, k, r) ∈ Δ, 0 ≤ m ≤ |Q|2 + 1 is a counter measuring the number of steps until
it exceeds |Q|2+1, and 0 ≤ n ≤ |Q|+1 is a counter measuring the difference of the
current counter value minus the initial one, until it drops below 0 or goes above
|Q|.

The triples and 5-tuples alternate in the transitions of Ā. First comes a triple,
〈q, n,m〉, indicating the current configuration of the simulation of a play in A.
Then the player has to commit to an outgoing rule, (q, k, r), used on the short
path (which it claims exists) which decreases the counter. This results in entering
[q, n,m, k, r]. If q ∈ Q� then the play must move in the next step to 〈r, n+k,m+1〉.
If q ∈ QP then all outgoing rules for q are used in the next step of the simulation,
but the counters m and n are reset to 0 for all steps following rules other than
(q, k, r). Thus the next possible triples to visit are 〈r, n + k,m + 1〉, corresponding
to rule (q, k, r), and states 〈r′, 0, 0〉 corresponding to rules (q, k′, r′), where (k′, r′) �
(k, r). The state in Ā corresponding to a q inA is 〈q, 0, 0〉. Starting at state 〈q, 0, 0〉
the states along a run in Ā keep track of the number of steps and the change in
counter value, and if the number of steps “overflows” before the counter decreases
to −1, this indicates that the path selected by the player is not a short decreasing
path, and the simulation is aborted by transiting to the trap state, which results in
an incrementing self-loop. Otherwise, if within a short number of m of steps we
reach a state [q′, 0,m, q′′, k], where m ≤ |Q|2, and the next transition decreases the
counter (i.e., k = −1) then the two “internal counters” are reset to 0 and we start
all over again.

We now give a formal definition of Ā, which is an adaptation of a similar
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contruction given in [3], where it appeared as D′. The set of control states of Ā
is

Q̄ = {trap} ∪ {〈q, n,m〉 | q ∈ Q, 0 ≤ m ≤ |Q|2 + 1, 0 ≤ n ≤ |Q| + 1}
{[q, n,m, k, r] | (q, k, r) ∈ Δ, 0 ≤ m ≤ |Q|2 + 1, 0 ≤ n ≤ |Q| + 1}.

The stochastic states are Q̄P � {trap} ∪ {[q, n,m, k, r] ∈ Q̄}. The rules, Δ̄, is the
smallest set containing

{([q, n, |Q|2 + 1, k, r], 1, trap) | (q, k, r) ∈ Δ, 0 ≤ n ≤ |Q| + 1}
∪ {([q, |Q| + 1,m, k, r], 1, trap) | (q, k, r) ∈ Δ, 0 ≤ m ≤ |Q|2}
∪ {(〈q, n,m〉, 0, [q, n,m, k, r]) | (q, k, r) ∈ Δ, 0 ≤ n ≤ |Q| + 1, 0 ≤ m ≤ |Q|2 + 1}
∪ {([q, n,m, k, r], k, 〈r, n+ k,m + 1〉) | (q, k, r) ∈ Δ, 0 ≤ n ≤ |Q|, n + k ≥ 0, 0 ≤ m ≤ |Q|2}
∪ {([q, n,m, k, r], k, 〈r, 0, 0〉) | (q, k, r) ∈ Δ, n + k = −1, 0 < m ≤ |Q|2}
∪ {([q, n,m, k, r], k′, 〈r′, 0, 0〉) | (q, k′, r′) ∈ Δ, q ∈ QP, r′ � r, 0 ≤ n ≤ |Q|, 0 ≤ m ≤ |Q|2}
∪ {(trap, 1, trap)},

and also containing the rule (q̄, 1, q̄) for each state not having an outgoing rule in
the set above. Finally, P̄ is derived from P as follows: for all q̄ ∈ Q̄P which only
have one outgoing rule the probability of such rule is 1. Otherwise we know q̄ =
[q, n,m, k, r], q ∈ QP and can set P̄(([q, n,m, k, r], k′, 〈r′, n′,m′〉)) = P((q, k′, r′))
for each ([q, n,m, k, r], k′, 〈r′, n′,m′〉) ∈ Δ̄.

