8,151 research outputs found

    Fractional isomorphism of graphs

    Get PDF
    AbstractLet the adjacency matrices of graphs G and H be A and B. These graphs are isomorphic provided there is a permutation matrix P with AP=PB, or equivalently, A=PBPT. If we relax the requirement that P be a permutation matrix, and, instead, require P only to be doubly stochastic, we arrive at two new equivalence relations on graphs: linear fractional isomorphism (when we relax AP=PB) and quadratic fractional isomorphism (when we relax A=PBPT). Further, if we allow the two instances of P in A=PBPT to be different doubly stochastic matrices, we arrive at the concept of semi-isomorphism.We present necessary and sufficient conditions for graphs to be linearly fractionally isomorphic, we prove that quadratic fractional isomorphism is the same as isomorphism and we relate semi-isomorphism to isomorphism of bipartite graphs

    Distance Magic Graphs - a Survey

    Full text link
    Let <i>G = (V;E)</i> be a graph of order n. A bijection <i>f : V → {1, 2,...,n} </i>is called <i>a distance magic labeling </i>of G if there exists a positive integer k such that <i>Σ f(u) = k </i> for all <i>v ε V</i>, where <i>N(v)</i> is the open neighborhood of v. The constant k is called the magic constant of the labeling f. Any graph which admits <i>a distance magic labeling </i>is called a distance magic graph. In this paper we present a survey of existing results on distance magic graphs along with our recent results,open problems and conjectures.DOI : http://dx.doi.org/10.22342/jims.0.0.15.11-2

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called ā€œcolorsā€ to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k āˆ’ 1), conļ¬rming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We deļ¬ne the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive diļ¬€erent colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique

    Graph cluster randomization: network exposure to multiple universes

    Full text link
    A/B testing is a standard approach for evaluating the effect of online experiments; the goal is to estimate the `average treatment effect' of a new feature or condition by exposing a sample of the overall population to it. A drawback with A/B testing is that it is poorly suited for experiments involving social interference, when the treatment of individuals spills over to neighboring individuals along an underlying social network. In this work, we propose a novel methodology using graph clustering to analyze average treatment effects under social interference. To begin, we characterize graph-theoretic conditions under which individuals can be considered to be `network exposed' to an experiment. We then show how graph cluster randomization admits an efficient exact algorithm to compute the probabilities for each vertex being network exposed under several of these exposure conditions. Using these probabilities as inverse weights, a Horvitz-Thompson estimator can then provide an effect estimate that is unbiased, provided that the exposure model has been properly specified. Given an estimator that is unbiased, we focus on minimizing the variance. First, we develop simple sufficient conditions for the variance of the estimator to be asymptotically small in n, the size of the graph. However, for general randomization schemes, this variance can be lower bounded by an exponential function of the degrees of a graph. In contrast, we show that if a graph satisfies a restricted-growth condition on the growth rate of neighborhoods, then there exists a natural clustering algorithm, based on vertex neighborhoods, for which the variance of the estimator can be upper bounded by a linear function of the degrees. Thus we show that proper cluster randomization can lead to exponentially lower estimator variance when experimentally measuring average treatment effects under interference.Comment: 9 pages, 2 figure
    • ā€¦
    corecore