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Abstract

We construct a stable one-based, trivial theory with a reduct which
is not trivial. This answers a question of John B. Goode. Using this,
we construct a stable theory which is n-ample for all natural numbers
n, and does not interpret an infinite group.
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Introduction

The constructions of Hrushovski which produce new strongly minimal sets [8],
strictly stable ℵ0-categorical structures [7], and supersimple ℵ0-categorical
structures [9] are now very familiar. In those which do not involve an infi-
nite field, the independence relation of non-forking satisfies a property called
CM-triviality ([8], Proposition 10; ‘CM-trivial’ is equivalent to ‘not 2-ample’
defined below), which restricts its complexity. It is a major open problem to
decide whether there are strongly minimal sets which are not CM-trivial and
which do not interpret an infinite field. The work of Zil’ber which interprets
Hrushovski’s constructions in the context of complex analytic functions gives
this problem additional significance.

At present, this problem looks beyond reach, so we should perhaps settle
for less: we look for stable structures which are not CM-trivial and do not
involve an infinite field. The first such example was given by Baudisch and
Pillay in [1]. They construct an ω-stable structure (of infinite rank) which
is non-CM-trivial. Their example is constructed as an incidence structure of
points, lines and planes satisfying axioms which bear the same relation to
properties of points, lines and planes in euclidean space as Lachlan’s pseudo-
plane axioms bear to the properties of points and lines. Baudisch and Pillay
therefore refer to their example as a (free) pseudospace.
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However, outside the context of finite rank structures another notion is
relevant. Recall ([5]) that a stable theory is trivial if, for every three tuples
a, b, c of elements and any set A of parameters from some model, if a, b, c
are pairwise independent over A, then a, b, c are independent over A. A
superstable trivial theory with all types having finite U -rank is one-based
([5], Proposition 9), and this is stronger than CM-triviality. Baudisch and
Pillay show that their example is trivial: therefore it lacks much of the flavour
which would have to be present in a finite rank example. Of course we
can obtain an ω-stable, non-trivial, non-CM-trivial structure by taking the
disjoint union of the Baudisch-Pillay example with, say, a vector space, but
this is really avoiding the issue.

In [12], Pillay extended the notion of CM-triviality into a hierarchy of
geometric complexity for stable theories.

Definition 0.1 Suppose n ≥ 1 is a natural number. A complete stable
theory T is n-ample if (in some model of T , possibly after naming some
parameters) there exist tuples a0, . . . , an such that:
(i) an 6 |̂ a0;
(ii) an |̂

ai
a0 . . . ai−1 for 1 ≤ i < n;

(iii) acl(a0) ∩ acl(a1) = acl(∅);
(iv) acl(a0 . . . ai−1ai) ∩ acl(a0 . . . ai−1ai+1) = acl(a0 . . . ai−1) for 1 ≤ i < n.
Here acl is algebraic closure in the T eq sense.

Clearly (n + 1)-ample implies n-ample, and Pillay observes that T is not
1-ample iff it is one-based, and it is 2-ample iff it is not CM-trivial. Moreover,
a stable structure which interprets an infinite field is n-ample for all n. We
remark in passing that for n > 2 it seems to us to be more natural to replace
(ii) in Pillay’s definition by:
(ii)′ an . . . ai+1 |̂

ai
a0 . . . ai−1 for 1 ≤ i < n

(or equivalently by the requirement that xi+1 |̂
ai

a0 . . . ai−1). For example,

Pillay’s definition of 3-ampleness appears to allow that possibility that a0 ∈
acl(a2).

It is plausible that the construction of [1] could be extended to give an
(infinite rank) ω-stable trivial structure which is n-ample for n > 2, although
the technical difficulties are already quite severe in [1]. In this paper we give
a different type of construction in which there is really no additional work
involved in going from 2-ampleness to n-ample for all n. Moreover, unlike
in [1], the structures we produce are not trivial, and the n-ampleness is
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witnessed by elements having the same strong type. However, our structures
are stable, but not superstable, and it is an interesting problem to find a
superstable structure with these properties. Another problem is to construct
a regular type p (in a stable theory) whose geometry is 2-ample (by which
we mean conditions as above given by tuples of realizations of p and where
algebraic closure is replaced by p-closure). Both of these problems retain
more of the geometric character of the problem of constructing a 2-ample
strongly minimal set than we have achieved here.

We construct our structures as reducts of one-based, trivial stable struc-
tures. It is well-known that a reduct (where one discards some of the existing
structure) of a one-based theory need not be one-based (although this can-
not happen in a finite rank structure [3]). The easiest example (from [3] and
due to Hodges) is as follows. One considers directed graphs with no directed
cycles in which each vertex has infinitely many predescessors but only one
successor (- we shall say ‘descendant’ in the sequel). This gives a complete,
stable, one-based trivial theory. If we consider the graph reduct where one
forgets the orientation of the edges, the result is no longer one-based: its
models are disjoint unions of trees with all vertices of infinite valency, and
the complete type of an edge gives a type-definable pseudoplane (the free
pseudoplane). Chapter 4 of [11] is a convenient reference for this material.

In Hodges’ example the reduct is still trivial. In [5], the question is
posed as to whether a reduct of a stable trivial theory can be non-trivial.
In Section 1 we show that it can be. Essentially we change the condition
‘every vertex has one descendant’ in the previous example to ‘every vertex
has at most 2 descendants.’ From this class of directed graphs together
with embeddings which add no more descendants, one axiomatises a generic
structure which is stable, one-based and trivial. The (undirected) graph
reduct is stable, but no longer one-based nor trivial (Theorem 1.9).

The difference between our example and Hodges’ example may be ex-
plained as follows (- these remarks are essentially due to the Referee). In
both cases the graphs and directed graphs have a notion of closure, which
turns out to be algebraic closure in the model-theoretic sense. Two closed
sets A and B are independent over their intersection provided that: (i) they
are in free amalgamation over A∩B; (ii) their union A∪B is closed. The first
condition is of a trivial nature, but not necessarily the second. In the case
of the directed graphs, it follows automatically as closure is closure under
descendants and so the union of two closed sets is closed. For the undirected
graphs, in Hodges’ example closure is closure under shortest paths between
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pairs of points. Connected components are trees, so if A ∪ B, B ∪ C and
A ∪ C are closed it follows that A ∪ B ∪ C is closed. This is precisely what
does not happen in our example.

Goode’s question remains open for superstable theories (having a type of
infinite rank). It would be good to know if the example in [1] can be seen as a
reduct of a one-based structure (although, of course, as this is trivial, it would
not resolve Goode’s question). More interestingly, one could ask whether the
ω-stable structures of infinite rank given by Hrushovski’s constructions are
reducts of trivial (one-based) structures.1

The n-ample structure M of Theorem 2.11 is also constructed as a reduct
of a trivial one-based structure N . In particular, no infinite group is inter-
pretable in M , as no infinite group is interpretable in N (because it is trivial).
On N one has binary relations V1, V2, . . ., each of which gives a directed graph
with all vertices having at most 2 descendants, as in Section 1. In the reduct
we will again forget the direction of the edges to give relations W1, W2, . . ..
The theory of N is constructed so that the existence of various undirected
paths is preseved under descendant-closed embeddings, and in the reduct we
also include binary predicates P i,r for the existence of these types of paths.
Roughly speaking, the intuition is as in the example of Baudisch and Pillay.
One should think of W1 as giving a point-line incidence relation (on M); W2

a line-plane incidence relation and so on. Then, for example, the predicate
P 1,2(x, y) indicates the existence of a path W1(x, z), W2(z, y): that is, a line
z incident with both x and y. Thus, one thinks of P 1,2 as giving point-plane
incidence. (In Proposition 2.13 we show that this intuition is actually fairly
precise: the main correction we need to make is to add parameters to ensure
that the relations Wi give pseudoplanes.)