Clearly, ||Ā|| ∈ O(||A||4). For f we choose the function f (q) = 〈q, 0, 0〉. The
remaining three properties of Ā are delivered by Lemma A.3, Lemma A.4, and
Lemma A.5. �

Lemma A.3. There are no idling strategies in Ā.

Proof. By contradiction, assume there is a pure counterless idling strategy, σ.
From the definition of idling, there is a control state q̄ ∈ Q̄ which is al-
most surely revisited under σ, and upon every revisit, the counter has the same
value as at the beginning. For every state r̄ visited from q̄, i.e., such that
Pσ(q̄,0)

(
∃i ≥ 0 : State(i) = r̄

)
> 0, we define the set of possible counter values seen

at a visit from (q̄, 0) to r̄ as Cr̄ � {c ∈ Z | ∃i ≥ 0 : Pσ(q̄,0)

(
State(i) = r̄ ∧ C(i) = c

)
>

0}. First we observe that |Cr̄ | = 1 for all such r̄. Indeed, it has obvi-
ously at least one element. On the other hand, if c, d ∈ Cr̄, c � d, then
Pσ(q̄,0)

(
∃i > 0 : State(i) = q̄ ∧ C(i) = c − d

)
> 0 which contradicts our choice of q̄
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because c − d � 0. From now on we denote by cr̄ the only number such that
Cr̄ = {cr̄}.

Now we choose r̄ so that cr̄ is minimal. Observe that Pσ(r̄,0)

(
C(i) ≥ 0

)
= 1 for

all i ≥ 0, otherwise there is a state, t̄, reachable under σ from r̄ such that ct̄ < cr̄.
But this means that a run from r̄ under σ visits trap almost surely. It is easy to
see that this implies that a run from q̄ visits trap with a positive probability.7 This
contradicts σ being idling and q̄ being the witnessing state for idling. �

Before we prove the second important property of Ā we promised, we note
that although technically it is not true that Q ⊆ Q̄, we may insert Q into Q̄ by
mapping q to 〈q, 0, 0〉.

Lemma A.4. Val(Term, (q, i)) = Val(Term, (〈q, 0, 0〉, i)) for all q ∈ Q and i ≥ 0.

Proof. The inequality Val(Term, (q, i)) ≥ Val(Term, (〈q, 0, 0〉, i)) is easy, because
a strategy inA can simulate a strategy in Ā (by “projecting” it onto states ofA),
except for the case when the run in Ā reaches trap. But after reaching trap no run
terminates, so the simulation in A may continue arbitrarily without producing a
lower probability of termination.

To prove Val(Term, (q, i)) ≤ Val(Term, (〈q, 0, 0〉, i)),we need to show that there
are ε-optimal strategies forA, for arbitrarily small ε > 0, which can be simulated
in Ā while keeping the termination probability ε-close to the original optimal ter-
mination value in A. In the simulation we will use a natural correspondence of
paths in Ā to paths inA, given by dropping the odd steps and all additional infor-
mation. As an example, the path (〈q, 0, 0〉, 0)→ ([q, 0, 0,+1, r], 0)→ (〈r, 1, 1〉, 1)
corresponds to (q, 0)→ (r, 1).

In the proof, we give for every ε > 0 a pure strategy σε, and a measurable set
of runs, Tε ⊆ Term inA, such that for all q ∈ Q and i ≥ 0:

• P
σε
(q,i)(Tε) ≥ Val(Term, (q, i)) − ε, and

• for all finite paths u, len(u) = n, such that Pσε(q,i)(Run(u) ∩ Tε) > 0, there is
some k, n < k ≤ n + |Q|2 + 1 for which

P
σε
(q,i)

(
C(k) < C(n) ∧ ∀ j, n < j < k : 0 ≤ C( j) − C(n) ≤ |Q| | Run(u)

)
> 0. (6)

Once we have proved the above, we can simulate the strategy σε in Ā.

