6,118 research outputs found

    A new notion of vertex independence and rank for finite graphs

    Full text link
    A new notion of vertex independence and rank for a finite graph G is introduced. The independence of vertices is based on the boolean independence of columns of a natural boolean matrix associated to G. Rank is the cardinality of the largest set of independent columns. Some basic properties and some more advanced theorems are proved. Geometric properties of the graph are related to its rank and independent sets.Comment: 47 page

    A new notion of vertex independence and rank for finite graphs

    Get PDF
    A new notion of vertex independence and rank for a finite graph C is introduced. The independence of vertices is based on the boolean independence of columns of a natural boolean matrix associated to G. Rank is the cardinality of the largest set of independent columns. Some basic properties and some more advanced theorems are proved. Geometric properties of the graph are related to its rank and independent sets

    Positive independence densities of finite rank countable hypergraphs are achieved by finite hypergraphs

    Full text link
    The independence density of a finite hypergraph is the probability that a subset of vertices, chosen uniformly at random contains no hyperedges. Independence densities can be generalized to countable hypergraphs using limits. We show that, in fact, every positive independence density of a countably infinite hypergraph with hyperedges of bounded size is equal to the independence density of some finite hypergraph whose hyperedges are no larger than those in the infinite hypergraph. This answers a question of Bonato, Brown, Kemkes, and Pra{\l}at about independence densities of graphs. Furthermore, we show that for any kk, the set of independence densities of hypergraphs with hyperedges of size at most kk is closed and contains no infinite increasing sequences.Comment: To appear in the European Journal of Combinatorics, 12 page

    On the number of types in sparse graphs

    Full text link
    We prove that for every class of graphs C\mathcal{C} which is nowhere dense, as defined by Nesetril and Ossona de Mendez, and for every first order formula ϕ(xˉ,yˉ)\phi(\bar x,\bar y), whenever one draws a graph GCG\in \mathcal{C} and a subset of its nodes AA, the number of subsets of AyˉA^{|\bar y|} which are of the form {vˉAyˉ ⁣:Gϕ(uˉ,vˉ)}\{\bar v\in A^{|\bar y|}\, \colon\, G\models\phi(\bar u,\bar v)\} for some valuation uˉ\bar u of xˉ\bar x in GG is bounded by O(Axˉ+ϵ)\mathcal{O}(|A|^{|\bar x|+\epsilon}), for every ϵ>0\epsilon>0. This provides optimal bounds on the VC-density of first-order definable set systems in nowhere dense graph classes. We also give two new proofs of upper bounds on quantities in nowhere dense classes which are relevant for their logical treatment. Firstly, we provide a new proof of the fact that nowhere dense classes are uniformly quasi-wide, implying explicit, polynomial upper bounds on the functions relating the two notions. Secondly, we give a new combinatorial proof of the result of Adler and Adler stating that every nowhere dense class of graphs is stable. In contrast to the previous proofs of the above results, our proofs are completely finitistic and constructive, and yield explicit and computable upper bounds on quantities related to uniform quasi-wideness (margins) and stability (ladder indices)

    Ample dividing

    Get PDF

    Infinite matroids in graphs

    Get PDF
    It has recently been shown that infinite matroids can be axiomatized in a way that is very similar to finite matroids and permits duality. This was previously thought impossible, since finitary infinite matroids must have non-finitary duals. In this paper we illustrate the new theory by exhibiting its implications for the cycle and bond matroids of infinite graphs. We also describe their algebraic cycle matroids, those whose circuits are the finite cycles and double rays, and determine their duals. Finally, we give a sufficient condition for a matroid to be representable in a sense adapted to infinite matroids. Which graphic matroids are representable in this sense remains an open question.Comment: Figure correcte

    Axioms for infinite matroids

    Full text link
    We give axiomatic foundations for non-finitary infinite matroids with duality, in terms of independent sets, bases, circuits, closure and rank. This completes the solution to a problem of Rado of 1966.Comment: 33 pp., 2 fig
    corecore