We have worked throughout with directed graphs with every vertex hav-
ing at most 2 descendants. Of course, we could replace 2 here by any larger
integer, and this can be done independently for each of Vi. Thus one ob-
tains (very cheaply) continuum many examples from Section 2. It might be
interesting to investigate whether these constructions can be generalised to
relations of higher arity (- so not just based on graphs and digraphs).2

Acknowledgements. The Author is very much indebted to the Referee of
the original version of this paper. In that version, we worked with unary
algebras rather than directed graphs, and missed the strong form of the

1The Author has recently shown that this is the case [4].
2Again, see [4].
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amalgamation lemma (2.3). Consequently, we were unable to axiomatise the
generic corresponding to N and regarded it as a stable Robinson theory.
Thus in the original version the n-ample reduct was not known to be fully
first-order stable. It was the suggestion of the Referee to work with directed
graphs and to amplify the original description of the example which now
forms Section 1. The observation that this example provides an answer to
Goode’s question is due to the Referee. The Referee is also to be thanked
for pointing out a number of inaccuracies in the original version, and for
demanding more explanation and less notation.

The Author also thanks Herwig Nübling and Massoud Pourmahdian for
useful discussions about this work.

1 Goode’s Question

1.1 Directed Graphs

We work in a first-order language with a single binary relation symbol V (x, y),
pronounced ‘y is a descendant of x.’ Let T ′ be the theory whose models are
the directed graphs with no directed cycles, and in which all vertices have
at most two descendants. If B |= T ′ and X ⊆ B we write cl′B(X) for the
closure of X in B under the operation of taking descendants. As any vertex
has at most two descendants, cl′B(X) is contained in the algebraic closure of
X. We write A ≤′ B if A contains all of its descendants in B. This closure
is disintegrated: cl′B(X) =

⋃
x∈X cl′B(x).

We have the following amalgamation property for models of T ′. Suppose
B, C |= T ′ and A ⊆ B, A ≤′ C. Then the disjoint union F of B and C over
A (with directed edges those of B and C) is again a model of T ′ and B ≤′ F .
We refer to F as the free amalgam of B and C over A.

We now describe the theory mentioned in the abstract. Form T ′
1 by

adjoining to T ′ sentences of the form:

∀x̄∃ȳ(∆X(x̄) → ∆X,A(x̄, ȳ) ∧ ‘cl′(x̄ȳ) = cl′(x̄) ∪ ȳ’)

where A is a finite model of T ′, X ≤′ A, ∆X(x̄) denotes the basic diagram
of X and ∆X,A(x̄, ȳ) denotes the basic diagram of A, where the variables
ȳ represent the elements of A \ X. The condition ‘cl′(x̄ȳ) = cl′(x̄) ∪ ȳ’ is
expressed in a first-order way by saying that any descendant of a variable in
ȳ is one of the variables in xy. Thus a model M of T ′ is a model of T ′

1 iff for all
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finite subsets X of M and X ≤′ A |= T ′ with A finite, there is an embedding
over X of A into M whose image A1 has closure cl′M(X) ∪A1. Note that by
compactness we have also have the following. Suppose M is an ω-saturated
model of T ′

1, X ≤′ M is the closure of a finite set, and X ≤′ A |= T ′ where
A is the closure of a finite set. Then there exists an embedding over X of A
into M with closed image.

Lemma 1.1 The theory T ′
1 is consistent and complete. Moreover, n-tuples

ā, b̄ in models M , N of T ′
1 have the same types iff the map ā 7→ b̄ extends to

an isomorphism between cl′M(ā) and cl′N(b̄).

Proof: Consistency is by a Fräıssé construction using the amalgamation prop-
erty. If the types of ā and b̄ are the same, then clearly we have an isomorphism
between their closures. For the rest, it is enough to show that if M , N are
ω-saturated models of T ′

1, then the set of isomorphisms between closures of
finite subsets of M and N is a back-and-forth system (cf. [13], Chapitre 5.b
or [14], Section 5.2). But this follows at once from the remarks immediately
preceding the lemma. 2

In the terminology of [2], the theory T ′
1 describes the semigenerics for the

class of models of T ′ with embeddings given by ≤′. (Of course, general results
from [2] also give the above lemma: see in particular 1.26–1.32.) Note that
T ′

1 is near model complete, but not model complete: elementary embedding
between models of T ′

1 is the same as closed embedding.
Suppose M |= T ′

1. If B ≤′ M and ā is a tuple in M , then tpM(ā/B) is
determined by the quantifier-free type of cl′M(āB), and this is the free amal-
gam over B∩ cl′M(ā) of B and cl′M(ā). In particular, as the closure of a finite
set is countable, the number of 1-types over B is at most max(2ℵ0 , |B|ℵ0).
So T ′

1 is stable.
With the above notation, we next show that tp(ā/B) does not divide over

C = B ∩ cl′M(ā). Without loss we may assume that M is a large saturated
model of T ′

1. Suppose (Bi : i < ω) is any sequence of translates of B over C.
Let X be the union of these and let Y be the free amalgam of X and cl′(ā)
over C. Then X ≤′ Y so we may assume (by the saturation), that Y ≤′ M .
Let ā1 be the copy of ā inside Y . Then cl′(ā1) ∩ Bi = C and cl′(ā1) and Bi

are freely amalgamated over C. So tp(ā1Bi) = tp(āB), as required.
In summary, we have:
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Lemma 1.2 The theory T ′
1 is stable and if A, B, C are subsets of a model

of T ′
1, then A |̂

C
B ⇔ cl′(AC) ∩ cl′(BC) = cl′(C). Moreover, T ′

1 is 1-based
and trivial.

Proof: We have stability already, and as dividing is the same as forking
in a stable theory, we also have one direction of the double implication. The
other direction follows from the observation that algebraic closure is given
by cl′ in a model of T ′

1. The description of independence gives 1-basedness,
and triviality follows from the fact that the closure cl′ is disintegrated. 2

1.2 Undirected reducts

We now consider reducts where we forget the orientation of the directed
edges. So we take the reducts in the language consisting of the definable re-
lation W (x, y) ↔ V (x, y)∨V (y, x). As T ′ is a universal theory in a relational
language, the class G of reducts of models of T ′ is first-order axiomatizable
(see, for example [6], Theorem 6.6.7) by universal sentences T . In particular,
a graph is in G iff all of its finite subgraphs are in G.

We refer to an expansion of B ∈ G to a model to T ′ as an orientation of
B.

Lemma 1.3 A graph B is in G iff every finite subgraph of B has a vertex of
valency ≤ 2 (in the subgraph).