7Actually this probability is again 1, but we only need to know that it is positive.
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Let us define the simulation in detail. Let ū be a path from configuration
(〈q, 0, 0〉, i) in Ā, ending in some configuration (〈r, 0, 0〉, j), and u the correspond-
ing path in A, ending in (r, j). Let n = len(u). If Pσε(q,i)(Run(u) ∩ Tε) = 0,
then the rest of the simulating strategy after intial path ū can be defined ar-
bitrarily. For later reference we call ū and all its extensions dead in this
case. Otherwise let w be some extension of u witnessing (6), i.e., w of
length k ≤ n + |Q|2 + 1 with a prefix u, such that Pσε(q,i)(Run(w)) > 0 and
P
σε
(q,i)

(
C(k) < C(n) ∧ ∀ j, n < j < k : 0 ≤ C( j) − C(n) ≤ |Q| | Run(w)

)
= 1.

We fix a unique choice of such a w (which depends on u), and we define
the simulating strategy in Ā for all histories v̄ such that the path v in A which
corresponds to v̄ is an extension of u and a proper prefix of w. The definition is by
induction on the length of v̄. Such a history v̄ ends in some 〈s, h,m〉, where 0 ≤
m < |Q|2 + 1 and h ≥ 0. Let (s, c) be the last configuration on v and (s, c)→ (s′, c′)
the next step in w after completing v. Then the rule chosen with probability 1
by the simulating strategy in Ā for the history v̄ is (〈s, h,m〉, 0, [s, h,m, c′ − c, s′]).
Observe that due to our choice of w, the control state visited in the simulation after
completing v̄ and visiting [s, h,m, c′−c, s′] is either (a) 〈s′, h+c′ −c,m+1〉, where
m + 1 < |Q|2 + 1 and h + c′ − c ≥ 0, or else (b) a state 〈s′′, 0, 0〉, for some state
s′′ ∈ Q. In the former case (a) we continue with a new v̄ as above. In the latter
case (b), we are again back in a state of the form 〈r, 0, 0〉, and thus we need to find
a new extension w′ (unless now we are in a dead history) and start the process all
over again. Because every history in the simulation is either dead, or ends in some
(〈r, 0, 0〉, j), or is some short extension v̄ of such a history which is not dead and
ends in some state 〈r, 0, 0〉, as above, we have now defined the simulating strategy
for every history in Ā.

Moreover, consider a path ū in Ā, which is not dead. Because we could not
possibly hit trap in Ā before reaching a dead history, and because σε is pure,
the probability of Run(ū) in the simulation is Pσε(q,i)(Run(u)), where u is the path
corresponding to ū in A. As a consequence, once we prove the existence of σε
and validity of its properties, we have proven that the termination value in the
simulation is at least Val(Term, (q, i))−ε. Because ε > 0 can be chosen arbitrarily,
this proves Val(Term, (q, i)) ≤ Val(Term, (〈q, 0, 0〉, i)). In the rest of the proof we
show how to construct such a strategy σε inA for every ε > 0 .

Let t ≥ 0. By Term≤t we denote the event that C(t′) = 0 for some t′ ≤ t.
By standard facts (see, e.g., [16, Theorem 4.3.3]), for all t there is a pure strat-
egy τt optimal for Term≤t, i.e., such that for all q ∈ Q, i ≥ 0: Pτt(q,i)

(
Term≤t) =

Val(Term≤t, (q, i)). Also, easily limt→∞Val(Term≤t, (q, i)) = Val(Term, (q, i)), thus
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for all ε > 0 there is tε such that Val(Term≤tε , (q, i)) ≥ Val(Term, (q, i)) − ε.We set
Tε � Term≤tε .

Let us fix an ε > 0, and consider the corresponding tε. We now define σε.
Let u be a path in A, of length n < tε, ending in a configuration (r, j). Pick the
least t ≤ tε − n such that Val(Term≤t, (q, i)) = Val(Term≤tε−n, (q, i)). Then σε(u) =
τt((r, j)). For u where len(u) ≥ tε we define σε(u) arbitrarily. Due to the Bellman-
equation characterization of optimality for finite-horizon objectives, given, e.g.,
in [16, Section 4.3], we obtain that for all configurations (q, i): Pσε(q,i)(Term) ≥
P
σε
(q,i)

(
Term≤tε) = Val(Term≤tε , (q, i)) ≥ Val(Term, (q, i)) − ε, as required.

For k ≥ 0, let Ek be the event that there are times t, t′, k ≤ t < t′, such that
State(t) = State(t′) and 0 < C(t) ≤ C(t′).

Claim 4. Let k ≥ 0, and (q, i) be a configuration. Further, let u be an arbitrary
path such that len(u) = k, Pσε(q,i)(Run(u)) > 0 and Pσε(q,i)

(
Term≤tε | Run(u)

)
> 0. Then

P
σε
(q,i)

(
Ek | Run(u) ∩ Term≤tε) < 1.

Proof. By contradiction. For k ≥ tε the statement is obvious. Fix some k, 0 ≤ k <
tε and (q, i). Assume that Pσε(q,i)

(
Ek | Run(u) ∩ Term≤tε) = 1. Let w be an arbitrary

extension of u such that len(w) = tε, Run(w) ⊆ Term≤tε , and Pσε(q,i)(Run(w)) > 0.
Then clearly Run(w) ⊆ Ek. This means that there are times t, t′, k ≤ t < t′ ≤ tε such
that Pσε(q,i)

(
State(t) = State(t′) | Run(w)

)
= 1, and Pσε(q,i)

(
0 < C(t) ≤ C(t′) | Run(w)

)
= 1.

Consider the prefixes w̄, w̄′ of w of lengths t and t′, respectively. There is some
state r ∈ Q, and counter values 0 < j ≤ j′ such that w̄ ends in (r, j), and w̄′
ends in (r, j′). By the construction of σε, there are h ≤ tε − t and h′ ≤ tε − t′
such that h′ < h, Val(Term≤h, (r, j)) > Val(Term≤h−1, (r, j)) ≥ Val(Term≤h′ , (r, j′)),
and Pσε(q,i)

(
Term≤tε | Run(w̄)

)
= Val(Term≤h, (r, j)), Pσε(q,i)

(
Term≤tε | Run(w̄′)

)
=

Val(Term≤h′ , (r, j′)). In other words, on every extension of u which eventually sat-
isfies Term≤tε there is a moment where the probability of Term≤tε , conditionally on
the current history, sharply decreases. This is in contradiction with the fact that
σε is optimal wrt. Term≤tε , and thus satisfies the Bellman optimality equations
(cf. [16, Section 4.3]).

�

Let us fix an arbitrary path u, len(u) = n, such that Pσε(q,i)
(
Run(u) ∩ Term≤tε) > 0.

We apply Claim 4, and obtain a witnessing extension, w, len(w) = m, of u so that
P
σε
(q,i)(Run(w)) > 0, Pσε(q,i)

(
C(m) = 0 | Run(w)

)
= 1, and Pσε(q,i)(En | Run(w)) = 0. By

Lemma A.2 this implies that there is some k, n < k ≤ n + |Q|2 + 1 such that (6) is
satisfied. Thus we proved all the required properties of σε and Tε = Term≤tε , and
the proof is done. �
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As a consequence, we obtain the last promised property of Ā.

Lemma A.5. If Val(LimInf (= −∞), q) < 1 for all q ∈ Q inA, then Ā is rising.