Proof. First, suppose B ∈ G and A ⊆ B is finite. Take some orientation
of B. As A is finite and has no oriented cycles, there is a vetex in A which is
not a descendant of any other vertex in A. Thus, in the subgraph on A this
vertex has valency ≤ 2.

For the converse, we may assume that B is finite. We construct an ori-
entation of B as follows. Take a vertex b0 ∈ B of valency ≤ 2 and orient its
edges outwards (- so it is not a descendant). Do the same on the subgraph
on B \ {b0}. Repeating this gives the required orientation. 2

If A ⊆ B ∈ G, write A ≤ B to mean that there is an orientation of
B in which A is a closed subset (that is, it contains all of its descendants).
Note that if we have an orientation of B in which A is closed, the induced
orientation of A can be replaced by any other orientation, and we still have
an orientation of B (in which A is closed).
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Lemma 1.4 (i) If A ≤ B ∈ G and X ⊆ B, then A ∩X ≤ X.
(ii) If A ≤ B ≤ C ∈ G, then A ≤ C.

Proof. (i) Take an orientation on B in which A contains all of its descen-
dants. Then any descendant of a vertex in A ∩X which lies in X must also
lie in A ∩X.

(ii) Take an orientation of C in which B is closed. Replace the induced
orientation on B by one in which A is closed. The result is still an orientation
of C, and in it, A is closed. 2

Lemma 1.5 Suppose B, C ∈ G, A ≤ B and A ⊆ C. Then the disjoint
union, F , of B and C over A is in G and C ≤ F .

Proof. Take an orientation on C. As A ≤ B, the orientation on A induced
by this can be extended to an orientation of B in which A is closed. Taking
the disjoint union over A of these gives an orientation of F in which C is
closed. 2

Again, we refer to F in the above as the free amalgam of B and C over
A.

We now associate a closure with ≤. Suppose X ⊆ B ∈ G. We define
clB(X) =

⋂
{C : X ⊆ C ≤ B}, that is, the intersection of the closures of X

in all possible orientations of B. If B is finite, then it follows from Lemma 1.4
that clB(X) ≤ B. The following characterization of clB gives this in general.

Lemma 1.6 Suppose X ⊆ B ∈ G. Then:
(i) clB(X) is the union of all finite Y ⊆ B such that the only vertices of
valency ≤ 2 in the subgraph on Y lie in X ∩ Y .
(ii) clB(X) ≤ B and clB(X) =

⋃
{clB(X0) : X0 ⊆ X finite }.

Proof. First, suppose that X ⊆ A ≤ B and Y is as in (i). Then X ∩ Y ⊆
A ∩ Y ≤ Y . Take an orientation of Y in which A ∩ Y contains all of its
descendants. If Y \ A ∩ Y is non-empty, it contain a vertex which is not a
descendant of any vertex in Y in this orientation: but this is a contradiction
as its valency is at least 3 in Y . Thus Y ⊆ A.

Let Z denote the union of such sets Y . From the previous paragraph, we
have Z ⊆ clB(X). To show that Z = clB(X) and clB(X) ≤ B it will suffice
to prove that Z ≤ B. Once we have this, the finitary character of clB follows
from the description of clB in (i).
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We do this first in the case where B \ Z is finite (and non-empty). We
have to produce an orientation of B in which all descendants of vertices in Z
are in Z. Note that we can choose some orientation on Z and then there are
only finitely many possibilities for the orientation on B: any edge between
a vertex in B \ Z and Z must be directed towards Z, so all that has to be
determined is the orientation on the edges in B \ Z.

To show that there is some orientation (extending the given one on Z) we
follow the proof of Lemma 1.3: it is enough to show that there is a vertex in
B \Z of valency ≤ 2 in B, and proceed inductively. Suppose there is no such
vertex. Let S ⊆ Z be such that every vertex of B \ Z is adjacent to at least
3 vertices of S ∪ (B \ Z). Each vertex in S is contained in some finite set Y
as in (i). Taking the union of these with B \ Z, we obtain a finite subgraph
in which the only vertices of valency ≤ 2 are in X. In particular, B \Z ⊆ Z,
a contradiction.

We have shown that if Z ⊆ B1 ⊆ B and B1 \ Z is finite, then a given
orientation on Z can be extended to one on B1 (with Z closed) in at least one
of only finitely many ways. Thus, the general case follows by a compactness
argument. 2

We now consider the reduct T1 of the theory T ′
1 (to the language consisting

of W (x, y)). This is complete and stable (because T ′
1 is), and we shall show

that T1 is not trivial, thereby providing an answer to the question of Goode.
Before doing this, we give an axiomatization of T1 and characterize non-
forking in its models. This is not strictly necessary in order to demonstrate
that T1 is not trivial, but it seems worthwhile.

If X is a finite subset of B ∈ G and m ∈ N let clmB (X) be the union of sets
Y ⊆ B of size ≤ m in which the only vertices of valency ≤ 2 lie in X ∩ Y .
This is X-definable (uniformly in |X|), and the union of these sets (as m
ranges over N) is clB(X). Also note that clmB (X) is finite. Otherwise, there
exist infinitely many such Y (of size ≤ m). By a Ramsey argument, we may
assume that some infinite subcollection {Yi : i < ω} of these have common
pairwise intersection X1 contained in X, and that they are all isomorphic
over X. Consider

⋃
i≤2 Yi and discard from this any vertex in X1 which is

not adjacent to a vertex in one (equivalently, all) of the Yi \X. The result is
a finite graph in which every vertex has valency at least 3: a contradiction.

For m ∈ N and finite X ≤ A ∈ G consider the sentence σm
X,A given by:

∀x̄∃ȳ(∆X(x̄) → ∆X,A(x̄, ȳ) ∧ ‘clm(x̄ȳ) = clm(x̄) ∪ ȳ’)
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where as before ∆X and ∆X,A denote the basic diagrams of X and A with
the appropriate subdivision of the variables.

Lemma 1.7 Together with T , the sentences σm
X,A axiomatize T1. Moreover,

n-tuples ā, b̄ in models M1, M2 of T1 have the same types iff the map ā 7→ b̄
extends to an isomorphism between clM1(ā) and clM2(b̄).

Proof. First, we show that these sentences are in T1. Suppose M ′ is a
model of T ′

1 and X ′ is a finite subset of M ′ whose reduct is isomorphic to X.
Extend the induced orientation on X to an orientation A′ of A in which X
is a closed subset. By the axiomatization of T ′

1, there is an embedding of A′

into M ′ over X ′ whose image A1 has closure A1 ∪ cl′M ′(X ′). In the reduct,
this image witnesses the condition required for σm

X,A (for any m).
Note that in any model M of T , clM(X) is contained in the algebraic

closure of X, so the isomorphism type of clM(X) is implied by the type of
X in M . Also, if M is an ω-saturated model of T and the sentences σm

X,A,
then by compactness it has the following genericity property: if B ≤ M ,
B ≤ C ∈ G, and B, C are closures of finite sets, then there is an embedding
over B of C into M with closed image. So by the back-and-forth method (as
in Lemma 1.1) T and these sentences axiomatize a complete theory, which
must be T1, and we also have the description of types as in the statement of
the lemma. 2

We remark that for each of T , T ′ there is a unique countable model in
which the closures of finite sets are finite: these are the generic models (for
the respective amalgamation classes of finite structures).