Proof. By Lemma A.3 there are no idling strategies in Ā. It remains to
prove that Val(LimInf (= −∞), q̄) < 1 for all q ∈ Q̄ in Ā. First we prove
it for q̄ of the form 〈q, 0, 0〉. If Val(LimInf (= −∞), q) < 1 then there is
i ≥ 0 such that Val(Term, (q, i)) < 1, by, e.g., Lemma 14 of [2]. By
Lemma A.4 we thus have Val(Term, (q̄, i)) < 1, and, thus again by Lemma 14
of [2], Val(LimInf (= −∞), q̄) < 1. If q̄ = trap we are done immediately, as
Val(LimInf (= −∞), trap) = 0. Finally, in all remaining cases of q̄ the play will
almost surely reach some states from {trap} ∪ {〈q, 0, 0〉 | q ∈ Q}. Because
LimInf (= −∞) is prefix independent, Val(LimInf (= −∞), q̄) < 1 also in this case,
and the proof is finished. �

A.3. Bounds on N
Here we derive an exponential upper bound on the value N, introduced in

Section 3. Recall that, given a OC-SSG,A = (Q,Δ, P), and an ε > 0, we want N
to satisfy:

Val(Term, (q, i)) − Val(LimInf (= −∞), q) ≤ ε for all q ∈ Q and i ≥ N.

By results of Section 3.2, it suffices to consider only the case when A is a maxi-
mizing OC-MDP. From Section 3.1 we know that N � max{h, �logc(ε · (1 − c))�},
where c = exp

(
−x̄2

2·(z̄max+x̄+1)

)
< 1 and h = �z̄max�, and x̄ and z̄max are solutions to a

linear program with coefficients polynomial in ||A||. Thus there is a positive poly-
nomial, p, such that c ≤ e−e−p(||A||)) and h ≤ ep(||A||). If N ≤ h we have clearly that it
is exponentially bounded in ||A||. Otherwise

N ≤ fε(c) �
ln(ε) + ln(1 − c)

ln(c)
.

Observe that fε(c) is growing with c → 1− and fixed ε, because c fε(c)

1−c = ε and ci

1−c
grows with c→ 1− and fixed i. Thus

N ≤ fε(c) ≤ fε(e−e−p(||A||) )

=
ln(ε) + ln(1 − e−e−p(||A||) )

−e−p(||A||) = ep(||A||) · ln(1/ε) − ln(1 − e−e−p(||A||)) · ep(||A||). (7)

Before we prove that this is indeed an exponential bound on N, let us prove
two auxiliary claims.
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Claim 5. For all n ≥ 0 the following inequality holds:

e−1 − e−1−e−n
≤ 1 − e−e−(n+1)

. (8)

Proof. We set d(n) � e−e−(n+1)
− e−1−e−n

. The inequality (8) is equivalent to d(n) ≤
1− e−1. Because limn→∞ d(n) = 1− e−1, it suffices to prove that d(n) is increasing:
Observe that

d(n + 1) − d(n) = (e−e−(n+2)
− e−e−(n+1)

) − e−1 · (e−e−(n+1)
− e−e−n

). (9)

Also, because the exponential function ex is increasing and has increasing deriva-
tion ex ≥ 0, we know that

ea − eb

eb − ec ≥
a − b
b − c

for all a > b > c.

In particular, setting a = −e−(n+2), b = −e−(n+1), and c = −e−n yields

e−e−(n+2)
− e−e−(n+1)

e−e−(n+1)
− e−e−n ≥ e−1.

By (9), this implies d(n + 1) ≥ d(n) as required. �

Claim 6. For all n ≥ 0 the following inequality holds:

n + 1 ≥ − ln(1 − e−e−n
). (10)

Proof. By induction. A direct computation for n = 0 shows − ln(1 − e−e−0 ) =
− ln(1 − e−1) ≤ 0.46 < 1. Consider now n = k + 1 for some k ≥ 0. Using (8) and
the inductive hypothesis, we obtain

(k + 1) + 1 ≥ − ln(1 − e−e−k ) + 1 = − ln(e−1 − e−1−e−k ) ≥ − ln(1 − e−e−(k+1)).

�

Finally, using (10) in (7) we get N ≤ ep(||A||) · ln(1/ε) + (1 + p(||A||)) · ep(||A||).
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