Lemma 1.8 Suppose M is a (large, saturated) model of T1 and A, B, C ≤ M
are small subsets such that A ∩ B = C, A ∪ B ≤ M and A ∪ B is the free
amalgam over C of A and B. Then A |̂

C
B.

Conversely if a, b, c are small tuples in M and a |̂
c
b, then A = clM(ac),

B = clM(bc), C = clM(c) satisfy the above conditions.

Proof. The proof that tp(A/B) does not divide over C is essentially as
in the previous case (see the argument preceding Lemma 1.2). Temporar-
ily refer to the independence given by sets in this configuration as ‘strong
independence.’

For the converse, it is enough to show that types of tuples of elements
of M over closed sets are stationary (by homogeneity, the first part already
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gives us one type of non-forking extension). As we are in a stable theory
it is enough, by the finite equivalence relation theorem, to show that any
imaginary in the algebraic closure of C ≤ M is in its definable closure.

So suppose a is a finite tuple of elements of M and θ(x, y) is a C-definable
f.e.r. on tp(a/C). Let A = clM(Ca). We can use the genericity property
to find translates Ai (for i < ω) of A over C such that

⋃
i<ω Ai is the free

amalgam over C of the Ai and for every n we have
⋃

i<n Ai ≤ M . Let ai be
the copy of a inside Ai. The ai are strongly independent and indiscernible
over C. As θ has finitely many classes, the ai must all be in the same θ-class.
So realisations of tp(a/C) which are strongly independent over C are in the
same θ-class.

Now suppose a′ is any realisation of tp(a/C). There is a realisation a′′ of
tp(a/C) which is strongly independent from a, a′ over C (just consider the
free amalgam of A and clM(Caa′) over C). Then it is easy to see that a, a′′

are strongly independent over C, as are a′, a′′. Thus θ(a, a′), as required. 2

We remark that it follows from this description of independence that T1

is CM-trivial.

Theorem 1.9 The theory T1 is not trivial.

Proof. Let M be a saturated model of T1. Consider the graph B with
four vertices a1, a2, a3, b and edges {ai, b}. This can be oriented by giving b
exactly two descendants, so one may regard B as a closed subset of M , and
any singleton and any pair from {a1, a2, a3} is closed in M . Thus, by Lemma
1.8, the ai are pairwise independent over the empty set. On the other hand,
b ∈ clM(a1, a2, a3), so a1, a2, a3 6≤ M , whence a1 is not independent from
a2, a3 (over the empty set). 2

A more elaborate construction shows that T1 is not k-trivial for any k ∈ N:
there exists a set of (k+2) non-independent points in which any k+1-subset
is independent. Indeed, define graphs Sk recursively as follows. S1 consist
of points a1,1, a1,2, a1,3, b with a1,j adjacent to b, for each j. From Si we
construct Si+1 by adding new vertices ai+1,j for 1 ≤ j ≤ i + 3 and new edges
{ai,j, ai+1,j}, {ai,j, ai+1,j+1} for 1 ≤ j ≤ i+2. It is easy to see that Sk ∈ G (for
any k). Moreover, the whole graph is in the closure of ak,1, . . . , ak,k+2 and any
proper subset of this set of vertices is closed. The first of these statements
follows easily from Lemma 1.6. The second is more difficult, but can be done
by producing an orientation of the graph with ak,i deleted in which there are
no descendants of vertices ak,j.
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Once we have this, if we regard Sk as a closed subset of a model of T1, then
{ak,1, . . . , ak,k+2} is not independent, but any (k + 1)-subset is (by Lemma
1.8).

1.3 Further remarks

We conclude this section with two observations. The first is that T1 is not
superstable; the second is a curious connection between our example and
Hrushovski’s constructions.

We start with a construction which encodes finitely branching trees as
subgraphs of M which are closures of single points.

Definition 1.10 Suppose we are given the following data T :
• a rooted, finitely branching tree Θ of height ω;
• a collection (Bt : t ∈ Θ) of connected finite graphs in which all vertices
have valency 3;
• for each t ∈ Θ an edge et = {at, bt} of Bt;
• for each t ∈ Θ and each immediate successor r of t, a vertex vr ∈ Bt.

We write t+ for the set of (immediate) successors of t in the tree Θ, and
t− for the (immediate) predecessor of t. We let Rt = {vr : r ∈ t+}, and we
assume the vr are distinct, and at, bt 6∈ Rt. Furthermore, we assume that:
• Rt is a coclique in Bt;
• the subgraph on Bt \Rt with et removed is connected.

For example, we can take Θ as the binary tree and each Bt the graph given
by the vertices and edges of a cube in which the vr are a pair of diagonally
opposite vertices.

We form a graph B = BT by joining the graphs Bt together along the
tree Θ, as follows. The vertex set of B consists of a new vertex x0 and the
disjoint union of the vertices of the Bt. The edges of B are as in the Bt, with
the following exceptions:
• the edges et are removed;
• for each non-root vertex r in Θ we form new edges {vr, ar}, {vr, br};
• if t is the root of Θ, we form new edges {x0, at}, {x0, bt}.

Lemma 1.11 With T and B as above we have:
(i) B |= T ;
(ii) clB(x0) = B;
(iii) clB(vr) = {vr} ∪

⋃
r′≥r Br′.
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Proof. (i) Suppose for a contradiction that X is a finite subset of B on which
the induced subgraph has no vertex of valency at most 2. We show that
x0 ∈ X, which is a contradiction.

Suppose X∩Bt 6= ∅. Then X∩Bt 6⊆ Rt as Rt is a coclique whose vertices
are adjacent to only two vertices outside Bt. If x ∈ X ∩ (Bt \ Rt) then all
neighbours of x lie in X as there are only 3 of them. So as Bt \Rt (without
the edge et) is connected, we have that all vertices of Bt \ Rt are in X, in
particular, at ∈ X. But then it follows that vt ∈ X∩Bt− , and we can proceed
down the tree to obtain x0 ∈ X.

(ii) If T ′ is a finite initial segment of T then x0 is the only vertex of
valency ≤ 2 in {x0} ∪

⋃
t∈T ′ Bt. So the statement follows from Lemma 1.6.

(iii) This is similar to (ii). 2

Using this it is easy to construct 2ℵ0 non-isomorphic graphs BT . All
of these can, of course, be realised as closed subsets of some model of T1,
thus T1 is not small: there are continuum many 1-types over the empty set.
Furthermore, we can now see that T1 is not superstable. Essentially, the
point is that a closed subset of a finitely generated closed set need not be
finitely generated. More formally, in the above construction, take the tree
Θ to be the binary tree 2<ω and let R be an infinite antichain in Θ. Let
a be a point in some saturated model M of T1 whose closure is isomorphic
to BT . Let ct ∈ clM(a) be the point corresponding to the vertex vt in BT ,
and C = {cr : r ∈ R}. Let b ∈ M be of the same type over C as a and
independent from a over C. So in particular, clM(a) ∩ clM(b) = clM(C). On
the other hand, a, b are not independent over any finite subset of C, as the
algebraic closure of any set over which they are independent has to contain
clM(C). The argument also shows that tp(a/∅) is of infinite weight (and
so T1 cannot be superstable): the set {cr : r ∈ R} is independent over the
empty set, but a 6 |̂ cr for each r ∈ R.

We now turn to what we see as an interesting connection between our
example and Hrushovski’s constructions.3 We recall briefly some of the defi-
nitions for these.

Definition 1.12 If k ∈ R≥0 and B is a finite graph let δk(B) = k|B|−e(B),
where e(B) is the number of edges in B. For A ⊆ B write A ≤k B if whenever
A ⊆ C ⊆ B, then δk(C) ≥ δk(A).

3These connections are made clearer in [4].
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This notion of embedding can be extended to infinite graphs and in gen-
eral A ≤k B iff for all finite X ⊆ B we have A ∩X ≤k X.

Of particular interest for Hrushovski’s constructions is the class of all
finite graphs A with ∅ ≤k A. This class (with embeddings given by ≤k) is
an amalgamation class and if k is a natural number, then the theory TH

k

of the corresponding generic structure is ω-stable of rank ω · k. Moreover
independence in its models is described as in Lemma 1.8, but with ≤k in
place of ≤. We shall be concerned with the case k = 2.

Lemma 1.13 If B ∈ G and A ≤ B, then A ≤2 B. In particular, ∅ ≤2 B.

Proof. It is enough to do this when B is finite. We show by induction on
|C \ A| that if A ⊆ C ⊆ B, then δ2(A) ≤ δ2(C). Indeed, as A ≤ C there is
c ∈ C \A which is of valency at most 2 in C. Let C1 = C \{c}. By inductive
assumption δ2(A) ≤ δ2(C1), and by definition of c, δ2(C) ≥ δ2(C1). 2

From this it follows that any graph in G can be ≤2-embedded as a sub-
graph of some model of TH

2 . Note that closure with respect to ≤2 (on a graph
in G) is contained in, but can be smaller than, the closure with respect to ≤
(in fact the closure of a finite set with respect to ≤2 is finite). In particular,
suppose M ≤2 M2 where M is a saturated model of T1 and M2 is a saturated
model of TH

2 , and we have A, B, C ≤ M with A, B independent (in the sense
of T1) over C. Then A, B are independent over C in M2, in the sense of TH

2 .
(With a little extra effort the condition that A, B ≤ M can be removed.)
On the other hand, if A, B, C ≤ M and A, B are independent over C in the
sense of TH

2 , we can have A ∪ B 6≤ M , so A, B are not independent over C
in the sense of T1.

There is nevertheless a sort of converse to all of this.

Lemma 1.14 Suppose B is a finite graph and ∅ ≤2 A ≤2 B. Then the edges
of B can be directed so that: B has no directed cycles; any vertex has at most
4 descendants; and A contains all of its descendants.

Proof. As in the proof of Lemma 1.3, it will suffice to show that if
A ⊂ C ⊆ B, then there is a vertex in C \A with valency ≤ 4 in the subgraph
on C.

The sum of the valencies in C of vertices in C \A is 2e(C)−2e(A). So as
δ2(C) = 2|C| − e(C) ≥ 2|A| − e(A), this is at most 4|C \ A|. So the average
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valency in C of vertices in C \A is at most 4. Thus there is a vertex in C \A
with valency ≤ 4, as required. 2

So a model of TH
2 can be embedded as a closed substructure of a variant

of our example (where one allows at most 4 descendants in the orientations).
Of course, one can then repeat, and obtain a chain of Hrushovski’s examples
(with k = 2, 4, 8, . . .) alternated with variants on our examples (allowing
2, 4, 8, . . . descendants).

2 An ample structure

2.1 Directed structures

In this section we work with a first-order language in a signature consisting
of denumerably many 2-ary relation symbols V1(x, y), V2(x, y), . . .. The class
C ′0 of structures is given by the following (first-order) axioms. The relations
Vi are disjoint; each Vi gives a directed graph in which all vertices have at
most 2 descendants; the directed graph given by the union of the Vi has no
directed cycles. Note that in such a structure we have a notion of closure
as in the previous section: one closes under descendants for all the Vi. We
shall again write cl′B(X) for the closure of X in B and A ≤′ B to indicate
that A contains all of its descendants in B. This closure is disintegrated and
contained in algebraic closure. To express various things in a first-order way
we will also use the notation cl′m,B(X) for the closure of X in B under the
operation of taking Vi-descendants for i ≤ m.

We will again consider undirected reducts, but we will also retain infor-
mation about the existence of certain paths between pairs of vertices when
we pass to the reduct. Now, in the directed graphs, the existence of a par-
ticular type of path between two vertices is not in general preserved between
closed substructures. So we shall impose extra axioms on our structures to
guarantee this.

Definition 2.1 Write Wi(x, y) iff Vi(x, y) ∨ Vi(y, x).
(i) If i, r ≥ 1 and A ∈ C ′0 an (i, r)-path from a0 to ar in A is a sequence

a0, . . . , ar of elements of A with Wi(a0, a1), Wi+1(a1, a2), . . . ,Wi+r−1(ar−1, ar).
It is a nice (i, r)-path if there is l ≤ r with Vi+k(ak, ak+1) for k < l and
Vi+k(ak+1, ak) for l ≤ k. We refer to al here as the node of the path. So a
directed (i, r)-path is nice iff it consists of two descending paths (one possibly
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empty) with a common terminal vertex (the node). Write A |= P i,r(a, b) if
there is an (i, r)-path in A from a to b.

(ii) The class C ′ ⊆ C′0 consists of structures A which satisfy the following
additional axioms θi,r (for r ≥ 2). Suppose a0, a1, . . . , ar is an (i, r)-path in
A and Vi(a1, a0), Vi+1(a1, a2), Vi+2(a2, a3), . . . , Vi+r−1(ar−1, ar). Then there is
a nice (i, r)-path from a0 to ar in A.

(iii) We denote by T̂ ′ the axioms for C ′.

Of course, P i,1 is superfluous as it is the same thing as Wi, but it is
convenient to have a uniform notation in the following arguments.

Lemma 2.2 (i) Let A ∈ C ′ and suppose a0, . . . , ar is an (i, r)-path in A.
Then there is a nice (i, r)-path in A starting at a0 and ending at ar.
(ii) If A ≤′ B ∈ C ′ and a, b ∈ A then A |= P i,r(a, b) ⇔ B |= P i,r(a, b).

Proof. (i) This is by induction on r. The base case r = 2 follows quickly
from the axioms θi,2. For the inductive step, note first that we may assume
a1, . . . , ar is a nice (i+1, r−1)-path, with node ak. If Vi(a0, a1), then a0, . . . , ar

is a nice (i, r)-path. So suppose Vi(a1, a0). If k = 1, there is no problem (we
have a nice (i, r)-path with node a0). If k = r we can appeal directly to θi,r

to get a nice (i, r)-path from a0 to ar. Finally, if 1 < k < r we can apply θi,k

to get a nice (i, k)-path from a0 to ak. Adjoining ak+1, . . . , ar to this we get
a nice (i, r)-path, as required.

(ii) One direction is clear. For the other, if B |= P i,r(a, b), then by (i)
there is a nice (i, r)-path from a to b in B, and as a, b ∈ A ≤′ B, this lies
entirely within A. 2

The amalgamation property for T̂ ′ is as before. Once again we refer to
the disjoint union of two structures in C ′ over a common substructure as their
free amalgam over the substructure.

Lemma 2.3 Suppose B, C ∈ C ′ and A ⊆ B, A ≤′ C. Then the free amalgam
F of B and C over A is in C ′ and B ≤′ F .

Proof. It is clear that F ∈ C ′0 and B ≤′ F . So it remains to show that
F |= θi,r. Let a0, a1, . . . , ar ∈ F be as in the definition of θi,r. We must show
that there is a nice (i, r)-path from a0 to ar in F .

Note that each ai is in cl′F (a1), so if a1 ∈ B, then there is no problem (as
B ≤′ F and B |= θi,r). Thus we may assume a1 ∈ C \ A. If all the ai are in
C then again there is no problem as C |= θi,r. If not, let j > 1 be as small as

16



possible with aj 6∈ C. Note that a0 in C and j > 2 as a1 is not adjacent to
any vertex outside C, and similarly aj−1 ∈ A. Also aj, . . . , ar ∈ B as B ≤ F .
As C |= θi,j−1, there is a nice (i, j−1)-path in C from a0 to aj−1. Denote this
by c0, c1, . . . , cj−1 and let cs be the node. Then cs, cs+1, . . . , cj−1 ∈ cl′C(aj−1)
and so are in A. Thus cs, . . . , cj−1, aj, . . . , ar is an (i + s, r − s)-path in B.
Thus (by Lemma 2.2) there is a nice (i + s, r − s)-path bs, . . . , br from cs to
ar in B, and then c0, . . . , cs−1, cs, bs+1, . . . , br is a nice (i, r)-path in F from
a0 to ar. 2

Now let T̂ ′
1 consist of T̂ ′ and all sentences of the form:

∀x̄∃ȳ(∆X(x̄) → ∆X,A(x̄, ȳ) ∧ ‘cl′m(x̄ȳ) = cl′m(x̄) ∪ ȳ’)

where A ∈ C ′ is finite, X ≤′ A, ∆X(x̄) denotes the basic diagram of X and
∆X,A(x̄, ȳ) denotes the basic diagram of A, where the variables ȳ represent
the elements of A \X. The condition ‘cl′m(x̄ȳ) = cl′m(x̄) ∪ ȳ’ is expressed in
a first-order way by saying that any Vi-descendent of a variable in ȳ is one
of the variables in xy, for i ≤ m.

Note that if X is the closure of a finite set inside some ω-saturated model
M of T̂ ′

1, and X ≤′ A |= T̂ ′, where A is also the closure of a finite set, then,
by compactness, there exists an embedding over X of A into M with closed
image. One can then argue exactly as for T ′

1 (as in Lemmas 1.1 and 1.2) to
obtain:

Lemma 2.4 (i) The theory T̂ ′
1 is consistent and complete. Moreover, n-

tuples ā, b̄ in models M, N of T̂ ′
1 have the same type iff the map ā 7→ b̄

extends to an isomorphism between cl′M(ā) and cl′N(b̄).
(ii) The theory T̂ ′

1 is stable and if A, B, C are subsets of a model N of T̂ ′
1,

then A |̂
C

B ⇔ cl′N(AC)∩ cl′N(BC) = cl′N(C). Moreover, T̂ ′
1 is 1-based and

trivial. 2

2.2 Reducts

We now consider the class C of reducts of structures in C ′ to the signature con-
sisting of the (definable) predicates Wi(x, y) and P i,r(x, y). (Of course, these
predicates are definable in the original language rather than being a subset
of it, so the usage of the word ‘reduct’ is somewhat incorrect, particularly
as the P i,r are not even quantifier-free definable.) This is not closed under
substructures. For example, take A = {a, b, c} ∈ C ′ with V1(a, b), V2(c, b) in
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A. Then in the reduct we have P 1,2(a, c), so clearly {a, c} is not the reduct
of a structure in C ′.

We again refer to an expansion of a structure in C to a structure in C ′
(with the correct meaning of Wi and P i,r) as an orientation of the structure.
We say that structures in C ′ with the same domain are equivalent if their
reducts are equal (i.e. they are both orientations of the same structure in
C). If A ⊆ B ∈ C, we write A ≤ B to mean that there is an orientation of
B in which A is a closed subset. As T̂ ′

1 is complete the reducts of its models
all have the same theory T̂1. This is of course also complete and stable. We
shall show that it is n-ample for all n ∈ N.

Before proceeding, we introduce a convenient piece of notation.

Notation 2.5 For any structure in C ′, the union of the relations Vi has no
cycles and so its transitive closure is a partial order, and this can be extended
to a total order. Thus we can describe an orientation on A ∈ C by specifying
an ordering on its points: if A |= Wi(a, b) and b is less than a in the ordering
then b is a Vi-descendant of a in the orientation (of course, not all orderings
give orientations). If A is denumerable, we will usually describe an ordering
on its points by enumerating them a0, a1, a2, . . .: the understanding being
that ai is less than aj in the ordering for i < j.

One difference from the previous case is that there is no closure operation
associated with ≤: it can happen that A1, A2 ≤ B ∈ C and A1∩A2 6≤ B. For
example, suppose B has points a, b1, b2, c and relations W1(a, bi), W2(c, bi),
P 1,2(a, c) (for i = 1, 2). This has orientations b1, a, c, b2 and b2, a, c, b1 so
B ∈ C and {a, b1, c}, {a, b2, c} ≤ B. On the other hand {a, c} 6≤ B, as
P 1,2(a, c).

Despite this, the class (C,≤) does have some of the good properties of the
earlier example (G,≤). We first describe the appropriate notion of free amal-
gamation. Note that if a0, a1, a2 ∈ A ∈ C and A |= W1(a0, a1) ∧ W2(a1, a2),
then A |= P 1,2(a0, a2). So we cannot expect to amalgamate structures over
a common substructure by taking the union of the relations on the struc-
tures: we may have to add some new instances of the relations P i,r. Free
amalgamation does this in the minimal way possible.

Definition 2.6 Suppose A, B1, B2 ∈ C and A ⊆ B1, B2. By the free amal-
gam of B1 and B2 over A we mean the structure F whose domain is the
disjoint union of B1 and B2 over A and whose relations consist of the unions
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of the relations on B1 and B2 together with new instances of relations P i,r

as follows. If b1 ∈ B1 \ A and b2 ∈ B2 \ A then F |= P i,r(b1, b2) iff there is
k < r and a ∈ A with B1 |= P i,k(b1, a) and B2 |= P i+k,r−k(a, b2). Similarly
with the roles of B1 and B2 interchanged.

Lemma 2.7 (i) Suppose A ≤′ C ∈ C ′ and C1 is obtained from C by replacing
the substructure on A by an equivalent structure A1. Then C1 ∈ C ′.
(ii) If A ≤ B ≤ C ∈ C then A ≤ C.
(iii) If A ≤ B, C ∈ C, then the free amalgam F of B and C over A is in C
and B, C ≤ F .

Proof. (i) Easily C1 ∈ C ′0, so it is enough to show that if a0, . . . , ar is
a nice (i, r)-path in C, then there is a nice (i, r)-path in C1 from a0 to ar.
We may assume that some aj ∈ A. Let s be the smallest j with aj ∈ A
and t the largest. As A ≤ C we have as, . . . , at ∈ A and the node of the
path is amongst these. If s = t there is no problem, so assume s < t. Then
A |= P i+s,t−s(as, at), so the same is true in A1 (as the reducts of A and A1

are the same). Thus there is a nice (i + s, t − s)-path bs, . . . , bt in C1 from
as = bs to at = bt. Then a0, as, bs+1, . . . , bt−1, at, . . . , ar is a nice (i, r)-path in
C1, as required.

(ii) There is an orientation of C in which B is the domain of a closed
substructure. Replace the orientation on B by one in which A is the domain
of a closed substructure. By (i), the result is an orientation of C in which A
is the domain of a closed substructure.

(iii) Take an orientation of B in which A is the domain of a closed sub-
structure. By (i) the induced orientation of A can be extended to an orien-
tation of C. The free amalgamation of these over A gives an orientation of
F in which B is the domain of a closed substructure. 2

We do not have a convenient axiomatization of T̂1 as we do for T1: the
difficulty is in expressing ≤. Nevertheless, as T̂ ′

1 is complete and recursively
axiomatized, the same is true of T̂1 and it is therefore decidable.

Henceforth, we work with a large, saturated model N of T̂ ′
1 (necessarily

uncountable) and take its reduct M , which will be a saturated model of T̂1.
We will first show that M is homogeneous and universal for small structures
in (C,≤) (where ‘small’ means of cardinality less than |M |). The main point
is the following.
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Proposition 2.8 Suppose A ≤′ N is small and A1 ∈ C ′ is equivalent to A.
Let N1 be the structure obtained by replacing A by A1 in N . Then N1 is a
saturated model of T̂ ′

1.

Proof. By Lemma 2.7 (i) we have N1 |= T̂ ′. So it will be be enough to
show that N1 satisfies the following ‘genericity’ condition. Suppose B ≤′ N1

and B ≤′ D ∈ C ′ is small. Then there is an embedding δ : D → N1 which is
the identity on B, and which satisfies δ(D) ≤′ N1. Indeed, if this condition
holds, then N and N1 are back-and-forth equivalent (as in Lemma 2.4), so
N1 |= T̂ ′

1, and saturation is then clear from the description of types in Lemma
2.4.

As A1 and B are closed in N1 we have B1 = A1∪B ≤′ N1. Let D1 be the
free amalgam over B of B1 and D. So A1 ≤′ B1 ≤′ D1 and D ≤′ D1 ∈ C ′. If
we replace A1 by the equivalent structure A in B1 we obtain A ≤′ B2 ≤′ N .
Doing the same thing in D1 we obtain D2 ∈ C′ (by Lemma 2.7) with A ≤′

B2 ≤′ D2. By saturation of N (i.e. the above genericity property), there is
an embedding α : D2 → N which is the identity on B2 and which has closed
image in N . Now, D is not necessarily the domain of a closed substructure
of D2, but if we replace the structure on A by A1 in both D2 and N , the map
α gives us an embedding D1 → N1 (- same map, different structures!) with
closed image and which is the identity on B1. If we restrict this to D ≤′ D1,
we get the required embedding δ. 2

Corollary 2.9 (i) If A ⊆ M is small, then A ≤ M iff there is an orientation
of M which is a saturated model of T̂ ′

1 in which A is closed.
(ii) If A ≤ M is small and β : A → B is an embedding of A into some small
B ∈ C with β(A) ≤ B, then there exists an embedding γ : B → M with γ ◦ β
the identity on A and γ(B) ≤ M .
(iii) If A1, A2 ≤ M are small and α : A1 → A2 is an isomorphism, then α
can be extended to an automorphism of M .

Proof. (i) Suppose A ≤ M is small. Let P be an orientation of M in
which A is closed. There is a small subset B containing A which is closed in
both P and N . Let B1 denote the structure on B in P . So A ≤′ B1. Replace
the structure on B in N by the equivalent structure B1. By Proposition 2.8
the result is still a saturated model N1 of T̂ ′

1. So we have A ≤′ B1 ≤′ N1 and
N1 is an orientation of M which is saturated and in which A is closed.

(ii) This follows from (iii) and the fact that any small B ∈ C can be
≤-embedded in M .
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(iii) By Proposition 2.8 and (i), there exist orientations N1, N2 of M
which are saturated models of T̂ ′

1 with A1, A2 (respectively) closed subsets
and in which α gives an isomorphism of the oriented structures on A1, A2. By
Lemma 2.4 (i) this is a partial elementary map, so by uniqueness of saturated
models, it extends to an isomorphism between N1 and N2. Passing back to
the reduct, we obtain an automorphism of M which extends α. 2

We do not have a full characterization of forking in M . However, the
following is useful.

Lemma 2.10 Suppose A, B, C are small subsets of M with A∩B = C ≤ M ;
A, B ≤ A ∪ B ≤ M and A ∪ B the free amalgam over C of A and B. Then
A |̂

C
B.

Proof. This is similar to the proof of Lemma 1.2: we show that tpM(A/B)
does not divide over C. Let (Bi : i < ω) be a sequence of translates over C
of B = B0. So in particular Bi ≤ M . First, we show that there is a small
D ≤ M with Bi ≤ D for all i < ω. To see this, note that for each i there is an
orientation Ni of M in which C and Bi are closed. As the closure of a small
set is small in any orientation, there is a small subset D which contains all
the Bi and which is closed in N and all the Ni. It follows that Bi ≤ D ≤ M
for all i.

Let F be the free amalgam over C of D with a copy over C of A (call it
A1). By Corollary 2.9(ii), we may assume that F ≤ M . As A1 ≤ F ≤ M
we have that A and A1 have the same type over C. Now we claim that
A1, Bi ≤ A1 ∪ Bi ≤ F for each i. Indeed, there is an orientation D′ of D in
which C, Bi are closed. Extend the orientation C ′ on C to an orientation A′

1

of A1 (using Lemma 2.7). The free amalgam (in C ′) of A′
1 and D′ over C ′ is

an orientation of F in which A1, Bi and A1 ∪ Bi are closed. The establishes
the claim and also shows that A1 ∪Bi is the free amalgam over C of A1 and
Bi. Thus tpM(BiA1) = tpM(BA) for all i, by Corollary 2.9(iii). 2

Theorem 2.11 The structure M is non-trivial and n-ample for all n ∈ N.
Take A = {a0, . . . , an, . . .} ≤ M such that Wi(ai−1, ai) and P i+1,j−i(ai, aj)
(for j ≥ i + 1), and no other atomic relations hold on A. Then ai ≤ M for
each i and these have the same strong type over ∅. Moreover, for all n:
(i) an . . . ai+1 |̂

ai
a0 . . . ai−1 for i < n;

(ii) an 6 |̂ a0, and in fact P 1,n(a0, y) divides over ∅;
(iii) acl(a0) ∩ acl(a1) = acl(∅);
(iv) acl(a0 . . . ai−1ai) ∩ acl(a0 . . . ai−1ai+1) = acl(a0 . . . ai−1) for all i.
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Proof. Non-triviality is exactly as in Theorem 1.9 (just using W1), and we
will not repeat the argument. For the rest, we use the notational convention
of (2.5) to specify various orientations.

First note that a0, a1, . . . is an orientation of A, so we can indeed find
such points in M . Moreover, for any i, the enumeration ai, ai−1, . . . , a0 is
also an orientation of the initial segment {a0, . . . , ai} ≤ A, so in particular
{ai} ≤ M . In fact, one can now see that for any i, A is the free amalgam
over {ai} of {ai, ai−1, . . . , a0} and {ai, ai+1, . . .} ≤ A. By Lemma 2.10, this
gives (i).

As ai ≤ M , the ai have the same type over ∅ (by Corollary 2.9(iii)). We
can argue as in the proof of Lemma 1.8 to show that tp(a1/∅) is stationary
and it then follows that the ai have the same strong type over ∅.

(ii) Note that M |= P 1,n(a0, an), so it is enough to prove the second
assertion. Let C = {ci : i < ω} ≤ M have all atomic relations empty. Note
that ci ≤ C ≤ M , so (ci : i < ω) is an indiscernible sequence over ∅, and we
may assume c0 = a0. We show that no subset of {P 1,n(ci, y) : i < ω} of size
greater than 2n is realised in M . Indeed, take an orientation of M in which
C is closed. Let d ∈ M and suppose M |= P 1,n(ci, d). This is witnessed by a
nice (1, n)-path in any orientation of M and (as C is closed in our particular
orientation and there are no realisations of Wj in C) it follows that this nice
(1, n)-path is directed from d to ci in our orientation. But the number of
such directed paths (for fixed d, and fixed orientation) is at most 2n, so the
number of possible ci reachable by such a path is at most 2n.

(iii) Suppose e ∈ acl(a0) ∩ acl(a1). There exists a sequence (cj : j < ω)
with c0 = a1, W1(a0, cj) for all j, no other atomic relations holding on C =
{a0, c0, c1, . . .}, and C ≤ M . Then a0cj ≤ M and the cj are all of the same
type over a0. The same is true of any pair of the cj, thus, as e is algebraic
over a0, we have that c0, c1 have the same type over a0, e.

It follows that e ∈ acl(c0) ∩ acl(c1). But any enumeration of C which
starts with c0, c1, a0 gives an orientation of C, so {c0, c1} ≤ M . Thus c0 |̂ c1

by Lemma 2.10, and therefore e ∈ acl(∅).
(iv) This is similar to (iii). Fix i. Let ā = (a0, . . . , ai−1) and â =

(ai−1, . . . , a0). Suppose e ∈ acl(āai)∩acl(āai+1). There exist distinct (cj : j <
ω) with D = {ā, ai+1, cj : j < ω} ≤ M , c0 = ai, Wi(ai−1, cj), Wi+1(cj, ai+1)
and the only other instances of atomic relations holding on D being those
P l,r forced by the (l, r)-paths. For each j, any enumeration of D starting off
with cj, â, ai+1 gives an orientation of D, so cj âai+1 ≤ M and therefore the
cj are of the same type over āai+1. Thus (as e ∈ acl(āai+1)) we may assume
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c0, c1 are of the same type over āai+1e. So e ∈ acl(āc0) ∩ acl(āc1). But any
enumeration of D starting with ā, c0, c1, ai+1 gives an orientation of D, so
c0 |̂

ā
c1 by Lemma 2.10. Thus e ∈ acl(ā), as required. 2

Remarks 2.12 Note that we could have worked throughout with Wi, Vi for
i ≤ n, with n fixed. The argument shows that the resulting structure is
n-ample. We conjecture that it is not (n+1)-ample, but have not attempted
to verify this.

2.3 Pseudospaces in M

It is not completely clear what the precise definition of ‘pseudospace’ should
be (the term is also not defined in [1]). Ideally, one would like to define
the combinatorial notion of an ‘n-pseudospace’ so that a stable structure is
n-ample iff it type-interprets an n-pseudospace. Of course, we have this for
n = 1: this is Lachlan’s notion of a pseudoplane. In vague terms, however, an
n-pseudospace should consist of points, lines, planes, . . . which satisfy various
‘geometric’ incidence properties.

We show how to build such a structure in M . In the example below,
one could think of the loci of a0, . . . , an over B as (canonical parameters
for) points, lines,. . . , n-flats, . . . with the various 2-types (aiaj/B) giving
incidence relations between these.

Proposition 2.13 Let M be the structure constructed in the previous sec-
tion.
(i) There are points A = {ai, bi+1, ci, di+1 : i < ω} with A ≤ M and only
the following atomic relations (and the instances of the P i,r they imply) on
A (see Figure 1): for i ≥ 1
Wi(ai−1, ai), Wi(bi, bi+1), Wi+1(ci−1, ci), Wi(ai−1, ci−1), Wi(bi, ai), Wi(di, bi),
Wi+1(di, ci).

If B = {bi+1, ci, di+1 : i < ω}, then B ≤ A.

With this notation, we have, for all i < ω:
(ii) ai 6∈ acl(Ba0, . . . , ai−1, ai+1, . . .);
(iii) the locus of (ai, ai+1) over B is a pseudoplane.

Proof. (i) Using Figure 1 to identify the instances of the relations P i,r, one
checks that

d1, d2, . . . , b1, b2, . . . , c0, c1, c2, . . . , a0, a1, a2, . . .
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Figure 1: The pseudospace

gives an orientation of A.
(ii) Let i < ω. Consider the structure E = A ∪ {ej : j < ω} where the

quantifier free type of ej over A \ {ai} is the same as that of ai, and there
are no other basic relations on E other than what is implied by this. Then
Ba0, a1, . . . , e0, e1, e2, . . . is an orientation of E with A as a closed substruc-
ture, so we may assume that the ej are in M . We may interchange ai with
any of the ej and still have an orientation of E. Thus ai, ej have the same
type over Ba0, . . . , ai−1, ai+1, . . ..

(iii) Suppose a′i is a translate of ai over Bai+1. We need to check that
ai+1 ∈ acl(aia

′
i). Indeed, suppose ai+1 = a1

i+1, . . . , a
r
i+1 are translates over

Baia
′
i. If r ≥ 3, then the graph with edge set Wi+1 on the points bi+1, ai, a

′
i,

a1
i+1, . . . , a

r
i+1 has all vertices being of valency at least 3, which contradicts

the existence of an orientation on M . Thus r ≤ 2.
Similarly, suppose a′i+1 is a translate of ai+1 over Bai, and ai = a1

i , . . . , a
r
i

are translates over Bai+1a
′
i+1. Again, if r ≥ 3 then the graph with edge set

Wi+1 on the points ci, ai+1, a
′
i+1, a

1
i , . . . , a

r
i has all vertices of valency ≥ 3,

which is again a contradiction. 2

Remarks 2.14 Conditions (ii) and (iii) are probably weaker than n-ampleness.
In the example we also have that:
(iv) a0, . . . , ai−1 |̂

Bai
ai+1 . . ..
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